// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "internal/abi" "internal/goarch" "runtime/internal/math" "unsafe" ) // Should be a built-in for unsafe.Pointer? // //go:nosplit func add(p unsafe.Pointer, x uintptr) unsafe.Pointer { return unsafe.Pointer(uintptr(p) + x) } // getg returns the pointer to the current g. // The compiler rewrites calls to this function into instructions // that fetch the g directly (from TLS or from the dedicated register). func getg() *g // mcall switches from the g to the g0 stack and invokes fn(g), // where g is the goroutine that made the call. // mcall saves g's current PC/SP in g->sched so that it can be restored later. // It is up to fn to arrange for that later execution, typically by recording // g in a data structure, causing something to call ready(g) later. // mcall returns to the original goroutine g later, when g has been rescheduled. // fn must not return at all; typically it ends by calling schedule, to let the m // run other goroutines. // // mcall can only be called from g stacks (not g0, not gsignal). // // This must NOT be go:noescape: if fn is a stack-allocated closure, // fn puts g on a run queue, and g executes before fn returns, the // closure will be invalidated while it is still executing. func mcall(fn func(*g)) // systemstack runs fn on a system stack. // If systemstack is called from the per-OS-thread (g0) stack, or // if systemstack is called from the signal handling (gsignal) stack, // systemstack calls fn directly and returns. // Otherwise, systemstack is being called from the limited stack // of an ordinary goroutine. In this case, systemstack switches // to the per-OS-thread stack, calls fn, and switches back. // It is common to use a func literal as the argument, in order // to share inputs and outputs with the code around the call // to system stack: // // ... set up y ... // systemstack(func() { // x = bigcall(y) // }) // ... use x ... // //go:noescape func systemstack(fn func()) //go:nosplit //go:nowritebarrierrec func badsystemstack() { writeErrStr("fatal: systemstack called from unexpected goroutine") } // memclrNoHeapPointers clears n bytes starting at ptr. // // Usually you should use typedmemclr. memclrNoHeapPointers should be // used only when the caller knows that *ptr contains no heap pointers // because either: // // *ptr is initialized memory and its type is pointer-free, or // // *ptr is uninitialized memory (e.g., memory that's being reused // for a new allocation) and hence contains only "junk". // // memclrNoHeapPointers ensures that if ptr is pointer-aligned, and n // is a multiple of the pointer size, then any pointer-aligned, // pointer-sized portion is cleared atomically. Despite the function // name, this is necessary because this function is the underlying // implementation of typedmemclr and memclrHasPointers. See the doc of // memmove for more details. // // The (CPU-specific) implementations of this function are in memclr_*.s. // //go:noescape func memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr) //go:linkname reflect_memclrNoHeapPointers reflect.memclrNoHeapPointers func reflect_memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr) { memclrNoHeapPointers(ptr, n) } // memmove copies n bytes from "from" to "to". // // memmove ensures that any pointer in "from" is written to "to" with // an indivisible write, so that racy reads cannot observe a // half-written pointer. This is necessary to prevent the garbage // collector from observing invalid pointers, and differs from memmove // in unmanaged languages. However, memmove is only required to do // this if "from" and "to" may contain pointers, which can only be the // case if "from", "to", and "n" are all be word-aligned. // // Implementations are in memmove_*.s. // //go:noescape func memmove(to, from unsafe.Pointer, n uintptr) // Outside assembly calls memmove. Make sure it has ABI wrappers. // //go:linkname memmove //go:linkname reflect_memmove reflect.memmove func reflect_memmove(to, from unsafe.Pointer, n uintptr) { memmove(to, from, n) } // exported value for testing const hashLoad = float32(loadFactorNum) / float32(loadFactorDen) //go:nosplit func fastrand() uint32 { mp := getg().m // Implement wyrand: https://github.com/wangyi-fudan/wyhash // Only the platform that math.Mul64 can be lowered // by the compiler should be in this list. if goarch.IsAmd64|goarch.IsArm64|goarch.IsPpc64| goarch.IsPpc64le|goarch.IsMips64|goarch.IsMips64le| goarch.IsS390x|goarch.IsRiscv64|goarch.IsLoong64 == 1 { mp.fastrand += 0xa0761d6478bd642f hi, lo := math.Mul64(mp.fastrand, mp.fastrand^0xe7037ed1a0b428db) return uint32(hi ^ lo) } // Implement xorshift64+: 2 32-bit xorshift sequences added together. // Shift triplet [17,7,16] was calculated as indicated in Marsaglia's // Xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf // This generator passes the SmallCrush suite, part of TestU01 framework: // http://simul.iro.umontreal.ca/testu01/tu01.html t := (*[2]uint32)(unsafe.Pointer(&mp.fastrand)) s1, s0 := t[0], t[1] s1 ^= s1 << 17 s1 = s1 ^ s0 ^ s1>>7 ^ s0>>16 t[0], t[1] = s0, s1 return s0 + s1 } //go:nosplit func fastrandn(n uint32) uint32 { // This is similar to fastrand() % n, but faster. // See https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/ return uint32(uint64(fastrand()) * uint64(n) >> 32) } func fastrand64() uint64 { mp := getg().m // Implement wyrand: https://github.com/wangyi-fudan/wyhash // Only the platform that math.Mul64 can be lowered // by the compiler should be in this list. if goarch.IsAmd64|goarch.IsArm64|goarch.IsPpc64| goarch.IsPpc64le|goarch.IsMips64|goarch.IsMips64le| goarch.IsS390x|goarch.IsRiscv64 == 1 { mp.fastrand += 0xa0761d6478bd642f hi, lo := math.Mul64(mp.fastrand, mp.fastrand^0xe7037ed1a0b428db) return hi ^ lo } // Implement xorshift64+: 2 32-bit xorshift sequences added together. // Xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf // This generator passes the SmallCrush suite, part of TestU01 framework: // http://simul.iro.umontreal.ca/testu01/tu01.html t := (*[2]uint32)(unsafe.Pointer(&mp.fastrand)) s1, s0 := t[0], t[1] s1 ^= s1 << 17 s1 = s1 ^ s0 ^ s1>>7 ^ s0>>16 r := uint64(s0 + s1) s0, s1 = s1, s0 s1 ^= s1 << 17 s1 = s1 ^ s0 ^ s1>>7 ^ s0>>16 r += uint64(s0+s1) << 32 t[0], t[1] = s0, s1 return r } func fastrandu() uint { if goarch.PtrSize == 4 { return uint(fastrand()) } return uint(fastrand64()) } //go:linkname rand_fastrand64 math/rand.fastrand64 func rand_fastrand64() uint64 { return fastrand64() } //go:linkname sync_fastrandn sync.fastrandn func sync_fastrandn(n uint32) uint32 { return fastrandn(n) } //go:linkname net_fastrandu net.fastrandu func net_fastrandu() uint { return fastrandu() } //go:linkname os_fastrand os.fastrand func os_fastrand() uint32 { return fastrand() } // in internal/bytealg/equal_*.s // //go:noescape func memequal(a, b unsafe.Pointer, size uintptr) bool // noescape hides a pointer from escape analysis. noescape is // the identity function but escape analysis doesn't think the // output depends on the input. noescape is inlined and currently // compiles down to zero instructions. // USE CAREFULLY! // //go:nosplit func noescape(p unsafe.Pointer) unsafe.Pointer { x := uintptr(p) return unsafe.Pointer(x ^ 0) } // Not all cgocallback frames are actually cgocallback, // so not all have these arguments. Mark them uintptr so that the GC // does not misinterpret memory when the arguments are not present. // cgocallback is not called from Go, only from crosscall2. // This in turn calls cgocallbackg, which is where we'll find // pointer-declared arguments. func cgocallback(fn, frame, ctxt uintptr) func gogo(buf *gobuf) func asminit() func setg(gg *g) func breakpoint() // reflectcall calls fn with arguments described by stackArgs, stackArgsSize, // frameSize, and regArgs. // // Arguments passed on the stack and space for return values passed on the stack // must be laid out at the space pointed to by stackArgs (with total length // stackArgsSize) according to the ABI. // // stackRetOffset must be some value <= stackArgsSize that indicates the // offset within stackArgs where the return value space begins. // // frameSize is the total size of the argument frame at stackArgs and must // therefore be >= stackArgsSize. It must include additional space for spilling // register arguments for stack growth and preemption. // // TODO(mknyszek): Once we don't need the additional spill space, remove frameSize, // since frameSize will be redundant with stackArgsSize. // // Arguments passed in registers must be laid out in regArgs according to the ABI. // regArgs will hold any return values passed in registers after the call. // // reflectcall copies stack arguments from stackArgs to the goroutine stack, and // then copies back stackArgsSize-stackRetOffset bytes back to the return space // in stackArgs once fn has completed. It also "unspills" argument registers from // regArgs before calling fn, and spills them back into regArgs immediately // following the call to fn. If there are results being returned on the stack, // the caller should pass the argument frame type as stackArgsType so that // reflectcall can execute appropriate write barriers during the copy. // // reflectcall expects regArgs.ReturnIsPtr to be populated indicating which // registers on the return path will contain Go pointers. It will then store // these pointers in regArgs.Ptrs such that they are visible to the GC. // // Package reflect passes a frame type. In package runtime, there is only // one call that copies results back, in callbackWrap in syscall_windows.go, and it // does NOT pass a frame type, meaning there are no write barriers invoked. See that // call site for justification. // // Package reflect accesses this symbol through a linkname. // // Arguments passed through to reflectcall do not escape. The type is used // only in a very limited callee of reflectcall, the stackArgs are copied, and // regArgs is only used in the reflectcall frame. // //go:noescape func reflectcall(stackArgsType *_type, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func procyield(cycles uint32) type neverCallThisFunction struct{} // goexit is the return stub at the top of every goroutine call stack. // Each goroutine stack is constructed as if goexit called the // goroutine's entry point function, so that when the entry point // function returns, it will return to goexit, which will call goexit1 // to perform the actual exit. // // This function must never be called directly. Call goexit1 instead. // gentraceback assumes that goexit terminates the stack. A direct // call on the stack will cause gentraceback to stop walking the stack // prematurely and if there is leftover state it may panic. func goexit(neverCallThisFunction) // publicationBarrier performs a store/store barrier (a "publication" // or "export" barrier). Some form of synchronization is required // between initializing an object and making that object accessible to // another processor. Without synchronization, the initialization // writes and the "publication" write may be reordered, allowing the // other processor to follow the pointer and observe an uninitialized // object. In general, higher-level synchronization should be used, // such as locking or an atomic pointer write. publicationBarrier is // for when those aren't an option, such as in the implementation of // the memory manager. // // There's no corresponding barrier for the read side because the read // side naturally has a data dependency order. All architectures that // Go supports or seems likely to ever support automatically enforce // data dependency ordering. func publicationBarrier() // getcallerpc returns the program counter (PC) of its caller's caller. // getcallersp returns the stack pointer (SP) of its caller's caller. // The implementation may be a compiler intrinsic; there is not // necessarily code implementing this on every platform. // // For example: // // func f(arg1, arg2, arg3 int) { // pc := getcallerpc() // sp := getcallersp() // } // // These two lines find the PC and SP immediately following // the call to f (where f will return). // // The call to getcallerpc and getcallersp must be done in the // frame being asked about. // // The result of getcallersp is correct at the time of the return, // but it may be invalidated by any subsequent call to a function // that might relocate the stack in order to grow or shrink it. // A general rule is that the result of getcallersp should be used // immediately and can only be passed to nosplit functions. //go:noescape func getcallerpc() uintptr //go:noescape func getcallersp() uintptr // implemented as an intrinsic on all platforms // getclosureptr returns the pointer to the current closure. // getclosureptr can only be used in an assignment statement // at the entry of a function. Moreover, go:nosplit directive // must be specified at the declaration of caller function, // so that the function prolog does not clobber the closure register. // for example: // // //go:nosplit // func f(arg1, arg2, arg3 int) { // dx := getclosureptr() // } // // The compiler rewrites calls to this function into instructions that fetch the // pointer from a well-known register (DX on x86 architecture, etc.) directly. func getclosureptr() uintptr //go:noescape func asmcgocall(fn, arg unsafe.Pointer) int32 func morestack() func morestack_noctxt() func rt0_go() // return0 is a stub used to return 0 from deferproc. // It is called at the very end of deferproc to signal // the calling Go function that it should not jump // to deferreturn. // in asm_*.s func return0() // in asm_*.s // not called directly; definitions here supply type information for traceback. // These must have the same signature (arg pointer map) as reflectcall. func call16(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call32(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call64(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call128(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call256(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call512(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call1024(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call2048(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call4096(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call8192(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call16384(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call32768(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call65536(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call131072(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call262144(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call524288(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call1048576(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call2097152(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call4194304(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call8388608(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call16777216(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call33554432(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call67108864(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call134217728(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call268435456(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call536870912(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func call1073741824(typ, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) func systemstack_switch() // alignUp rounds n up to a multiple of a. a must be a power of 2. func alignUp(n, a uintptr) uintptr { return (n + a - 1) &^ (a - 1) } // alignDown rounds n down to a multiple of a. a must be a power of 2. func alignDown(n, a uintptr) uintptr { return n &^ (a - 1) } // divRoundUp returns ceil(n / a). func divRoundUp(n, a uintptr) uintptr { // a is generally a power of two. This will get inlined and // the compiler will optimize the division. return (n + a - 1) / a } // checkASM reports whether assembly runtime checks have passed. func checkASM() bool func memequal_varlen(a, b unsafe.Pointer) bool // bool2int returns 0 if x is false or 1 if x is true. func bool2int(x bool) int { // Avoid branches. In the SSA compiler, this compiles to // exactly what you would want it to. return int(uint8(*(*uint8)(unsafe.Pointer(&x)))) } // abort crashes the runtime in situations where even throw might not // work. In general it should do something a debugger will recognize // (e.g., an INT3 on x86). A crash in abort is recognized by the // signal handler, which will attempt to tear down the runtime // immediately. func abort() // Called from compiled code; declared for vet; do NOT call from Go. func gcWriteBarrier() func duffzero() func duffcopy() // Called from linker-generated .initarray; declared for go vet; do NOT call from Go. func addmoduledata() // Injected by the signal handler for panicking signals. // Initializes any registers that have fixed meaning at calls but // are scratch in bodies and calls sigpanic. // On many platforms it just jumps to sigpanic. func sigpanic0() // intArgRegs is used by the various register assignment // algorithm implementations in the runtime. These include:. // - Finalizers (mfinal.go) // - Windows callbacks (syscall_windows.go) // // Both are stripped-down versions of the algorithm since they // only have to deal with a subset of cases (finalizers only // take a pointer or interface argument, Go Windows callbacks // don't support floating point). // // It should be modified with care and are generally only // modified when testing this package. // // It should never be set higher than its internal/abi // constant counterparts, because the system relies on a // structure that is at least large enough to hold the // registers the system supports. // // Protected by finlock. var intArgRegs = abi.IntArgRegs