// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Go execution tracer. // The tracer captures a wide range of execution events like goroutine // creation/blocking/unblocking, syscall enter/exit/block, GC-related events, // changes of heap size, processor start/stop, etc and writes them to a buffer // in a compact form. A precise nanosecond-precision timestamp and a stack // trace is captured for most events. // See https://golang.org/s/go15trace for more info. package runtime import ( "internal/goarch" "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) // Event types in the trace, args are given in square brackets. const ( traceEvNone = 0 // unused traceEvBatch = 1 // start of per-P batch of events [pid, timestamp] traceEvFrequency = 2 // contains tracer timer frequency [frequency (ticks per second)] traceEvStack = 3 // stack [stack id, number of PCs, array of {PC, func string ID, file string ID, line}] traceEvGomaxprocs = 4 // current value of GOMAXPROCS [timestamp, GOMAXPROCS, stack id] traceEvProcStart = 5 // start of P [timestamp, thread id] traceEvProcStop = 6 // stop of P [timestamp] traceEvGCStart = 7 // GC start [timestamp, seq, stack id] traceEvGCDone = 8 // GC done [timestamp] traceEvGCSTWStart = 9 // GC STW start [timestamp, kind] traceEvGCSTWDone = 10 // GC STW done [timestamp] traceEvGCSweepStart = 11 // GC sweep start [timestamp, stack id] traceEvGCSweepDone = 12 // GC sweep done [timestamp, swept, reclaimed] traceEvGoCreate = 13 // goroutine creation [timestamp, new goroutine id, new stack id, stack id] traceEvGoStart = 14 // goroutine starts running [timestamp, goroutine id, seq] traceEvGoEnd = 15 // goroutine ends [timestamp] traceEvGoStop = 16 // goroutine stops (like in select{}) [timestamp, stack] traceEvGoSched = 17 // goroutine calls Gosched [timestamp, stack] traceEvGoPreempt = 18 // goroutine is preempted [timestamp, stack] traceEvGoSleep = 19 // goroutine calls Sleep [timestamp, stack] traceEvGoBlock = 20 // goroutine blocks [timestamp, stack] traceEvGoUnblock = 21 // goroutine is unblocked [timestamp, goroutine id, seq, stack] traceEvGoBlockSend = 22 // goroutine blocks on chan send [timestamp, stack] traceEvGoBlockRecv = 23 // goroutine blocks on chan recv [timestamp, stack] traceEvGoBlockSelect = 24 // goroutine blocks on select [timestamp, stack] traceEvGoBlockSync = 25 // goroutine blocks on Mutex/RWMutex [timestamp, stack] traceEvGoBlockCond = 26 // goroutine blocks on Cond [timestamp, stack] traceEvGoBlockNet = 27 // goroutine blocks on network [timestamp, stack] traceEvGoSysCall = 28 // syscall enter [timestamp, stack] traceEvGoSysExit = 29 // syscall exit [timestamp, goroutine id, seq, real timestamp] traceEvGoSysBlock = 30 // syscall blocks [timestamp] traceEvGoWaiting = 31 // denotes that goroutine is blocked when tracing starts [timestamp, goroutine id] traceEvGoInSyscall = 32 // denotes that goroutine is in syscall when tracing starts [timestamp, goroutine id] traceEvHeapAlloc = 33 // gcController.heapLive change [timestamp, heap_alloc] traceEvHeapGoal = 34 // gcController.heapGoal() (formerly next_gc) change [timestamp, heap goal in bytes] traceEvTimerGoroutine = 35 // not currently used; previously denoted timer goroutine [timer goroutine id] traceEvFutileWakeup = 36 // denotes that the previous wakeup of this goroutine was futile [timestamp] traceEvString = 37 // string dictionary entry [ID, length, string] traceEvGoStartLocal = 38 // goroutine starts running on the same P as the last event [timestamp, goroutine id] traceEvGoUnblockLocal = 39 // goroutine is unblocked on the same P as the last event [timestamp, goroutine id, stack] traceEvGoSysExitLocal = 40 // syscall exit on the same P as the last event [timestamp, goroutine id, real timestamp] traceEvGoStartLabel = 41 // goroutine starts running with label [timestamp, goroutine id, seq, label string id] traceEvGoBlockGC = 42 // goroutine blocks on GC assist [timestamp, stack] traceEvGCMarkAssistStart = 43 // GC mark assist start [timestamp, stack] traceEvGCMarkAssistDone = 44 // GC mark assist done [timestamp] traceEvUserTaskCreate = 45 // trace.NewContext [timestamp, internal task id, internal parent task id, stack, name string] traceEvUserTaskEnd = 46 // end of a task [timestamp, internal task id, stack] traceEvUserRegion = 47 // trace.WithRegion [timestamp, internal task id, mode(0:start, 1:end), stack, name string] traceEvUserLog = 48 // trace.Log [timestamp, internal task id, key string id, stack, value string] traceEvCPUSample = 49 // CPU profiling sample [timestamp, stack, real timestamp, real P id (-1 when absent), goroutine id] traceEvCount = 50 // Byte is used but only 6 bits are available for event type. // The remaining 2 bits are used to specify the number of arguments. // That means, the max event type value is 63. ) const ( // Timestamps in trace are cputicks/traceTickDiv. // This makes absolute values of timestamp diffs smaller, // and so they are encoded in less number of bytes. // 64 on x86 is somewhat arbitrary (one tick is ~20ns on a 3GHz machine). // The suggested increment frequency for PowerPC's time base register is // 512 MHz according to Power ISA v2.07 section 6.2, so we use 16 on ppc64 // and ppc64le. // Tracing won't work reliably for architectures where cputicks is emulated // by nanotime, so the value doesn't matter for those architectures. traceTickDiv = 16 + 48*(goarch.Is386|goarch.IsAmd64) // Maximum number of PCs in a single stack trace. // Since events contain only stack id rather than whole stack trace, // we can allow quite large values here. traceStackSize = 128 // Identifier of a fake P that is used when we trace without a real P. traceGlobProc = -1 // Maximum number of bytes to encode uint64 in base-128. traceBytesPerNumber = 10 // Shift of the number of arguments in the first event byte. traceArgCountShift = 6 // Flag passed to traceGoPark to denote that the previous wakeup of this // goroutine was futile. For example, a goroutine was unblocked on a mutex, // but another goroutine got ahead and acquired the mutex before the first // goroutine is scheduled, so the first goroutine has to block again. // Such wakeups happen on buffered channels and sync.Mutex, // but are generally not interesting for end user. traceFutileWakeup byte = 128 ) // trace is global tracing context. var trace struct { // trace.lock must only be acquired on the system stack where // stack splits cannot happen while it is held. lock mutex // protects the following members lockOwner *g // to avoid deadlocks during recursive lock locks enabled bool // when set runtime traces events shutdown bool // set when we are waiting for trace reader to finish after setting enabled to false headerWritten bool // whether ReadTrace has emitted trace header footerWritten bool // whether ReadTrace has emitted trace footer shutdownSema uint32 // used to wait for ReadTrace completion seqStart uint64 // sequence number when tracing was started ticksStart int64 // cputicks when tracing was started ticksEnd int64 // cputicks when tracing was stopped timeStart int64 // nanotime when tracing was started timeEnd int64 // nanotime when tracing was stopped seqGC uint64 // GC start/done sequencer reading traceBufPtr // buffer currently handed off to user empty traceBufPtr // stack of empty buffers fullHead traceBufPtr // queue of full buffers fullTail traceBufPtr stackTab traceStackTable // maps stack traces to unique ids // cpuLogRead accepts CPU profile samples from the signal handler where // they're generated. It uses a two-word header to hold the IDs of the P and // G (respectively) that were active at the time of the sample. Because // profBuf uses a record with all zeros in its header to indicate overflow, // we make sure to make the P field always non-zero: The ID of a real P will // start at bit 1, and bit 0 will be set. Samples that arrive while no P is // running (such as near syscalls) will set the first header field to 0b10. // This careful handling of the first header field allows us to store ID of // the active G directly in the second field, even though that will be 0 // when sampling g0. cpuLogRead *profBuf // cpuLogBuf is a trace buffer to hold events corresponding to CPU profile // samples, which arrive out of band and not directly connected to a // specific P. cpuLogBuf traceBufPtr reader atomic.Pointer[g] // goroutine that called ReadTrace, or nil signalLock atomic.Uint32 // protects use of the following member, only usable in signal handlers cpuLogWrite *profBuf // copy of cpuLogRead for use in signal handlers, set without signalLock // Dictionary for traceEvString. // // TODO: central lock to access the map is not ideal. // option: pre-assign ids to all user annotation region names and tags // option: per-P cache // option: sync.Map like data structure stringsLock mutex strings map[string]uint64 stringSeq uint64 // markWorkerLabels maps gcMarkWorkerMode to string ID. markWorkerLabels [len(gcMarkWorkerModeStrings)]uint64 bufLock mutex // protects buf buf traceBufPtr // global trace buffer, used when running without a p } // traceBufHeader is per-P tracing buffer. type traceBufHeader struct { link traceBufPtr // in trace.empty/full lastTicks uint64 // when we wrote the last event pos int // next write offset in arr stk [traceStackSize]uintptr // scratch buffer for traceback } // traceBuf is per-P tracing buffer. type traceBuf struct { _ sys.NotInHeap traceBufHeader arr [64<<10 - unsafe.Sizeof(traceBufHeader{})]byte // underlying buffer for traceBufHeader.buf } // traceBufPtr is a *traceBuf that is not traced by the garbage // collector and doesn't have write barriers. traceBufs are not // allocated from the GC'd heap, so this is safe, and are often // manipulated in contexts where write barriers are not allowed, so // this is necessary. // // TODO: Since traceBuf is now embedded runtime/internal/sys.NotInHeap, this isn't necessary. type traceBufPtr uintptr func (tp traceBufPtr) ptr() *traceBuf { return (*traceBuf)(unsafe.Pointer(tp)) } func (tp *traceBufPtr) set(b *traceBuf) { *tp = traceBufPtr(unsafe.Pointer(b)) } func traceBufPtrOf(b *traceBuf) traceBufPtr { return traceBufPtr(unsafe.Pointer(b)) } // StartTrace enables tracing for the current process. // While tracing, the data will be buffered and available via ReadTrace. // StartTrace returns an error if tracing is already enabled. // Most clients should use the runtime/trace package or the testing package's // -test.trace flag instead of calling StartTrace directly. func StartTrace() error { // Stop the world so that we can take a consistent snapshot // of all goroutines at the beginning of the trace. // Do not stop the world during GC so we ensure we always see // a consistent view of GC-related events (e.g. a start is always // paired with an end). stopTheWorldGC("start tracing") // Prevent sysmon from running any code that could generate events. lock(&sched.sysmonlock) // We are in stop-the-world, but syscalls can finish and write to trace concurrently. // Exitsyscall could check trace.enabled long before and then suddenly wake up // and decide to write to trace at a random point in time. // However, such syscall will use the global trace.buf buffer, because we've // acquired all p's by doing stop-the-world. So this protects us from such races. lock(&trace.bufLock) if trace.enabled || trace.shutdown { unlock(&trace.bufLock) unlock(&sched.sysmonlock) startTheWorldGC() return errorString("tracing is already enabled") } // Can't set trace.enabled yet. While the world is stopped, exitsyscall could // already emit a delayed event (see exitTicks in exitsyscall) if we set trace.enabled here. // That would lead to an inconsistent trace: // - either GoSysExit appears before EvGoInSyscall, // - or GoSysExit appears for a goroutine for which we don't emit EvGoInSyscall below. // To instruct traceEvent that it must not ignore events below, we set startingtrace. // trace.enabled is set afterwards once we have emitted all preliminary events. mp := getg().m mp.startingtrace = true // Obtain current stack ID to use in all traceEvGoCreate events below. stkBuf := make([]uintptr, traceStackSize) stackID := traceStackID(mp, stkBuf, 2) profBuf := newProfBuf(2, profBufWordCount, profBufTagCount) // after the timestamp, header is [pp.id, gp.goid] trace.cpuLogRead = profBuf // We must not acquire trace.signalLock outside of a signal handler: a // profiling signal may arrive at any time and try to acquire it, leading to // deadlock. Because we can't use that lock to protect updates to // trace.cpuLogWrite (only use of the structure it references), reads and // writes of the pointer must be atomic. (And although this field is never // the sole pointer to the profBuf value, it's best to allow a write barrier // here.) atomicstorep(unsafe.Pointer(&trace.cpuLogWrite), unsafe.Pointer(profBuf)) // World is stopped, no need to lock. forEachGRace(func(gp *g) { status := readgstatus(gp) if status != _Gdead { gp.traceseq = 0 gp.tracelastp = getg().m.p // +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum. id := trace.stackTab.put([]uintptr{startPCforTrace(gp.startpc) + sys.PCQuantum}) traceEvent(traceEvGoCreate, -1, gp.goid, uint64(id), stackID) } if status == _Gwaiting { // traceEvGoWaiting is implied to have seq=1. gp.traceseq++ traceEvent(traceEvGoWaiting, -1, gp.goid) } if status == _Gsyscall { gp.traceseq++ traceEvent(traceEvGoInSyscall, -1, gp.goid) } else if status == _Gdead && gp.m != nil && gp.m.isextra { // Trigger two trace events for the dead g in the extra m, // since the next event of the g will be traceEvGoSysExit in exitsyscall, // while calling from C thread to Go. gp.traceseq = 0 gp.tracelastp = getg().m.p // +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum. id := trace.stackTab.put([]uintptr{startPCforTrace(0) + sys.PCQuantum}) // no start pc traceEvent(traceEvGoCreate, -1, gp.goid, uint64(id), stackID) gp.traceseq++ traceEvent(traceEvGoInSyscall, -1, gp.goid) } else { gp.sysblocktraced = false } }) traceProcStart() traceGoStart() // Note: ticksStart needs to be set after we emit traceEvGoInSyscall events. // If we do it the other way around, it is possible that exitsyscall will // query sysexitticks after ticksStart but before traceEvGoInSyscall timestamp. // It will lead to a false conclusion that cputicks is broken. trace.ticksStart = cputicks() trace.timeStart = nanotime() trace.headerWritten = false trace.footerWritten = false // string to id mapping // 0 : reserved for an empty string // remaining: other strings registered by traceString trace.stringSeq = 0 trace.strings = make(map[string]uint64) trace.seqGC = 0 mp.startingtrace = false trace.enabled = true // Register runtime goroutine labels. _, pid, bufp := traceAcquireBuffer() for i, label := range gcMarkWorkerModeStrings[:] { trace.markWorkerLabels[i], bufp = traceString(bufp, pid, label) } traceReleaseBuffer(pid) unlock(&trace.bufLock) unlock(&sched.sysmonlock) startTheWorldGC() return nil } // StopTrace stops tracing, if it was previously enabled. // StopTrace only returns after all the reads for the trace have completed. func StopTrace() { // Stop the world so that we can collect the trace buffers from all p's below, // and also to avoid races with traceEvent. stopTheWorldGC("stop tracing") // See the comment in StartTrace. lock(&sched.sysmonlock) // See the comment in StartTrace. lock(&trace.bufLock) if !trace.enabled { unlock(&trace.bufLock) unlock(&sched.sysmonlock) startTheWorldGC() return } traceGoSched() atomicstorep(unsafe.Pointer(&trace.cpuLogWrite), nil) trace.cpuLogRead.close() traceReadCPU() // Loop over all allocated Ps because dead Ps may still have // trace buffers. for _, p := range allp[:cap(allp)] { buf := p.tracebuf if buf != 0 { traceFullQueue(buf) p.tracebuf = 0 } } if trace.buf != 0 { buf := trace.buf trace.buf = 0 if buf.ptr().pos != 0 { traceFullQueue(buf) } } if trace.cpuLogBuf != 0 { buf := trace.cpuLogBuf trace.cpuLogBuf = 0 if buf.ptr().pos != 0 { traceFullQueue(buf) } } for { trace.ticksEnd = cputicks() trace.timeEnd = nanotime() // Windows time can tick only every 15ms, wait for at least one tick. if trace.timeEnd != trace.timeStart { break } osyield() } trace.enabled = false trace.shutdown = true unlock(&trace.bufLock) unlock(&sched.sysmonlock) startTheWorldGC() // The world is started but we've set trace.shutdown, so new tracing can't start. // Wait for the trace reader to flush pending buffers and stop. semacquire(&trace.shutdownSema) if raceenabled { raceacquire(unsafe.Pointer(&trace.shutdownSema)) } systemstack(func() { // The lock protects us from races with StartTrace/StopTrace because they do stop-the-world. lock(&trace.lock) for _, p := range allp[:cap(allp)] { if p.tracebuf != 0 { throw("trace: non-empty trace buffer in proc") } } if trace.buf != 0 { throw("trace: non-empty global trace buffer") } if trace.fullHead != 0 || trace.fullTail != 0 { throw("trace: non-empty full trace buffer") } if trace.reading != 0 || trace.reader.Load() != nil { throw("trace: reading after shutdown") } for trace.empty != 0 { buf := trace.empty trace.empty = buf.ptr().link sysFree(unsafe.Pointer(buf), unsafe.Sizeof(*buf.ptr()), &memstats.other_sys) } trace.strings = nil trace.shutdown = false trace.cpuLogRead = nil unlock(&trace.lock) }) } // ReadTrace returns the next chunk of binary tracing data, blocking until data // is available. If tracing is turned off and all the data accumulated while it // was on has been returned, ReadTrace returns nil. The caller must copy the // returned data before calling ReadTrace again. // ReadTrace must be called from one goroutine at a time. func ReadTrace() []byte { top: var buf []byte var park bool systemstack(func() { buf, park = readTrace0() }) if park { gopark(func(gp *g, _ unsafe.Pointer) bool { if !trace.reader.CompareAndSwapNoWB(nil, gp) { // We're racing with another reader. // Wake up and handle this case. return false } if g2 := traceReader(); gp == g2 { // New data arrived between unlocking // and the CAS and we won the wake-up // race, so wake up directly. return false } else if g2 != nil { printlock() println("runtime: got trace reader", g2, g2.goid) throw("unexpected trace reader") } return true }, nil, waitReasonTraceReaderBlocked, traceEvGoBlock, 2) goto top } return buf } // readTrace0 is ReadTrace's continuation on g0. This must run on the // system stack because it acquires trace.lock. // //go:systemstack func readTrace0() (buf []byte, park bool) { if raceenabled { // g0 doesn't have a race context. Borrow the user G's. if getg().racectx != 0 { throw("expected racectx == 0") } getg().racectx = getg().m.curg.racectx // (This defer should get open-coded, which is safe on // the system stack.) defer func() { getg().racectx = 0 }() } // This function may need to lock trace.lock recursively // (goparkunlock -> traceGoPark -> traceEvent -> traceFlush). // To allow this we use trace.lockOwner. // Also this function must not allocate while holding trace.lock: // allocation can call heap allocate, which will try to emit a trace // event while holding heap lock. lock(&trace.lock) trace.lockOwner = getg().m.curg if trace.reader.Load() != nil { // More than one goroutine reads trace. This is bad. // But we rather do not crash the program because of tracing, // because tracing can be enabled at runtime on prod servers. trace.lockOwner = nil unlock(&trace.lock) println("runtime: ReadTrace called from multiple goroutines simultaneously") return nil, false } // Recycle the old buffer. if buf := trace.reading; buf != 0 { buf.ptr().link = trace.empty trace.empty = buf trace.reading = 0 } // Write trace header. if !trace.headerWritten { trace.headerWritten = true trace.lockOwner = nil unlock(&trace.lock) return []byte("go 1.19 trace\x00\x00\x00"), false } // Optimistically look for CPU profile samples. This may write new stack // records, and may write new tracing buffers. if !trace.footerWritten && !trace.shutdown { traceReadCPU() } // Wait for new data. if trace.fullHead == 0 && !trace.shutdown { // We don't simply use a note because the scheduler // executes this goroutine directly when it wakes up // (also a note would consume an M). trace.lockOwner = nil unlock(&trace.lock) return nil, true } newFull: assertLockHeld(&trace.lock) // Write a buffer. if trace.fullHead != 0 { buf := traceFullDequeue() trace.reading = buf trace.lockOwner = nil unlock(&trace.lock) return buf.ptr().arr[:buf.ptr().pos], false } // Write footer with timer frequency. if !trace.footerWritten { trace.footerWritten = true // Use float64 because (trace.ticksEnd - trace.ticksStart) * 1e9 can overflow int64. freq := float64(trace.ticksEnd-trace.ticksStart) * 1e9 / float64(trace.timeEnd-trace.timeStart) / traceTickDiv if freq <= 0 { throw("trace: ReadTrace got invalid frequency") } trace.lockOwner = nil unlock(&trace.lock) // Write frequency event. bufp := traceFlush(0, 0) buf := bufp.ptr() buf.byte(traceEvFrequency | 0< 0, write current stack id as the last argument (skipping skip top frames). // If skip = 0, this event type should contain a stack, but we don't want // to collect and remember it for this particular call. func traceEvent(ev byte, skip int, args ...uint64) { mp, pid, bufp := traceAcquireBuffer() // Double-check trace.enabled now that we've done m.locks++ and acquired bufLock. // This protects from races between traceEvent and StartTrace/StopTrace. // The caller checked that trace.enabled == true, but trace.enabled might have been // turned off between the check and now. Check again. traceLockBuffer did mp.locks++, // StopTrace does stopTheWorld, and stopTheWorld waits for mp.locks to go back to zero, // so if we see trace.enabled == true now, we know it's true for the rest of the function. // Exitsyscall can run even during stopTheWorld. The race with StartTrace/StopTrace // during tracing in exitsyscall is resolved by locking trace.bufLock in traceLockBuffer. // // Note trace_userTaskCreate runs the same check. if !trace.enabled && !mp.startingtrace { traceReleaseBuffer(pid) return } if skip > 0 { if getg() == mp.curg { skip++ // +1 because stack is captured in traceEventLocked. } } traceEventLocked(0, mp, pid, bufp, ev, 0, skip, args...) traceReleaseBuffer(pid) } // traceEventLocked writes a single event of type ev to the trace buffer bufp, // flushing the buffer if necessary. pid is the id of the current P, or // traceGlobProc if we're tracing without a real P. // // Preemption is disabled, and if running without a real P the global tracing // buffer is locked. // // Events types that do not include a stack set skip to -1. Event types that // include a stack may explicitly reference a stackID from the trace.stackTab // (obtained by an earlier call to traceStackID). Without an explicit stackID, // this function will automatically capture the stack of the goroutine currently // running on mp, skipping skip top frames or, if skip is 0, writing out an // empty stack record. // // It records the event's args to the traceBuf, and also makes an effort to // reserve extraBytes bytes of additional space immediately following the event, // in the same traceBuf. func traceEventLocked(extraBytes int, mp *m, pid int32, bufp *traceBufPtr, ev byte, stackID uint32, skip int, args ...uint64) { buf := bufp.ptr() // TODO: test on non-zero extraBytes param. maxSize := 2 + 5*traceBytesPerNumber + extraBytes // event type, length, sequence, timestamp, stack id and two add params if buf == nil || len(buf.arr)-buf.pos < maxSize { systemstack(func() { buf = traceFlush(traceBufPtrOf(buf), pid).ptr() }) bufp.set(buf) } // NOTE: ticks might be same after tick division, although the real cputicks is // linear growth. ticks := uint64(cputicks()) / traceTickDiv tickDiff := ticks - buf.lastTicks if tickDiff == 0 { ticks = buf.lastTicks + 1 tickDiff = 1 } buf.lastTicks = ticks narg := byte(len(args)) if stackID != 0 || skip >= 0 { narg++ } // We have only 2 bits for number of arguments. // If number is >= 3, then the event type is followed by event length in bytes. if narg > 3 { narg = 3 } startPos := buf.pos buf.byte(ev | narg< 0 { buf.varint(traceStackID(mp, buf.stk[:], skip)) } evSize := buf.pos - startPos if evSize > maxSize { throw("invalid length of trace event") } if lenp != nil { // Fill in actual length. *lenp = byte(evSize - 2) } } // traceCPUSample writes a CPU profile sample stack to the execution tracer's // profiling buffer. It is called from a signal handler, so is limited in what // it can do. func traceCPUSample(gp *g, pp *p, stk []uintptr) { if !trace.enabled { // Tracing is usually turned off; don't spend time acquiring the signal // lock unless it's active. return } // Match the clock used in traceEventLocked now := cputicks() // The "header" here is the ID of the P that was running the profiled code, // followed by the ID of the goroutine. (For normal CPU profiling, it's // usually the number of samples with the given stack.) Near syscalls, pp // may be nil. Reporting goid of 0 is fine for either g0 or a nil gp. var hdr [2]uint64 if pp != nil { // Overflow records in profBuf have all header values set to zero. Make // sure that real headers have at least one bit set. hdr[0] = uint64(pp.id)<<1 | 0b1 } else { hdr[0] = 0b10 } if gp != nil { hdr[1] = gp.goid } // Allow only one writer at a time for !trace.signalLock.CompareAndSwap(0, 1) { // TODO: Is it safe to osyield here? https://go.dev/issue/52672 osyield() } if log := (*profBuf)(atomic.Loadp(unsafe.Pointer(&trace.cpuLogWrite))); log != nil { // Note: we don't pass a tag pointer here (how should profiling tags // interact with the execution tracer?), but if we did we'd need to be // careful about write barriers. See the long comment in profBuf.write. log.write(nil, now, hdr[:], stk) } trace.signalLock.Store(0) } func traceReadCPU() { bufp := &trace.cpuLogBuf for { data, tags, _ := trace.cpuLogRead.read(profBufNonBlocking) if len(data) == 0 { break } for len(data) > 0 { if len(data) < 4 || data[0] > uint64(len(data)) { break // truncated profile } if data[0] < 4 || tags != nil && len(tags) < 1 { break // malformed profile } if len(tags) < 1 { break // mismatched profile records and tags } timestamp := data[1] ppid := data[2] >> 1 if hasP := (data[2] & 0b1) != 0; !hasP { ppid = ^uint64(0) } goid := data[3] stk := data[4:data[0]] empty := len(stk) == 1 && data[2] == 0 && data[3] == 0 data = data[data[0]:] // No support here for reporting goroutine tags at the moment; if // that information is to be part of the execution trace, we'd // probably want to see when the tags are applied and when they // change, instead of only seeing them when we get a CPU sample. tags = tags[1:] if empty { // Looks like an overflow record from the profBuf. Not much to // do here, we only want to report full records. // // TODO: should we start a goroutine to drain the profBuf, // rather than relying on a high-enough volume of tracing events // to keep ReadTrace busy? https://go.dev/issue/52674 continue } buf := bufp.ptr() if buf == nil { systemstack(func() { *bufp = traceFlush(*bufp, 0) }) buf = bufp.ptr() } for i := range stk { if i >= len(buf.stk) { break } buf.stk[i] = uintptr(stk[i]) } stackID := trace.stackTab.put(buf.stk[:len(stk)]) traceEventLocked(0, nil, 0, bufp, traceEvCPUSample, stackID, 1, timestamp/traceTickDiv, ppid, goid) } } } func traceStackID(mp *m, buf []uintptr, skip int) uint64 { gp := getg() curgp := mp.curg var nstk int if curgp == gp { nstk = callers(skip+1, buf) } else if curgp != nil { nstk = gcallers(curgp, skip, buf) } if nstk > 0 { nstk-- // skip runtime.goexit } if nstk > 0 && curgp.goid == 1 { nstk-- // skip runtime.main } id := trace.stackTab.put(buf[:nstk]) return uint64(id) } // traceAcquireBuffer returns trace buffer to use and, if necessary, locks it. func traceAcquireBuffer() (mp *m, pid int32, bufp *traceBufPtr) { // Any time we acquire a buffer, we may end up flushing it, // but flushes are rare. Record the lock edge even if it // doesn't happen this time. lockRankMayTraceFlush() mp = acquirem() if p := mp.p.ptr(); p != nil { return mp, p.id, &p.tracebuf } lock(&trace.bufLock) return mp, traceGlobProc, &trace.buf } // traceReleaseBuffer releases a buffer previously acquired with traceAcquireBuffer. func traceReleaseBuffer(pid int32) { if pid == traceGlobProc { unlock(&trace.bufLock) } releasem(getg().m) } // lockRankMayTraceFlush records the lock ranking effects of a // potential call to traceFlush. func lockRankMayTraceFlush() { owner := trace.lockOwner dolock := owner == nil || owner != getg().m.curg if dolock { lockWithRankMayAcquire(&trace.lock, getLockRank(&trace.lock)) } } // traceFlush puts buf onto stack of full buffers and returns an empty buffer. // // This must run on the system stack because it acquires trace.lock. // //go:systemstack func traceFlush(buf traceBufPtr, pid int32) traceBufPtr { owner := trace.lockOwner dolock := owner == nil || owner != getg().m.curg if dolock { lock(&trace.lock) } if buf != 0 { traceFullQueue(buf) } if trace.empty != 0 { buf = trace.empty trace.empty = buf.ptr().link } else { buf = traceBufPtr(sysAlloc(unsafe.Sizeof(traceBuf{}), &memstats.other_sys)) if buf == 0 { throw("trace: out of memory") } } bufp := buf.ptr() bufp.link.set(nil) bufp.pos = 0 // initialize the buffer for a new batch ticks := uint64(cputicks()) / traceTickDiv if ticks == bufp.lastTicks { ticks = bufp.lastTicks + 1 } bufp.lastTicks = ticks bufp.byte(traceEvBatch | 1<= 0x80; v >>= 7 { buf.arr[pos] = 0x80 | byte(v) pos++ } buf.arr[pos] = byte(v) pos++ buf.pos = pos } // varintAt writes varint v at byte position pos in buf. This always // consumes traceBytesPerNumber bytes. This is intended for when the // caller needs to reserve space for a varint but can't populate it // until later. func (buf *traceBuf) varintAt(pos int, v uint64) { for i := 0; i < traceBytesPerNumber; i++ { if i < traceBytesPerNumber-1 { buf.arr[pos] = 0x80 | byte(v) } else { buf.arr[pos] = byte(v) } v >>= 7 pos++ } } // byte appends v to buf. func (buf *traceBuf) byte(v byte) { buf.arr[buf.pos] = v buf.pos++ } // traceStackTable maps stack traces (arrays of PC's) to unique uint32 ids. // It is lock-free for reading. type traceStackTable struct { lock mutex // Must be acquired on the system stack seq uint32 mem traceAlloc tab [1 << 13]traceStackPtr } // traceStack is a single stack in traceStackTable. type traceStack struct { link traceStackPtr hash uintptr id uint32 n int stk [0]uintptr // real type [n]uintptr } type traceStackPtr uintptr func (tp traceStackPtr) ptr() *traceStack { return (*traceStack)(unsafe.Pointer(tp)) } // stack returns slice of PCs. func (ts *traceStack) stack() []uintptr { return (*[traceStackSize]uintptr)(unsafe.Pointer(&ts.stk))[:ts.n] } // put returns a unique id for the stack trace pcs and caches it in the table, // if it sees the trace for the first time. func (tab *traceStackTable) put(pcs []uintptr) uint32 { if len(pcs) == 0 { return 0 } hash := memhash(unsafe.Pointer(&pcs[0]), 0, uintptr(len(pcs))*unsafe.Sizeof(pcs[0])) // First, search the hashtable w/o the mutex. if id := tab.find(pcs, hash); id != 0 { return id } // Now, double check under the mutex. // Switch to the system stack so we can acquire tab.lock var id uint32 systemstack(func() { lock(&tab.lock) if id = tab.find(pcs, hash); id != 0 { unlock(&tab.lock) return } // Create new record. tab.seq++ stk := tab.newStack(len(pcs)) stk.hash = hash stk.id = tab.seq id = stk.id stk.n = len(pcs) stkpc := stk.stack() for i, pc := range pcs { stkpc[i] = pc } part := int(hash % uintptr(len(tab.tab))) stk.link = tab.tab[part] atomicstorep(unsafe.Pointer(&tab.tab[part]), unsafe.Pointer(stk)) unlock(&tab.lock) }) return id } // find checks if the stack trace pcs is already present in the table. func (tab *traceStackTable) find(pcs []uintptr, hash uintptr) uint32 { part := int(hash % uintptr(len(tab.tab))) Search: for stk := tab.tab[part].ptr(); stk != nil; stk = stk.link.ptr() { if stk.hash == hash && stk.n == len(pcs) { for i, stkpc := range stk.stack() { if stkpc != pcs[i] { continue Search } } return stk.id } } return 0 } // newStack allocates a new stack of size n. func (tab *traceStackTable) newStack(n int) *traceStack { return (*traceStack)(tab.mem.alloc(unsafe.Sizeof(traceStack{}) + uintptr(n)*goarch.PtrSize)) } // traceFrames returns the frames corresponding to pcs. It may // allocate and may emit trace events. func traceFrames(bufp traceBufPtr, pcs []uintptr) ([]traceFrame, traceBufPtr) { frames := make([]traceFrame, 0, len(pcs)) ci := CallersFrames(pcs) for { var frame traceFrame f, more := ci.Next() frame, bufp = traceFrameForPC(bufp, 0, f) frames = append(frames, frame) if !more { return frames, bufp } } } // dump writes all previously cached stacks to trace buffers, // releases all memory and resets state. // // This must run on the system stack because it calls traceFlush. // //go:systemstack func (tab *traceStackTable) dump(bufp traceBufPtr) traceBufPtr { for i := range tab.tab { stk := tab.tab[i].ptr() for ; stk != nil; stk = stk.link.ptr() { var frames []traceFrame frames, bufp = traceFrames(bufp, stk.stack()) // Estimate the size of this record. This // bound is pretty loose, but avoids counting // lots of varint sizes. maxSize := 1 + traceBytesPerNumber + (2+4*len(frames))*traceBytesPerNumber // Make sure we have enough buffer space. if buf := bufp.ptr(); len(buf.arr)-buf.pos < maxSize { bufp = traceFlush(bufp, 0) } // Emit header, with space reserved for length. buf := bufp.ptr() buf.byte(traceEvStack | 3< maxLen { fn = fn[len(fn)-maxLen:] } frame.funcID, bufp = traceString(bufp, pid, fn) frame.line = uint64(f.Line) file := f.File if len(file) > maxLen { file = file[len(file)-maxLen:] } frame.fileID, bufp = traceString(bufp, pid, file) return frame, (*bufp) } // traceAlloc is a non-thread-safe region allocator. // It holds a linked list of traceAllocBlock. type traceAlloc struct { head traceAllocBlockPtr off uintptr } // traceAllocBlock is a block in traceAlloc. // // traceAllocBlock is allocated from non-GC'd memory, so it must not // contain heap pointers. Writes to pointers to traceAllocBlocks do // not need write barriers. type traceAllocBlock struct { _ sys.NotInHeap next traceAllocBlockPtr data [64<<10 - goarch.PtrSize]byte } // TODO: Since traceAllocBlock is now embedded runtime/internal/sys.NotInHeap, this isn't necessary. type traceAllocBlockPtr uintptr func (p traceAllocBlockPtr) ptr() *traceAllocBlock { return (*traceAllocBlock)(unsafe.Pointer(p)) } func (p *traceAllocBlockPtr) set(x *traceAllocBlock) { *p = traceAllocBlockPtr(unsafe.Pointer(x)) } // alloc allocates n-byte block. func (a *traceAlloc) alloc(n uintptr) unsafe.Pointer { n = alignUp(n, goarch.PtrSize) if a.head == 0 || a.off+n > uintptr(len(a.head.ptr().data)) { if n > uintptr(len(a.head.ptr().data)) { throw("trace: alloc too large") } block := (*traceAllocBlock)(sysAlloc(unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys)) if block == nil { throw("trace: out of memory") } block.next.set(a.head.ptr()) a.head.set(block) a.off = 0 } p := &a.head.ptr().data[a.off] a.off += n return unsafe.Pointer(p) } // drop frees all previously allocated memory and resets the allocator. func (a *traceAlloc) drop() { for a.head != 0 { block := a.head.ptr() a.head.set(block.next.ptr()) sysFree(unsafe.Pointer(block), unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys) } } // The following functions write specific events to trace. func traceGomaxprocs(procs int32) { traceEvent(traceEvGomaxprocs, 1, uint64(procs)) } func traceProcStart() { traceEvent(traceEvProcStart, -1, uint64(getg().m.id)) } func traceProcStop(pp *p) { // Sysmon and stopTheWorld can stop Ps blocked in syscalls, // to handle this we temporary employ the P. mp := acquirem() oldp := mp.p mp.p.set(pp) traceEvent(traceEvProcStop, -1) mp.p = oldp releasem(mp) } func traceGCStart() { traceEvent(traceEvGCStart, 3, trace.seqGC) trace.seqGC++ } func traceGCDone() { traceEvent(traceEvGCDone, -1) } func traceGCSTWStart(kind int) { traceEvent(traceEvGCSTWStart, -1, uint64(kind)) } func traceGCSTWDone() { traceEvent(traceEvGCSTWDone, -1) } // traceGCSweepStart prepares to trace a sweep loop. This does not // emit any events until traceGCSweepSpan is called. // // traceGCSweepStart must be paired with traceGCSweepDone and there // must be no preemption points between these two calls. func traceGCSweepStart() { // Delay the actual GCSweepStart event until the first span // sweep. If we don't sweep anything, don't emit any events. pp := getg().m.p.ptr() if pp.traceSweep { throw("double traceGCSweepStart") } pp.traceSweep, pp.traceSwept, pp.traceReclaimed = true, 0, 0 } // traceGCSweepSpan traces the sweep of a single page. // // This may be called outside a traceGCSweepStart/traceGCSweepDone // pair; however, it will not emit any trace events in this case. func traceGCSweepSpan(bytesSwept uintptr) { pp := getg().m.p.ptr() if pp.traceSweep { if pp.traceSwept == 0 { traceEvent(traceEvGCSweepStart, 1) } pp.traceSwept += bytesSwept } } func traceGCSweepDone() { pp := getg().m.p.ptr() if !pp.traceSweep { throw("missing traceGCSweepStart") } if pp.traceSwept != 0 { traceEvent(traceEvGCSweepDone, -1, uint64(pp.traceSwept), uint64(pp.traceReclaimed)) } pp.traceSweep = false } func traceGCMarkAssistStart() { traceEvent(traceEvGCMarkAssistStart, 1) } func traceGCMarkAssistDone() { traceEvent(traceEvGCMarkAssistDone, -1) } func traceGoCreate(newg *g, pc uintptr) { newg.traceseq = 0 newg.tracelastp = getg().m.p // +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum. id := trace.stackTab.put([]uintptr{startPCforTrace(pc) + sys.PCQuantum}) traceEvent(traceEvGoCreate, 2, newg.goid, uint64(id)) } func traceGoStart() { gp := getg().m.curg pp := gp.m.p gp.traceseq++ if pp.ptr().gcMarkWorkerMode != gcMarkWorkerNotWorker { traceEvent(traceEvGoStartLabel, -1, gp.goid, gp.traceseq, trace.markWorkerLabels[pp.ptr().gcMarkWorkerMode]) } else if gp.tracelastp == pp { traceEvent(traceEvGoStartLocal, -1, gp.goid) } else { gp.tracelastp = pp traceEvent(traceEvGoStart, -1, gp.goid, gp.traceseq) } } func traceGoEnd() { traceEvent(traceEvGoEnd, -1) } func traceGoSched() { gp := getg() gp.tracelastp = gp.m.p traceEvent(traceEvGoSched, 1) } func traceGoPreempt() { gp := getg() gp.tracelastp = gp.m.p traceEvent(traceEvGoPreempt, 1) } func traceGoPark(traceEv byte, skip int) { if traceEv&traceFutileWakeup != 0 { traceEvent(traceEvFutileWakeup, -1) } traceEvent(traceEv & ^traceFutileWakeup, skip) } func traceGoUnpark(gp *g, skip int) { pp := getg().m.p gp.traceseq++ if gp.tracelastp == pp { traceEvent(traceEvGoUnblockLocal, skip, gp.goid) } else { gp.tracelastp = pp traceEvent(traceEvGoUnblock, skip, gp.goid, gp.traceseq) } } func traceGoSysCall() { traceEvent(traceEvGoSysCall, 1) } func traceGoSysExit(ts int64) { if ts != 0 && ts < trace.ticksStart { // There is a race between the code that initializes sysexitticks // (in exitsyscall, which runs without a P, and therefore is not // stopped with the rest of the world) and the code that initializes // a new trace. The recorded sysexitticks must therefore be treated // as "best effort". If they are valid for this trace, then great, // use them for greater accuracy. But if they're not valid for this // trace, assume that the trace was started after the actual syscall // exit (but before we actually managed to start the goroutine, // aka right now), and assign a fresh time stamp to keep the log consistent. ts = 0 } gp := getg().m.curg gp.traceseq++ gp.tracelastp = gp.m.p traceEvent(traceEvGoSysExit, -1, gp.goid, gp.traceseq, uint64(ts)/traceTickDiv) } func traceGoSysBlock(pp *p) { // Sysmon and stopTheWorld can declare syscalls running on remote Ps as blocked, // to handle this we temporary employ the P. mp := acquirem() oldp := mp.p mp.p.set(pp) traceEvent(traceEvGoSysBlock, -1) mp.p = oldp releasem(mp) } func traceHeapAlloc(live uint64) { traceEvent(traceEvHeapAlloc, -1, live) } func traceHeapGoal() { heapGoal := gcController.heapGoal() if heapGoal == ^uint64(0) { // Heap-based triggering is disabled. traceEvent(traceEvHeapGoal, -1, 0) } else { traceEvent(traceEvHeapGoal, -1, heapGoal) } } // To access runtime functions from runtime/trace. // See runtime/trace/annotation.go //go:linkname trace_userTaskCreate runtime/trace.userTaskCreate func trace_userTaskCreate(id, parentID uint64, taskType string) { if !trace.enabled { return } // Same as in traceEvent. mp, pid, bufp := traceAcquireBuffer() if !trace.enabled && !mp.startingtrace { traceReleaseBuffer(pid) return } typeStringID, bufp := traceString(bufp, pid, taskType) traceEventLocked(0, mp, pid, bufp, traceEvUserTaskCreate, 0, 3, id, parentID, typeStringID) traceReleaseBuffer(pid) } //go:linkname trace_userTaskEnd runtime/trace.userTaskEnd func trace_userTaskEnd(id uint64) { traceEvent(traceEvUserTaskEnd, 2, id) } //go:linkname trace_userRegion runtime/trace.userRegion func trace_userRegion(id, mode uint64, name string) { if !trace.enabled { return } mp, pid, bufp := traceAcquireBuffer() if !trace.enabled && !mp.startingtrace { traceReleaseBuffer(pid) return } nameStringID, bufp := traceString(bufp, pid, name) traceEventLocked(0, mp, pid, bufp, traceEvUserRegion, 0, 3, id, mode, nameStringID) traceReleaseBuffer(pid) } //go:linkname trace_userLog runtime/trace.userLog func trace_userLog(id uint64, category, message string) { if !trace.enabled { return } mp, pid, bufp := traceAcquireBuffer() if !trace.enabled && !mp.startingtrace { traceReleaseBuffer(pid) return } categoryID, bufp := traceString(bufp, pid, category) extraSpace := traceBytesPerNumber + len(message) // extraSpace for the value string traceEventLocked(extraSpace, mp, pid, bufp, traceEvUserLog, 0, 3, id, categoryID) // traceEventLocked reserved extra space for val and len(val) // in buf, so buf now has room for the following. buf := bufp.ptr() // double-check the message and its length can fit. // Otherwise, truncate the message. slen := len(message) if room := len(buf.arr) - buf.pos; room < slen+traceBytesPerNumber { slen = room } buf.varint(uint64(slen)) buf.pos += copy(buf.arr[buf.pos:], message[:slen]) traceReleaseBuffer(pid) } // the start PC of a goroutine for tracing purposes. If pc is a wrapper, // it returns the PC of the wrapped function. Otherwise it returns pc. func startPCforTrace(pc uintptr) uintptr { f := findfunc(pc) if !f.valid() { return pc // may happen for locked g in extra M since its pc is 0. } w := funcdata(f, _FUNCDATA_WrapInfo) if w == nil { return pc // not a wrapper } return f.datap.textAddr(*(*uint32)(w)) }