summaryrefslogtreecommitdiffstats
path: root/src/crypto/ecdh/nist.go
blob: 01354fa2cf0af238b6435e54526144bc4e195dbf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ecdh

import (
	"crypto/internal/boring"
	"crypto/internal/nistec"
	"crypto/internal/randutil"
	"encoding/binary"
	"errors"
	"io"
	"math/bits"
)

type nistCurve[Point nistPoint[Point]] struct {
	name        string
	newPoint    func() Point
	scalarOrder []byte
}

// nistPoint is a generic constraint for the nistec Point types.
type nistPoint[T any] interface {
	Bytes() []byte
	BytesX() ([]byte, error)
	SetBytes([]byte) (T, error)
	ScalarMult(T, []byte) (T, error)
	ScalarBaseMult([]byte) (T, error)
}

func (c *nistCurve[Point]) String() string {
	return c.name
}

var errInvalidPrivateKey = errors.New("crypto/ecdh: invalid private key")

func (c *nistCurve[Point]) GenerateKey(rand io.Reader) (*PrivateKey, error) {
	if boring.Enabled && rand == boring.RandReader {
		key, bytes, err := boring.GenerateKeyECDH(c.name)
		if err != nil {
			return nil, err
		}
		return newBoringPrivateKey(c, key, bytes)
	}

	key := make([]byte, len(c.scalarOrder))
	randutil.MaybeReadByte(rand)
	for {
		if _, err := io.ReadFull(rand, key); err != nil {
			return nil, err
		}

		// Mask off any excess bits if the size of the underlying field is not a
		// whole number of bytes, which is only the case for P-521. We use a
		// pointer to the scalarOrder field because comparing generic and
		// instantiated types is not supported.
		if &c.scalarOrder[0] == &p521Order[0] {
			key[0] &= 0b0000_0001
		}

		// In tests, rand will return all zeros and NewPrivateKey will reject
		// the zero key as it generates the identity as a public key. This also
		// makes this function consistent with crypto/elliptic.GenerateKey.
		key[1] ^= 0x42

		k, err := c.NewPrivateKey(key)
		if err == errInvalidPrivateKey {
			continue
		}
		return k, err
	}
}

func (c *nistCurve[Point]) NewPrivateKey(key []byte) (*PrivateKey, error) {
	if len(key) != len(c.scalarOrder) {
		return nil, errors.New("crypto/ecdh: invalid private key size")
	}
	if isZero(key) || !isLess(key, c.scalarOrder) {
		return nil, errInvalidPrivateKey
	}
	if boring.Enabled {
		bk, err := boring.NewPrivateKeyECDH(c.name, key)
		if err != nil {
			return nil, err
		}
		return newBoringPrivateKey(c, bk, key)
	}
	k := &PrivateKey{
		curve:      c,
		privateKey: append([]byte{}, key...),
	}
	return k, nil
}

func newBoringPrivateKey(c Curve, bk *boring.PrivateKeyECDH, privateKey []byte) (*PrivateKey, error) {
	k := &PrivateKey{
		curve:      c,
		boring:     bk,
		privateKey: append([]byte(nil), privateKey...),
	}
	return k, nil
}

func (c *nistCurve[Point]) privateKeyToPublicKey(key *PrivateKey) *PublicKey {
	boring.Unreachable()
	if key.curve != c {
		panic("crypto/ecdh: internal error: converting the wrong key type")
	}
	p, err := c.newPoint().ScalarBaseMult(key.privateKey)
	if err != nil {
		// This is unreachable because the only error condition of
		// ScalarBaseMult is if the input is not the right size.
		panic("crypto/ecdh: internal error: nistec ScalarBaseMult failed for a fixed-size input")
	}
	publicKey := p.Bytes()
	if len(publicKey) == 1 {
		// The encoding of the identity is a single 0x00 byte. This is
		// unreachable because the only scalar that generates the identity is
		// zero, which is rejected by NewPrivateKey.
		panic("crypto/ecdh: internal error: nistec ScalarBaseMult returned the identity")
	}
	return &PublicKey{
		curve:     key.curve,
		publicKey: publicKey,
	}
}

// isZero returns whether a is all zeroes in constant time.
func isZero(a []byte) bool {
	var acc byte
	for _, b := range a {
		acc |= b
	}
	return acc == 0
}

// isLess returns whether a < b, where a and b are big-endian buffers of the
// same length and shorter than 72 bytes.
func isLess(a, b []byte) bool {
	if len(a) != len(b) {
		panic("crypto/ecdh: internal error: mismatched isLess inputs")
	}

	// Copy the values into a fixed-size preallocated little-endian buffer.
	// 72 bytes is enough for every scalar in this package, and having a fixed
	// size lets us avoid heap allocations.
	if len(a) > 72 {
		panic("crypto/ecdh: internal error: isLess input too large")
	}
	bufA, bufB := make([]byte, 72), make([]byte, 72)
	for i := range a {
		bufA[i], bufB[i] = a[len(a)-i-1], b[len(b)-i-1]
	}

	// Perform a subtraction with borrow.
	var borrow uint64
	for i := 0; i < len(bufA); i += 8 {
		limbA, limbB := binary.LittleEndian.Uint64(bufA[i:]), binary.LittleEndian.Uint64(bufB[i:])
		_, borrow = bits.Sub64(limbA, limbB, borrow)
	}

	// If there is a borrow at the end of the operation, then a < b.
	return borrow == 1
}

func (c *nistCurve[Point]) NewPublicKey(key []byte) (*PublicKey, error) {
	// Reject the point at infinity and compressed encodings.
	if len(key) == 0 || key[0] != 4 {
		return nil, errors.New("crypto/ecdh: invalid public key")
	}
	k := &PublicKey{
		curve:     c,
		publicKey: append([]byte{}, key...),
	}
	if boring.Enabled {
		bk, err := boring.NewPublicKeyECDH(c.name, k.publicKey)
		if err != nil {
			return nil, err
		}
		k.boring = bk
	} else {
		// SetBytes also checks that the point is on the curve.
		if _, err := c.newPoint().SetBytes(key); err != nil {
			return nil, err
		}
	}
	return k, nil
}

func (c *nistCurve[Point]) ecdh(local *PrivateKey, remote *PublicKey) ([]byte, error) {
	// Note that this function can't return an error, as NewPublicKey rejects
	// invalid points and the point at infinity, and NewPrivateKey rejects
	// invalid scalars and the zero value. BytesX returns an error for the point
	// at infinity, but in a prime order group such as the NIST curves that can
	// only be the result of a scalar multiplication if one of the inputs is the
	// zero scalar or the point at infinity.

	if boring.Enabled {
		return boring.ECDH(local.boring, remote.boring)
	}

	boring.Unreachable()
	p, err := c.newPoint().SetBytes(remote.publicKey)
	if err != nil {
		return nil, err
	}
	if _, err := p.ScalarMult(p, local.privateKey); err != nil {
		return nil, err
	}
	return p.BytesX()
}

// P256 returns a Curve which implements NIST P-256 (FIPS 186-3, section D.2.3),
// also known as secp256r1 or prime256v1.
//
// Multiple invocations of this function will return the same value, which can
// be used for equality checks and switch statements.
func P256() Curve { return p256 }

var p256 = &nistCurve[*nistec.P256Point]{
	name:        "P-256",
	newPoint:    nistec.NewP256Point,
	scalarOrder: p256Order,
}

var p256Order = []byte{
	0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84,
	0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51}

// P384 returns a Curve which implements NIST P-384 (FIPS 186-3, section D.2.4),
// also known as secp384r1.
//
// Multiple invocations of this function will return the same value, which can
// be used for equality checks and switch statements.
func P384() Curve { return p384 }

var p384 = &nistCurve[*nistec.P384Point]{
	name:        "P-384",
	newPoint:    nistec.NewP384Point,
	scalarOrder: p384Order,
}

var p384Order = []byte{
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xc7, 0x63, 0x4d, 0x81, 0xf4, 0x37, 0x2d, 0xdf,
	0x58, 0x1a, 0x0d, 0xb2, 0x48, 0xb0, 0xa7, 0x7a,
	0xec, 0xec, 0x19, 0x6a, 0xcc, 0xc5, 0x29, 0x73}

// P521 returns a Curve which implements NIST P-521 (FIPS 186-3, section D.2.5),
// also known as secp521r1.
//
// Multiple invocations of this function will return the same value, which can
// be used for equality checks and switch statements.
func P521() Curve { return p521 }

var p521 = &nistCurve[*nistec.P521Point]{
	name:        "P-521",
	newPoint:    nistec.NewP521Point,
	scalarOrder: p521Order,
}

var p521Order = []byte{0x01, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfa,
	0x51, 0x86, 0x87, 0x83, 0xbf, 0x2f, 0x96, 0x6b,
	0x7f, 0xcc, 0x01, 0x48, 0xf7, 0x09, 0xa5, 0xd0,
	0x3b, 0xb5, 0xc9, 0xb8, 0x89, 0x9c, 0x47, 0xae,
	0xbb, 0x6f, 0xb7, 0x1e, 0x91, 0x38, 0x64, 0x09}