summaryrefslogtreecommitdiffstats
path: root/src/crypto/elliptic/nistec.go
blob: d906c570745e9eff7a79a227e39034de735482ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package elliptic

import (
	"crypto/internal/nistec"
	"errors"
	"math/big"
)

var p224 = &nistCurve[*nistec.P224Point]{
	newPoint: nistec.NewP224Point,
}

func initP224() {
	p224.params = &CurveParams{
		Name:    "P-224",
		BitSize: 224,
		// FIPS 186-4, section D.1.2.2
		P:  bigFromDecimal("26959946667150639794667015087019630673557916260026308143510066298881"),
		N:  bigFromDecimal("26959946667150639794667015087019625940457807714424391721682722368061"),
		B:  bigFromHex("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4"),
		Gx: bigFromHex("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21"),
		Gy: bigFromHex("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34"),
	}
}

type p256Curve struct {
	nistCurve[*nistec.P256Point]
}

var p256 = &p256Curve{nistCurve[*nistec.P256Point]{
	newPoint: nistec.NewP256Point,
}}

func initP256() {
	p256.params = &CurveParams{
		Name:    "P-256",
		BitSize: 256,
		// FIPS 186-4, section D.1.2.3
		P:  bigFromDecimal("115792089210356248762697446949407573530086143415290314195533631308867097853951"),
		N:  bigFromDecimal("115792089210356248762697446949407573529996955224135760342422259061068512044369"),
		B:  bigFromHex("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b"),
		Gx: bigFromHex("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296"),
		Gy: bigFromHex("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5"),
	}
}

var p384 = &nistCurve[*nistec.P384Point]{
	newPoint: nistec.NewP384Point,
}

func initP384() {
	p384.params = &CurveParams{
		Name:    "P-384",
		BitSize: 384,
		// FIPS 186-4, section D.1.2.4
		P: bigFromDecimal("394020061963944792122790401001436138050797392704654" +
			"46667948293404245721771496870329047266088258938001861606973112319"),
		N: bigFromDecimal("394020061963944792122790401001436138050797392704654" +
			"46667946905279627659399113263569398956308152294913554433653942643"),
		B: bigFromHex("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088" +
			"f5013875ac656398d8a2ed19d2a85c8edd3ec2aef"),
		Gx: bigFromHex("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741" +
			"e082542a385502f25dbf55296c3a545e3872760ab7"),
		Gy: bigFromHex("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da31" +
			"13b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f"),
	}
}

var p521 = &nistCurve[*nistec.P521Point]{
	newPoint: nistec.NewP521Point,
}

func initP521() {
	p521.params = &CurveParams{
		Name:    "P-521",
		BitSize: 521,
		// FIPS 186-4, section D.1.2.5
		P: bigFromDecimal("68647976601306097149819007990813932172694353001433" +
			"0540939446345918554318339765605212255964066145455497729631139148" +
			"0858037121987999716643812574028291115057151"),
		N: bigFromDecimal("68647976601306097149819007990813932172694353001433" +
			"0540939446345918554318339765539424505774633321719753296399637136" +
			"3321113864768612440380340372808892707005449"),
		B: bigFromHex("0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8" +
			"b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef" +
			"451fd46b503f00"),
		Gx: bigFromHex("00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f8" +
			"28af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf9" +
			"7e7e31c2e5bd66"),
		Gy: bigFromHex("011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817" +
			"afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088" +
			"be94769fd16650"),
	}
}

// nistCurve is a Curve implementation based on a nistec Point.
//
// It's a wrapper that exposes the big.Int-based Curve interface and encodes the
// legacy idiosyncrasies it requires, such as invalid and infinity point
// handling.
//
// To interact with the nistec package, points are encoded into and decoded from
// properly formatted byte slices. All big.Int use is limited to this package.
// Encoding and decoding is 1/1000th of the runtime of a scalar multiplication,
// so the overhead is acceptable.
type nistCurve[Point nistPoint[Point]] struct {
	newPoint func() Point
	params   *CurveParams
}

// nistPoint is a generic constraint for the nistec Point types.
type nistPoint[T any] interface {
	Bytes() []byte
	SetBytes([]byte) (T, error)
	Add(T, T) T
	Double(T) T
	ScalarMult(T, []byte) (T, error)
	ScalarBaseMult([]byte) (T, error)
}

func (curve *nistCurve[Point]) Params() *CurveParams {
	return curve.params
}

func (curve *nistCurve[Point]) IsOnCurve(x, y *big.Int) bool {
	// IsOnCurve is documented to reject (0, 0), the conventional point at
	// infinity, which however is accepted by pointFromAffine.
	if x.Sign() == 0 && y.Sign() == 0 {
		return false
	}
	_, err := curve.pointFromAffine(x, y)
	return err == nil
}

func (curve *nistCurve[Point]) pointFromAffine(x, y *big.Int) (p Point, err error) {
	// (0, 0) is by convention the point at infinity, which can't be represented
	// in affine coordinates. See Issue 37294.
	if x.Sign() == 0 && y.Sign() == 0 {
		return curve.newPoint(), nil
	}
	// Reject values that would not get correctly encoded.
	if x.Sign() < 0 || y.Sign() < 0 {
		return p, errors.New("negative coordinate")
	}
	if x.BitLen() > curve.params.BitSize || y.BitLen() > curve.params.BitSize {
		return p, errors.New("overflowing coordinate")
	}
	// Encode the coordinates and let SetBytes reject invalid points.
	byteLen := (curve.params.BitSize + 7) / 8
	buf := make([]byte, 1+2*byteLen)
	buf[0] = 4 // uncompressed point
	x.FillBytes(buf[1 : 1+byteLen])
	y.FillBytes(buf[1+byteLen : 1+2*byteLen])
	return curve.newPoint().SetBytes(buf)
}

func (curve *nistCurve[Point]) pointToAffine(p Point) (x, y *big.Int) {
	out := p.Bytes()
	if len(out) == 1 && out[0] == 0 {
		// This is the encoding of the point at infinity, which the affine
		// coordinates API represents as (0, 0) by convention.
		return new(big.Int), new(big.Int)
	}
	byteLen := (curve.params.BitSize + 7) / 8
	x = new(big.Int).SetBytes(out[1 : 1+byteLen])
	y = new(big.Int).SetBytes(out[1+byteLen:])
	return x, y
}

func (curve *nistCurve[Point]) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
	p1, err := curve.pointFromAffine(x1, y1)
	if err != nil {
		panic("crypto/elliptic: Add was called on an invalid point")
	}
	p2, err := curve.pointFromAffine(x2, y2)
	if err != nil {
		panic("crypto/elliptic: Add was called on an invalid point")
	}
	return curve.pointToAffine(p1.Add(p1, p2))
}

func (curve *nistCurve[Point]) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
	p, err := curve.pointFromAffine(x1, y1)
	if err != nil {
		panic("crypto/elliptic: Double was called on an invalid point")
	}
	return curve.pointToAffine(p.Double(p))
}

// normalizeScalar brings the scalar within the byte size of the order of the
// curve, as expected by the nistec scalar multiplication functions.
func (curve *nistCurve[Point]) normalizeScalar(scalar []byte) []byte {
	byteSize := (curve.params.N.BitLen() + 7) / 8
	if len(scalar) == byteSize {
		return scalar
	}
	s := new(big.Int).SetBytes(scalar)
	if len(scalar) > byteSize {
		s.Mod(s, curve.params.N)
	}
	out := make([]byte, byteSize)
	return s.FillBytes(out)
}

func (curve *nistCurve[Point]) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
	p, err := curve.pointFromAffine(Bx, By)
	if err != nil {
		panic("crypto/elliptic: ScalarMult was called on an invalid point")
	}
	scalar = curve.normalizeScalar(scalar)
	p, err = p.ScalarMult(p, scalar)
	if err != nil {
		panic("crypto/elliptic: nistec rejected normalized scalar")
	}
	return curve.pointToAffine(p)
}

func (curve *nistCurve[Point]) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) {
	scalar = curve.normalizeScalar(scalar)
	p, err := curve.newPoint().ScalarBaseMult(scalar)
	if err != nil {
		panic("crypto/elliptic: nistec rejected normalized scalar")
	}
	return curve.pointToAffine(p)
}

// CombinedMult returns [s1]G + [s2]P where G is the generator. It's used
// through an interface upgrade in crypto/ecdsa.
func (curve *nistCurve[Point]) CombinedMult(Px, Py *big.Int, s1, s2 []byte) (x, y *big.Int) {
	s1 = curve.normalizeScalar(s1)
	q, err := curve.newPoint().ScalarBaseMult(s1)
	if err != nil {
		panic("crypto/elliptic: nistec rejected normalized scalar")
	}
	p, err := curve.pointFromAffine(Px, Py)
	if err != nil {
		panic("crypto/elliptic: CombinedMult was called on an invalid point")
	}
	s2 = curve.normalizeScalar(s2)
	p, err = p.ScalarMult(p, s2)
	if err != nil {
		panic("crypto/elliptic: nistec rejected normalized scalar")
	}
	return curve.pointToAffine(p.Add(p, q))
}

func (curve *nistCurve[Point]) Unmarshal(data []byte) (x, y *big.Int) {
	if len(data) == 0 || data[0] != 4 {
		return nil, nil
	}
	// Use SetBytes to check that data encodes a valid point.
	_, err := curve.newPoint().SetBytes(data)
	if err != nil {
		return nil, nil
	}
	// We don't use pointToAffine because it involves an expensive field
	// inversion to convert from Jacobian to affine coordinates, which we
	// already have.
	byteLen := (curve.params.BitSize + 7) / 8
	x = new(big.Int).SetBytes(data[1 : 1+byteLen])
	y = new(big.Int).SetBytes(data[1+byteLen:])
	return x, y
}

func (curve *nistCurve[Point]) UnmarshalCompressed(data []byte) (x, y *big.Int) {
	if len(data) == 0 || (data[0] != 2 && data[0] != 3) {
		return nil, nil
	}
	p, err := curve.newPoint().SetBytes(data)
	if err != nil {
		return nil, nil
	}
	return curve.pointToAffine(p)
}

func bigFromDecimal(s string) *big.Int {
	b, ok := new(big.Int).SetString(s, 10)
	if !ok {
		panic("crypto/elliptic: internal error: invalid encoding")
	}
	return b
}

func bigFromHex(s string) *big.Int {
	b, ok := new(big.Int).SetString(s, 16)
	if !ok {
		panic("crypto/elliptic: internal error: invalid encoding")
	}
	return b
}