summaryrefslogtreecommitdiffstats
path: root/src/crypto/elliptic/params.go
blob: c4e9784ce26272020909e3f06efb8f754c0bfdaa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package elliptic

import "math/big"

// CurveParams contains the parameters of an elliptic curve and also provides
// a generic, non-constant time implementation of Curve.
//
// Note: Custom curves (those not returned by P224(), P256(), P384(), and P521())
// are not guaranteed to provide any security property.
type CurveParams struct {
	P       *big.Int // the order of the underlying field
	N       *big.Int // the order of the base point
	B       *big.Int // the constant of the curve equation
	Gx, Gy  *big.Int // (x,y) of the base point
	BitSize int      // the size of the underlying field
	Name    string   // the canonical name of the curve
}

func (curve *CurveParams) Params() *CurveParams {
	return curve
}

// CurveParams operates, internally, on Jacobian coordinates. For a given
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
// calculation can be performed within the transform (as in ScalarMult and
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
// reverse the transform than to operate in affine coordinates.

// polynomial returns x³ - 3x + b.
func (curve *CurveParams) polynomial(x *big.Int) *big.Int {
	x3 := new(big.Int).Mul(x, x)
	x3.Mul(x3, x)

	threeX := new(big.Int).Lsh(x, 1)
	threeX.Add(threeX, x)

	x3.Sub(x3, threeX)
	x3.Add(x3, curve.B)
	x3.Mod(x3, curve.P)

	return x3
}

// IsOnCurve implements Curve.IsOnCurve.
//
// Note: the CurveParams methods are not guaranteed to
// provide any security property. For ECDH, use the crypto/ecdh package.
// For ECDSA, use the crypto/ecdsa package with a Curve value returned directly
// from P224(), P256(), P384(), or P521().
func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
	// If there is a dedicated constant-time implementation for this curve operation,
	// use that instead of the generic one.
	if specific, ok := matchesSpecificCurve(curve); ok {
		return specific.IsOnCurve(x, y)
	}

	if x.Sign() < 0 || x.Cmp(curve.P) >= 0 ||
		y.Sign() < 0 || y.Cmp(curve.P) >= 0 {
		return false
	}

	// y² = x³ - 3x + b
	y2 := new(big.Int).Mul(y, y)
	y2.Mod(y2, curve.P)

	return curve.polynomial(x).Cmp(y2) == 0
}

// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and
// y are zero, it assumes that they represent the point at infinity because (0,
// 0) is not on the any of the curves handled here.
func zForAffine(x, y *big.Int) *big.Int {
	z := new(big.Int)
	if x.Sign() != 0 || y.Sign() != 0 {
		z.SetInt64(1)
	}
	return z
}

// affineFromJacobian reverses the Jacobian transform. See the comment at the
// top of the file. If the point is ∞ it returns 0, 0.
func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
	if z.Sign() == 0 {
		return new(big.Int), new(big.Int)
	}

	zinv := new(big.Int).ModInverse(z, curve.P)
	zinvsq := new(big.Int).Mul(zinv, zinv)

	xOut = new(big.Int).Mul(x, zinvsq)
	xOut.Mod(xOut, curve.P)
	zinvsq.Mul(zinvsq, zinv)
	yOut = new(big.Int).Mul(y, zinvsq)
	yOut.Mod(yOut, curve.P)
	return
}

// Add implements Curve.Add.
//
// Note: the CurveParams methods are not guaranteed to
// provide any security property. For ECDH, use the crypto/ecdh package.
// For ECDSA, use the crypto/ecdsa package with a Curve value returned directly
// from P224(), P256(), P384(), or P521().
func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
	// If there is a dedicated constant-time implementation for this curve operation,
	// use that instead of the generic one.
	if specific, ok := matchesSpecificCurve(curve); ok {
		return specific.Add(x1, y1, x2, y2)
	}
	panicIfNotOnCurve(curve, x1, y1)
	panicIfNotOnCurve(curve, x2, y2)

	z1 := zForAffine(x1, y1)
	z2 := zForAffine(x2, y2)
	return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2))
}

// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form.
func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
	// See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
	x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int)
	if z1.Sign() == 0 {
		x3.Set(x2)
		y3.Set(y2)
		z3.Set(z2)
		return x3, y3, z3
	}
	if z2.Sign() == 0 {
		x3.Set(x1)
		y3.Set(y1)
		z3.Set(z1)
		return x3, y3, z3
	}

	z1z1 := new(big.Int).Mul(z1, z1)
	z1z1.Mod(z1z1, curve.P)
	z2z2 := new(big.Int).Mul(z2, z2)
	z2z2.Mod(z2z2, curve.P)

	u1 := new(big.Int).Mul(x1, z2z2)
	u1.Mod(u1, curve.P)
	u2 := new(big.Int).Mul(x2, z1z1)
	u2.Mod(u2, curve.P)
	h := new(big.Int).Sub(u2, u1)
	xEqual := h.Sign() == 0
	if h.Sign() == -1 {
		h.Add(h, curve.P)
	}
	i := new(big.Int).Lsh(h, 1)
	i.Mul(i, i)
	j := new(big.Int).Mul(h, i)

	s1 := new(big.Int).Mul(y1, z2)
	s1.Mul(s1, z2z2)
	s1.Mod(s1, curve.P)
	s2 := new(big.Int).Mul(y2, z1)
	s2.Mul(s2, z1z1)
	s2.Mod(s2, curve.P)
	r := new(big.Int).Sub(s2, s1)
	if r.Sign() == -1 {
		r.Add(r, curve.P)
	}
	yEqual := r.Sign() == 0
	if xEqual && yEqual {
		return curve.doubleJacobian(x1, y1, z1)
	}
	r.Lsh(r, 1)
	v := new(big.Int).Mul(u1, i)

	x3.Set(r)
	x3.Mul(x3, x3)
	x3.Sub(x3, j)
	x3.Sub(x3, v)
	x3.Sub(x3, v)
	x3.Mod(x3, curve.P)

	y3.Set(r)
	v.Sub(v, x3)
	y3.Mul(y3, v)
	s1.Mul(s1, j)
	s1.Lsh(s1, 1)
	y3.Sub(y3, s1)
	y3.Mod(y3, curve.P)

	z3.Add(z1, z2)
	z3.Mul(z3, z3)
	z3.Sub(z3, z1z1)
	z3.Sub(z3, z2z2)
	z3.Mul(z3, h)
	z3.Mod(z3, curve.P)

	return x3, y3, z3
}

// Double implements Curve.Double.
//
// Note: the CurveParams methods are not guaranteed to
// provide any security property. For ECDH, use the crypto/ecdh package.
// For ECDSA, use the crypto/ecdsa package with a Curve value returned directly
// from P224(), P256(), P384(), or P521().
func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
	// If there is a dedicated constant-time implementation for this curve operation,
	// use that instead of the generic one.
	if specific, ok := matchesSpecificCurve(curve); ok {
		return specific.Double(x1, y1)
	}
	panicIfNotOnCurve(curve, x1, y1)

	z1 := zForAffine(x1, y1)
	return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1))
}

// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
	// See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
	delta := new(big.Int).Mul(z, z)
	delta.Mod(delta, curve.P)
	gamma := new(big.Int).Mul(y, y)
	gamma.Mod(gamma, curve.P)
	alpha := new(big.Int).Sub(x, delta)
	if alpha.Sign() == -1 {
		alpha.Add(alpha, curve.P)
	}
	alpha2 := new(big.Int).Add(x, delta)
	alpha.Mul(alpha, alpha2)
	alpha2.Set(alpha)
	alpha.Lsh(alpha, 1)
	alpha.Add(alpha, alpha2)

	beta := alpha2.Mul(x, gamma)

	x3 := new(big.Int).Mul(alpha, alpha)
	beta8 := new(big.Int).Lsh(beta, 3)
	beta8.Mod(beta8, curve.P)
	x3.Sub(x3, beta8)
	if x3.Sign() == -1 {
		x3.Add(x3, curve.P)
	}
	x3.Mod(x3, curve.P)

	z3 := new(big.Int).Add(y, z)
	z3.Mul(z3, z3)
	z3.Sub(z3, gamma)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Sub(z3, delta)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Mod(z3, curve.P)

	beta.Lsh(beta, 2)
	beta.Sub(beta, x3)
	if beta.Sign() == -1 {
		beta.Add(beta, curve.P)
	}
	y3 := alpha.Mul(alpha, beta)

	gamma.Mul(gamma, gamma)
	gamma.Lsh(gamma, 3)
	gamma.Mod(gamma, curve.P)

	y3.Sub(y3, gamma)
	if y3.Sign() == -1 {
		y3.Add(y3, curve.P)
	}
	y3.Mod(y3, curve.P)

	return x3, y3, z3
}

// ScalarMult implements Curve.ScalarMult.
//
// Note: the CurveParams methods are not guaranteed to
// provide any security property. For ECDH, use the crypto/ecdh package.
// For ECDSA, use the crypto/ecdsa package with a Curve value returned directly
// from P224(), P256(), P384(), or P521().
func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
	// If there is a dedicated constant-time implementation for this curve operation,
	// use that instead of the generic one.
	if specific, ok := matchesSpecificCurve(curve); ok {
		return specific.ScalarMult(Bx, By, k)
	}
	panicIfNotOnCurve(curve, Bx, By)

	Bz := new(big.Int).SetInt64(1)
	x, y, z := new(big.Int), new(big.Int), new(big.Int)

	for _, byte := range k {
		for bitNum := 0; bitNum < 8; bitNum++ {
			x, y, z = curve.doubleJacobian(x, y, z)
			if byte&0x80 == 0x80 {
				x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
			}
			byte <<= 1
		}
	}

	return curve.affineFromJacobian(x, y, z)
}

// ScalarBaseMult implements Curve.ScalarBaseMult.
//
// Note: the CurveParams methods are not guaranteed to
// provide any security property. For ECDH, use the crypto/ecdh package.
// For ECDSA, use the crypto/ecdsa package with a Curve value returned directly
// from P224(), P256(), P384(), or P521().
func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
	// If there is a dedicated constant-time implementation for this curve operation,
	// use that instead of the generic one.
	if specific, ok := matchesSpecificCurve(curve); ok {
		return specific.ScalarBaseMult(k)
	}

	return curve.ScalarMult(curve.Gx, curve.Gy, k)
}

func matchesSpecificCurve(params *CurveParams) (Curve, bool) {
	for _, c := range []Curve{p224, p256, p384, p521} {
		if params == c.Params() {
			return c, true
		}
	}
	return nil, false
}