summaryrefslogtreecommitdiffstats
path: root/src/crypto/rsa/rsa.go
blob: 63bc8dad1aa9648630d8f4b7dd8fd514aa1bc9ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package rsa implements RSA encryption as specified in PKCS #1 and RFC 8017.
//
// RSA is a single, fundamental operation that is used in this package to
// implement either public-key encryption or public-key signatures.
//
// The original specification for encryption and signatures with RSA is PKCS #1
// and the terms "RSA encryption" and "RSA signatures" by default refer to
// PKCS #1 version 1.5. However, that specification has flaws and new designs
// should use version 2, usually called by just OAEP and PSS, where
// possible.
//
// Two sets of interfaces are included in this package. When a more abstract
// interface isn't necessary, there are functions for encrypting/decrypting
// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract
// over the public key primitive, the PrivateKey type implements the
// Decrypter and Signer interfaces from the crypto package.
//
// Operations in this package are implemented using constant-time algorithms,
// except for [GenerateKey], [PrivateKey.Precompute], and [PrivateKey.Validate].
// Every other operation only leaks the bit size of the involved values, which
// all depend on the selected key size.
package rsa

import (
	"crypto"
	"crypto/internal/bigmod"
	"crypto/internal/boring"
	"crypto/internal/boring/bbig"
	"crypto/internal/randutil"
	"crypto/rand"
	"crypto/subtle"
	"encoding/binary"
	"errors"
	"hash"
	"io"
	"math"
	"math/big"
)

var bigOne = big.NewInt(1)

// A PublicKey represents the public part of an RSA key.
type PublicKey struct {
	N *big.Int // modulus
	E int      // public exponent
}

// Any methods implemented on PublicKey might need to also be implemented on
// PrivateKey, as the latter embeds the former and will expose its methods.

// Size returns the modulus size in bytes. Raw signatures and ciphertexts
// for or by this public key will have the same size.
func (pub *PublicKey) Size() int {
	return (pub.N.BitLen() + 7) / 8
}

// Equal reports whether pub and x have the same value.
func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
	xx, ok := x.(*PublicKey)
	if !ok {
		return false
	}
	return pub.N.Cmp(xx.N) == 0 && pub.E == xx.E
}

// OAEPOptions is an interface for passing options to OAEP decryption using the
// crypto.Decrypter interface.
type OAEPOptions struct {
	// Hash is the hash function that will be used when generating the mask.
	Hash crypto.Hash

	// MGFHash is the hash function used for MGF1.
	// If zero, Hash is used instead.
	MGFHash crypto.Hash

	// Label is an arbitrary byte string that must be equal to the value
	// used when encrypting.
	Label []byte
}

var (
	errPublicModulus       = errors.New("crypto/rsa: missing public modulus")
	errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
	errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
)

// checkPub sanity checks the public key before we use it.
// We require pub.E to fit into a 32-bit integer so that we
// do not have different behavior depending on whether
// int is 32 or 64 bits. See also
// https://www.imperialviolet.org/2012/03/16/rsae.html.
func checkPub(pub *PublicKey) error {
	if pub.N == nil {
		return errPublicModulus
	}
	if pub.E < 2 {
		return errPublicExponentSmall
	}
	if pub.E > 1<<31-1 {
		return errPublicExponentLarge
	}
	return nil
}

// A PrivateKey represents an RSA key
type PrivateKey struct {
	PublicKey            // public part.
	D         *big.Int   // private exponent
	Primes    []*big.Int // prime factors of N, has >= 2 elements.

	// Precomputed contains precomputed values that speed up RSA operations,
	// if available. It must be generated by calling PrivateKey.Precompute and
	// must not be modified.
	Precomputed PrecomputedValues
}

// Public returns the public key corresponding to priv.
func (priv *PrivateKey) Public() crypto.PublicKey {
	return &priv.PublicKey
}

// Equal reports whether priv and x have equivalent values. It ignores
// Precomputed values.
func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
	xx, ok := x.(*PrivateKey)
	if !ok {
		return false
	}
	if !priv.PublicKey.Equal(&xx.PublicKey) || priv.D.Cmp(xx.D) != 0 {
		return false
	}
	if len(priv.Primes) != len(xx.Primes) {
		return false
	}
	for i := range priv.Primes {
		if priv.Primes[i].Cmp(xx.Primes[i]) != 0 {
			return false
		}
	}
	return true
}

// Sign signs digest with priv, reading randomness from rand. If opts is a
// *PSSOptions then the PSS algorithm will be used, otherwise PKCS #1 v1.5 will
// be used. digest must be the result of hashing the input message using
// opts.HashFunc().
//
// This method implements crypto.Signer, which is an interface to support keys
// where the private part is kept in, for example, a hardware module. Common
// uses should use the Sign* functions in this package directly.
func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
	if pssOpts, ok := opts.(*PSSOptions); ok {
		return SignPSS(rand, priv, pssOpts.Hash, digest, pssOpts)
	}

	return SignPKCS1v15(rand, priv, opts.HashFunc(), digest)
}

// Decrypt decrypts ciphertext with priv. If opts is nil or of type
// *PKCS1v15DecryptOptions then PKCS #1 v1.5 decryption is performed. Otherwise
// opts must have type *OAEPOptions and OAEP decryption is done.
func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
	if opts == nil {
		return DecryptPKCS1v15(rand, priv, ciphertext)
	}

	switch opts := opts.(type) {
	case *OAEPOptions:
		if opts.MGFHash == 0 {
			return decryptOAEP(opts.Hash.New(), opts.Hash.New(), rand, priv, ciphertext, opts.Label)
		} else {
			return decryptOAEP(opts.Hash.New(), opts.MGFHash.New(), rand, priv, ciphertext, opts.Label)
		}

	case *PKCS1v15DecryptOptions:
		if l := opts.SessionKeyLen; l > 0 {
			plaintext = make([]byte, l)
			if _, err := io.ReadFull(rand, plaintext); err != nil {
				return nil, err
			}
			if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
				return nil, err
			}
			return plaintext, nil
		} else {
			return DecryptPKCS1v15(rand, priv, ciphertext)
		}

	default:
		return nil, errors.New("crypto/rsa: invalid options for Decrypt")
	}
}

type PrecomputedValues struct {
	Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
	Qinv   *big.Int // Q^-1 mod P

	// CRTValues is used for the 3rd and subsequent primes. Due to a
	// historical accident, the CRT for the first two primes is handled
	// differently in PKCS #1 and interoperability is sufficiently
	// important that we mirror this.
	//
	// Note: these values are still filled in by Precompute for
	// backwards compatibility but are not used. Multi-prime RSA is very rare,
	// and is implemented by this package without CRT optimizations to limit
	// complexity.
	CRTValues []CRTValue

	n, p, q *bigmod.Modulus // moduli for CRT with Montgomery precomputed constants
}

// CRTValue contains the precomputed Chinese remainder theorem values.
type CRTValue struct {
	Exp   *big.Int // D mod (prime-1).
	Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
	R     *big.Int // product of primes prior to this (inc p and q).
}

// Validate performs basic sanity checks on the key.
// It returns nil if the key is valid, or else an error describing a problem.
func (priv *PrivateKey) Validate() error {
	if err := checkPub(&priv.PublicKey); err != nil {
		return err
	}

	// Check that Πprimes == n.
	modulus := new(big.Int).Set(bigOne)
	for _, prime := range priv.Primes {
		// Any primes ≤ 1 will cause divide-by-zero panics later.
		if prime.Cmp(bigOne) <= 0 {
			return errors.New("crypto/rsa: invalid prime value")
		}
		modulus.Mul(modulus, prime)
	}
	if modulus.Cmp(priv.N) != 0 {
		return errors.New("crypto/rsa: invalid modulus")
	}

	// Check that de ≡ 1 mod p-1, for each prime.
	// This implies that e is coprime to each p-1 as e has a multiplicative
	// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
	// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
	// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
	congruence := new(big.Int)
	de := new(big.Int).SetInt64(int64(priv.E))
	de.Mul(de, priv.D)
	for _, prime := range priv.Primes {
		pminus1 := new(big.Int).Sub(prime, bigOne)
		congruence.Mod(de, pminus1)
		if congruence.Cmp(bigOne) != 0 {
			return errors.New("crypto/rsa: invalid exponents")
		}
	}
	return nil
}

// GenerateKey generates an RSA keypair of the given bit size using the
// random source random (for example, crypto/rand.Reader).
func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) {
	return GenerateMultiPrimeKey(random, 2, bits)
}

// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
// size and the given random source.
//
// Table 1 in "[On the Security of Multi-prime RSA]" suggests maximum numbers of
// primes for a given bit size.
//
// Although the public keys are compatible (actually, indistinguishable) from
// the 2-prime case, the private keys are not. Thus it may not be possible to
// export multi-prime private keys in certain formats or to subsequently import
// them into other code.
//
// This package does not implement CRT optimizations for multi-prime RSA, so the
// keys with more than two primes will have worse performance.
//
// Note: The use of this function with a number of primes different from
// two is not recommended for the above security, compatibility, and performance
// reasons. Use GenerateKey instead.
//
// [On the Security of Multi-prime RSA]: http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) {
	randutil.MaybeReadByte(random)

	if boring.Enabled && random == boring.RandReader && nprimes == 2 &&
		(bits == 2048 || bits == 3072 || bits == 4096) {
		bN, bE, bD, bP, bQ, bDp, bDq, bQinv, err := boring.GenerateKeyRSA(bits)
		if err != nil {
			return nil, err
		}
		N := bbig.Dec(bN)
		E := bbig.Dec(bE)
		D := bbig.Dec(bD)
		P := bbig.Dec(bP)
		Q := bbig.Dec(bQ)
		Dp := bbig.Dec(bDp)
		Dq := bbig.Dec(bDq)
		Qinv := bbig.Dec(bQinv)
		e64 := E.Int64()
		if !E.IsInt64() || int64(int(e64)) != e64 {
			return nil, errors.New("crypto/rsa: generated key exponent too large")
		}
		key := &PrivateKey{
			PublicKey: PublicKey{
				N: N,
				E: int(e64),
			},
			D:      D,
			Primes: []*big.Int{P, Q},
			Precomputed: PrecomputedValues{
				Dp:        Dp,
				Dq:        Dq,
				Qinv:      Qinv,
				CRTValues: make([]CRTValue, 0), // non-nil, to match Precompute
				n:         bigmod.NewModulusFromBig(N),
				p:         bigmod.NewModulusFromBig(P),
				q:         bigmod.NewModulusFromBig(Q),
			},
		}
		return key, nil
	}

	priv := new(PrivateKey)
	priv.E = 65537

	if nprimes < 2 {
		return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
	}

	if bits < 64 {
		primeLimit := float64(uint64(1) << uint(bits/nprimes))
		// pi approximates the number of primes less than primeLimit
		pi := primeLimit / (math.Log(primeLimit) - 1)
		// Generated primes start with 11 (in binary) so we can only
		// use a quarter of them.
		pi /= 4
		// Use a factor of two to ensure that key generation terminates
		// in a reasonable amount of time.
		pi /= 2
		if pi <= float64(nprimes) {
			return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key")
		}
	}

	primes := make([]*big.Int, nprimes)

NextSetOfPrimes:
	for {
		todo := bits
		// crypto/rand should set the top two bits in each prime.
		// Thus each prime has the form
		//   p_i = 2^bitlen(p_i) × 0.11... (in base 2).
		// And the product is:
		//   P = 2^todo × α
		// where α is the product of nprimes numbers of the form 0.11...
		//
		// If α < 1/2 (which can happen for nprimes > 2), we need to
		// shift todo to compensate for lost bits: the mean value of 0.11...
		// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
		// will give good results.
		if nprimes >= 7 {
			todo += (nprimes - 2) / 5
		}
		for i := 0; i < nprimes; i++ {
			var err error
			primes[i], err = rand.Prime(random, todo/(nprimes-i))
			if err != nil {
				return nil, err
			}
			todo -= primes[i].BitLen()
		}

		// Make sure that primes is pairwise unequal.
		for i, prime := range primes {
			for j := 0; j < i; j++ {
				if prime.Cmp(primes[j]) == 0 {
					continue NextSetOfPrimes
				}
			}
		}

		n := new(big.Int).Set(bigOne)
		totient := new(big.Int).Set(bigOne)
		pminus1 := new(big.Int)
		for _, prime := range primes {
			n.Mul(n, prime)
			pminus1.Sub(prime, bigOne)
			totient.Mul(totient, pminus1)
		}
		if n.BitLen() != bits {
			// This should never happen for nprimes == 2 because
			// crypto/rand should set the top two bits in each prime.
			// For nprimes > 2 we hope it does not happen often.
			continue NextSetOfPrimes
		}

		priv.D = new(big.Int)
		e := big.NewInt(int64(priv.E))
		ok := priv.D.ModInverse(e, totient)

		if ok != nil {
			priv.Primes = primes
			priv.N = n
			break
		}
	}

	priv.Precompute()
	return priv, nil
}

// incCounter increments a four byte, big-endian counter.
func incCounter(c *[4]byte) {
	if c[3]++; c[3] != 0 {
		return
	}
	if c[2]++; c[2] != 0 {
		return
	}
	if c[1]++; c[1] != 0 {
		return
	}
	c[0]++
}

// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
// specified in PKCS #1 v2.1.
func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
	var counter [4]byte
	var digest []byte

	done := 0
	for done < len(out) {
		hash.Write(seed)
		hash.Write(counter[0:4])
		digest = hash.Sum(digest[:0])
		hash.Reset()

		for i := 0; i < len(digest) && done < len(out); i++ {
			out[done] ^= digest[i]
			done++
		}
		incCounter(&counter)
	}
}

// ErrMessageTooLong is returned when attempting to encrypt or sign a message
// which is too large for the size of the key. When using SignPSS, this can also
// be returned if the size of the salt is too large.
var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA key size")

func encrypt(pub *PublicKey, plaintext []byte) ([]byte, error) {
	boring.Unreachable()

	N := bigmod.NewModulusFromBig(pub.N)
	m, err := bigmod.NewNat().SetBytes(plaintext, N)
	if err != nil {
		return nil, err
	}
	e := intToBytes(pub.E)

	return bigmod.NewNat().Exp(m, e, N).Bytes(N), nil
}

// intToBytes returns i as a big-endian slice of bytes with no leading zeroes,
// leaking only the bit size of i through timing side-channels.
func intToBytes(i int) []byte {
	b := make([]byte, 8)
	binary.BigEndian.PutUint64(b, uint64(i))
	for len(b) > 1 && b[0] == 0 {
		b = b[1:]
	}
	return b
}

// EncryptOAEP encrypts the given message with RSA-OAEP.
//
// OAEP is parameterised by a hash function that is used as a random oracle.
// Encryption and decryption of a given message must use the same hash function
// and sha256.New() is a reasonable choice.
//
// The random parameter is used as a source of entropy to ensure that
// encrypting the same message twice doesn't result in the same ciphertext.
//
// The label parameter may contain arbitrary data that will not be encrypted,
// but which gives important context to the message. For example, if a given
// public key is used to encrypt two types of messages then distinct label
// values could be used to ensure that a ciphertext for one purpose cannot be
// used for another by an attacker. If not required it can be empty.
//
// The message must be no longer than the length of the public modulus minus
// twice the hash length, minus a further 2.
func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) {
	if err := checkPub(pub); err != nil {
		return nil, err
	}
	hash.Reset()
	k := pub.Size()
	if len(msg) > k-2*hash.Size()-2 {
		return nil, ErrMessageTooLong
	}

	if boring.Enabled && random == boring.RandReader {
		bkey, err := boringPublicKey(pub)
		if err != nil {
			return nil, err
		}
		return boring.EncryptRSAOAEP(hash, hash, bkey, msg, label)
	}
	boring.UnreachableExceptTests()

	hash.Write(label)
	lHash := hash.Sum(nil)
	hash.Reset()

	em := make([]byte, k)
	seed := em[1 : 1+hash.Size()]
	db := em[1+hash.Size():]

	copy(db[0:hash.Size()], lHash)
	db[len(db)-len(msg)-1] = 1
	copy(db[len(db)-len(msg):], msg)

	_, err := io.ReadFull(random, seed)
	if err != nil {
		return nil, err
	}

	mgf1XOR(db, hash, seed)
	mgf1XOR(seed, hash, db)

	if boring.Enabled {
		var bkey *boring.PublicKeyRSA
		bkey, err = boringPublicKey(pub)
		if err != nil {
			return nil, err
		}
		return boring.EncryptRSANoPadding(bkey, em)
	}

	return encrypt(pub, em)
}

// ErrDecryption represents a failure to decrypt a message.
// It is deliberately vague to avoid adaptive attacks.
var ErrDecryption = errors.New("crypto/rsa: decryption error")

// ErrVerification represents a failure to verify a signature.
// It is deliberately vague to avoid adaptive attacks.
var ErrVerification = errors.New("crypto/rsa: verification error")

// Precompute performs some calculations that speed up private key operations
// in the future.
func (priv *PrivateKey) Precompute() {
	if priv.Precomputed.n == nil && len(priv.Primes) == 2 {
		priv.Precomputed.n = bigmod.NewModulusFromBig(priv.N)
		priv.Precomputed.p = bigmod.NewModulusFromBig(priv.Primes[0])
		priv.Precomputed.q = bigmod.NewModulusFromBig(priv.Primes[1])
	}

	// Fill in the backwards-compatibility *big.Int values.
	if priv.Precomputed.Dp != nil {
		return
	}

	priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
	priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)

	priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
	priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)

	priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])

	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
	priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
	for i := 2; i < len(priv.Primes); i++ {
		prime := priv.Primes[i]
		values := &priv.Precomputed.CRTValues[i-2]

		values.Exp = new(big.Int).Sub(prime, bigOne)
		values.Exp.Mod(priv.D, values.Exp)

		values.R = new(big.Int).Set(r)
		values.Coeff = new(big.Int).ModInverse(r, prime)

		r.Mul(r, prime)
	}
}

const withCheck = true
const noCheck = false

// decrypt performs an RSA decryption of ciphertext into out. If check is true,
// m^e is calculated and compared with ciphertext, in order to defend against
// errors in the CRT computation.
func decrypt(priv *PrivateKey, ciphertext []byte, check bool) ([]byte, error) {
	if len(priv.Primes) <= 2 {
		boring.Unreachable()
	}

	var (
		err  error
		m, c *bigmod.Nat
		N    *bigmod.Modulus
		t0   = bigmod.NewNat()
	)
	if priv.Precomputed.n == nil {
		N = bigmod.NewModulusFromBig(priv.N)
		c, err = bigmod.NewNat().SetBytes(ciphertext, N)
		if err != nil {
			return nil, ErrDecryption
		}
		m = bigmod.NewNat().Exp(c, priv.D.Bytes(), N)
	} else {
		N = priv.Precomputed.n
		P, Q := priv.Precomputed.p, priv.Precomputed.q
		Qinv, err := bigmod.NewNat().SetBytes(priv.Precomputed.Qinv.Bytes(), P)
		if err != nil {
			return nil, ErrDecryption
		}
		c, err = bigmod.NewNat().SetBytes(ciphertext, N)
		if err != nil {
			return nil, ErrDecryption
		}

		// m = c ^ Dp mod p
		m = bigmod.NewNat().Exp(t0.Mod(c, P), priv.Precomputed.Dp.Bytes(), P)
		// m2 = c ^ Dq mod q
		m2 := bigmod.NewNat().Exp(t0.Mod(c, Q), priv.Precomputed.Dq.Bytes(), Q)
		// m = m - m2 mod p
		m.Sub(t0.Mod(m2, P), P)
		// m = m * Qinv mod p
		m.Mul(Qinv, P)
		// m = m * q mod N
		m.ExpandFor(N).Mul(t0.Mod(Q.Nat(), N), N)
		// m = m + m2 mod N
		m.Add(m2.ExpandFor(N), N)
	}

	if check {
		c1 := bigmod.NewNat().Exp(m, intToBytes(priv.E), N)
		if c1.Equal(c) != 1 {
			return nil, ErrDecryption
		}
	}

	return m.Bytes(N), nil
}

// DecryptOAEP decrypts ciphertext using RSA-OAEP.
//
// OAEP is parameterised by a hash function that is used as a random oracle.
// Encryption and decryption of a given message must use the same hash function
// and sha256.New() is a reasonable choice.
//
// The random parameter is legacy and ignored, and it can be as nil.
//
// The label parameter must match the value given when encrypting. See
// EncryptOAEP for details.
func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) {
	return decryptOAEP(hash, hash, random, priv, ciphertext, label)
}

func decryptOAEP(hash, mgfHash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) {
	if err := checkPub(&priv.PublicKey); err != nil {
		return nil, err
	}
	k := priv.Size()
	if len(ciphertext) > k ||
		k < hash.Size()*2+2 {
		return nil, ErrDecryption
	}

	if boring.Enabled {
		bkey, err := boringPrivateKey(priv)
		if err != nil {
			return nil, err
		}
		out, err := boring.DecryptRSAOAEP(hash, mgfHash, bkey, ciphertext, label)
		if err != nil {
			return nil, ErrDecryption
		}
		return out, nil
	}

	em, err := decrypt(priv, ciphertext, noCheck)
	if err != nil {
		return nil, err
	}

	hash.Write(label)
	lHash := hash.Sum(nil)
	hash.Reset()

	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)

	seed := em[1 : hash.Size()+1]
	db := em[hash.Size()+1:]

	mgf1XOR(seed, mgfHash, db)
	mgf1XOR(db, mgfHash, seed)

	lHash2 := db[0:hash.Size()]

	// We have to validate the plaintext in constant time in order to avoid
	// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
	// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
	// v2.0. In J. Kilian, editor, Advances in Cryptology.
	lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)

	// The remainder of the plaintext must be zero or more 0x00, followed
	// by 0x01, followed by the message.
	//   lookingForIndex: 1 iff we are still looking for the 0x01
	//   index: the offset of the first 0x01 byte
	//   invalid: 1 iff we saw a non-zero byte before the 0x01.
	var lookingForIndex, index, invalid int
	lookingForIndex = 1
	rest := db[hash.Size():]

	for i := 0; i < len(rest); i++ {
		equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
		equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
		index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
		lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
		invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
	}

	if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
		return nil, ErrDecryption
	}

	return rest[index+1:], nil
}