summaryrefslogtreecommitdiffstats
path: root/src/index/suffixarray/sais.go
blob: 74c523561719818922e66dde94b3d594291c9f95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Suffix array construction by induced sorting (SAIS).
// See Ge Nong, Sen Zhang, and Wai Hong Chen,
// "Two Efficient Algorithms for Linear Time Suffix Array Construction",
// especially section 3 (https://ieeexplore.ieee.org/document/5582081).
// See also http://zork.net/~st/jottings/sais.html.
//
// With optimizations inspired by Yuta Mori's sais-lite
// (https://sites.google.com/site/yuta256/sais).
//
// And with other new optimizations.

// Many of these functions are parameterized by the sizes of
// the types they operate on. The generator gen.go makes
// copies of these functions for use with other sizes.
// Specifically:
//
// - A function with a name ending in _8_32 takes []byte and []int32 arguments
//   and is duplicated into _32_32, _8_64, and _64_64 forms.
//   The _32_32 and _64_64_ suffixes are shortened to plain _32 and _64.
//   Any lines in the function body that contain the text "byte-only" or "256"
//   are stripped when creating _32_32 and _64_64 forms.
//   (Those lines are typically 8-bit-specific optimizations.)
//
// - A function with a name ending only in _32 operates on []int32
//   and is duplicated into a _64 form. (Note that it may still take a []byte,
//   but there is no need for a version of the function in which the []byte
//   is widened to a full integer array.)

// The overall runtime of this code is linear in the input size:
// it runs a sequence of linear passes to reduce the problem to
// a subproblem at most half as big, invokes itself recursively,
// and then runs a sequence of linear passes to turn the answer
// for the subproblem into the answer for the original problem.
// This gives T(N) = O(N) + T(N/2) = O(N) + O(N/2) + O(N/4) + ... = O(N).
//
// The outline of the code, with the forward and backward scans
// through O(N)-sized arrays called out, is:
//
// sais_I_N
//	placeLMS_I_B
//		bucketMax_I_B
//			freq_I_B
//				<scan +text> (1)
//			<scan +freq> (2)
//		<scan -text, random bucket> (3)
//	induceSubL_I_B
//		bucketMin_I_B
//			freq_I_B
//				<scan +text, often optimized away> (4)
//			<scan +freq> (5)
//		<scan +sa, random text, random bucket> (6)
//	induceSubS_I_B
//		bucketMax_I_B
//			freq_I_B
//				<scan +text, often optimized away> (7)
//			<scan +freq> (8)
//		<scan -sa, random text, random bucket> (9)
//	assignID_I_B
//		<scan +sa, random text substrings> (10)
//	map_B
//		<scan -sa> (11)
//	recurse_B
//		(recursive call to sais_B_B for a subproblem of size at most 1/2 input, often much smaller)
//	unmap_I_B
//		<scan -text> (12)
//		<scan +sa> (13)
//	expand_I_B
//		bucketMax_I_B
//			freq_I_B
//				<scan +text, often optimized away> (14)
//			<scan +freq> (15)
//		<scan -sa, random text, random bucket> (16)
//	induceL_I_B
//		bucketMin_I_B
//			freq_I_B
//				<scan +text, often optimized away> (17)
//			<scan +freq> (18)
//		<scan +sa, random text, random bucket> (19)
//	induceS_I_B
//		bucketMax_I_B
//			freq_I_B
//				<scan +text, often optimized away> (20)
//			<scan +freq> (21)
//		<scan -sa, random text, random bucket> (22)
//
// Here, _B indicates the suffix array size (_32 or _64) and _I the input size (_8 or _B).
//
// The outline shows there are in general 22 scans through
// O(N)-sized arrays for a given level of the recursion.
// In the top level, operating on 8-bit input text,
// the six freq scans are fixed size (256) instead of potentially
// input-sized. Also, the frequency is counted once and cached
// whenever there is room to do so (there is nearly always room in general,
// and always room at the top level), which eliminates all but
// the first freq_I_B text scans (that is, 5 of the 6).
// So the top level of the recursion only does 22 - 6 - 5 = 11
// input-sized scans and a typical level does 16 scans.
//
// The linear scans do not cost anywhere near as much as
// the random accesses to the text made during a few of
// the scans (specifically #6, #9, #16, #19, #22 marked above).
// In real texts, there is not much but some locality to
// the accesses, due to the repetitive structure of the text
// (the same reason Burrows-Wheeler compression is so effective).
// For random inputs, there is no locality, which makes those
// accesses even more expensive, especially once the text
// no longer fits in cache.
// For example, running on 50 MB of Go source code, induceSubL_8_32
// (which runs only once, at the top level of the recursion)
// takes 0.44s, while on 50 MB of random input, it takes 2.55s.
// Nearly all the relative slowdown is explained by the text access:
//
//		c0, c1 := text[k-1], text[k]
//
// That line runs for 0.23s on the Go text and 2.02s on random text.

//go:generate go run gen.go

package suffixarray

// text_32 returns the suffix array for the input text.
// It requires that len(text) fit in an int32
// and that the caller zero sa.
func text_32(text []byte, sa []int32) {
	if int(int32(len(text))) != len(text) || len(text) != len(sa) {
		panic("suffixarray: misuse of text_32")
	}
	sais_8_32(text, 256, sa, make([]int32, 2*256))
}

// sais_8_32 computes the suffix array of text.
// The text must contain only values in [0, textMax).
// The suffix array is stored in sa, which the caller
// must ensure is already zeroed.
// The caller must also provide temporary space tmp
// with len(tmp) ≥ textMax. If len(tmp) ≥ 2*textMax
// then the algorithm runs a little faster.
// If sais_8_32 modifies tmp, it sets tmp[0] = -1 on return.
func sais_8_32(text []byte, textMax int, sa, tmp []int32) {
	if len(sa) != len(text) || len(tmp) < int(textMax) {
		panic("suffixarray: misuse of sais_8_32")
	}

	// Trivial base cases. Sorting 0 or 1 things is easy.
	if len(text) == 0 {
		return
	}
	if len(text) == 1 {
		sa[0] = 0
		return
	}

	// Establish slices indexed by text character
	// holding character frequency and bucket-sort offsets.
	// If there's only enough tmp for one slice,
	// we make it the bucket offsets and recompute
	// the character frequency each time we need it.
	var freq, bucket []int32
	if len(tmp) >= 2*textMax {
		freq, bucket = tmp[:textMax], tmp[textMax:2*textMax]
		freq[0] = -1 // mark as uninitialized
	} else {
		freq, bucket = nil, tmp[:textMax]
	}

	// The SAIS algorithm.
	// Each of these calls makes one scan through sa.
	// See the individual functions for documentation
	// about each's role in the algorithm.
	numLMS := placeLMS_8_32(text, sa, freq, bucket)
	if numLMS <= 1 {
		// 0 or 1 items are already sorted. Do nothing.
	} else {
		induceSubL_8_32(text, sa, freq, bucket)
		induceSubS_8_32(text, sa, freq, bucket)
		length_8_32(text, sa, numLMS)
		maxID := assignID_8_32(text, sa, numLMS)
		if maxID < numLMS {
			map_32(sa, numLMS)
			recurse_32(sa, tmp, numLMS, maxID)
			unmap_8_32(text, sa, numLMS)
		} else {
			// If maxID == numLMS, then each LMS-substring
			// is unique, so the relative ordering of two LMS-suffixes
			// is determined by just the leading LMS-substring.
			// That is, the LMS-suffix sort order matches the
			// (simpler) LMS-substring sort order.
			// Copy the original LMS-substring order into the
			// suffix array destination.
			copy(sa, sa[len(sa)-numLMS:])
		}
		expand_8_32(text, freq, bucket, sa, numLMS)
	}
	induceL_8_32(text, sa, freq, bucket)
	induceS_8_32(text, sa, freq, bucket)

	// Mark for caller that we overwrote tmp.
	tmp[0] = -1
}

// freq_8_32 returns the character frequencies
// for text, as a slice indexed by character value.
// If freq is nil, freq_8_32 uses and returns bucket.
// If freq is non-nil, freq_8_32 assumes that freq[0] >= 0
// means the frequencies are already computed.
// If the frequency data is overwritten or uninitialized,
// the caller must set freq[0] = -1 to force recomputation
// the next time it is needed.
func freq_8_32(text []byte, freq, bucket []int32) []int32 {
	if freq != nil && freq[0] >= 0 {
		return freq // already computed
	}
	if freq == nil {
		freq = bucket
	}

	freq = freq[:256] // eliminate bounds check for freq[c] below
	for i := range freq {
		freq[i] = 0
	}
	for _, c := range text {
		freq[c]++
	}
	return freq
}

// bucketMin_8_32 stores into bucket[c] the minimum index
// in the bucket for character c in a bucket-sort of text.
func bucketMin_8_32(text []byte, freq, bucket []int32) {
	freq = freq_8_32(text, freq, bucket)
	freq = freq[:256]     // establish len(freq) = 256, so 0 ≤ i < 256 below
	bucket = bucket[:256] // eliminate bounds check for bucket[i] below
	total := int32(0)
	for i, n := range freq {
		bucket[i] = total
		total += n
	}
}

// bucketMax_8_32 stores into bucket[c] the maximum index
// in the bucket for character c in a bucket-sort of text.
// The bucket indexes for c are [min, max).
// That is, max is one past the final index in that bucket.
func bucketMax_8_32(text []byte, freq, bucket []int32) {
	freq = freq_8_32(text, freq, bucket)
	freq = freq[:256]     // establish len(freq) = 256, so 0 ≤ i < 256 below
	bucket = bucket[:256] // eliminate bounds check for bucket[i] below
	total := int32(0)
	for i, n := range freq {
		total += n
		bucket[i] = total
	}
}

// The SAIS algorithm proceeds in a sequence of scans through sa.
// Each of the following functions implements one scan,
// and the functions appear here in the order they execute in the algorithm.

// placeLMS_8_32 places into sa the indexes of the
// final characters of the LMS substrings of text,
// sorted into the rightmost ends of their correct buckets
// in the suffix array.
//
// The imaginary sentinel character at the end of the text
// is the final character of the final LMS substring, but there
// is no bucket for the imaginary sentinel character,
// which has a smaller value than any real character.
// The caller must therefore pretend that sa[-1] == len(text).
//
// The text indexes of LMS-substring characters are always ≥ 1
// (the first LMS-substring must be preceded by one or more L-type
// characters that are not part of any LMS-substring),
// so using 0 as a “not present” suffix array entry is safe,
// both in this function and in most later functions
// (until induceL_8_32 below).
func placeLMS_8_32(text []byte, sa, freq, bucket []int32) int {
	bucketMax_8_32(text, freq, bucket)

	numLMS := 0
	lastB := int32(-1)
	bucket = bucket[:256] // eliminate bounds check for bucket[c1] below

	// The next stanza of code (until the blank line) loop backward
	// over text, stopping to execute a code body at each position i
	// such that text[i] is an L-character and text[i+1] is an S-character.
	// That is, i+1 is the position of the start of an LMS-substring.
	// These could be hoisted out into a function with a callback,
	// but at a significant speed cost. Instead, we just write these
	// seven lines a few times in this source file. The copies below
	// refer back to the pattern established by this original as the
	// "LMS-substring iterator".
	//
	// In every scan through the text, c0, c1 are successive characters of text.
	// In this backward scan, c0 == text[i] and c1 == text[i+1].
	// By scanning backward, we can keep track of whether the current
	// position is type-S or type-L according to the usual definition:
	//
	//	- position len(text) is type S with text[len(text)] == -1 (the sentinel)
	//	- position i is type S if text[i] < text[i+1], or if text[i] == text[i+1] && i+1 is type S.
	//	- position i is type L if text[i] > text[i+1], or if text[i] == text[i+1] && i+1 is type L.
	//
	// The backward scan lets us maintain the current type,
	// update it when we see c0 != c1, and otherwise leave it alone.
	// We want to identify all S positions with a preceding L.
	// Position len(text) is one such position by definition, but we have
	// nowhere to write it down, so we eliminate it by untruthfully
	// setting isTypeS = false at the start of the loop.
	c0, c1, isTypeS := byte(0), byte(0), false
	for i := len(text) - 1; i >= 0; i-- {
		c0, c1 = text[i], c0
		if c0 < c1 {
			isTypeS = true
		} else if c0 > c1 && isTypeS {
			isTypeS = false

			// Bucket the index i+1 for the start of an LMS-substring.
			b := bucket[c1] - 1
			bucket[c1] = b
			sa[b] = int32(i + 1)
			lastB = b
			numLMS++
		}
	}

	// We recorded the LMS-substring starts but really want the ends.
	// Luckily, with two differences, the start indexes and the end indexes are the same.
	// The first difference is that the rightmost LMS-substring's end index is len(text),
	// so the caller must pretend that sa[-1] == len(text), as noted above.
	// The second difference is that the first leftmost LMS-substring start index
	// does not end an earlier LMS-substring, so as an optimization we can omit
	// that leftmost LMS-substring start index (the last one we wrote).
	//
	// Exception: if numLMS <= 1, the caller is not going to bother with
	// the recursion at all and will treat the result as containing LMS-substring starts.
	// In that case, we don't remove the final entry.
	if numLMS > 1 {
		sa[lastB] = 0
	}
	return numLMS
}

// induceSubL_8_32 inserts the L-type text indexes of LMS-substrings
// into sa, assuming that the final characters of the LMS-substrings
// are already inserted into sa, sorted by final character, and at the
// right (not left) end of the corresponding character bucket.
// Each LMS-substring has the form (as a regexp) /S+L+S/:
// one or more S-type, one or more L-type, final S-type.
// induceSubL_8_32 leaves behind only the leftmost L-type text
// index for each LMS-substring. That is, it removes the final S-type
// indexes that are present on entry, and it inserts but then removes
// the interior L-type indexes too.
// (Only the leftmost L-type index is needed by induceSubS_8_32.)
func induceSubL_8_32(text []byte, sa, freq, bucket []int32) {
	// Initialize positions for left side of character buckets.
	bucketMin_8_32(text, freq, bucket)
	bucket = bucket[:256] // eliminate bounds check for bucket[cB] below

	// As we scan the array left-to-right, each sa[i] = j > 0 is a correctly
	// sorted suffix array entry (for text[j:]) for which we know that j-1 is type L.
	// Because j-1 is type L, inserting it into sa now will sort it correctly.
	// But we want to distinguish a j-1 with j-2 of type L from type S.
	// We can process the former but want to leave the latter for the caller.
	// We record the difference by negating j-1 if it is preceded by type S.
	// Either way, the insertion (into the text[j-1] bucket) is guaranteed to
	// happen at sa[i´] for some i´ > i, that is, in the portion of sa we have
	// yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3,
	// and so on, in sorted but not necessarily adjacent order, until it finds
	// one preceded by an index of type S, at which point it must stop.
	//
	// As we scan through the array, we clear the worked entries (sa[i] > 0) to zero,
	// and we flip sa[i] < 0 to -sa[i], so that the loop finishes with sa containing
	// only the indexes of the leftmost L-type indexes for each LMS-substring.
	//
	// The suffix array sa therefore serves simultaneously as input, output,
	// and a miraculously well-tailored work queue.

	// placeLMS_8_32 left out the implicit entry sa[-1] == len(text),
	// corresponding to the identified type-L index len(text)-1.
	// Process it before the left-to-right scan of sa proper.
	// See body in loop for commentary.
	k := len(text) - 1
	c0, c1 := text[k-1], text[k]
	if c0 < c1 {
		k = -k
	}

	// Cache recently used bucket index:
	// we're processing suffixes in sorted order
	// and accessing buckets indexed by the
	// byte before the sorted order, which still
	// has very good locality.
	// Invariant: b is cached, possibly dirty copy of bucket[cB].
	cB := c1
	b := bucket[cB]
	sa[b] = int32(k)
	b++

	for i := 0; i < len(sa); i++ {
		j := int(sa[i])
		if j == 0 {
			// Skip empty entry.
			continue
		}
		if j < 0 {
			// Leave discovered type-S index for caller.
			sa[i] = int32(-j)
			continue
		}
		sa[i] = 0

		// Index j was on work queue, meaning k := j-1 is L-type,
		// so we can now place k correctly into sa.
		// If k-1 is L-type, queue k for processing later in this loop.
		// If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller.
		k := j - 1
		c0, c1 := text[k-1], text[k]
		if c0 < c1 {
			k = -k
		}

		if cB != c1 {
			bucket[cB] = b
			cB = c1
			b = bucket[cB]
		}
		sa[b] = int32(k)
		b++
	}
}

// induceSubS_8_32 inserts the S-type text indexes of LMS-substrings
// into sa, assuming that the leftmost L-type text indexes are already
// inserted into sa, sorted by LMS-substring suffix, and at the
// left end of the corresponding character bucket.
// Each LMS-substring has the form (as a regexp) /S+L+S/:
// one or more S-type, one or more L-type, final S-type.
// induceSubS_8_32 leaves behind only the leftmost S-type text
// index for each LMS-substring, in sorted order, at the right end of sa.
// That is, it removes the L-type indexes that are present on entry,
// and it inserts but then removes the interior S-type indexes too,
// leaving the LMS-substring start indexes packed into sa[len(sa)-numLMS:].
// (Only the LMS-substring start indexes are processed by the recursion.)
func induceSubS_8_32(text []byte, sa, freq, bucket []int32) {
	// Initialize positions for right side of character buckets.
	bucketMax_8_32(text, freq, bucket)
	bucket = bucket[:256] // eliminate bounds check for bucket[cB] below

	// Analogous to induceSubL_8_32 above,
	// as we scan the array right-to-left, each sa[i] = j > 0 is a correctly
	// sorted suffix array entry (for text[j:]) for which we know that j-1 is type S.
	// Because j-1 is type S, inserting it into sa now will sort it correctly.
	// But we want to distinguish a j-1 with j-2 of type S from type L.
	// We can process the former but want to leave the latter for the caller.
	// We record the difference by negating j-1 if it is preceded by type L.
	// Either way, the insertion (into the text[j-1] bucket) is guaranteed to
	// happen at sa[i´] for some i´ < i, that is, in the portion of sa we have
	// yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3,
	// and so on, in sorted but not necessarily adjacent order, until it finds
	// one preceded by an index of type L, at which point it must stop.
	// That index (preceded by one of type L) is an LMS-substring start.
	//
	// As we scan through the array, we clear the worked entries (sa[i] > 0) to zero,
	// and we flip sa[i] < 0 to -sa[i] and compact into the top of sa,
	// so that the loop finishes with the top of sa containing exactly
	// the LMS-substring start indexes, sorted by LMS-substring.

	// Cache recently used bucket index:
	cB := byte(0)
	b := bucket[cB]

	top := len(sa)
	for i := len(sa) - 1; i >= 0; i-- {
		j := int(sa[i])
		if j == 0 {
			// Skip empty entry.
			continue
		}
		sa[i] = 0
		if j < 0 {
			// Leave discovered LMS-substring start index for caller.
			top--
			sa[top] = int32(-j)
			continue
		}

		// Index j was on work queue, meaning k := j-1 is S-type,
		// so we can now place k correctly into sa.
		// If k-1 is S-type, queue k for processing later in this loop.
		// If k-1 is L-type (text[k-1] > text[k]), queue -k to save for the caller.
		k := j - 1
		c1 := text[k]
		c0 := text[k-1]
		if c0 > c1 {
			k = -k
		}

		if cB != c1 {
			bucket[cB] = b
			cB = c1
			b = bucket[cB]
		}
		b--
		sa[b] = int32(k)
	}
}

// length_8_32 computes and records the length of each LMS-substring in text.
// The length of the LMS-substring at index j is stored at sa[j/2],
// avoiding the LMS-substring indexes already stored in the top half of sa.
// (If index j is an LMS-substring start, then index j-1 is type L and cannot be.)
// There are two exceptions, made for optimizations in name_8_32 below.
//
// First, the final LMS-substring is recorded as having length 0, which is otherwise
// impossible, instead of giving it a length that includes the implicit sentinel.
// This ensures the final LMS-substring has length unequal to all others
// and therefore can be detected as different without text comparison
// (it is unequal because it is the only one that ends in the implicit sentinel,
// and the text comparison would be problematic since the implicit sentinel
// is not actually present at text[len(text)]).
//
// Second, to avoid text comparison entirely, if an LMS-substring is very short,
// sa[j/2] records its actual text instead of its length, so that if two such
// substrings have matching “length,” the text need not be read at all.
// The definition of “very short” is that the text bytes must pack into an uint32,
// and the unsigned encoding e must be ≥ len(text), so that it can be
// distinguished from a valid length.
func length_8_32(text []byte, sa []int32, numLMS int) {
	end := 0 // index of current LMS-substring end (0 indicates final LMS-substring)

	// The encoding of N text bytes into a “length” word
	// adds 1 to each byte, packs them into the bottom
	// N*8 bits of a word, and then bitwise inverts the result.
	// That is, the text sequence A B C (hex 41 42 43)
	// encodes as ^uint32(0x42_43_44).
	// LMS-substrings can never start or end with 0xFF.
	// Adding 1 ensures the encoded byte sequence never
	// starts or ends with 0x00, so that present bytes can be
	// distinguished from zero-padding in the top bits,
	// so the length need not be separately encoded.
	// Inverting the bytes increases the chance that a
	// 4-byte encoding will still be ≥ len(text).
	// In particular, if the first byte is ASCII (<= 0x7E, so +1 <= 0x7F)
	// then the high bit of the inversion will be set,
	// making it clearly not a valid length (it would be a negative one).
	//
	// cx holds the pre-inverted encoding (the packed incremented bytes).
	cx := uint32(0) // byte-only

	// This stanza (until the blank line) is the "LMS-substring iterator",
	// described in placeLMS_8_32 above, with one line added to maintain cx.
	c0, c1, isTypeS := byte(0), byte(0), false
	for i := len(text) - 1; i >= 0; i-- {
		c0, c1 = text[i], c0
		cx = cx<<8 | uint32(c1+1) // byte-only
		if c0 < c1 {
			isTypeS = true
		} else if c0 > c1 && isTypeS {
			isTypeS = false

			// Index j = i+1 is the start of an LMS-substring.
			// Compute length or encoded text to store in sa[j/2].
			j := i + 1
			var code int32
			if end == 0 {
				code = 0
			} else {
				code = int32(end - j)
				if code <= 32/8 && ^cx >= uint32(len(text)) { // byte-only
					code = int32(^cx) // byte-only
				} // byte-only
			}
			sa[j>>1] = code
			end = j + 1
			cx = uint32(c1 + 1) // byte-only
		}
	}
}

// assignID_8_32 assigns a dense ID numbering to the
// set of LMS-substrings respecting string ordering and equality,
// returning the maximum assigned ID.
// For example given the input "ababab", the LMS-substrings
// are "aba", "aba", and "ab", renumbered as 2 2 1.
// sa[len(sa)-numLMS:] holds the LMS-substring indexes
// sorted in string order, so to assign numbers we can
// consider each in turn, removing adjacent duplicates.
// The new ID for the LMS-substring at index j is written to sa[j/2],
// overwriting the length previously stored there (by length_8_32 above).
func assignID_8_32(text []byte, sa []int32, numLMS int) int {
	id := 0
	lastLen := int32(-1) // impossible
	lastPos := int32(0)
	for _, j := range sa[len(sa)-numLMS:] {
		// Is the LMS-substring at index j new, or is it the same as the last one we saw?
		n := sa[j/2]
		if n != lastLen {
			goto New
		}
		if uint32(n) >= uint32(len(text)) {
			// “Length” is really encoded full text, and they match.
			goto Same
		}
		{
			// Compare actual texts.
			n := int(n)
			this := text[j:][:n]
			last := text[lastPos:][:n]
			for i := 0; i < n; i++ {
				if this[i] != last[i] {
					goto New
				}
			}
			goto Same
		}
	New:
		id++
		lastPos = j
		lastLen = n
	Same:
		sa[j/2] = int32(id)
	}
	return id
}

// map_32 maps the LMS-substrings in text to their new IDs,
// producing the subproblem for the recursion.
// The mapping itself was mostly applied by assignID_8_32:
// sa[i] is either 0, the ID for the LMS-substring at index 2*i,
// or the ID for the LMS-substring at index 2*i+1.
// To produce the subproblem we need only remove the zeros
// and change ID into ID-1 (our IDs start at 1, but text chars start at 0).
//
// map_32 packs the result, which is the input to the recursion,
// into the top of sa, so that the recursion result can be stored
// in the bottom of sa, which sets up for expand_8_32 well.
func map_32(sa []int32, numLMS int) {
	w := len(sa)
	for i := len(sa) / 2; i >= 0; i-- {
		j := sa[i]
		if j > 0 {
			w--
			sa[w] = j - 1
		}
	}
}

// recurse_32 calls sais_32 recursively to solve the subproblem we've built.
// The subproblem is at the right end of sa, the suffix array result will be
// written at the left end of sa, and the middle of sa is available for use as
// temporary frequency and bucket storage.
func recurse_32(sa, oldTmp []int32, numLMS, maxID int) {
	dst, saTmp, text := sa[:numLMS], sa[numLMS:len(sa)-numLMS], sa[len(sa)-numLMS:]

	// Set up temporary space for recursive call.
	// We must pass sais_32 a tmp buffer with at least maxID entries.
	//
	// The subproblem is guaranteed to have length at most len(sa)/2,
	// so that sa can hold both the subproblem and its suffix array.
	// Nearly all the time, however, the subproblem has length < len(sa)/3,
	// in which case there is a subproblem-sized middle of sa that
	// we can reuse for temporary space (saTmp).
	// When recurse_32 is called from sais_8_32, oldTmp is length 512
	// (from text_32), and saTmp will typically be much larger, so we'll use saTmp.
	// When deeper recursions come back to recurse_32, now oldTmp is
	// the saTmp from the top-most recursion, it is typically larger than
	// the current saTmp (because the current sa gets smaller and smaller
	// as the recursion gets deeper), and we keep reusing that top-most
	// large saTmp instead of the offered smaller ones.
	//
	// Why is the subproblem length so often just under len(sa)/3?
	// See Nong, Zhang, and Chen, section 3.6 for a plausible explanation.
	// In brief, the len(sa)/2 case would correspond to an SLSLSLSLSLSL pattern
	// in the input, perfect alternation of larger and smaller input bytes.
	// Real text doesn't do that. If each L-type index is randomly followed
	// by either an L-type or S-type index, then half the substrings will
	// be of the form SLS, but the other half will be longer. Of that half,
	// half (a quarter overall) will be SLLS; an eighth will be SLLLS, and so on.
	// Not counting the final S in each (which overlaps the first S in the next),
	// This works out to an average length 2×½ + 3×¼ + 4×⅛ + ... = 3.
	// The space we need is further reduced by the fact that many of the
	// short patterns like SLS will often be the same character sequences
	// repeated throughout the text, reducing maxID relative to numLMS.
	//
	// For short inputs, the averages may not run in our favor, but then we
	// can often fall back to using the length-512 tmp available in the
	// top-most call. (Also a short allocation would not be a big deal.)
	//
	// For pathological inputs, we fall back to allocating a new tmp of length
	// max(maxID, numLMS/2). This level of the recursion needs maxID,
	// and all deeper levels of the recursion will need no more than numLMS/2,
	// so this one allocation is guaranteed to suffice for the entire stack
	// of recursive calls.
	tmp := oldTmp
	if len(tmp) < len(saTmp) {
		tmp = saTmp
	}
	if len(tmp) < numLMS {
		// TestSAIS/forcealloc reaches this code.
		n := maxID
		if n < numLMS/2 {
			n = numLMS / 2
		}
		tmp = make([]int32, n)
	}

	// sais_32 requires that the caller arrange to clear dst,
	// because in general the caller may know dst is
	// freshly-allocated and already cleared. But this one is not.
	for i := range dst {
		dst[i] = 0
	}
	sais_32(text, maxID, dst, tmp)
}

// unmap_8_32 unmaps the subproblem back to the original.
// sa[:numLMS] is the LMS-substring numbers, which don't matter much anymore.
// sa[len(sa)-numLMS:] is the sorted list of those LMS-substring numbers.
// The key part is that if the list says K that means the K'th substring.
// We can replace sa[:numLMS] with the indexes of the LMS-substrings.
// Then if the list says K it really means sa[K].
// Having mapped the list back to LMS-substring indexes,
// we can place those into the right buckets.
func unmap_8_32(text []byte, sa []int32, numLMS int) {
	unmap := sa[len(sa)-numLMS:]
	j := len(unmap)

	// "LMS-substring iterator" (see placeLMS_8_32 above).
	c0, c1, isTypeS := byte(0), byte(0), false
	for i := len(text) - 1; i >= 0; i-- {
		c0, c1 = text[i], c0
		if c0 < c1 {
			isTypeS = true
		} else if c0 > c1 && isTypeS {
			isTypeS = false

			// Populate inverse map.
			j--
			unmap[j] = int32(i + 1)
		}
	}

	// Apply inverse map to subproblem suffix array.
	sa = sa[:numLMS]
	for i := 0; i < len(sa); i++ {
		sa[i] = unmap[sa[i]]
	}
}

// expand_8_32 distributes the compacted, sorted LMS-suffix indexes
// from sa[:numLMS] into the tops of the appropriate buckets in sa,
// preserving the sorted order and making room for the L-type indexes
// to be slotted into the sorted sequence by induceL_8_32.
func expand_8_32(text []byte, freq, bucket, sa []int32, numLMS int) {
	bucketMax_8_32(text, freq, bucket)
	bucket = bucket[:256] // eliminate bound check for bucket[c] below

	// Loop backward through sa, always tracking
	// the next index to populate from sa[:numLMS].
	// When we get to one, populate it.
	// Zero the rest of the slots; they have dead values in them.
	x := numLMS - 1
	saX := sa[x]
	c := text[saX]
	b := bucket[c] - 1
	bucket[c] = b

	for i := len(sa) - 1; i >= 0; i-- {
		if i != int(b) {
			sa[i] = 0
			continue
		}
		sa[i] = saX

		// Load next entry to put down (if any).
		if x > 0 {
			x--
			saX = sa[x] // TODO bounds check
			c = text[saX]
			b = bucket[c] - 1
			bucket[c] = b
		}
	}
}

// induceL_8_32 inserts L-type text indexes into sa,
// assuming that the leftmost S-type indexes are inserted
// into sa, in sorted order, in the right bucket halves.
// It leaves all the L-type indexes in sa, but the
// leftmost L-type indexes are negated, to mark them
// for processing by induceS_8_32.
func induceL_8_32(text []byte, sa, freq, bucket []int32) {
	// Initialize positions for left side of character buckets.
	bucketMin_8_32(text, freq, bucket)
	bucket = bucket[:256] // eliminate bounds check for bucket[cB] below

	// This scan is similar to the one in induceSubL_8_32 above.
	// That one arranges to clear all but the leftmost L-type indexes.
	// This scan leaves all the L-type indexes and the original S-type
	// indexes, but it negates the positive leftmost L-type indexes
	// (the ones that induceS_8_32 needs to process).

	// expand_8_32 left out the implicit entry sa[-1] == len(text),
	// corresponding to the identified type-L index len(text)-1.
	// Process it before the left-to-right scan of sa proper.
	// See body in loop for commentary.
	k := len(text) - 1
	c0, c1 := text[k-1], text[k]
	if c0 < c1 {
		k = -k
	}

	// Cache recently used bucket index.
	cB := c1
	b := bucket[cB]
	sa[b] = int32(k)
	b++

	for i := 0; i < len(sa); i++ {
		j := int(sa[i])
		if j <= 0 {
			// Skip empty or negated entry (including negated zero).
			continue
		}

		// Index j was on work queue, meaning k := j-1 is L-type,
		// so we can now place k correctly into sa.
		// If k-1 is L-type, queue k for processing later in this loop.
		// If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller.
		// If k is zero, k-1 doesn't exist, so we only need to leave it
		// for the caller. The caller can't tell the difference between
		// an empty slot and a non-empty zero, but there's no need
		// to distinguish them anyway: the final suffix array will end up
		// with one zero somewhere, and that will be a real zero.
		k := j - 1
		c1 := text[k]
		if k > 0 {
			if c0 := text[k-1]; c0 < c1 {
				k = -k
			}
		}

		if cB != c1 {
			bucket[cB] = b
			cB = c1
			b = bucket[cB]
		}
		sa[b] = int32(k)
		b++
	}
}

func induceS_8_32(text []byte, sa, freq, bucket []int32) {
	// Initialize positions for right side of character buckets.
	bucketMax_8_32(text, freq, bucket)
	bucket = bucket[:256] // eliminate bounds check for bucket[cB] below

	cB := byte(0)
	b := bucket[cB]

	for i := len(sa) - 1; i >= 0; i-- {
		j := int(sa[i])
		if j >= 0 {
			// Skip non-flagged entry.
			// (This loop can't see an empty entry; 0 means the real zero index.)
			continue
		}

		// Negative j is a work queue entry; rewrite to positive j for final suffix array.
		j = -j
		sa[i] = int32(j)

		// Index j was on work queue (encoded as -j but now decoded),
		// meaning k := j-1 is L-type,
		// so we can now place k correctly into sa.
		// If k-1 is S-type, queue -k for processing later in this loop.
		// If k-1 is L-type (text[k-1] > text[k]), queue k to save for the caller.
		// If k is zero, k-1 doesn't exist, so we only need to leave it
		// for the caller.
		k := j - 1
		c1 := text[k]
		if k > 0 {
			if c0 := text[k-1]; c0 <= c1 {
				k = -k
			}
		}

		if cB != c1 {
			bucket[cB] = b
			cB = c1
			b = bucket[cB]
		}
		b--
		sa[b] = int32(k)
	}
}