summaryrefslogtreecommitdiffstats
path: root/src/internal/coverage/pods/pods.go
blob: 432c7b6bd608943e9ef94c60bb6349e78f19a942 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package pods

import (
	"fmt"
	"internal/coverage"
	"os"
	"path/filepath"
	"regexp"
	"sort"
	"strconv"
)

// Pod encapsulates a set of files emitted during the executions of a
// coverage-instrumented binary. Each pod contains a single meta-data
// file, and then 0 or more counter data files that refer to that
// meta-data file. Pods are intended to simplify processing of
// coverage output files in the case where we have several coverage
// output directories containing output files derived from more
// than one instrumented executable. In the case where the files that
// make up a pod are spread out across multiple directories, each
// element of the "Origins" field below will be populated with the
// index of the originating directory for the corresponding counter
// data file (within the slice of input dirs handed to CollectPods).
// The ProcessIDs field will be populated with the process ID of each
// data file in the CounterDataFiles slice.
type Pod struct {
	MetaFile         string
	CounterDataFiles []string
	Origins          []int
	ProcessIDs       []int
}

// CollectPods visits the files contained within the directories in
// the list 'dirs', collects any coverage-related files, partitions
// them into pods, and returns a list of the pods to the caller, along
// with an error if something went wrong during directory/file
// reading.
//
// CollectPods skips over any file that is not related to coverage
// (e.g. avoids looking at things that are not meta-data files or
// counter-data files). CollectPods also skips over 'orphaned' counter
// data files (e.g. counter data files for which we can't find the
// corresponding meta-data file). If "warn" is true, CollectPods will
// issue warnings to stderr when it encounters non-fatal problems (for
// orphans or a directory with no meta-data files).
func CollectPods(dirs []string, warn bool) ([]Pod, error) {
	files := []string{}
	dirIndices := []int{}
	for k, dir := range dirs {
		dents, err := os.ReadDir(dir)
		if err != nil {
			return nil, err
		}
		for _, e := range dents {
			if e.IsDir() {
				continue
			}
			files = append(files, filepath.Join(dir, e.Name()))
			dirIndices = append(dirIndices, k)
		}
	}
	return collectPodsImpl(files, dirIndices, warn), nil
}

// CollectPodsFromFiles functions the same as "CollectPods" but
// operates on an explicit list of files instead of a directory.
func CollectPodsFromFiles(files []string, warn bool) []Pod {
	return collectPodsImpl(files, nil, warn)
}

type fileWithAnnotations struct {
	file   string
	origin int
	pid    int
}

type protoPod struct {
	mf       string
	elements []fileWithAnnotations
}

// collectPodsImpl examines the specified list of files and picks out
// subsets that correspond to coverage pods. The first stage in this
// process is collecting a set { M1, M2, ... MN } where each M_k is a
// distinct coverage meta-data file. We then create a single pod for
// each meta-data file M_k, then find all of the counter data files
// that refer to that meta-data file (recall that the counter data
// file name incorporates the meta-data hash), and add the counter
// data file to the appropriate pod.
//
// This process is complicated by the fact that we need to keep track
// of directory indices for counter data files. Here is an example to
// motivate:
//
//	directory 1:
//
// M1   covmeta.9bbf1777f47b3fcacb05c38b035512d6
// C1   covcounters.9bbf1777f47b3fcacb05c38b035512d6.1677673.1662138360208416486
// C2   covcounters.9bbf1777f47b3fcacb05c38b035512d6.1677637.1662138359974441782
//
//	directory 2:
//
// M2   covmeta.9bbf1777f47b3fcacb05c38b035512d6
// C3   covcounters.9bbf1777f47b3fcacb05c38b035512d6.1677445.1662138360208416480
// C4   covcounters.9bbf1777f47b3fcacb05c38b035512d6.1677677.1662138359974441781
// M3   covmeta.a723844208cea2ae80c63482c78b2245
// C5   covcounters.a723844208cea2ae80c63482c78b2245.3677445.1662138360208416480
// C6   covcounters.a723844208cea2ae80c63482c78b2245.1877677.1662138359974441781
//
// In these two directories we have three meta-data files, but only
// two are distinct, meaning that we'll wind up with two pods. The
// first pod (with meta-file M1) will have four counter data files
// (C1, C2, C3, C4) and the second pod will have two counter data files
// (C5, C6).
func collectPodsImpl(files []string, dirIndices []int, warn bool) []Pod {
	metaRE := regexp.MustCompile(fmt.Sprintf(`^%s\.(\S+)$`, coverage.MetaFilePref))
	mm := make(map[string]protoPod)
	for _, f := range files {
		base := filepath.Base(f)
		if m := metaRE.FindStringSubmatch(base); m != nil {
			tag := m[1]
			// We need to allow for the possibility of duplicate
			// meta-data files. If we hit this case, use the
			// first encountered as the canonical version.
			if _, ok := mm[tag]; !ok {
				mm[tag] = protoPod{mf: f}
			}
			// FIXME: should probably check file length and hash here for
			// the duplicate.
		}
	}
	counterRE := regexp.MustCompile(fmt.Sprintf(coverage.CounterFileRegexp, coverage.CounterFilePref))
	for k, f := range files {
		base := filepath.Base(f)
		if m := counterRE.FindStringSubmatch(base); m != nil {
			tag := m[1] // meta hash
			pid, err := strconv.Atoi(m[2])
			if err != nil {
				continue
			}
			if v, ok := mm[tag]; ok {
				idx := -1
				if dirIndices != nil {
					idx = dirIndices[k]
				}
				fo := fileWithAnnotations{file: f, origin: idx, pid: pid}
				v.elements = append(v.elements, fo)
				mm[tag] = v
			} else {
				if warn {
					warning("skipping orphaned counter file: %s", f)
				}
			}
		}
	}
	if len(mm) == 0 {
		if warn {
			warning("no coverage data files found")
		}
		return nil
	}
	pods := make([]Pod, 0, len(mm))
	for _, p := range mm {
		sort.Slice(p.elements, func(i, j int) bool {
			return p.elements[i].file < p.elements[j].file
		})
		pod := Pod{
			MetaFile:         p.mf,
			CounterDataFiles: make([]string, 0, len(p.elements)),
			Origins:          make([]int, 0, len(p.elements)),
			ProcessIDs:       make([]int, 0, len(p.elements)),
		}
		for _, e := range p.elements {
			pod.CounterDataFiles = append(pod.CounterDataFiles, e.file)
			pod.Origins = append(pod.Origins, e.origin)
			pod.ProcessIDs = append(pod.ProcessIDs, e.pid)
		}
		pods = append(pods, pod)
	}
	sort.Slice(pods, func(i, j int) bool {
		return pods[i].MetaFile < pods[j].MetaFile
	})
	return pods
}

func warning(s string, a ...interface{}) {
	fmt.Fprintf(os.Stderr, "warning: ")
	fmt.Fprintf(os.Stderr, s, a...)
	fmt.Fprintf(os.Stderr, "\n")
}