summaryrefslogtreecommitdiffstats
path: root/src/internal/diff/diff.go
blob: 47b285671454ed9ace89cb7b24568abc47c48243 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package diff

import (
	"bytes"
	"fmt"
	"sort"
	"strings"
)

// A pair is a pair of values tracked for both the x and y side of a diff.
// It is typically a pair of line indexes.
type pair struct{ x, y int }

// Diff returns an anchored diff of the two texts old and new
// in the “unified diff” format. If old and new are identical,
// Diff returns a nil slice (no output).
//
// Unix diff implementations typically look for a diff with
// the smallest number of lines inserted and removed,
// which can in the worst case take time quadratic in the
// number of lines in the texts. As a result, many implementations
// either can be made to run for a long time or cut off the search
// after a predetermined amount of work.
//
// In contrast, this implementation looks for a diff with the
// smallest number of “unique” lines inserted and removed,
// where unique means a line that appears just once in both old and new.
// We call this an “anchored diff” because the unique lines anchor
// the chosen matching regions. An anchored diff is usually clearer
// than a standard diff, because the algorithm does not try to
// reuse unrelated blank lines or closing braces.
// The algorithm also guarantees to run in O(n log n) time
// instead of the standard O(n²) time.
//
// Some systems call this approach a “patience diff,” named for
// the “patience sorting” algorithm, itself named for a solitaire card game.
// We avoid that name for two reasons. First, the name has been used
// for a few different variants of the algorithm, so it is imprecise.
// Second, the name is frequently interpreted as meaning that you have
// to wait longer (to be patient) for the diff, meaning that it is a slower algorithm,
// when in fact the algorithm is faster than the standard one.
func Diff(oldName string, old []byte, newName string, new []byte) []byte {
	if bytes.Equal(old, new) {
		return nil
	}
	x := lines(old)
	y := lines(new)

	// Print diff header.
	var out bytes.Buffer
	fmt.Fprintf(&out, "diff %s %s\n", oldName, newName)
	fmt.Fprintf(&out, "--- %s\n", oldName)
	fmt.Fprintf(&out, "+++ %s\n", newName)

	// Loop over matches to consider,
	// expanding each match to include surrounding lines,
	// and then printing diff chunks.
	// To avoid setup/teardown cases outside the loop,
	// tgs returns a leading {0,0} and trailing {len(x), len(y)} pair
	// in the sequence of matches.
	var (
		done  pair     // printed up to x[:done.x] and y[:done.y]
		chunk pair     // start lines of current chunk
		count pair     // number of lines from each side in current chunk
		ctext []string // lines for current chunk
	)
	for _, m := range tgs(x, y) {
		if m.x < done.x {
			// Already handled scanning forward from earlier match.
			continue
		}

		// Expand matching lines as far possible,
		// establishing that x[start.x:end.x] == y[start.y:end.y].
		// Note that on the first (or last) iteration we may (or definitey do)
		// have an empty match: start.x==end.x and start.y==end.y.
		start := m
		for start.x > done.x && start.y > done.y && x[start.x-1] == y[start.y-1] {
			start.x--
			start.y--
		}
		end := m
		for end.x < len(x) && end.y < len(y) && x[end.x] == y[end.y] {
			end.x++
			end.y++
		}

		// Emit the mismatched lines before start into this chunk.
		// (No effect on first sentinel iteration, when start = {0,0}.)
		for _, s := range x[done.x:start.x] {
			ctext = append(ctext, "-"+s)
			count.x++
		}
		for _, s := range y[done.y:start.y] {
			ctext = append(ctext, "+"+s)
			count.y++
		}

		// If we're not at EOF and have too few common lines,
		// the chunk includes all the common lines and continues.
		const C = 3 // number of context lines
		if (end.x < len(x) || end.y < len(y)) &&
			(end.x-start.x < C || (len(ctext) > 0 && end.x-start.x < 2*C)) {
			for _, s := range x[start.x:end.x] {
				ctext = append(ctext, " "+s)
				count.x++
				count.y++
			}
			done = end
			continue
		}

		// End chunk with common lines for context.
		if len(ctext) > 0 {
			n := end.x - start.x
			if n > C {
				n = C
			}
			for _, s := range x[start.x : start.x+n] {
				ctext = append(ctext, " "+s)
				count.x++
				count.y++
			}
			done = pair{start.x + n, start.y + n}

			// Format and emit chunk.
			// Convert line numbers to 1-indexed.
			// Special case: empty file shows up as 0,0 not 1,0.
			if count.x > 0 {
				chunk.x++
			}
			if count.y > 0 {
				chunk.y++
			}
			fmt.Fprintf(&out, "@@ -%d,%d +%d,%d @@\n", chunk.x, count.x, chunk.y, count.y)
			for _, s := range ctext {
				out.WriteString(s)
			}
			count.x = 0
			count.y = 0
			ctext = ctext[:0]
		}

		// If we reached EOF, we're done.
		if end.x >= len(x) && end.y >= len(y) {
			break
		}

		// Otherwise start a new chunk.
		chunk = pair{end.x - C, end.y - C}
		for _, s := range x[chunk.x:end.x] {
			ctext = append(ctext, " "+s)
			count.x++
			count.y++
		}
		done = end
	}

	return out.Bytes()
}

// lines returns the lines in the file x, including newlines.
// If the file does not end in a newline, one is supplied
// along with a warning about the missing newline.
func lines(x []byte) []string {
	l := strings.SplitAfter(string(x), "\n")
	if l[len(l)-1] == "" {
		l = l[:len(l)-1]
	} else {
		// Treat last line as having a message about the missing newline attached,
		// using the same text as BSD/GNU diff (including the leading backslash).
		l[len(l)-1] += "\n\\ No newline at end of file\n"
	}
	return l
}

// tgs returns the pairs of indexes of the longest common subsequence
// of unique lines in x and y, where a unique line is one that appears
// once in x and once in y.
//
// The longest common subsequence algorithm is as described in
// Thomas G. Szymanski, “A Special Case of the Maximal Common
// Subsequence Problem,” Princeton TR #170 (January 1975),
// available at https://research.swtch.com/tgs170.pdf.
func tgs(x, y []string) []pair {
	// Count the number of times each string appears in a and b.
	// We only care about 0, 1, many, counted as 0, -1, -2
	// for the x side and 0, -4, -8 for the y side.
	// Using negative numbers now lets us distinguish positive line numbers later.
	m := make(map[string]int)
	for _, s := range x {
		if c := m[s]; c > -2 {
			m[s] = c - 1
		}
	}
	for _, s := range y {
		if c := m[s]; c > -8 {
			m[s] = c - 4
		}
	}

	// Now unique strings can be identified by m[s] = -1+-4.
	//
	// Gather the indexes of those strings in x and y, building:
	//	xi[i] = increasing indexes of unique strings in x.
	//	yi[i] = increasing indexes of unique strings in y.
	//	inv[i] = index j such that x[xi[i]] = y[yi[j]].
	var xi, yi, inv []int
	for i, s := range y {
		if m[s] == -1+-4 {
			m[s] = len(yi)
			yi = append(yi, i)
		}
	}
	for i, s := range x {
		if j, ok := m[s]; ok && j >= 0 {
			xi = append(xi, i)
			inv = append(inv, j)
		}
	}

	// Apply Algorithm A from Szymanski's paper.
	// In those terms, A = J = inv and B = [0, n).
	// We add sentinel pairs {0,0}, and {len(x),len(y)}
	// to the returned sequence, to help the processing loop.
	J := inv
	n := len(xi)
	T := make([]int, n)
	L := make([]int, n)
	for i := range T {
		T[i] = n + 1
	}
	for i := 0; i < n; i++ {
		k := sort.Search(n, func(k int) bool {
			return T[k] >= J[i]
		})
		T[k] = J[i]
		L[i] = k + 1
	}
	k := 0
	for _, v := range L {
		if k < v {
			k = v
		}
	}
	seq := make([]pair, 2+k)
	seq[1+k] = pair{len(x), len(y)} // sentinel at end
	lastj := n
	for i := n - 1; i >= 0; i-- {
		if L[i] == k && J[i] < lastj {
			seq[k] = pair{xi[i], yi[J[i]]}
			k--
		}
	}
	seq[0] = pair{0, 0} // sentinel at start
	return seq
}