1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fuzz
// byteSliceRemoveBytes removes a random chunk of bytes from b.
func byteSliceRemoveBytes(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
pos0 := m.rand(len(b))
pos1 := pos0 + m.chooseLen(len(b)-pos0)
copy(b[pos0:], b[pos1:])
b = b[:len(b)-(pos1-pos0)]
return b
}
// byteSliceInsertRandomBytes inserts a chunk of random bytes into b at a random
// position.
func byteSliceInsertRandomBytes(m *mutator, b []byte) []byte {
pos := m.rand(len(b) + 1)
n := m.chooseLen(1024)
if len(b)+n >= cap(b) {
return nil
}
b = b[:len(b)+n]
copy(b[pos+n:], b[pos:])
for i := 0; i < n; i++ {
b[pos+i] = byte(m.rand(256))
}
return b
}
// byteSliceDuplicateBytes duplicates a chunk of bytes in b and inserts it into
// a random position.
func byteSliceDuplicateBytes(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
src := m.rand(len(b))
dst := m.rand(len(b))
for dst == src {
dst = m.rand(len(b))
}
n := m.chooseLen(len(b) - src)
// Use the end of the slice as scratch space to avoid doing an
// allocation. If the slice is too small abort and try something
// else.
if len(b)+(n*2) >= cap(b) {
return nil
}
end := len(b)
// Increase the size of b to fit the duplicated block as well as
// some extra working space
b = b[:end+(n*2)]
// Copy the block of bytes we want to duplicate to the end of the
// slice
copy(b[end+n:], b[src:src+n])
// Shift the bytes after the splice point n positions to the right
// to make room for the new block
copy(b[dst+n:end+n], b[dst:end])
// Insert the duplicate block into the splice point
copy(b[dst:], b[end+n:])
b = b[:end+n]
return b
}
// byteSliceOverwriteBytes overwrites a chunk of b with another chunk of b.
func byteSliceOverwriteBytes(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
src := m.rand(len(b))
dst := m.rand(len(b))
for dst == src {
dst = m.rand(len(b))
}
n := m.chooseLen(len(b) - src - 1)
copy(b[dst:], b[src:src+n])
return b
}
// byteSliceBitFlip flips a random bit in a random byte in b.
func byteSliceBitFlip(m *mutator, b []byte) []byte {
if len(b) == 0 {
return nil
}
pos := m.rand(len(b))
b[pos] ^= 1 << uint(m.rand(8))
return b
}
// byteSliceXORByte XORs a random byte in b with a random value.
func byteSliceXORByte(m *mutator, b []byte) []byte {
if len(b) == 0 {
return nil
}
pos := m.rand(len(b))
// In order to avoid a no-op (where the random value matches
// the existing value), use XOR instead of just setting to
// the random value.
b[pos] ^= byte(1 + m.rand(255))
return b
}
// byteSliceSwapByte swaps two random bytes in b.
func byteSliceSwapByte(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
src := m.rand(len(b))
dst := m.rand(len(b))
for dst == src {
dst = m.rand(len(b))
}
b[src], b[dst] = b[dst], b[src]
return b
}
// byteSliceArithmeticUint8 adds/subtracts from a random byte in b.
func byteSliceArithmeticUint8(m *mutator, b []byte) []byte {
if len(b) == 0 {
return nil
}
pos := m.rand(len(b))
v := byte(m.rand(35) + 1)
if m.r.bool() {
b[pos] += v
} else {
b[pos] -= v
}
return b
}
// byteSliceArithmeticUint16 adds/subtracts from a random uint16 in b.
func byteSliceArithmeticUint16(m *mutator, b []byte) []byte {
if len(b) < 2 {
return nil
}
v := uint16(m.rand(35) + 1)
if m.r.bool() {
v = 0 - v
}
pos := m.rand(len(b) - 1)
enc := m.randByteOrder()
enc.PutUint16(b[pos:], enc.Uint16(b[pos:])+v)
return b
}
// byteSliceArithmeticUint32 adds/subtracts from a random uint32 in b.
func byteSliceArithmeticUint32(m *mutator, b []byte) []byte {
if len(b) < 4 {
return nil
}
v := uint32(m.rand(35) + 1)
if m.r.bool() {
v = 0 - v
}
pos := m.rand(len(b) - 3)
enc := m.randByteOrder()
enc.PutUint32(b[pos:], enc.Uint32(b[pos:])+v)
return b
}
// byteSliceArithmeticUint64 adds/subtracts from a random uint64 in b.
func byteSliceArithmeticUint64(m *mutator, b []byte) []byte {
if len(b) < 8 {
return nil
}
v := uint64(m.rand(35) + 1)
if m.r.bool() {
v = 0 - v
}
pos := m.rand(len(b) - 7)
enc := m.randByteOrder()
enc.PutUint64(b[pos:], enc.Uint64(b[pos:])+v)
return b
}
// byteSliceOverwriteInterestingUint8 overwrites a random byte in b with an interesting
// value.
func byteSliceOverwriteInterestingUint8(m *mutator, b []byte) []byte {
if len(b) == 0 {
return nil
}
pos := m.rand(len(b))
b[pos] = byte(interesting8[m.rand(len(interesting8))])
return b
}
// byteSliceOverwriteInterestingUint16 overwrites a random uint16 in b with an interesting
// value.
func byteSliceOverwriteInterestingUint16(m *mutator, b []byte) []byte {
if len(b) < 2 {
return nil
}
pos := m.rand(len(b) - 1)
v := uint16(interesting16[m.rand(len(interesting16))])
m.randByteOrder().PutUint16(b[pos:], v)
return b
}
// byteSliceOverwriteInterestingUint32 overwrites a random uint16 in b with an interesting
// value.
func byteSliceOverwriteInterestingUint32(m *mutator, b []byte) []byte {
if len(b) < 4 {
return nil
}
pos := m.rand(len(b) - 3)
v := uint32(interesting32[m.rand(len(interesting32))])
m.randByteOrder().PutUint32(b[pos:], v)
return b
}
// byteSliceInsertConstantBytes inserts a chunk of constant bytes into a random position in b.
func byteSliceInsertConstantBytes(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
dst := m.rand(len(b))
// TODO(rolandshoemaker,katiehockman): 4096 was mainly picked
// randomly. We may want to either pick a much larger value
// (AFL uses 32768, paired with a similar impl to chooseLen
// which biases towards smaller lengths that grow over time),
// or set the max based on characteristics of the corpus
// (libFuzzer sets a min/max based on the min/max size of
// entries in the corpus and then picks uniformly from
// that range).
n := m.chooseLen(4096)
if len(b)+n >= cap(b) {
return nil
}
b = b[:len(b)+n]
copy(b[dst+n:], b[dst:])
rb := byte(m.rand(256))
for i := dst; i < dst+n; i++ {
b[i] = rb
}
return b
}
// byteSliceOverwriteConstantBytes overwrites a chunk of b with constant bytes.
func byteSliceOverwriteConstantBytes(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
dst := m.rand(len(b))
n := m.chooseLen(len(b) - dst)
rb := byte(m.rand(256))
for i := dst; i < dst+n; i++ {
b[i] = rb
}
return b
}
// byteSliceShuffleBytes shuffles a chunk of bytes in b.
func byteSliceShuffleBytes(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
dst := m.rand(len(b))
n := m.chooseLen(len(b) - dst)
if n <= 2 {
return nil
}
// Start at the end of the range, and iterate backwards
// to dst, swapping each element with another element in
// dst:dst+n (Fisher-Yates shuffle).
for i := n - 1; i > 0; i-- {
j := m.rand(i + 1)
b[dst+i], b[dst+j] = b[dst+j], b[dst+i]
}
return b
}
// byteSliceSwapBytes swaps two chunks of bytes in b.
func byteSliceSwapBytes(m *mutator, b []byte) []byte {
if len(b) <= 1 {
return nil
}
src := m.rand(len(b))
dst := m.rand(len(b))
for dst == src {
dst = m.rand(len(b))
}
// Choose the random length as len(b) - max(src, dst)
// so that we don't attempt to swap a chunk that extends
// beyond the end of the slice
max := dst
if src > max {
max = src
}
n := m.chooseLen(len(b) - max - 1)
// Check that neither chunk intersect, so that we don't end up
// duplicating parts of the input, rather than swapping them
if src > dst && dst+n >= src || dst > src && src+n >= dst {
return nil
}
// Use the end of the slice as scratch space to avoid doing an
// allocation. If the slice is too small abort and try something
// else.
if len(b)+n >= cap(b) {
return nil
}
end := len(b)
b = b[:end+n]
copy(b[end:], b[dst:dst+n])
copy(b[dst:], b[src:src+n])
copy(b[src:], b[end:])
b = b[:end]
return b
}
|