1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package big_test
import (
cryptorand "crypto/rand"
"math/big"
"math/rand"
"reflect"
"testing"
"testing/quick"
)
func equal(z, x *big.Int) bool {
return z.Cmp(x) == 0
}
type bigInt struct {
*big.Int
}
func generatePositiveInt(rand *rand.Rand, size int) *big.Int {
n := big.NewInt(1)
n.Lsh(n, uint(rand.Intn(size*8)))
n.Rand(rand, n)
return n
}
func (bigInt) Generate(rand *rand.Rand, size int) reflect.Value {
n := generatePositiveInt(rand, size)
if rand.Intn(4) == 0 {
n.Neg(n)
}
return reflect.ValueOf(bigInt{n})
}
type notZeroInt struct {
*big.Int
}
func (notZeroInt) Generate(rand *rand.Rand, size int) reflect.Value {
n := generatePositiveInt(rand, size)
if rand.Intn(4) == 0 {
n.Neg(n)
}
if n.Sign() == 0 {
n.SetInt64(1)
}
return reflect.ValueOf(notZeroInt{n})
}
type positiveInt struct {
*big.Int
}
func (positiveInt) Generate(rand *rand.Rand, size int) reflect.Value {
n := generatePositiveInt(rand, size)
return reflect.ValueOf(positiveInt{n})
}
type prime struct {
*big.Int
}
func (prime) Generate(r *rand.Rand, size int) reflect.Value {
n, err := cryptorand.Prime(r, r.Intn(size*8-2)+2)
if err != nil {
panic(err)
}
return reflect.ValueOf(prime{n})
}
type zeroOrOne struct {
uint
}
func (zeroOrOne) Generate(rand *rand.Rand, size int) reflect.Value {
return reflect.ValueOf(zeroOrOne{uint(rand.Intn(2))})
}
type smallUint struct {
uint
}
func (smallUint) Generate(rand *rand.Rand, size int) reflect.Value {
return reflect.ValueOf(smallUint{uint(rand.Intn(1024))})
}
// checkAliasingOneArg checks if f returns a correct result when v and x alias.
//
// f is a function that takes x as an argument, doesn't modify it, sets v to the
// result, and returns v. It is the function signature of unbound methods like
//
// func (v *big.Int) m(x *big.Int) *big.Int
//
// v and x are two random Int values. v is randomized even if it will be
// overwritten to test for improper buffer reuse.
func checkAliasingOneArg(t *testing.T, f func(v, x *big.Int) *big.Int, v, x *big.Int) bool {
x1, v1 := new(big.Int).Set(x), new(big.Int).Set(x)
// Calculate a reference f(x) without aliasing.
if out := f(v, x); out != v {
return false
}
// Test aliasing the argument and the receiver.
if out := f(v1, v1); out != v1 || !equal(v1, v) {
t.Logf("f(v, x) != f(x, x)")
return false
}
// Ensure the arguments was not modified.
return equal(x, x1)
}
// checkAliasingTwoArgs checks if f returns a correct result when any
// combination of v, x and y alias.
//
// f is a function that takes x and y as arguments, doesn't modify them, sets v
// to the result, and returns v. It is the function signature of unbound methods
// like
//
// func (v *big.Int) m(x, y *big.Int) *big.Int
//
// v, x and y are random Int values. v is randomized even if it will be
// overwritten to test for improper buffer reuse.
func checkAliasingTwoArgs(t *testing.T, f func(v, x, y *big.Int) *big.Int, v, x, y *big.Int) bool {
x1, y1, v1 := new(big.Int).Set(x), new(big.Int).Set(y), new(big.Int).Set(v)
// Calculate a reference f(x, y) without aliasing.
if out := f(v, x, y); out == nil {
// Certain functions like ModInverse return nil for certain inputs.
// Check that receiver and arguments were unchanged and move on.
return equal(x, x1) && equal(y, y1) && equal(v, v1)
} else if out != v {
return false
}
// Test aliasing the first argument and the receiver.
v1.Set(x)
if out := f(v1, v1, y); out != v1 || !equal(v1, v) {
t.Logf("f(v, x, y) != f(x, x, y)")
return false
}
// Test aliasing the second argument and the receiver.
v1.Set(y)
if out := f(v1, x, v1); out != v1 || !equal(v1, v) {
t.Logf("f(v, x, y) != f(y, x, y)")
return false
}
// Calculate a reference f(y, y) without aliasing.
// We use y because it's the one that commonly has restrictions
// like being prime or non-zero.
v1.Set(v)
y2 := new(big.Int).Set(y)
if out := f(v, y, y2); out == nil {
return equal(y, y1) && equal(y2, y1) && equal(v, v1)
} else if out != v {
return false
}
// Test aliasing the two arguments.
if out := f(v1, y, y); out != v1 || !equal(v1, v) {
t.Logf("f(v, y1, y2) != f(v, y, y)")
return false
}
// Test aliasing the two arguments and the receiver.
v1.Set(y)
if out := f(v1, v1, v1); out != v1 || !equal(v1, v) {
t.Logf("f(v, y1, y2) != f(y, y, y)")
return false
}
// Ensure the arguments were not modified.
return equal(x, x1) && equal(y, y1)
}
func TestAliasing(t *testing.T) {
for name, f := range map[string]interface{}{
"Abs": func(v, x bigInt) bool {
return checkAliasingOneArg(t, (*big.Int).Abs, v.Int, x.Int)
},
"Add": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Add, v.Int, x.Int, y.Int)
},
"And": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).And, v.Int, x.Int, y.Int)
},
"AndNot": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).AndNot, v.Int, x.Int, y.Int)
},
"Div": func(v, x bigInt, y notZeroInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Div, v.Int, x.Int, y.Int)
},
"Exp-XY": func(v, x, y bigInt, z notZeroInt) bool {
return checkAliasingTwoArgs(t, func(v, x, y *big.Int) *big.Int {
return v.Exp(x, y, z.Int)
}, v.Int, x.Int, y.Int)
},
"Exp-XZ": func(v, x, y bigInt, z notZeroInt) bool {
return checkAliasingTwoArgs(t, func(v, x, z *big.Int) *big.Int {
return v.Exp(x, y.Int, z)
}, v.Int, x.Int, z.Int)
},
"Exp-YZ": func(v, x, y bigInt, z notZeroInt) bool {
return checkAliasingTwoArgs(t, func(v, y, z *big.Int) *big.Int {
return v.Exp(x.Int, y, z)
}, v.Int, y.Int, z.Int)
},
"GCD": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, func(v, x, y *big.Int) *big.Int {
return v.GCD(nil, nil, x, y)
}, v.Int, x.Int, y.Int)
},
"GCD-X": func(v, x, y bigInt) bool {
a, b := new(big.Int), new(big.Int)
return checkAliasingTwoArgs(t, func(v, x, y *big.Int) *big.Int {
a.GCD(v, b, x, y)
return v
}, v.Int, x.Int, y.Int)
},
"GCD-Y": func(v, x, y bigInt) bool {
a, b := new(big.Int), new(big.Int)
return checkAliasingTwoArgs(t, func(v, x, y *big.Int) *big.Int {
a.GCD(b, v, x, y)
return v
}, v.Int, x.Int, y.Int)
},
"Lsh": func(v, x bigInt, n smallUint) bool {
return checkAliasingOneArg(t, func(v, x *big.Int) *big.Int {
return v.Lsh(x, n.uint)
}, v.Int, x.Int)
},
"Mod": func(v, x bigInt, y notZeroInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Mod, v.Int, x.Int, y.Int)
},
"ModInverse": func(v, x bigInt, y notZeroInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).ModInverse, v.Int, x.Int, y.Int)
},
"ModSqrt": func(v, x bigInt, p prime) bool {
return checkAliasingTwoArgs(t, (*big.Int).ModSqrt, v.Int, x.Int, p.Int)
},
"Mul": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Mul, v.Int, x.Int, y.Int)
},
"Neg": func(v, x bigInt) bool {
return checkAliasingOneArg(t, (*big.Int).Neg, v.Int, x.Int)
},
"Not": func(v, x bigInt) bool {
return checkAliasingOneArg(t, (*big.Int).Not, v.Int, x.Int)
},
"Or": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Or, v.Int, x.Int, y.Int)
},
"Quo": func(v, x bigInt, y notZeroInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Quo, v.Int, x.Int, y.Int)
},
"Rand": func(v, x bigInt, seed int64) bool {
return checkAliasingOneArg(t, func(v, x *big.Int) *big.Int {
rnd := rand.New(rand.NewSource(seed))
return v.Rand(rnd, x)
}, v.Int, x.Int)
},
"Rem": func(v, x bigInt, y notZeroInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Rem, v.Int, x.Int, y.Int)
},
"Rsh": func(v, x bigInt, n smallUint) bool {
return checkAliasingOneArg(t, func(v, x *big.Int) *big.Int {
return v.Rsh(x, n.uint)
}, v.Int, x.Int)
},
"Set": func(v, x bigInt) bool {
return checkAliasingOneArg(t, (*big.Int).Set, v.Int, x.Int)
},
"SetBit": func(v, x bigInt, i smallUint, b zeroOrOne) bool {
return checkAliasingOneArg(t, func(v, x *big.Int) *big.Int {
return v.SetBit(x, int(i.uint), b.uint)
}, v.Int, x.Int)
},
"Sqrt": func(v bigInt, x positiveInt) bool {
return checkAliasingOneArg(t, (*big.Int).Sqrt, v.Int, x.Int)
},
"Sub": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Sub, v.Int, x.Int, y.Int)
},
"Xor": func(v, x, y bigInt) bool {
return checkAliasingTwoArgs(t, (*big.Int).Xor, v.Int, x.Int, y.Int)
},
} {
t.Run(name, func(t *testing.T) {
scale := 1.0
switch name {
case "ModInverse", "GCD-Y", "GCD-X":
scale /= 5
case "Rand":
scale /= 10
case "Exp-XZ", "Exp-XY", "Exp-YZ":
scale /= 50
case "ModSqrt":
scale /= 500
}
if err := quick.Check(f, &quick.Config{
MaxCountScale: scale,
}); err != nil {
t.Error(err)
}
})
}
}
|