summaryrefslogtreecommitdiffstats
path: root/src/math/big/floatconv.go
blob: 3bb51c7dea862232ac3dc3be16a0722f91abc826 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements string-to-Float conversion functions.

package big

import (
	"fmt"
	"io"
	"strings"
)

var floatZero Float

// SetString sets z to the value of s and returns z and a boolean indicating
// success. s must be a floating-point number of the same format as accepted
// by Parse, with base argument 0. The entire string (not just a prefix) must
// be valid for success. If the operation failed, the value of z is undefined
// but the returned value is nil.
func (z *Float) SetString(s string) (*Float, bool) {
	if f, _, err := z.Parse(s, 0); err == nil {
		return f, true
	}
	return nil, false
}

// scan is like Parse but reads the longest possible prefix representing a valid
// floating point number from an io.ByteScanner rather than a string. It serves
// as the implementation of Parse. It does not recognize ±Inf and does not expect
// EOF at the end.
func (z *Float) scan(r io.ByteScanner, base int) (f *Float, b int, err error) {
	prec := z.prec
	if prec == 0 {
		prec = 64
	}

	// A reasonable value in case of an error.
	z.form = zero

	// sign
	z.neg, err = scanSign(r)
	if err != nil {
		return
	}

	// mantissa
	var fcount int // fractional digit count; valid if <= 0
	z.mant, b, fcount, err = z.mant.scan(r, base, true)
	if err != nil {
		return
	}

	// exponent
	var exp int64
	var ebase int
	exp, ebase, err = scanExponent(r, true, base == 0)
	if err != nil {
		return
	}

	// special-case 0
	if len(z.mant) == 0 {
		z.prec = prec
		z.acc = Exact
		z.form = zero
		f = z
		return
	}
	// len(z.mant) > 0

	// The mantissa may have a radix point (fcount <= 0) and there
	// may be a nonzero exponent exp. The radix point amounts to a
	// division by b**(-fcount). An exponent means multiplication by
	// ebase**exp. Finally, mantissa normalization (shift left) requires
	// a correcting multiplication by 2**(-shiftcount). Multiplications
	// are commutative, so we can apply them in any order as long as there
	// is no loss of precision. We only have powers of 2 and 10, and
	// we split powers of 10 into the product of the same powers of
	// 2 and 5. This reduces the size of the multiplication factor
	// needed for base-10 exponents.

	// normalize mantissa and determine initial exponent contributions
	exp2 := int64(len(z.mant))*_W - fnorm(z.mant)
	exp5 := int64(0)

	// determine binary or decimal exponent contribution of radix point
	if fcount < 0 {
		// The mantissa has a radix point ddd.dddd; and
		// -fcount is the number of digits to the right
		// of '.'. Adjust relevant exponent accordingly.
		d := int64(fcount)
		switch b {
		case 10:
			exp5 = d
			fallthrough // 10**e == 5**e * 2**e
		case 2:
			exp2 += d
		case 8:
			exp2 += d * 3 // octal digits are 3 bits each
		case 16:
			exp2 += d * 4 // hexadecimal digits are 4 bits each
		default:
			panic("unexpected mantissa base")
		}
		// fcount consumed - not needed anymore
	}

	// take actual exponent into account
	switch ebase {
	case 10:
		exp5 += exp
		fallthrough // see fallthrough above
	case 2:
		exp2 += exp
	default:
		panic("unexpected exponent base")
	}
	// exp consumed - not needed anymore

	// apply 2**exp2
	if MinExp <= exp2 && exp2 <= MaxExp {
		z.prec = prec
		z.form = finite
		z.exp = int32(exp2)
		f = z
	} else {
		err = fmt.Errorf("exponent overflow")
		return
	}

	if exp5 == 0 {
		// no decimal exponent contribution
		z.round(0)
		return
	}
	// exp5 != 0

	// apply 5**exp5
	p := new(Float).SetPrec(z.Prec() + 64) // use more bits for p -- TODO(gri) what is the right number?
	if exp5 < 0 {
		z.Quo(z, p.pow5(uint64(-exp5)))
	} else {
		z.Mul(z, p.pow5(uint64(exp5)))
	}

	return
}

// These powers of 5 fit into a uint64.
//
//	for p, q := uint64(0), uint64(1); p < q; p, q = q, q*5 {
//		fmt.Println(q)
//	}
var pow5tab = [...]uint64{
	1,
	5,
	25,
	125,
	625,
	3125,
	15625,
	78125,
	390625,
	1953125,
	9765625,
	48828125,
	244140625,
	1220703125,
	6103515625,
	30517578125,
	152587890625,
	762939453125,
	3814697265625,
	19073486328125,
	95367431640625,
	476837158203125,
	2384185791015625,
	11920928955078125,
	59604644775390625,
	298023223876953125,
	1490116119384765625,
	7450580596923828125,
}

// pow5 sets z to 5**n and returns z.
// n must not be negative.
func (z *Float) pow5(n uint64) *Float {
	const m = uint64(len(pow5tab) - 1)
	if n <= m {
		return z.SetUint64(pow5tab[n])
	}
	// n > m

	z.SetUint64(pow5tab[m])
	n -= m

	// use more bits for f than for z
	// TODO(gri) what is the right number?
	f := new(Float).SetPrec(z.Prec() + 64).SetUint64(5)

	for n > 0 {
		if n&1 != 0 {
			z.Mul(z, f)
		}
		f.Mul(f, f)
		n >>= 1
	}

	return z
}

// Parse parses s which must contain a text representation of a floating-
// point number with a mantissa in the given conversion base (the exponent
// is always a decimal number), or a string representing an infinite value.
//
// For base 0, an underscore character “_” may appear between a base
// prefix and an adjacent digit, and between successive digits; such
// underscores do not change the value of the number, or the returned
// digit count. Incorrect placement of underscores is reported as an
// error if there are no other errors. If base != 0, underscores are
// not recognized and thus terminate scanning like any other character
// that is not a valid radix point or digit.
//
// It sets z to the (possibly rounded) value of the corresponding floating-
// point value, and returns z, the actual base b, and an error err, if any.
// The entire string (not just a prefix) must be consumed for success.
// If z's precision is 0, it is changed to 64 before rounding takes effect.
// The number must be of the form:
//
//	number    = [ sign ] ( float | "inf" | "Inf" ) .
//	sign      = "+" | "-" .
//	float     = ( mantissa | prefix pmantissa ) [ exponent ] .
//	prefix    = "0" [ "b" | "B" | "o" | "O" | "x" | "X" ] .
//	mantissa  = digits "." [ digits ] | digits | "." digits .
//	pmantissa = [ "_" ] digits "." [ digits ] | [ "_" ] digits | "." digits .
//	exponent  = ( "e" | "E" | "p" | "P" ) [ sign ] digits .
//	digits    = digit { [ "_" ] digit } .
//	digit     = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
//
// The base argument must be 0, 2, 8, 10, or 16. Providing an invalid base
// argument will lead to a run-time panic.
//
// For base 0, the number prefix determines the actual base: A prefix of
// “0b” or “0B” selects base 2, “0o” or “0O” selects base 8, and
// “0x” or “0X” selects base 16. Otherwise, the actual base is 10 and
// no prefix is accepted. The octal prefix "0" is not supported (a leading
// "0" is simply considered a "0").
//
// A "p" or "P" exponent indicates a base 2 (rather then base 10) exponent;
// for instance, "0x1.fffffffffffffp1023" (using base 0) represents the
// maximum float64 value. For hexadecimal mantissae, the exponent character
// must be one of 'p' or 'P', if present (an "e" or "E" exponent indicator
// cannot be distinguished from a mantissa digit).
//
// The returned *Float f is nil and the value of z is valid but not
// defined if an error is reported.
func (z *Float) Parse(s string, base int) (f *Float, b int, err error) {
	// scan doesn't handle ±Inf
	if len(s) == 3 && (s == "Inf" || s == "inf") {
		f = z.SetInf(false)
		return
	}
	if len(s) == 4 && (s[0] == '+' || s[0] == '-') && (s[1:] == "Inf" || s[1:] == "inf") {
		f = z.SetInf(s[0] == '-')
		return
	}

	r := strings.NewReader(s)
	if f, b, err = z.scan(r, base); err != nil {
		return
	}

	// entire string must have been consumed
	if ch, err2 := r.ReadByte(); err2 == nil {
		err = fmt.Errorf("expected end of string, found %q", ch)
	} else if err2 != io.EOF {
		err = err2
	}

	return
}

// ParseFloat is like f.Parse(s, base) with f set to the given precision
// and rounding mode.
func ParseFloat(s string, base int, prec uint, mode RoundingMode) (f *Float, b int, err error) {
	return new(Float).SetPrec(prec).SetMode(mode).Parse(s, base)
}

var _ fmt.Scanner = (*Float)(nil) // *Float must implement fmt.Scanner

// Scan is a support routine for fmt.Scanner; it sets z to the value of
// the scanned number. It accepts formats whose verbs are supported by
// fmt.Scan for floating point values, which are:
// 'b' (binary), 'e', 'E', 'f', 'F', 'g' and 'G'.
// Scan doesn't handle ±Inf.
func (z *Float) Scan(s fmt.ScanState, ch rune) error {
	s.SkipSpace()
	_, _, err := z.scan(byteReader{s}, 0)
	return err
}