summaryrefslogtreecommitdiffstats
path: root/src/math/big/int.go
blob: 76d6eb9caed127c03bb19fe4713b9a3ffb8ef59e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements signed multi-precision integers.

package big

import (
	"fmt"
	"io"
	"math/rand"
	"strings"
)

// An Int represents a signed multi-precision integer.
// The zero value for an Int represents the value 0.
//
// Operations always take pointer arguments (*Int) rather
// than Int values, and each unique Int value requires
// its own unique *Int pointer. To "copy" an Int value,
// an existing (or newly allocated) Int must be set to
// a new value using the Int.Set method; shallow copies
// of Ints are not supported and may lead to errors.
type Int struct {
	neg bool // sign
	abs nat  // absolute value of the integer
}

var intOne = &Int{false, natOne}

// Sign returns:
//
//	-1 if x <  0
//	 0 if x == 0
//	+1 if x >  0
func (x *Int) Sign() int {
	// This function is used in cryptographic operations. It must not leak
	// anything but the Int's sign and bit size through side-channels. Any
	// changes must be reviewed by a security expert.
	if len(x.abs) == 0 {
		return 0
	}
	if x.neg {
		return -1
	}
	return 1
}

// SetInt64 sets z to x and returns z.
func (z *Int) SetInt64(x int64) *Int {
	neg := false
	if x < 0 {
		neg = true
		x = -x
	}
	z.abs = z.abs.setUint64(uint64(x))
	z.neg = neg
	return z
}

// SetUint64 sets z to x and returns z.
func (z *Int) SetUint64(x uint64) *Int {
	z.abs = z.abs.setUint64(x)
	z.neg = false
	return z
}

// NewInt allocates and returns a new Int set to x.
func NewInt(x int64) *Int {
	// This code is arranged to be inlineable and produce
	// zero allocations when inlined. See issue 29951.
	u := uint64(x)
	if x < 0 {
		u = -u
	}
	var abs []Word
	if x == 0 {
	} else if _W == 32 && u>>32 != 0 {
		abs = []Word{Word(u), Word(u >> 32)}
	} else {
		abs = []Word{Word(u)}
	}
	return &Int{neg: x < 0, abs: abs}
}

// Set sets z to x and returns z.
func (z *Int) Set(x *Int) *Int {
	if z != x {
		z.abs = z.abs.set(x.abs)
		z.neg = x.neg
	}
	return z
}

// Bits provides raw (unchecked but fast) access to x by returning its
// absolute value as a little-endian Word slice. The result and x share
// the same underlying array.
// Bits is intended to support implementation of missing low-level Int
// functionality outside this package; it should be avoided otherwise.
func (x *Int) Bits() []Word {
	// This function is used in cryptographic operations. It must not leak
	// anything but the Int's sign and bit size through side-channels. Any
	// changes must be reviewed by a security expert.
	return x.abs
}

// SetBits provides raw (unchecked but fast) access to z by setting its
// value to abs, interpreted as a little-endian Word slice, and returning
// z. The result and abs share the same underlying array.
// SetBits is intended to support implementation of missing low-level Int
// functionality outside this package; it should be avoided otherwise.
func (z *Int) SetBits(abs []Word) *Int {
	z.abs = nat(abs).norm()
	z.neg = false
	return z
}

// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Int) Abs(x *Int) *Int {
	z.Set(x)
	z.neg = false
	return z
}

// Neg sets z to -x and returns z.
func (z *Int) Neg(x *Int) *Int {
	z.Set(x)
	z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
	return z
}

// Add sets z to the sum x+y and returns z.
func (z *Int) Add(x, y *Int) *Int {
	neg := x.neg
	if x.neg == y.neg {
		// x + y == x + y
		// (-x) + (-y) == -(x + y)
		z.abs = z.abs.add(x.abs, y.abs)
	} else {
		// x + (-y) == x - y == -(y - x)
		// (-x) + y == y - x == -(x - y)
		if x.abs.cmp(y.abs) >= 0 {
			z.abs = z.abs.sub(x.abs, y.abs)
		} else {
			neg = !neg
			z.abs = z.abs.sub(y.abs, x.abs)
		}
	}
	z.neg = len(z.abs) > 0 && neg // 0 has no sign
	return z
}

// Sub sets z to the difference x-y and returns z.
func (z *Int) Sub(x, y *Int) *Int {
	neg := x.neg
	if x.neg != y.neg {
		// x - (-y) == x + y
		// (-x) - y == -(x + y)
		z.abs = z.abs.add(x.abs, y.abs)
	} else {
		// x - y == x - y == -(y - x)
		// (-x) - (-y) == y - x == -(x - y)
		if x.abs.cmp(y.abs) >= 0 {
			z.abs = z.abs.sub(x.abs, y.abs)
		} else {
			neg = !neg
			z.abs = z.abs.sub(y.abs, x.abs)
		}
	}
	z.neg = len(z.abs) > 0 && neg // 0 has no sign
	return z
}

// Mul sets z to the product x*y and returns z.
func (z *Int) Mul(x, y *Int) *Int {
	// x * y == x * y
	// x * (-y) == -(x * y)
	// (-x) * y == -(x * y)
	// (-x) * (-y) == x * y
	if x == y {
		z.abs = z.abs.sqr(x.abs)
		z.neg = false
		return z
	}
	z.abs = z.abs.mul(x.abs, y.abs)
	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
	return z
}

// MulRange sets z to the product of all integers
// in the range [a, b] inclusively and returns z.
// If a > b (empty range), the result is 1.
func (z *Int) MulRange(a, b int64) *Int {
	switch {
	case a > b:
		return z.SetInt64(1) // empty range
	case a <= 0 && b >= 0:
		return z.SetInt64(0) // range includes 0
	}
	// a <= b && (b < 0 || a > 0)

	neg := false
	if a < 0 {
		neg = (b-a)&1 == 0
		a, b = -b, -a
	}

	z.abs = z.abs.mulRange(uint64(a), uint64(b))
	z.neg = neg
	return z
}

// Binomial sets z to the binomial coefficient C(n, k) and returns z.
func (z *Int) Binomial(n, k int64) *Int {
	if k > n {
		return z.SetInt64(0)
	}
	// reduce the number of multiplications by reducing k
	if k > n-k {
		k = n - k // C(n, k) == C(n, n-k)
	}
	// C(n, k) == n * (n-1) * ... * (n-k+1) / k * (k-1) * ... * 1
	//         == n * (n-1) * ... * (n-k+1) / 1 * (1+1) * ... * k
	//
	// Using the multiplicative formula produces smaller values
	// at each step, requiring fewer allocations and computations:
	//
	// z = 1
	// for i := 0; i < k; i = i+1 {
	//     z *= n-i
	//     z /= i+1
	// }
	//
	// finally to avoid computing i+1 twice per loop:
	//
	// z = 1
	// i := 0
	// for i < k {
	//     z *= n-i
	//     i++
	//     z /= i
	// }
	var N, K, i, t Int
	N.SetInt64(n)
	K.SetInt64(k)
	z.Set(intOne)
	for i.Cmp(&K) < 0 {
		z.Mul(z, t.Sub(&N, &i))
		i.Add(&i, intOne)
		z.Quo(z, &i)
	}
	return z
}

// Quo sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Quo implements truncated division (like Go); see QuoRem for more details.
func (z *Int) Quo(x, y *Int) *Int {
	z.abs, _ = z.abs.div(nil, x.abs, y.abs)
	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
	return z
}

// Rem sets z to the remainder x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Rem implements truncated modulus (like Go); see QuoRem for more details.
func (z *Int) Rem(x, y *Int) *Int {
	_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
	z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
	return z
}

// QuoRem sets z to the quotient x/y and r to the remainder x%y
// and returns the pair (z, r) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// QuoRem implements T-division and modulus (like Go):
//
//	q = x/y      with the result truncated to zero
//	r = x - y*q
//
// (See Daan Leijen, “Division and Modulus for Computer Scientists”.)
// See DivMod for Euclidean division and modulus (unlike Go).
func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
	z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
	z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
	return z, r
}

// Div sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Div implements Euclidean division (unlike Go); see DivMod for more details.
func (z *Int) Div(x, y *Int) *Int {
	y_neg := y.neg // z may be an alias for y
	var r Int
	z.QuoRem(x, y, &r)
	if r.neg {
		if y_neg {
			z.Add(z, intOne)
		} else {
			z.Sub(z, intOne)
		}
	}
	return z
}

// Mod sets z to the modulus x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
func (z *Int) Mod(x, y *Int) *Int {
	y0 := y // save y
	if z == y || alias(z.abs, y.abs) {
		y0 = new(Int).Set(y)
	}
	var q Int
	q.QuoRem(x, y, z)
	if z.neg {
		if y0.neg {
			z.Sub(z, y0)
		} else {
			z.Add(z, y0)
		}
	}
	return z
}

// DivMod sets z to the quotient x div y and m to the modulus x mod y
// and returns the pair (z, m) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// DivMod implements Euclidean division and modulus (unlike Go):
//
//	q = x div y  such that
//	m = x - y*q  with 0 <= m < |y|
//
// (See Raymond T. Boute, “The Euclidean definition of the functions
// div and mod”. ACM Transactions on Programming Languages and
// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
// ACM press.)
// See QuoRem for T-division and modulus (like Go).
func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
	y0 := y // save y
	if z == y || alias(z.abs, y.abs) {
		y0 = new(Int).Set(y)
	}
	z.QuoRem(x, y, m)
	if m.neg {
		if y0.neg {
			z.Add(z, intOne)
			m.Sub(m, y0)
		} else {
			z.Sub(z, intOne)
			m.Add(m, y0)
		}
	}
	return z, m
}

// Cmp compares x and y and returns:
//
//	-1 if x <  y
//	 0 if x == y
//	+1 if x >  y
func (x *Int) Cmp(y *Int) (r int) {
	// x cmp y == x cmp y
	// x cmp (-y) == x
	// (-x) cmp y == y
	// (-x) cmp (-y) == -(x cmp y)
	switch {
	case x == y:
		// nothing to do
	case x.neg == y.neg:
		r = x.abs.cmp(y.abs)
		if x.neg {
			r = -r
		}
	case x.neg:
		r = -1
	default:
		r = 1
	}
	return
}

// CmpAbs compares the absolute values of x and y and returns:
//
//	-1 if |x| <  |y|
//	 0 if |x| == |y|
//	+1 if |x| >  |y|
func (x *Int) CmpAbs(y *Int) int {
	return x.abs.cmp(y.abs)
}

// low32 returns the least significant 32 bits of x.
func low32(x nat) uint32 {
	if len(x) == 0 {
		return 0
	}
	return uint32(x[0])
}

// low64 returns the least significant 64 bits of x.
func low64(x nat) uint64 {
	if len(x) == 0 {
		return 0
	}
	v := uint64(x[0])
	if _W == 32 && len(x) > 1 {
		return uint64(x[1])<<32 | v
	}
	return v
}

// Int64 returns the int64 representation of x.
// If x cannot be represented in an int64, the result is undefined.
func (x *Int) Int64() int64 {
	v := int64(low64(x.abs))
	if x.neg {
		v = -v
	}
	return v
}

// Uint64 returns the uint64 representation of x.
// If x cannot be represented in a uint64, the result is undefined.
func (x *Int) Uint64() uint64 {
	return low64(x.abs)
}

// IsInt64 reports whether x can be represented as an int64.
func (x *Int) IsInt64() bool {
	if len(x.abs) <= 64/_W {
		w := int64(low64(x.abs))
		return w >= 0 || x.neg && w == -w
	}
	return false
}

// IsUint64 reports whether x can be represented as a uint64.
func (x *Int) IsUint64() bool {
	return !x.neg && len(x.abs) <= 64/_W
}

// SetString sets z to the value of s, interpreted in the given base,
// and returns z and a boolean indicating success. The entire string
// (not just a prefix) must be valid for success. If SetString fails,
// the value of z is undefined but the returned value is nil.
//
// The base argument must be 0 or a value between 2 and MaxBase.
// For base 0, the number prefix determines the actual base: A prefix of
// “0b” or “0B” selects base 2, “0”, “0o” or “0O” selects base 8,
// and “0x” or “0X” selects base 16. Otherwise, the selected base is 10
// and no prefix is accepted.
//
// For bases <= 36, lower and upper case letters are considered the same:
// The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
// For bases > 36, the upper case letters 'A' to 'Z' represent the digit
// values 36 to 61.
//
// For base 0, an underscore character “_” may appear between a base
// prefix and an adjacent digit, and between successive digits; such
// underscores do not change the value of the number.
// Incorrect placement of underscores is reported as an error if there
// are no other errors. If base != 0, underscores are not recognized
// and act like any other character that is not a valid digit.
func (z *Int) SetString(s string, base int) (*Int, bool) {
	return z.setFromScanner(strings.NewReader(s), base)
}

// setFromScanner implements SetString given an io.ByteScanner.
// For documentation see comments of SetString.
func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) {
	if _, _, err := z.scan(r, base); err != nil {
		return nil, false
	}
	// entire content must have been consumed
	if _, err := r.ReadByte(); err != io.EOF {
		return nil, false
	}
	return z, true // err == io.EOF => scan consumed all content of r
}

// SetBytes interprets buf as the bytes of a big-endian unsigned
// integer, sets z to that value, and returns z.
func (z *Int) SetBytes(buf []byte) *Int {
	z.abs = z.abs.setBytes(buf)
	z.neg = false
	return z
}

// Bytes returns the absolute value of x as a big-endian byte slice.
//
// To use a fixed length slice, or a preallocated one, use FillBytes.
func (x *Int) Bytes() []byte {
	// This function is used in cryptographic operations. It must not leak
	// anything but the Int's sign and bit size through side-channels. Any
	// changes must be reviewed by a security expert.
	buf := make([]byte, len(x.abs)*_S)
	return buf[x.abs.bytes(buf):]
}

// FillBytes sets buf to the absolute value of x, storing it as a zero-extended
// big-endian byte slice, and returns buf.
//
// If the absolute value of x doesn't fit in buf, FillBytes will panic.
func (x *Int) FillBytes(buf []byte) []byte {
	// Clear whole buffer. (This gets optimized into a memclr.)
	for i := range buf {
		buf[i] = 0
	}
	x.abs.bytes(buf)
	return buf
}

// BitLen returns the length of the absolute value of x in bits.
// The bit length of 0 is 0.
func (x *Int) BitLen() int {
	// This function is used in cryptographic operations. It must not leak
	// anything but the Int's sign and bit size through side-channels. Any
	// changes must be reviewed by a security expert.
	return x.abs.bitLen()
}

// TrailingZeroBits returns the number of consecutive least significant zero
// bits of |x|.
func (x *Int) TrailingZeroBits() uint {
	return x.abs.trailingZeroBits()
}

// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
// If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0,
// and x and m are not relatively prime, z is unchanged and nil is returned.
//
// Modular exponentiation of inputs of a particular size is not a
// cryptographically constant-time operation.
func (z *Int) Exp(x, y, m *Int) *Int {
	return z.exp(x, y, m, false)
}

func (z *Int) expSlow(x, y, m *Int) *Int {
	return z.exp(x, y, m, true)
}

func (z *Int) exp(x, y, m *Int, slow bool) *Int {
	// See Knuth, volume 2, section 4.6.3.
	xWords := x.abs
	if y.neg {
		if m == nil || len(m.abs) == 0 {
			return z.SetInt64(1)
		}
		// for y < 0: x**y mod m == (x**(-1))**|y| mod m
		inverse := new(Int).ModInverse(x, m)
		if inverse == nil {
			return nil
		}
		xWords = inverse.abs
	}
	yWords := y.abs

	var mWords nat
	if m != nil {
		if z == m || alias(z.abs, m.abs) {
			m = new(Int).Set(m)
		}
		mWords = m.abs // m.abs may be nil for m == 0
	}

	z.abs = z.abs.expNN(xWords, yWords, mWords, slow)
	z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
	if z.neg && len(mWords) > 0 {
		// make modulus result positive
		z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m|
		z.neg = false
	}

	return z
}

// GCD sets z to the greatest common divisor of a and b and returns z.
// If x or y are not nil, GCD sets their value such that z = a*x + b*y.
//
// a and b may be positive, zero or negative. (Before Go 1.14 both had
// to be > 0.) Regardless of the signs of a and b, z is always >= 0.
//
// If a == b == 0, GCD sets z = x = y = 0.
//
// If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
//
// If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
func (z *Int) GCD(x, y, a, b *Int) *Int {
	if len(a.abs) == 0 || len(b.abs) == 0 {
		lenA, lenB, negA, negB := len(a.abs), len(b.abs), a.neg, b.neg
		if lenA == 0 {
			z.Set(b)
		} else {
			z.Set(a)
		}
		z.neg = false
		if x != nil {
			if lenA == 0 {
				x.SetUint64(0)
			} else {
				x.SetUint64(1)
				x.neg = negA
			}
		}
		if y != nil {
			if lenB == 0 {
				y.SetUint64(0)
			} else {
				y.SetUint64(1)
				y.neg = negB
			}
		}
		return z
	}

	return z.lehmerGCD(x, y, a, b)
}

// lehmerSimulate attempts to simulate several Euclidean update steps
// using the leading digits of A and B.  It returns u0, u1, v0, v1
// such that A and B can be updated as:
//
//	A = u0*A + v0*B
//	B = u1*A + v1*B
//
// Requirements: A >= B and len(B.abs) >= 2
// Since we are calculating with full words to avoid overflow,
// we use 'even' to track the sign of the cosequences.
// For even iterations: u0, v1 >= 0 && u1, v0 <= 0
// For odd  iterations: u0, v1 <= 0 && u1, v0 >= 0
func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) {
	// initialize the digits
	var a1, a2, u2, v2 Word

	m := len(B.abs) // m >= 2
	n := len(A.abs) // n >= m >= 2

	// extract the top Word of bits from A and B
	h := nlz(A.abs[n-1])
	a1 = A.abs[n-1]<<h | A.abs[n-2]>>(_W-h)
	// B may have implicit zero words in the high bits if the lengths differ
	switch {
	case n == m:
		a2 = B.abs[n-1]<<h | B.abs[n-2]>>(_W-h)
	case n == m+1:
		a2 = B.abs[n-2] >> (_W - h)
	default:
		a2 = 0
	}

	// Since we are calculating with full words to avoid overflow,
	// we use 'even' to track the sign of the cosequences.
	// For even iterations: u0, v1 >= 0 && u1, v0 <= 0
	// For odd  iterations: u0, v1 <= 0 && u1, v0 >= 0
	// The first iteration starts with k=1 (odd).
	even = false
	// variables to track the cosequences
	u0, u1, u2 = 0, 1, 0
	v0, v1, v2 = 0, 0, 1

	// Calculate the quotient and cosequences using Collins' stopping condition.
	// Note that overflow of a Word is not possible when computing the remainder
	// sequence and cosequences since the cosequence size is bounded by the input size.
	// See section 4.2 of Jebelean for details.
	for a2 >= v2 && a1-a2 >= v1+v2 {
		q, r := a1/a2, a1%a2
		a1, a2 = a2, r
		u0, u1, u2 = u1, u2, u1+q*u2
		v0, v1, v2 = v1, v2, v1+q*v2
		even = !even
	}
	return
}

// lehmerUpdate updates the inputs A and B such that:
//
//	A = u0*A + v0*B
//	B = u1*A + v1*B
//
// where the signs of u0, u1, v0, v1 are given by even
// For even == true: u0, v1 >= 0 && u1, v0 <= 0
// For even == false: u0, v1 <= 0 && u1, v0 >= 0
// q, r, s, t are temporary variables to avoid allocations in the multiplication.
func lehmerUpdate(A, B, q, r, s, t *Int, u0, u1, v0, v1 Word, even bool) {

	t.abs = t.abs.setWord(u0)
	s.abs = s.abs.setWord(v0)
	t.neg = !even
	s.neg = even

	t.Mul(A, t)
	s.Mul(B, s)

	r.abs = r.abs.setWord(u1)
	q.abs = q.abs.setWord(v1)
	r.neg = even
	q.neg = !even

	r.Mul(A, r)
	q.Mul(B, q)

	A.Add(t, s)
	B.Add(r, q)
}

// euclidUpdate performs a single step of the Euclidean GCD algorithm
// if extended is true, it also updates the cosequence Ua, Ub.
func euclidUpdate(A, B, Ua, Ub, q, r, s, t *Int, extended bool) {
	q, r = q.QuoRem(A, B, r)

	*A, *B, *r = *B, *r, *A

	if extended {
		// Ua, Ub = Ub, Ua - q*Ub
		t.Set(Ub)
		s.Mul(Ub, q)
		Ub.Sub(Ua, s)
		Ua.Set(t)
	}
}

// lehmerGCD sets z to the greatest common divisor of a and b,
// which both must be != 0, and returns z.
// If x or y are not nil, their values are set such that z = a*x + b*y.
// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L.
// This implementation uses the improved condition by Collins requiring only one
// quotient and avoiding the possibility of single Word overflow.
// See Jebelean, "Improving the multiprecision Euclidean algorithm",
// Design and Implementation of Symbolic Computation Systems, pp 45-58.
// The cosequences are updated according to Algorithm 10.45 from
// Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192.
func (z *Int) lehmerGCD(x, y, a, b *Int) *Int {
	var A, B, Ua, Ub *Int

	A = new(Int).Abs(a)
	B = new(Int).Abs(b)

	extended := x != nil || y != nil

	if extended {
		// Ua (Ub) tracks how many times input a has been accumulated into A (B).
		Ua = new(Int).SetInt64(1)
		Ub = new(Int)
	}

	// temp variables for multiprecision update
	q := new(Int)
	r := new(Int)
	s := new(Int)
	t := new(Int)

	// ensure A >= B
	if A.abs.cmp(B.abs) < 0 {
		A, B = B, A
		Ub, Ua = Ua, Ub
	}

	// loop invariant A >= B
	for len(B.abs) > 1 {
		// Attempt to calculate in single-precision using leading words of A and B.
		u0, u1, v0, v1, even := lehmerSimulate(A, B)

		// multiprecision Step
		if v0 != 0 {
			// Simulate the effect of the single-precision steps using the cosequences.
			// A = u0*A + v0*B
			// B = u1*A + v1*B
			lehmerUpdate(A, B, q, r, s, t, u0, u1, v0, v1, even)

			if extended {
				// Ua = u0*Ua + v0*Ub
				// Ub = u1*Ua + v1*Ub
				lehmerUpdate(Ua, Ub, q, r, s, t, u0, u1, v0, v1, even)
			}

		} else {
			// Single-digit calculations failed to simulate any quotients.
			// Do a standard Euclidean step.
			euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
		}
	}

	if len(B.abs) > 0 {
		// extended Euclidean algorithm base case if B is a single Word
		if len(A.abs) > 1 {
			// A is longer than a single Word, so one update is needed.
			euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
		}
		if len(B.abs) > 0 {
			// A and B are both a single Word.
			aWord, bWord := A.abs[0], B.abs[0]
			if extended {
				var ua, ub, va, vb Word
				ua, ub = 1, 0
				va, vb = 0, 1
				even := true
				for bWord != 0 {
					q, r := aWord/bWord, aWord%bWord
					aWord, bWord = bWord, r
					ua, ub = ub, ua+q*ub
					va, vb = vb, va+q*vb
					even = !even
				}

				t.abs = t.abs.setWord(ua)
				s.abs = s.abs.setWord(va)
				t.neg = !even
				s.neg = even

				t.Mul(Ua, t)
				s.Mul(Ub, s)

				Ua.Add(t, s)
			} else {
				for bWord != 0 {
					aWord, bWord = bWord, aWord%bWord
				}
			}
			A.abs[0] = aWord
		}
	}
	negA := a.neg
	if y != nil {
		// avoid aliasing b needed in the division below
		if y == b {
			B.Set(b)
		} else {
			B = b
		}
		// y = (z - a*x)/b
		y.Mul(a, Ua) // y can safely alias a
		if negA {
			y.neg = !y.neg
		}
		y.Sub(A, y)
		y.Div(y, B)
	}

	if x != nil {
		*x = *Ua
		if negA {
			x.neg = !x.neg
		}
	}

	*z = *A

	return z
}

// Rand sets z to a pseudo-random number in [0, n) and returns z.
//
// As this uses the math/rand package, it must not be used for
// security-sensitive work. Use crypto/rand.Int instead.
func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
	// z.neg is not modified before the if check, because z and n might alias.
	if n.neg || len(n.abs) == 0 {
		z.neg = false
		z.abs = nil
		return z
	}
	z.neg = false
	z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
	return z
}

// ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
// and returns z. If g and n are not relatively prime, g has no multiplicative
// inverse in the ring ℤ/nℤ.  In this case, z is unchanged and the return value
// is nil. If n == 0, a division-by-zero run-time panic occurs.
func (z *Int) ModInverse(g, n *Int) *Int {
	// GCD expects parameters a and b to be > 0.
	if n.neg {
		var n2 Int
		n = n2.Neg(n)
	}
	if g.neg {
		var g2 Int
		g = g2.Mod(g, n)
	}
	var d, x Int
	d.GCD(&x, nil, g, n)

	// if and only if d==1, g and n are relatively prime
	if d.Cmp(intOne) != 0 {
		return nil
	}

	// x and y are such that g*x + n*y = 1, therefore x is the inverse element,
	// but it may be negative, so convert to the range 0 <= z < |n|
	if x.neg {
		z.Add(&x, n)
	} else {
		z.Set(&x)
	}
	return z
}

func (z nat) modInverse(g, n nat) nat {
	// TODO(rsc): ModInverse should be implemented in terms of this function.
	return (&Int{abs: z}).ModInverse(&Int{abs: g}, &Int{abs: n}).abs
}

// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
// The y argument must be an odd integer.
func Jacobi(x, y *Int) int {
	if len(y.abs) == 0 || y.abs[0]&1 == 0 {
		panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y.String()))
	}

	// We use the formulation described in chapter 2, section 2.4,
	// "The Yacas Book of Algorithms":
	// http://yacas.sourceforge.net/Algo.book.pdf

	var a, b, c Int
	a.Set(x)
	b.Set(y)
	j := 1

	if b.neg {
		if a.neg {
			j = -1
		}
		b.neg = false
	}

	for {
		if b.Cmp(intOne) == 0 {
			return j
		}
		if len(a.abs) == 0 {
			return 0
		}
		a.Mod(&a, &b)
		if len(a.abs) == 0 {
			return 0
		}
		// a > 0

		// handle factors of 2 in 'a'
		s := a.abs.trailingZeroBits()
		if s&1 != 0 {
			bmod8 := b.abs[0] & 7
			if bmod8 == 3 || bmod8 == 5 {
				j = -j
			}
		}
		c.Rsh(&a, s) // a = 2^s*c

		// swap numerator and denominator
		if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 {
			j = -j
		}
		a.Set(&b)
		b.Set(&c)
	}
}

// modSqrt3Mod4 uses the identity
//
//	   (a^((p+1)/4))^2  mod p
//	== u^(p+1)          mod p
//	== u^2              mod p
//
// to calculate the square root of any quadratic residue mod p quickly for 3
// mod 4 primes.
func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {
	e := new(Int).Add(p, intOne) // e = p + 1
	e.Rsh(e, 2)                  // e = (p + 1) / 4
	z.Exp(x, e, p)               // z = x^e mod p
	return z
}

// modSqrt5Mod8 uses Atkin's observation that 2 is not a square mod p
//
//	alpha ==  (2*a)^((p-5)/8)    mod p
//	beta  ==  2*a*alpha^2        mod p  is a square root of -1
//	b     ==  a*alpha*(beta-1)   mod p  is a square root of a
//
// to calculate the square root of any quadratic residue mod p quickly for 5
// mod 8 primes.
func (z *Int) modSqrt5Mod8Prime(x, p *Int) *Int {
	// p == 5 mod 8 implies p = e*8 + 5
	// e is the quotient and 5 the remainder on division by 8
	e := new(Int).Rsh(p, 3)  // e = (p - 5) / 8
	tx := new(Int).Lsh(x, 1) // tx = 2*x
	alpha := new(Int).Exp(tx, e, p)
	beta := new(Int).Mul(alpha, alpha)
	beta.Mod(beta, p)
	beta.Mul(beta, tx)
	beta.Mod(beta, p)
	beta.Sub(beta, intOne)
	beta.Mul(beta, x)
	beta.Mod(beta, p)
	beta.Mul(beta, alpha)
	z.Mod(beta, p)
	return z
}

// modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square
// root of a quadratic residue modulo any prime.
func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {
	// Break p-1 into s*2^e such that s is odd.
	var s Int
	s.Sub(p, intOne)
	e := s.abs.trailingZeroBits()
	s.Rsh(&s, e)

	// find some non-square n
	var n Int
	n.SetInt64(2)
	for Jacobi(&n, p) != -1 {
		n.Add(&n, intOne)
	}

	// Core of the Tonelli-Shanks algorithm. Follows the description in
	// section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra
	// Brown:
	// https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
	var y, b, g, t Int
	y.Add(&s, intOne)
	y.Rsh(&y, 1)
	y.Exp(x, &y, p)  // y = x^((s+1)/2)
	b.Exp(x, &s, p)  // b = x^s
	g.Exp(&n, &s, p) // g = n^s
	r := e
	for {
		// find the least m such that ord_p(b) = 2^m
		var m uint
		t.Set(&b)
		for t.Cmp(intOne) != 0 {
			t.Mul(&t, &t).Mod(&t, p)
			m++
		}

		if m == 0 {
			return z.Set(&y)
		}

		t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)
		// t = g^(2^(r-m-1)) mod p
		g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
		y.Mul(&y, &t).Mod(&y, p)
		b.Mul(&b, &g).Mod(&b, p)
		r = m
	}
}

// ModSqrt sets z to a square root of x mod p if such a square root exists, and
// returns z. The modulus p must be an odd prime. If x is not a square mod p,
// ModSqrt leaves z unchanged and returns nil. This function panics if p is
// not an odd integer, its behavior is undefined if p is odd but not prime.
func (z *Int) ModSqrt(x, p *Int) *Int {
	switch Jacobi(x, p) {
	case -1:
		return nil // x is not a square mod p
	case 0:
		return z.SetInt64(0) // sqrt(0) mod p = 0
	case 1:
		break
	}
	if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
		x = new(Int).Mod(x, p)
	}

	switch {
	case p.abs[0]%4 == 3:
		// Check whether p is 3 mod 4, and if so, use the faster algorithm.
		return z.modSqrt3Mod4Prime(x, p)
	case p.abs[0]%8 == 5:
		// Check whether p is 5 mod 8, use Atkin's algorithm.
		return z.modSqrt5Mod8Prime(x, p)
	default:
		// Otherwise, use Tonelli-Shanks.
		return z.modSqrtTonelliShanks(x, p)
	}
}

// Lsh sets z = x << n and returns z.
func (z *Int) Lsh(x *Int, n uint) *Int {
	z.abs = z.abs.shl(x.abs, n)
	z.neg = x.neg
	return z
}

// Rsh sets z = x >> n and returns z.
func (z *Int) Rsh(x *Int, n uint) *Int {
	if x.neg {
		// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
		t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
		t = t.shr(t, n)
		z.abs = t.add(t, natOne)
		z.neg = true // z cannot be zero if x is negative
		return z
	}

	z.abs = z.abs.shr(x.abs, n)
	z.neg = false
	return z
}

// Bit returns the value of the i'th bit of x. That is, it
// returns (x>>i)&1. The bit index i must be >= 0.
func (x *Int) Bit(i int) uint {
	if i == 0 {
		// optimization for common case: odd/even test of x
		if len(x.abs) > 0 {
			return uint(x.abs[0] & 1) // bit 0 is same for -x
		}
		return 0
	}
	if i < 0 {
		panic("negative bit index")
	}
	if x.neg {
		t := nat(nil).sub(x.abs, natOne)
		return t.bit(uint(i)) ^ 1
	}

	return x.abs.bit(uint(i))
}

// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
// That is, if b is 1 SetBit sets z = x | (1 << i);
// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
// SetBit will panic.
func (z *Int) SetBit(x *Int, i int, b uint) *Int {
	if i < 0 {
		panic("negative bit index")
	}
	if x.neg {
		t := z.abs.sub(x.abs, natOne)
		t = t.setBit(t, uint(i), b^1)
		z.abs = t.add(t, natOne)
		z.neg = len(z.abs) > 0
		return z
	}
	z.abs = z.abs.setBit(x.abs, uint(i), b)
	z.neg = false
	return z
}

// And sets z = x & y and returns z.
func (z *Int) And(x, y *Int) *Int {
	if x.neg == y.neg {
		if x.neg {
			// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
			x1 := nat(nil).sub(x.abs, natOne)
			y1 := nat(nil).sub(y.abs, natOne)
			z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
			z.neg = true // z cannot be zero if x and y are negative
			return z
		}

		// x & y == x & y
		z.abs = z.abs.and(x.abs, y.abs)
		z.neg = false
		return z
	}

	// x.neg != y.neg
	if x.neg {
		x, y = y, x // & is symmetric
	}

	// x & (-y) == x & ^(y-1) == x &^ (y-1)
	y1 := nat(nil).sub(y.abs, natOne)
	z.abs = z.abs.andNot(x.abs, y1)
	z.neg = false
	return z
}

// AndNot sets z = x &^ y and returns z.
func (z *Int) AndNot(x, y *Int) *Int {
	if x.neg == y.neg {
		if x.neg {
			// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
			x1 := nat(nil).sub(x.abs, natOne)
			y1 := nat(nil).sub(y.abs, natOne)
			z.abs = z.abs.andNot(y1, x1)
			z.neg = false
			return z
		}

		// x &^ y == x &^ y
		z.abs = z.abs.andNot(x.abs, y.abs)
		z.neg = false
		return z
	}

	if x.neg {
		// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
		x1 := nat(nil).sub(x.abs, natOne)
		z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
		z.neg = true // z cannot be zero if x is negative and y is positive
		return z
	}

	// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
	y1 := nat(nil).sub(y.abs, natOne)
	z.abs = z.abs.and(x.abs, y1)
	z.neg = false
	return z
}

// Or sets z = x | y and returns z.
func (z *Int) Or(x, y *Int) *Int {
	if x.neg == y.neg {
		if x.neg {
			// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
			x1 := nat(nil).sub(x.abs, natOne)
			y1 := nat(nil).sub(y.abs, natOne)
			z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
			z.neg = true // z cannot be zero if x and y are negative
			return z
		}

		// x | y == x | y
		z.abs = z.abs.or(x.abs, y.abs)
		z.neg = false
		return z
	}

	// x.neg != y.neg
	if x.neg {
		x, y = y, x // | is symmetric
	}

	// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
	y1 := nat(nil).sub(y.abs, natOne)
	z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
	z.neg = true // z cannot be zero if one of x or y is negative
	return z
}

// Xor sets z = x ^ y and returns z.
func (z *Int) Xor(x, y *Int) *Int {
	if x.neg == y.neg {
		if x.neg {
			// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
			x1 := nat(nil).sub(x.abs, natOne)
			y1 := nat(nil).sub(y.abs, natOne)
			z.abs = z.abs.xor(x1, y1)
			z.neg = false
			return z
		}

		// x ^ y == x ^ y
		z.abs = z.abs.xor(x.abs, y.abs)
		z.neg = false
		return z
	}

	// x.neg != y.neg
	if x.neg {
		x, y = y, x // ^ is symmetric
	}

	// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
	y1 := nat(nil).sub(y.abs, natOne)
	z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
	z.neg = true // z cannot be zero if only one of x or y is negative
	return z
}

// Not sets z = ^x and returns z.
func (z *Int) Not(x *Int) *Int {
	if x.neg {
		// ^(-x) == ^(^(x-1)) == x-1
		z.abs = z.abs.sub(x.abs, natOne)
		z.neg = false
		return z
	}

	// ^x == -x-1 == -(x+1)
	z.abs = z.abs.add(x.abs, natOne)
	z.neg = true // z cannot be zero if x is positive
	return z
}

// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
// It panics if x is negative.
func (z *Int) Sqrt(x *Int) *Int {
	if x.neg {
		panic("square root of negative number")
	}
	z.neg = false
	z.abs = z.abs.sqrt(x.abs)
	return z
}