summaryrefslogtreecommitdiffstats
path: root/src/math/bits/bits.go
blob: c1c7b7978aceae3bb54b0633caf8c693bec58c73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//go:generate go run make_tables.go

// Package bits implements bit counting and manipulation
// functions for the predeclared unsigned integer types.
//
// Functions in this package may be implemented directly by
// the compiler, for better performance. For those functions
// the code in this package will not be used. Which
// functions are implemented by the compiler depends on the
// architecture and the Go release.
package bits

const uintSize = 32 << (^uint(0) >> 63) // 32 or 64

// UintSize is the size of a uint in bits.
const UintSize = uintSize

// --- LeadingZeros ---

// LeadingZeros returns the number of leading zero bits in x; the result is UintSize for x == 0.
func LeadingZeros(x uint) int { return UintSize - Len(x) }

// LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
func LeadingZeros8(x uint8) int { return 8 - Len8(x) }

// LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0.
func LeadingZeros16(x uint16) int { return 16 - Len16(x) }

// LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0.
func LeadingZeros32(x uint32) int { return 32 - Len32(x) }

// LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
func LeadingZeros64(x uint64) int { return 64 - Len64(x) }

// --- TrailingZeros ---

// See http://supertech.csail.mit.edu/papers/debruijn.pdf
const deBruijn32 = 0x077CB531

var deBruijn32tab = [32]byte{
	0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
	31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
}

const deBruijn64 = 0x03f79d71b4ca8b09

var deBruijn64tab = [64]byte{
	0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
	62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
	63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
	54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
}

// TrailingZeros returns the number of trailing zero bits in x; the result is UintSize for x == 0.
func TrailingZeros(x uint) int {
	if UintSize == 32 {
		return TrailingZeros32(uint32(x))
	}
	return TrailingZeros64(uint64(x))
}

// TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
func TrailingZeros8(x uint8) int {
	return int(ntz8tab[x])
}

// TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
func TrailingZeros16(x uint16) int {
	if x == 0 {
		return 16
	}
	// see comment in TrailingZeros64
	return int(deBruijn32tab[uint32(x&-x)*deBruijn32>>(32-5)])
}

// TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
func TrailingZeros32(x uint32) int {
	if x == 0 {
		return 32
	}
	// see comment in TrailingZeros64
	return int(deBruijn32tab[(x&-x)*deBruijn32>>(32-5)])
}

// TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
func TrailingZeros64(x uint64) int {
	if x == 0 {
		return 64
	}
	// If popcount is fast, replace code below with return popcount(^x & (x - 1)).
	//
	// x & -x leaves only the right-most bit set in the word. Let k be the
	// index of that bit. Since only a single bit is set, the value is two
	// to the power of k. Multiplying by a power of two is equivalent to
	// left shifting, in this case by k bits. The de Bruijn (64 bit) constant
	// is such that all six bit, consecutive substrings are distinct.
	// Therefore, if we have a left shifted version of this constant we can
	// find by how many bits it was shifted by looking at which six bit
	// substring ended up at the top of the word.
	// (Knuth, volume 4, section 7.3.1)
	return int(deBruijn64tab[(x&-x)*deBruijn64>>(64-6)])
}

// --- OnesCount ---

const m0 = 0x5555555555555555 // 01010101 ...
const m1 = 0x3333333333333333 // 00110011 ...
const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...
const m3 = 0x00ff00ff00ff00ff // etc.
const m4 = 0x0000ffff0000ffff

// OnesCount returns the number of one bits ("population count") in x.
func OnesCount(x uint) int {
	if UintSize == 32 {
		return OnesCount32(uint32(x))
	}
	return OnesCount64(uint64(x))
}

// OnesCount8 returns the number of one bits ("population count") in x.
func OnesCount8(x uint8) int {
	return int(pop8tab[x])
}

// OnesCount16 returns the number of one bits ("population count") in x.
func OnesCount16(x uint16) int {
	return int(pop8tab[x>>8] + pop8tab[x&0xff])
}

// OnesCount32 returns the number of one bits ("population count") in x.
func OnesCount32(x uint32) int {
	return int(pop8tab[x>>24] + pop8tab[x>>16&0xff] + pop8tab[x>>8&0xff] + pop8tab[x&0xff])
}

// OnesCount64 returns the number of one bits ("population count") in x.
func OnesCount64(x uint64) int {
	// Implementation: Parallel summing of adjacent bits.
	// See "Hacker's Delight", Chap. 5: Counting Bits.
	// The following pattern shows the general approach:
	//
	//   x = x>>1&(m0&m) + x&(m0&m)
	//   x = x>>2&(m1&m) + x&(m1&m)
	//   x = x>>4&(m2&m) + x&(m2&m)
	//   x = x>>8&(m3&m) + x&(m3&m)
	//   x = x>>16&(m4&m) + x&(m4&m)
	//   x = x>>32&(m5&m) + x&(m5&m)
	//   return int(x)
	//
	// Masking (& operations) can be left away when there's no
	// danger that a field's sum will carry over into the next
	// field: Since the result cannot be > 64, 8 bits is enough
	// and we can ignore the masks for the shifts by 8 and up.
	// Per "Hacker's Delight", the first line can be simplified
	// more, but it saves at best one instruction, so we leave
	// it alone for clarity.
	const m = 1<<64 - 1
	x = x>>1&(m0&m) + x&(m0&m)
	x = x>>2&(m1&m) + x&(m1&m)
	x = (x>>4 + x) & (m2 & m)
	x += x >> 8
	x += x >> 16
	x += x >> 32
	return int(x) & (1<<7 - 1)
}

// --- RotateLeft ---

// RotateLeft returns the value of x rotated left by (k mod UintSize) bits.
// To rotate x right by k bits, call RotateLeft(x, -k).
//
// This function's execution time does not depend on the inputs.
func RotateLeft(x uint, k int) uint {
	if UintSize == 32 {
		return uint(RotateLeft32(uint32(x), k))
	}
	return uint(RotateLeft64(uint64(x), k))
}

// RotateLeft8 returns the value of x rotated left by (k mod 8) bits.
// To rotate x right by k bits, call RotateLeft8(x, -k).
//
// This function's execution time does not depend on the inputs.
func RotateLeft8(x uint8, k int) uint8 {
	const n = 8
	s := uint(k) & (n - 1)
	return x<<s | x>>(n-s)
}

// RotateLeft16 returns the value of x rotated left by (k mod 16) bits.
// To rotate x right by k bits, call RotateLeft16(x, -k).
//
// This function's execution time does not depend on the inputs.
func RotateLeft16(x uint16, k int) uint16 {
	const n = 16
	s := uint(k) & (n - 1)
	return x<<s | x>>(n-s)
}

// RotateLeft32 returns the value of x rotated left by (k mod 32) bits.
// To rotate x right by k bits, call RotateLeft32(x, -k).
//
// This function's execution time does not depend on the inputs.
func RotateLeft32(x uint32, k int) uint32 {
	const n = 32
	s := uint(k) & (n - 1)
	return x<<s | x>>(n-s)
}

// RotateLeft64 returns the value of x rotated left by (k mod 64) bits.
// To rotate x right by k bits, call RotateLeft64(x, -k).
//
// This function's execution time does not depend on the inputs.
func RotateLeft64(x uint64, k int) uint64 {
	const n = 64
	s := uint(k) & (n - 1)
	return x<<s | x>>(n-s)
}

// --- Reverse ---

// Reverse returns the value of x with its bits in reversed order.
func Reverse(x uint) uint {
	if UintSize == 32 {
		return uint(Reverse32(uint32(x)))
	}
	return uint(Reverse64(uint64(x)))
}

// Reverse8 returns the value of x with its bits in reversed order.
func Reverse8(x uint8) uint8 {
	return rev8tab[x]
}

// Reverse16 returns the value of x with its bits in reversed order.
func Reverse16(x uint16) uint16 {
	return uint16(rev8tab[x>>8]) | uint16(rev8tab[x&0xff])<<8
}

// Reverse32 returns the value of x with its bits in reversed order.
func Reverse32(x uint32) uint32 {
	const m = 1<<32 - 1
	x = x>>1&(m0&m) | x&(m0&m)<<1
	x = x>>2&(m1&m) | x&(m1&m)<<2
	x = x>>4&(m2&m) | x&(m2&m)<<4
	return ReverseBytes32(x)
}

// Reverse64 returns the value of x with its bits in reversed order.
func Reverse64(x uint64) uint64 {
	const m = 1<<64 - 1
	x = x>>1&(m0&m) | x&(m0&m)<<1
	x = x>>2&(m1&m) | x&(m1&m)<<2
	x = x>>4&(m2&m) | x&(m2&m)<<4
	return ReverseBytes64(x)
}

// --- ReverseBytes ---

// ReverseBytes returns the value of x with its bytes in reversed order.
//
// This function's execution time does not depend on the inputs.
func ReverseBytes(x uint) uint {
	if UintSize == 32 {
		return uint(ReverseBytes32(uint32(x)))
	}
	return uint(ReverseBytes64(uint64(x)))
}

// ReverseBytes16 returns the value of x with its bytes in reversed order.
//
// This function's execution time does not depend on the inputs.
func ReverseBytes16(x uint16) uint16 {
	return x>>8 | x<<8
}

// ReverseBytes32 returns the value of x with its bytes in reversed order.
//
// This function's execution time does not depend on the inputs.
func ReverseBytes32(x uint32) uint32 {
	const m = 1<<32 - 1
	x = x>>8&(m3&m) | x&(m3&m)<<8
	return x>>16 | x<<16
}

// ReverseBytes64 returns the value of x with its bytes in reversed order.
//
// This function's execution time does not depend on the inputs.
func ReverseBytes64(x uint64) uint64 {
	const m = 1<<64 - 1
	x = x>>8&(m3&m) | x&(m3&m)<<8
	x = x>>16&(m4&m) | x&(m4&m)<<16
	return x>>32 | x<<32
}

// --- Len ---

// Len returns the minimum number of bits required to represent x; the result is 0 for x == 0.
func Len(x uint) int {
	if UintSize == 32 {
		return Len32(uint32(x))
	}
	return Len64(uint64(x))
}

// Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
func Len8(x uint8) int {
	return int(len8tab[x])
}

// Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
func Len16(x uint16) (n int) {
	if x >= 1<<8 {
		x >>= 8
		n = 8
	}
	return n + int(len8tab[x])
}

// Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
func Len32(x uint32) (n int) {
	if x >= 1<<16 {
		x >>= 16
		n = 16
	}
	if x >= 1<<8 {
		x >>= 8
		n += 8
	}
	return n + int(len8tab[x])
}

// Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
func Len64(x uint64) (n int) {
	if x >= 1<<32 {
		x >>= 32
		n = 32
	}
	if x >= 1<<16 {
		x >>= 16
		n += 16
	}
	if x >= 1<<8 {
		x >>= 8
		n += 8
	}
	return n + int(len8tab[x])
}

// --- Add with carry ---

// Add returns the sum with carry of x, y and carry: sum = x + y + carry.
// The carry input must be 0 or 1; otherwise the behavior is undefined.
// The carryOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
func Add(x, y, carry uint) (sum, carryOut uint) {
	if UintSize == 32 {
		s32, c32 := Add32(uint32(x), uint32(y), uint32(carry))
		return uint(s32), uint(c32)
	}
	s64, c64 := Add64(uint64(x), uint64(y), uint64(carry))
	return uint(s64), uint(c64)
}

// Add32 returns the sum with carry of x, y and carry: sum = x + y + carry.
// The carry input must be 0 or 1; otherwise the behavior is undefined.
// The carryOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
func Add32(x, y, carry uint32) (sum, carryOut uint32) {
	sum64 := uint64(x) + uint64(y) + uint64(carry)
	sum = uint32(sum64)
	carryOut = uint32(sum64 >> 32)
	return
}

// Add64 returns the sum with carry of x, y and carry: sum = x + y + carry.
// The carry input must be 0 or 1; otherwise the behavior is undefined.
// The carryOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
func Add64(x, y, carry uint64) (sum, carryOut uint64) {
	sum = x + y + carry
	// The sum will overflow if both top bits are set (x & y) or if one of them
	// is (x | y), and a carry from the lower place happened. If such a carry
	// happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum).
	carryOut = ((x & y) | ((x | y) &^ sum)) >> 63
	return
}

// --- Subtract with borrow ---

// Sub returns the difference of x, y and borrow: diff = x - y - borrow.
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
// The borrowOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
func Sub(x, y, borrow uint) (diff, borrowOut uint) {
	if UintSize == 32 {
		d32, b32 := Sub32(uint32(x), uint32(y), uint32(borrow))
		return uint(d32), uint(b32)
	}
	d64, b64 := Sub64(uint64(x), uint64(y), uint64(borrow))
	return uint(d64), uint(b64)
}

// Sub32 returns the difference of x, y and borrow, diff = x - y - borrow.
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
// The borrowOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
func Sub32(x, y, borrow uint32) (diff, borrowOut uint32) {
	diff = x - y - borrow
	// The difference will underflow if the top bit of x is not set and the top
	// bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow
	// from the lower place happens. If that borrow happens, the result will be
	// 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff).
	borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 31
	return
}

// Sub64 returns the difference of x, y and borrow: diff = x - y - borrow.
// The borrow input must be 0 or 1; otherwise the behavior is undefined.
// The borrowOut output is guaranteed to be 0 or 1.
//
// This function's execution time does not depend on the inputs.
func Sub64(x, y, borrow uint64) (diff, borrowOut uint64) {
	diff = x - y - borrow
	// See Sub32 for the bit logic.
	borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 63
	return
}

// --- Full-width multiply ---

// Mul returns the full-width product of x and y: (hi, lo) = x * y
// with the product bits' upper half returned in hi and the lower
// half returned in lo.
//
// This function's execution time does not depend on the inputs.
func Mul(x, y uint) (hi, lo uint) {
	if UintSize == 32 {
		h, l := Mul32(uint32(x), uint32(y))
		return uint(h), uint(l)
	}
	h, l := Mul64(uint64(x), uint64(y))
	return uint(h), uint(l)
}

// Mul32 returns the 64-bit product of x and y: (hi, lo) = x * y
// with the product bits' upper half returned in hi and the lower
// half returned in lo.
//
// This function's execution time does not depend on the inputs.
func Mul32(x, y uint32) (hi, lo uint32) {
	tmp := uint64(x) * uint64(y)
	hi, lo = uint32(tmp>>32), uint32(tmp)
	return
}

// Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y
// with the product bits' upper half returned in hi and the lower
// half returned in lo.
//
// This function's execution time does not depend on the inputs.
func Mul64(x, y uint64) (hi, lo uint64) {
	const mask32 = 1<<32 - 1
	x0 := x & mask32
	x1 := x >> 32
	y0 := y & mask32
	y1 := y >> 32
	w0 := x0 * y0
	t := x1*y0 + w0>>32
	w1 := t & mask32
	w2 := t >> 32
	w1 += x0 * y1
	hi = x1*y1 + w2 + w1>>32
	lo = x * y
	return
}

// --- Full-width divide ---

// Div returns the quotient and remainder of (hi, lo) divided by y:
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
// half in parameter hi and the lower half in parameter lo.
// Div panics for y == 0 (division by zero) or y <= hi (quotient overflow).
func Div(hi, lo, y uint) (quo, rem uint) {
	if UintSize == 32 {
		q, r := Div32(uint32(hi), uint32(lo), uint32(y))
		return uint(q), uint(r)
	}
	q, r := Div64(uint64(hi), uint64(lo), uint64(y))
	return uint(q), uint(r)
}

// Div32 returns the quotient and remainder of (hi, lo) divided by y:
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
// half in parameter hi and the lower half in parameter lo.
// Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
func Div32(hi, lo, y uint32) (quo, rem uint32) {
	if y != 0 && y <= hi {
		panic(overflowError)
	}
	z := uint64(hi)<<32 | uint64(lo)
	quo, rem = uint32(z/uint64(y)), uint32(z%uint64(y))
	return
}

// Div64 returns the quotient and remainder of (hi, lo) divided by y:
// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
// half in parameter hi and the lower half in parameter lo.
// Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
func Div64(hi, lo, y uint64) (quo, rem uint64) {
	if y == 0 {
		panic(divideError)
	}
	if y <= hi {
		panic(overflowError)
	}

	// If high part is zero, we can directly return the results.
	if hi == 0 {
		return lo / y, lo % y
	}

	s := uint(LeadingZeros64(y))
	y <<= s

	const (
		two32  = 1 << 32
		mask32 = two32 - 1
	)
	yn1 := y >> 32
	yn0 := y & mask32
	un32 := hi<<s | lo>>(64-s)
	un10 := lo << s
	un1 := un10 >> 32
	un0 := un10 & mask32
	q1 := un32 / yn1
	rhat := un32 - q1*yn1

	for q1 >= two32 || q1*yn0 > two32*rhat+un1 {
		q1--
		rhat += yn1
		if rhat >= two32 {
			break
		}
	}

	un21 := un32*two32 + un1 - q1*y
	q0 := un21 / yn1
	rhat = un21 - q0*yn1

	for q0 >= two32 || q0*yn0 > two32*rhat+un0 {
		q0--
		rhat += yn1
		if rhat >= two32 {
			break
		}
	}

	return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s
}

// Rem returns the remainder of (hi, lo) divided by y. Rem panics for
// y == 0 (division by zero) but, unlike Div, it doesn't panic on a
// quotient overflow.
func Rem(hi, lo, y uint) uint {
	if UintSize == 32 {
		return uint(Rem32(uint32(hi), uint32(lo), uint32(y)))
	}
	return uint(Rem64(uint64(hi), uint64(lo), uint64(y)))
}

// Rem32 returns the remainder of (hi, lo) divided by y. Rem32 panics
// for y == 0 (division by zero) but, unlike Div32, it doesn't panic
// on a quotient overflow.
func Rem32(hi, lo, y uint32) uint32 {
	return uint32((uint64(hi)<<32 | uint64(lo)) % uint64(y))
}

// Rem64 returns the remainder of (hi, lo) divided by y. Rem64 panics
// for y == 0 (division by zero) but, unlike Div64, it doesn't panic
// on a quotient overflow.
func Rem64(hi, lo, y uint64) uint64 {
	// We scale down hi so that hi < y, then use Div64 to compute the
	// rem with the guarantee that it won't panic on quotient overflow.
	// Given that
	//   hi ≡ hi%y    (mod y)
	// we have
	//   hi<<64 + lo ≡ (hi%y)<<64 + lo    (mod y)
	_, rem := Div64(hi%y, lo, y)
	return rem
}