1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
// Minimax polynomial approximation and other constants
DATA ·exprodataL22<> + 0(SB)/8, $800.0E+00
DATA ·exprodataL22<> + 8(SB)/8, $1.0000000000000022e+00
DATA ·exprodataL22<> + 16(SB)/8, $0.500000000000004237e+00
DATA ·exprodataL22<> + 24(SB)/8, $0.166666666630345592e+00
DATA ·exprodataL22<> + 32(SB)/8, $0.138926439368309441e-02
DATA ·exprodataL22<> + 40(SB)/8, $0.833349307718286047e-02
DATA ·exprodataL22<> + 48(SB)/8, $0.416666664838056960e-01
DATA ·exprodataL22<> + 56(SB)/8, $-.231904681384629956E-16
DATA ·exprodataL22<> + 64(SB)/8, $-.693147180559945286E+00
DATA ·exprodataL22<> + 72(SB)/8, $0.144269504088896339E+01
DATA ·exprodataL22<> + 80(SB)/8, $704.0E+00
GLOBL ·exprodataL22<> + 0(SB), RODATA, $88
DATA ·expxinf<> + 0(SB)/8, $0x7ff0000000000000
GLOBL ·expxinf<> + 0(SB), RODATA, $8
DATA ·expx4ff<> + 0(SB)/8, $0x4ff0000000000000
GLOBL ·expx4ff<> + 0(SB), RODATA, $8
DATA ·expx2ff<> + 0(SB)/8, $0x2ff0000000000000
GLOBL ·expx2ff<> + 0(SB), RODATA, $8
DATA ·expxaddexp<> + 0(SB)/8, $0xc2f0000100003fef
GLOBL ·expxaddexp<> + 0(SB), RODATA, $8
// Log multipliers table
DATA ·exptexp<> + 0(SB)/8, $0.442737824274138381E-01
DATA ·exptexp<> + 8(SB)/8, $0.263602189790660309E-01
DATA ·exptexp<> + 16(SB)/8, $0.122565642281703586E-01
DATA ·exptexp<> + 24(SB)/8, $0.143757052860721398E-02
DATA ·exptexp<> + 32(SB)/8, $-.651375034121276075E-02
DATA ·exptexp<> + 40(SB)/8, $-.119317678849450159E-01
DATA ·exptexp<> + 48(SB)/8, $-.150868749549871069E-01
DATA ·exptexp<> + 56(SB)/8, $-.161992609578469234E-01
DATA ·exptexp<> + 64(SB)/8, $-.154492360403337917E-01
DATA ·exptexp<> + 72(SB)/8, $-.129850717389178721E-01
DATA ·exptexp<> + 80(SB)/8, $-.892902649276657891E-02
DATA ·exptexp<> + 88(SB)/8, $-.338202636596794887E-02
DATA ·exptexp<> + 96(SB)/8, $0.357266307045684762E-02
DATA ·exptexp<> + 104(SB)/8, $0.118665304327406698E-01
DATA ·exptexp<> + 112(SB)/8, $0.214434994118118914E-01
DATA ·exptexp<> + 120(SB)/8, $0.322580645161290314E-01
GLOBL ·exptexp<> + 0(SB), RODATA, $128
// Exp returns e**x, the base-e exponential of x.
//
// Special cases are:
// Exp(+Inf) = +Inf
// Exp(NaN) = NaN
// Very large values overflow to 0 or +Inf.
// Very small values underflow to 1.
// The algorithm used is minimax polynomial approximation using a table of
// polynomial coefficients determined with a Remez exchange algorithm.
TEXT ·expAsm(SB), NOSPLIT, $0-16
FMOVD x+0(FP), F0
MOVD $·exprodataL22<>+0(SB), R5
LTDBR F0, F0
BLTU L20
FMOVD F0, F2
L2:
WORD $0xED205050 //cdb %f2,.L23-.L22(%r5)
BYTE $0x00
BYTE $0x19
BGE L16
BVS L16
WFCEDBS V2, V2, V2
BVS LEXITTAGexp
MOVD $·expxaddexp<>+0(SB), R1
FMOVD 72(R5), F6
FMOVD 0(R1), F2
WFMSDB V0, V6, V2, V6
FMOVD 64(R5), F4
FADD F6, F2
FMOVD 56(R5), F1
FMADD F4, F2, F0
FMOVD 48(R5), F3
WFMADB V2, V1, V0, V2
FMOVD 40(R5), F1
FMOVD 32(R5), F4
FMUL F0, F0
WFMADB V2, V4, V1, V4
LGDR F6, R1
FMOVD 24(R5), F1
WFMADB V2, V3, V1, V3
FMOVD 16(R5), F1
WFMADB V0, V4, V3, V4
FMOVD 8(R5), F3
WFMADB V2, V1, V3, V1
RISBGZ $57, $60, $3, R1, R3
WFMADB V0, V4, V1, V0
MOVD $·exptexp<>+0(SB), R2
WORD $0x68432000 //ld %f4,0(%r3,%r2)
FMADD F4, F2, F2
SLD $48, R1, R2
WFMADB V2, V0, V4, V2
LDGR R2, F0
FMADD F0, F2, F0
FMOVD F0, ret+8(FP)
RET
L16:
WFCEDBS V2, V2, V4
BVS LEXITTAGexp
WORD $0xED205000 //cdb %f2,.L33-.L22(%r5)
BYTE $0x00
BYTE $0x19
BLT L6
WFCEDBS V2, V0, V0
BVS L13
MOVD $·expxinf<>+0(SB), R1
FMOVD 0(R1), F0
FMOVD F0, ret+8(FP)
RET
L20:
WORD $0xB3130020 //lcdbr %f2,%f0
BR L2
L6:
MOVD $·expxaddexp<>+0(SB), R1
FMOVD 72(R5), F3
FMOVD 0(R1), F4
WFMSDB V0, V3, V4, V3
FMOVD 64(R5), F6
FADD F3, F4
FMOVD 56(R5), F5
WFMADB V4, V6, V0, V6
FMOVD 32(R5), F1
WFMADB V4, V5, V6, V4
FMOVD 40(R5), F5
FMUL F6, F6
WFMADB V4, V1, V5, V1
FMOVD 48(R5), F7
LGDR F3, R1
FMOVD 24(R5), F5
WFMADB V4, V7, V5, V7
FMOVD 16(R5), F5
WFMADB V6, V1, V7, V1
FMOVD 8(R5), F7
WFMADB V4, V5, V7, V5
RISBGZ $57, $60, $3, R1, R3
WFMADB V6, V1, V5, V6
MOVD $·exptexp<>+0(SB), R2
WFCHDBS V2, V0, V0
WORD $0x68132000 //ld %f1,0(%r3,%r2)
FMADD F1, F4, F4
MOVD $0x4086000000000000, R2
WFMADB V4, V6, V1, V4
BEQ L21
ADDW $0xF000, R1
RISBGN $0, $15, $48, R1, R2
LDGR R2, F0
FMADD F0, F4, F0
MOVD $·expx4ff<>+0(SB), R3
FMOVD 0(R3), F2
FMUL F2, F0
FMOVD F0, ret+8(FP)
RET
L13:
FMOVD $0, F0
FMOVD F0, ret+8(FP)
RET
L21:
ADDW $0x1000, R1
RISBGN $0, $15, $48, R1, R2
LDGR R2, F0
FMADD F0, F4, F0
MOVD $·expx2ff<>+0(SB), R3
FMOVD 0(R3), F2
FMUL F2, F0
FMOVD F0, ret+8(FP)
RET
LEXITTAGexp:
FMOVD F0, ret+8(FP)
RET
|