summaryrefslogtreecommitdiffstats
path: root/src/runtime/export_test.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:19:13 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:19:13 +0000
commitccd992355df7192993c666236047820244914598 (patch)
treef00fea65147227b7743083c6148396f74cd66935 /src/runtime/export_test.go
parentInitial commit. (diff)
downloadgolang-1.21-ccd992355df7192993c666236047820244914598.tar.xz
golang-1.21-ccd992355df7192993c666236047820244914598.zip
Adding upstream version 1.21.8.upstream/1.21.8
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/runtime/export_test.go')
-rw-r--r--src/runtime/export_test.go1942
1 files changed, 1942 insertions, 0 deletions
diff --git a/src/runtime/export_test.go b/src/runtime/export_test.go
new file mode 100644
index 0000000..34dd890
--- /dev/null
+++ b/src/runtime/export_test.go
@@ -0,0 +1,1942 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Export guts for testing.
+
+package runtime
+
+import (
+ "internal/goarch"
+ "internal/goos"
+ "runtime/internal/atomic"
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+var Fadd64 = fadd64
+var Fsub64 = fsub64
+var Fmul64 = fmul64
+var Fdiv64 = fdiv64
+var F64to32 = f64to32
+var F32to64 = f32to64
+var Fcmp64 = fcmp64
+var Fintto64 = fintto64
+var F64toint = f64toint
+
+var Entersyscall = entersyscall
+var Exitsyscall = exitsyscall
+var LockedOSThread = lockedOSThread
+var Xadduintptr = atomic.Xadduintptr
+
+var Fastlog2 = fastlog2
+
+var Atoi = atoi
+var Atoi32 = atoi32
+var ParseByteCount = parseByteCount
+
+var Nanotime = nanotime
+var NetpollBreak = netpollBreak
+var Usleep = usleep
+
+var PhysPageSize = physPageSize
+var PhysHugePageSize = physHugePageSize
+
+var NetpollGenericInit = netpollGenericInit
+
+var Memmove = memmove
+var MemclrNoHeapPointers = memclrNoHeapPointers
+
+var CgoCheckPointer = cgoCheckPointer
+
+const TracebackInnerFrames = tracebackInnerFrames
+const TracebackOuterFrames = tracebackOuterFrames
+
+var LockPartialOrder = lockPartialOrder
+
+type LockRank lockRank
+
+func (l LockRank) String() string {
+ return lockRank(l).String()
+}
+
+const PreemptMSupported = preemptMSupported
+
+type LFNode struct {
+ Next uint64
+ Pushcnt uintptr
+}
+
+func LFStackPush(head *uint64, node *LFNode) {
+ (*lfstack)(head).push((*lfnode)(unsafe.Pointer(node)))
+}
+
+func LFStackPop(head *uint64) *LFNode {
+ return (*LFNode)(unsafe.Pointer((*lfstack)(head).pop()))
+}
+func LFNodeValidate(node *LFNode) {
+ lfnodeValidate((*lfnode)(unsafe.Pointer(node)))
+}
+
+func Netpoll(delta int64) {
+ systemstack(func() {
+ netpoll(delta)
+ })
+}
+
+func GCMask(x any) (ret []byte) {
+ systemstack(func() {
+ ret = getgcmask(x)
+ })
+ return
+}
+
+func RunSchedLocalQueueTest() {
+ pp := new(p)
+ gs := make([]g, len(pp.runq))
+ Escape(gs) // Ensure gs doesn't move, since we use guintptrs
+ for i := 0; i < len(pp.runq); i++ {
+ if g, _ := runqget(pp); g != nil {
+ throw("runq is not empty initially")
+ }
+ for j := 0; j < i; j++ {
+ runqput(pp, &gs[i], false)
+ }
+ for j := 0; j < i; j++ {
+ if g, _ := runqget(pp); g != &gs[i] {
+ print("bad element at iter ", i, "/", j, "\n")
+ throw("bad element")
+ }
+ }
+ if g, _ := runqget(pp); g != nil {
+ throw("runq is not empty afterwards")
+ }
+ }
+}
+
+func RunSchedLocalQueueStealTest() {
+ p1 := new(p)
+ p2 := new(p)
+ gs := make([]g, len(p1.runq))
+ Escape(gs) // Ensure gs doesn't move, since we use guintptrs
+ for i := 0; i < len(p1.runq); i++ {
+ for j := 0; j < i; j++ {
+ gs[j].sig = 0
+ runqput(p1, &gs[j], false)
+ }
+ gp := runqsteal(p2, p1, true)
+ s := 0
+ if gp != nil {
+ s++
+ gp.sig++
+ }
+ for {
+ gp, _ = runqget(p2)
+ if gp == nil {
+ break
+ }
+ s++
+ gp.sig++
+ }
+ for {
+ gp, _ = runqget(p1)
+ if gp == nil {
+ break
+ }
+ gp.sig++
+ }
+ for j := 0; j < i; j++ {
+ if gs[j].sig != 1 {
+ print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n")
+ throw("bad element")
+ }
+ }
+ if s != i/2 && s != i/2+1 {
+ print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n")
+ throw("bad steal")
+ }
+ }
+}
+
+func RunSchedLocalQueueEmptyTest(iters int) {
+ // Test that runq is not spuriously reported as empty.
+ // Runq emptiness affects scheduling decisions and spurious emptiness
+ // can lead to underutilization (both runnable Gs and idle Ps coexist
+ // for arbitrary long time).
+ done := make(chan bool, 1)
+ p := new(p)
+ gs := make([]g, 2)
+ Escape(gs) // Ensure gs doesn't move, since we use guintptrs
+ ready := new(uint32)
+ for i := 0; i < iters; i++ {
+ *ready = 0
+ next0 := (i & 1) == 0
+ next1 := (i & 2) == 0
+ runqput(p, &gs[0], next0)
+ go func() {
+ for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; {
+ }
+ if runqempty(p) {
+ println("next:", next0, next1)
+ throw("queue is empty")
+ }
+ done <- true
+ }()
+ for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; {
+ }
+ runqput(p, &gs[1], next1)
+ runqget(p)
+ <-done
+ runqget(p)
+ }
+}
+
+var (
+ StringHash = stringHash
+ BytesHash = bytesHash
+ Int32Hash = int32Hash
+ Int64Hash = int64Hash
+ MemHash = memhash
+ MemHash32 = memhash32
+ MemHash64 = memhash64
+ EfaceHash = efaceHash
+ IfaceHash = ifaceHash
+)
+
+var UseAeshash = &useAeshash
+
+func MemclrBytes(b []byte) {
+ s := (*slice)(unsafe.Pointer(&b))
+ memclrNoHeapPointers(s.array, uintptr(s.len))
+}
+
+const HashLoad = hashLoad
+
+// entry point for testing
+func GostringW(w []uint16) (s string) {
+ systemstack(func() {
+ s = gostringw(&w[0])
+ })
+ return
+}
+
+var Open = open
+var Close = closefd
+var Read = read
+var Write = write
+
+func Envs() []string { return envs }
+func SetEnvs(e []string) { envs = e }
+
+// For benchmarking.
+
+// blockWrapper is a wrapper type that ensures a T is placed within a
+// large object. This is necessary for safely benchmarking things
+// that manipulate the heap bitmap, like heapBitsSetType.
+//
+// More specifically, allocating threads assume they're the sole writers
+// to their span's heap bits, which allows those writes to be non-atomic.
+// The heap bitmap is written byte-wise, so if one tried to call heapBitsSetType
+// on an existing object in a small object span, we might corrupt that
+// span's bitmap with a concurrent byte write to the heap bitmap. Large
+// object spans contain exactly one object, so we can be sure no other P
+// is going to be allocating from it concurrently, hence this wrapper type
+// which ensures we have a T in a large object span.
+type blockWrapper[T any] struct {
+ value T
+ _ [_MaxSmallSize]byte // Ensure we're a large object.
+}
+
+func BenchSetType[T any](n int, resetTimer func()) {
+ x := new(blockWrapper[T])
+
+ // Escape x to ensure it is allocated on the heap, as we are
+ // working on the heap bits here.
+ Escape(x)
+
+ // Grab the type.
+ var i any = *new(T)
+ e := *efaceOf(&i)
+ t := e._type
+
+ // Benchmark setting the type bits for just the internal T of the block.
+ benchSetType(n, resetTimer, 1, unsafe.Pointer(&x.value), t)
+}
+
+const maxArrayBlockWrapperLen = 32
+
+// arrayBlockWrapper is like blockWrapper, but the interior value is intended
+// to be used as a backing store for a slice.
+type arrayBlockWrapper[T any] struct {
+ value [maxArrayBlockWrapperLen]T
+ _ [_MaxSmallSize]byte // Ensure we're a large object.
+}
+
+// arrayLargeBlockWrapper is like arrayBlockWrapper, but the interior array
+// accommodates many more elements.
+type arrayLargeBlockWrapper[T any] struct {
+ value [1024]T
+ _ [_MaxSmallSize]byte // Ensure we're a large object.
+}
+
+func BenchSetTypeSlice[T any](n int, resetTimer func(), len int) {
+ // We have two separate cases here because we want to avoid
+ // tests on big types but relatively small slices to avoid generating
+ // an allocation that's really big. This will likely force a GC which will
+ // skew the test results.
+ var y unsafe.Pointer
+ if len <= maxArrayBlockWrapperLen {
+ x := new(arrayBlockWrapper[T])
+ // Escape x to ensure it is allocated on the heap, as we are
+ // working on the heap bits here.
+ Escape(x)
+ y = unsafe.Pointer(&x.value[0])
+ } else {
+ x := new(arrayLargeBlockWrapper[T])
+ Escape(x)
+ y = unsafe.Pointer(&x.value[0])
+ }
+
+ // Grab the type.
+ var i any = *new(T)
+ e := *efaceOf(&i)
+ t := e._type
+
+ // Benchmark setting the type for a slice created from the array
+ // of T within the arrayBlock.
+ benchSetType(n, resetTimer, len, y, t)
+}
+
+// benchSetType is the implementation of the BenchSetType* functions.
+// x must be len consecutive Ts allocated within a large object span (to
+// avoid a race on the heap bitmap).
+//
+// Note: this function cannot be generic. It would get its type from one of
+// its callers (BenchSetType or BenchSetTypeSlice) whose type parameters are
+// set by a call in the runtime_test package. That means this function and its
+// callers will get instantiated in the package that provides the type argument,
+// i.e. runtime_test. However, we call a function on the system stack. In race
+// mode the runtime package is usually left uninstrumented because e.g. g0 has
+// no valid racectx, but if we're instantiated in the runtime_test package,
+// we might accidentally cause runtime code to be incorrectly instrumented.
+func benchSetType(n int, resetTimer func(), len int, x unsafe.Pointer, t *_type) {
+ // Compute the input sizes.
+ size := t.Size() * uintptr(len)
+
+ // Validate this function's invariant.
+ s := spanOfHeap(uintptr(x))
+ if s == nil {
+ panic("no heap span for input")
+ }
+ if s.spanclass.sizeclass() != 0 {
+ panic("span is not a large object span")
+ }
+
+ // Round up the size to the size class to make the benchmark a little more
+ // realistic. However, validate it, to make sure this is safe.
+ allocSize := roundupsize(size)
+ if s.npages*pageSize < allocSize {
+ panic("backing span not large enough for benchmark")
+ }
+
+ // Benchmark heapBitsSetType by calling it in a loop. This is safe because
+ // x is in a large object span.
+ resetTimer()
+ systemstack(func() {
+ for i := 0; i < n; i++ {
+ heapBitsSetType(uintptr(x), allocSize, size, t)
+ }
+ })
+
+ // Make sure x doesn't get freed, since we're taking a uintptr.
+ KeepAlive(x)
+}
+
+const PtrSize = goarch.PtrSize
+
+var ForceGCPeriod = &forcegcperiod
+
+// SetTracebackEnv is like runtime/debug.SetTraceback, but it raises
+// the "environment" traceback level, so later calls to
+// debug.SetTraceback (e.g., from testing timeouts) can't lower it.
+func SetTracebackEnv(level string) {
+ setTraceback(level)
+ traceback_env = traceback_cache
+}
+
+var ReadUnaligned32 = readUnaligned32
+var ReadUnaligned64 = readUnaligned64
+
+func CountPagesInUse() (pagesInUse, counted uintptr) {
+ stopTheWorld(stwForTestCountPagesInUse)
+
+ pagesInUse = uintptr(mheap_.pagesInUse.Load())
+
+ for _, s := range mheap_.allspans {
+ if s.state.get() == mSpanInUse {
+ counted += s.npages
+ }
+ }
+
+ startTheWorld()
+
+ return
+}
+
+func Fastrand() uint32 { return fastrand() }
+func Fastrand64() uint64 { return fastrand64() }
+func Fastrandn(n uint32) uint32 { return fastrandn(n) }
+
+type ProfBuf profBuf
+
+func NewProfBuf(hdrsize, bufwords, tags int) *ProfBuf {
+ return (*ProfBuf)(newProfBuf(hdrsize, bufwords, tags))
+}
+
+func (p *ProfBuf) Write(tag *unsafe.Pointer, now int64, hdr []uint64, stk []uintptr) {
+ (*profBuf)(p).write(tag, now, hdr, stk)
+}
+
+const (
+ ProfBufBlocking = profBufBlocking
+ ProfBufNonBlocking = profBufNonBlocking
+)
+
+func (p *ProfBuf) Read(mode profBufReadMode) ([]uint64, []unsafe.Pointer, bool) {
+ return (*profBuf)(p).read(profBufReadMode(mode))
+}
+
+func (p *ProfBuf) Close() {
+ (*profBuf)(p).close()
+}
+
+func ReadMetricsSlow(memStats *MemStats, samplesp unsafe.Pointer, len, cap int) {
+ stopTheWorld(stwForTestReadMetricsSlow)
+
+ // Initialize the metrics beforehand because this could
+ // allocate and skew the stats.
+ metricsLock()
+ initMetrics()
+ metricsUnlock()
+
+ systemstack(func() {
+ // Read memstats first. It's going to flush
+ // the mcaches which readMetrics does not do, so
+ // going the other way around may result in
+ // inconsistent statistics.
+ readmemstats_m(memStats)
+ })
+
+ // Read metrics off the system stack.
+ //
+ // The only part of readMetrics that could allocate
+ // and skew the stats is initMetrics.
+ readMetrics(samplesp, len, cap)
+
+ startTheWorld()
+}
+
+var DoubleCheckReadMemStats = &doubleCheckReadMemStats
+
+// ReadMemStatsSlow returns both the runtime-computed MemStats and
+// MemStats accumulated by scanning the heap.
+func ReadMemStatsSlow() (base, slow MemStats) {
+ stopTheWorld(stwForTestReadMemStatsSlow)
+
+ // Run on the system stack to avoid stack growth allocation.
+ systemstack(func() {
+ // Make sure stats don't change.
+ getg().m.mallocing++
+
+ readmemstats_m(&base)
+
+ // Initialize slow from base and zero the fields we're
+ // recomputing.
+ slow = base
+ slow.Alloc = 0
+ slow.TotalAlloc = 0
+ slow.Mallocs = 0
+ slow.Frees = 0
+ slow.HeapReleased = 0
+ var bySize [_NumSizeClasses]struct {
+ Mallocs, Frees uint64
+ }
+
+ // Add up current allocations in spans.
+ for _, s := range mheap_.allspans {
+ if s.state.get() != mSpanInUse {
+ continue
+ }
+ if s.isUnusedUserArenaChunk() {
+ continue
+ }
+ if sizeclass := s.spanclass.sizeclass(); sizeclass == 0 {
+ slow.Mallocs++
+ slow.Alloc += uint64(s.elemsize)
+ } else {
+ slow.Mallocs += uint64(s.allocCount)
+ slow.Alloc += uint64(s.allocCount) * uint64(s.elemsize)
+ bySize[sizeclass].Mallocs += uint64(s.allocCount)
+ }
+ }
+
+ // Add in frees by just reading the stats for those directly.
+ var m heapStatsDelta
+ memstats.heapStats.unsafeRead(&m)
+
+ // Collect per-sizeclass free stats.
+ var smallFree uint64
+ for i := 0; i < _NumSizeClasses; i++ {
+ slow.Frees += uint64(m.smallFreeCount[i])
+ bySize[i].Frees += uint64(m.smallFreeCount[i])
+ bySize[i].Mallocs += uint64(m.smallFreeCount[i])
+ smallFree += uint64(m.smallFreeCount[i]) * uint64(class_to_size[i])
+ }
+ slow.Frees += uint64(m.tinyAllocCount) + uint64(m.largeFreeCount)
+ slow.Mallocs += slow.Frees
+
+ slow.TotalAlloc = slow.Alloc + uint64(m.largeFree) + smallFree
+
+ for i := range slow.BySize {
+ slow.BySize[i].Mallocs = bySize[i].Mallocs
+ slow.BySize[i].Frees = bySize[i].Frees
+ }
+
+ for i := mheap_.pages.start; i < mheap_.pages.end; i++ {
+ chunk := mheap_.pages.tryChunkOf(i)
+ if chunk == nil {
+ continue
+ }
+ pg := chunk.scavenged.popcntRange(0, pallocChunkPages)
+ slow.HeapReleased += uint64(pg) * pageSize
+ }
+ for _, p := range allp {
+ pg := sys.OnesCount64(p.pcache.scav)
+ slow.HeapReleased += uint64(pg) * pageSize
+ }
+
+ getg().m.mallocing--
+ })
+
+ startTheWorld()
+ return
+}
+
+// ShrinkStackAndVerifyFramePointers attempts to shrink the stack of the current goroutine
+// and verifies that unwinding the new stack doesn't crash, even if the old
+// stack has been freed or reused (simulated via poisoning).
+func ShrinkStackAndVerifyFramePointers() {
+ before := stackPoisonCopy
+ defer func() { stackPoisonCopy = before }()
+ stackPoisonCopy = 1
+
+ gp := getg()
+ systemstack(func() {
+ shrinkstack(gp)
+ })
+ // If our new stack contains frame pointers into the old stack, this will
+ // crash because the old stack has been poisoned.
+ FPCallers(make([]uintptr, 1024))
+}
+
+// BlockOnSystemStack switches to the system stack, prints "x\n" to
+// stderr, and blocks in a stack containing
+// "runtime.blockOnSystemStackInternal".
+func BlockOnSystemStack() {
+ systemstack(blockOnSystemStackInternal)
+}
+
+func blockOnSystemStackInternal() {
+ print("x\n")
+ lock(&deadlock)
+ lock(&deadlock)
+}
+
+type RWMutex struct {
+ rw rwmutex
+}
+
+func (rw *RWMutex) Init() {
+ rw.rw.init(lockRankTestR, lockRankTestRInternal, lockRankTestW)
+}
+
+func (rw *RWMutex) RLock() {
+ rw.rw.rlock()
+}
+
+func (rw *RWMutex) RUnlock() {
+ rw.rw.runlock()
+}
+
+func (rw *RWMutex) Lock() {
+ rw.rw.lock()
+}
+
+func (rw *RWMutex) Unlock() {
+ rw.rw.unlock()
+}
+
+const RuntimeHmapSize = unsafe.Sizeof(hmap{})
+
+func MapBucketsCount(m map[int]int) int {
+ h := *(**hmap)(unsafe.Pointer(&m))
+ return 1 << h.B
+}
+
+func MapBucketsPointerIsNil(m map[int]int) bool {
+ h := *(**hmap)(unsafe.Pointer(&m))
+ return h.buckets == nil
+}
+
+func LockOSCounts() (external, internal uint32) {
+ gp := getg()
+ if gp.m.lockedExt+gp.m.lockedInt == 0 {
+ if gp.lockedm != 0 {
+ panic("lockedm on non-locked goroutine")
+ }
+ } else {
+ if gp.lockedm == 0 {
+ panic("nil lockedm on locked goroutine")
+ }
+ }
+ return gp.m.lockedExt, gp.m.lockedInt
+}
+
+//go:noinline
+func TracebackSystemstack(stk []uintptr, i int) int {
+ if i == 0 {
+ pc, sp := getcallerpc(), getcallersp()
+ var u unwinder
+ u.initAt(pc, sp, 0, getg(), unwindJumpStack) // Don't ignore errors, for testing
+ return tracebackPCs(&u, 0, stk)
+ }
+ n := 0
+ systemstack(func() {
+ n = TracebackSystemstack(stk, i-1)
+ })
+ return n
+}
+
+func KeepNArenaHints(n int) {
+ hint := mheap_.arenaHints
+ for i := 1; i < n; i++ {
+ hint = hint.next
+ if hint == nil {
+ return
+ }
+ }
+ hint.next = nil
+}
+
+// MapNextArenaHint reserves a page at the next arena growth hint,
+// preventing the arena from growing there, and returns the range of
+// addresses that are no longer viable.
+//
+// This may fail to reserve memory. If it fails, it still returns the
+// address range it attempted to reserve.
+func MapNextArenaHint() (start, end uintptr, ok bool) {
+ hint := mheap_.arenaHints
+ addr := hint.addr
+ if hint.down {
+ start, end = addr-heapArenaBytes, addr
+ addr -= physPageSize
+ } else {
+ start, end = addr, addr+heapArenaBytes
+ }
+ got := sysReserve(unsafe.Pointer(addr), physPageSize)
+ ok = (addr == uintptr(got))
+ if !ok {
+ // We were unable to get the requested reservation.
+ // Release what we did get and fail.
+ sysFreeOS(got, physPageSize)
+ }
+ return
+}
+
+func GetNextArenaHint() uintptr {
+ return mheap_.arenaHints.addr
+}
+
+type G = g
+
+type Sudog = sudog
+
+func Getg() *G {
+ return getg()
+}
+
+func Goid() uint64 {
+ return getg().goid
+}
+
+func GIsWaitingOnMutex(gp *G) bool {
+ return readgstatus(gp) == _Gwaiting && gp.waitreason.isMutexWait()
+}
+
+var CasGStatusAlwaysTrack = &casgstatusAlwaysTrack
+
+//go:noinline
+func PanicForTesting(b []byte, i int) byte {
+ return unexportedPanicForTesting(b, i)
+}
+
+//go:noinline
+func unexportedPanicForTesting(b []byte, i int) byte {
+ return b[i]
+}
+
+func G0StackOverflow() {
+ systemstack(func() {
+ stackOverflow(nil)
+ })
+}
+
+func stackOverflow(x *byte) {
+ var buf [256]byte
+ stackOverflow(&buf[0])
+}
+
+func MapTombstoneCheck(m map[int]int) {
+ // Make sure emptyOne and emptyRest are distributed correctly.
+ // We should have a series of filled and emptyOne cells, followed by
+ // a series of emptyRest cells.
+ h := *(**hmap)(unsafe.Pointer(&m))
+ i := any(m)
+ t := *(**maptype)(unsafe.Pointer(&i))
+
+ for x := 0; x < 1<<h.B; x++ {
+ b0 := (*bmap)(add(h.buckets, uintptr(x)*uintptr(t.BucketSize)))
+ n := 0
+ for b := b0; b != nil; b = b.overflow(t) {
+ for i := 0; i < bucketCnt; i++ {
+ if b.tophash[i] != emptyRest {
+ n++
+ }
+ }
+ }
+ k := 0
+ for b := b0; b != nil; b = b.overflow(t) {
+ for i := 0; i < bucketCnt; i++ {
+ if k < n && b.tophash[i] == emptyRest {
+ panic("early emptyRest")
+ }
+ if k >= n && b.tophash[i] != emptyRest {
+ panic("late non-emptyRest")
+ }
+ if k == n-1 && b.tophash[i] == emptyOne {
+ panic("last non-emptyRest entry is emptyOne")
+ }
+ k++
+ }
+ }
+ }
+}
+
+func RunGetgThreadSwitchTest() {
+ // Test that getg works correctly with thread switch.
+ // With gccgo, if we generate getg inlined, the backend
+ // may cache the address of the TLS variable, which
+ // will become invalid after a thread switch. This test
+ // checks that the bad caching doesn't happen.
+
+ ch := make(chan int)
+ go func(ch chan int) {
+ ch <- 5
+ LockOSThread()
+ }(ch)
+
+ g1 := getg()
+
+ // Block on a receive. This is likely to get us a thread
+ // switch. If we yield to the sender goroutine, it will
+ // lock the thread, forcing us to resume on a different
+ // thread.
+ <-ch
+
+ g2 := getg()
+ if g1 != g2 {
+ panic("g1 != g2")
+ }
+
+ // Also test getg after some control flow, as the
+ // backend is sensitive to control flow.
+ g3 := getg()
+ if g1 != g3 {
+ panic("g1 != g3")
+ }
+}
+
+const (
+ PageSize = pageSize
+ PallocChunkPages = pallocChunkPages
+ PageAlloc64Bit = pageAlloc64Bit
+ PallocSumBytes = pallocSumBytes
+)
+
+// Expose pallocSum for testing.
+type PallocSum pallocSum
+
+func PackPallocSum(start, max, end uint) PallocSum { return PallocSum(packPallocSum(start, max, end)) }
+func (m PallocSum) Start() uint { return pallocSum(m).start() }
+func (m PallocSum) Max() uint { return pallocSum(m).max() }
+func (m PallocSum) End() uint { return pallocSum(m).end() }
+
+// Expose pallocBits for testing.
+type PallocBits pallocBits
+
+func (b *PallocBits) Find(npages uintptr, searchIdx uint) (uint, uint) {
+ return (*pallocBits)(b).find(npages, searchIdx)
+}
+func (b *PallocBits) AllocRange(i, n uint) { (*pallocBits)(b).allocRange(i, n) }
+func (b *PallocBits) Free(i, n uint) { (*pallocBits)(b).free(i, n) }
+func (b *PallocBits) Summarize() PallocSum { return PallocSum((*pallocBits)(b).summarize()) }
+func (b *PallocBits) PopcntRange(i, n uint) uint { return (*pageBits)(b).popcntRange(i, n) }
+
+// SummarizeSlow is a slow but more obviously correct implementation
+// of (*pallocBits).summarize. Used for testing.
+func SummarizeSlow(b *PallocBits) PallocSum {
+ var start, max, end uint
+
+ const N = uint(len(b)) * 64
+ for start < N && (*pageBits)(b).get(start) == 0 {
+ start++
+ }
+ for end < N && (*pageBits)(b).get(N-end-1) == 0 {
+ end++
+ }
+ run := uint(0)
+ for i := uint(0); i < N; i++ {
+ if (*pageBits)(b).get(i) == 0 {
+ run++
+ } else {
+ run = 0
+ }
+ if run > max {
+ max = run
+ }
+ }
+ return PackPallocSum(start, max, end)
+}
+
+// Expose non-trivial helpers for testing.
+func FindBitRange64(c uint64, n uint) uint { return findBitRange64(c, n) }
+
+// Given two PallocBits, returns a set of bit ranges where
+// they differ.
+func DiffPallocBits(a, b *PallocBits) []BitRange {
+ ba := (*pageBits)(a)
+ bb := (*pageBits)(b)
+
+ var d []BitRange
+ base, size := uint(0), uint(0)
+ for i := uint(0); i < uint(len(ba))*64; i++ {
+ if ba.get(i) != bb.get(i) {
+ if size == 0 {
+ base = i
+ }
+ size++
+ } else {
+ if size != 0 {
+ d = append(d, BitRange{base, size})
+ }
+ size = 0
+ }
+ }
+ if size != 0 {
+ d = append(d, BitRange{base, size})
+ }
+ return d
+}
+
+// StringifyPallocBits gets the bits in the bit range r from b,
+// and returns a string containing the bits as ASCII 0 and 1
+// characters.
+func StringifyPallocBits(b *PallocBits, r BitRange) string {
+ str := ""
+ for j := r.I; j < r.I+r.N; j++ {
+ if (*pageBits)(b).get(j) != 0 {
+ str += "1"
+ } else {
+ str += "0"
+ }
+ }
+ return str
+}
+
+// Expose pallocData for testing.
+type PallocData pallocData
+
+func (d *PallocData) FindScavengeCandidate(searchIdx uint, min, max uintptr) (uint, uint) {
+ return (*pallocData)(d).findScavengeCandidate(searchIdx, min, max)
+}
+func (d *PallocData) AllocRange(i, n uint) { (*pallocData)(d).allocRange(i, n) }
+func (d *PallocData) ScavengedSetRange(i, n uint) {
+ (*pallocData)(d).scavenged.setRange(i, n)
+}
+func (d *PallocData) PallocBits() *PallocBits {
+ return (*PallocBits)(&(*pallocData)(d).pallocBits)
+}
+func (d *PallocData) Scavenged() *PallocBits {
+ return (*PallocBits)(&(*pallocData)(d).scavenged)
+}
+
+// Expose fillAligned for testing.
+func FillAligned(x uint64, m uint) uint64 { return fillAligned(x, m) }
+
+// Expose pageCache for testing.
+type PageCache pageCache
+
+const PageCachePages = pageCachePages
+
+func NewPageCache(base uintptr, cache, scav uint64) PageCache {
+ return PageCache(pageCache{base: base, cache: cache, scav: scav})
+}
+func (c *PageCache) Empty() bool { return (*pageCache)(c).empty() }
+func (c *PageCache) Base() uintptr { return (*pageCache)(c).base }
+func (c *PageCache) Cache() uint64 { return (*pageCache)(c).cache }
+func (c *PageCache) Scav() uint64 { return (*pageCache)(c).scav }
+func (c *PageCache) Alloc(npages uintptr) (uintptr, uintptr) {
+ return (*pageCache)(c).alloc(npages)
+}
+func (c *PageCache) Flush(s *PageAlloc) {
+ cp := (*pageCache)(c)
+ sp := (*pageAlloc)(s)
+
+ systemstack(func() {
+ // None of the tests need any higher-level locking, so we just
+ // take the lock internally.
+ lock(sp.mheapLock)
+ cp.flush(sp)
+ unlock(sp.mheapLock)
+ })
+}
+
+// Expose chunk index type.
+type ChunkIdx chunkIdx
+
+// Expose pageAlloc for testing. Note that because pageAlloc is
+// not in the heap, so is PageAlloc.
+type PageAlloc pageAlloc
+
+func (p *PageAlloc) Alloc(npages uintptr) (uintptr, uintptr) {
+ pp := (*pageAlloc)(p)
+
+ var addr, scav uintptr
+ systemstack(func() {
+ // None of the tests need any higher-level locking, so we just
+ // take the lock internally.
+ lock(pp.mheapLock)
+ addr, scav = pp.alloc(npages)
+ unlock(pp.mheapLock)
+ })
+ return addr, scav
+}
+func (p *PageAlloc) AllocToCache() PageCache {
+ pp := (*pageAlloc)(p)
+
+ var c PageCache
+ systemstack(func() {
+ // None of the tests need any higher-level locking, so we just
+ // take the lock internally.
+ lock(pp.mheapLock)
+ c = PageCache(pp.allocToCache())
+ unlock(pp.mheapLock)
+ })
+ return c
+}
+func (p *PageAlloc) Free(base, npages uintptr) {
+ pp := (*pageAlloc)(p)
+
+ systemstack(func() {
+ // None of the tests need any higher-level locking, so we just
+ // take the lock internally.
+ lock(pp.mheapLock)
+ pp.free(base, npages)
+ unlock(pp.mheapLock)
+ })
+}
+func (p *PageAlloc) Bounds() (ChunkIdx, ChunkIdx) {
+ return ChunkIdx((*pageAlloc)(p).start), ChunkIdx((*pageAlloc)(p).end)
+}
+func (p *PageAlloc) Scavenge(nbytes uintptr) (r uintptr) {
+ pp := (*pageAlloc)(p)
+ systemstack(func() {
+ r = pp.scavenge(nbytes, nil, true)
+ })
+ return
+}
+func (p *PageAlloc) InUse() []AddrRange {
+ ranges := make([]AddrRange, 0, len(p.inUse.ranges))
+ for _, r := range p.inUse.ranges {
+ ranges = append(ranges, AddrRange{r})
+ }
+ return ranges
+}
+
+// Returns nil if the PallocData's L2 is missing.
+func (p *PageAlloc) PallocData(i ChunkIdx) *PallocData {
+ ci := chunkIdx(i)
+ return (*PallocData)((*pageAlloc)(p).tryChunkOf(ci))
+}
+
+// AddrRange is a wrapper around addrRange for testing.
+type AddrRange struct {
+ addrRange
+}
+
+// MakeAddrRange creates a new address range.
+func MakeAddrRange(base, limit uintptr) AddrRange {
+ return AddrRange{makeAddrRange(base, limit)}
+}
+
+// Base returns the virtual base address of the address range.
+func (a AddrRange) Base() uintptr {
+ return a.addrRange.base.addr()
+}
+
+// Base returns the virtual address of the limit of the address range.
+func (a AddrRange) Limit() uintptr {
+ return a.addrRange.limit.addr()
+}
+
+// Equals returns true if the two address ranges are exactly equal.
+func (a AddrRange) Equals(b AddrRange) bool {
+ return a == b
+}
+
+// Size returns the size in bytes of the address range.
+func (a AddrRange) Size() uintptr {
+ return a.addrRange.size()
+}
+
+// testSysStat is the sysStat passed to test versions of various
+// runtime structures. We do actually have to keep track of this
+// because otherwise memstats.mappedReady won't actually line up
+// with other stats in the runtime during tests.
+var testSysStat = &memstats.other_sys
+
+// AddrRanges is a wrapper around addrRanges for testing.
+type AddrRanges struct {
+ addrRanges
+ mutable bool
+}
+
+// NewAddrRanges creates a new empty addrRanges.
+//
+// Note that this initializes addrRanges just like in the
+// runtime, so its memory is persistentalloc'd. Call this
+// function sparingly since the memory it allocates is
+// leaked.
+//
+// This AddrRanges is mutable, so we can test methods like
+// Add.
+func NewAddrRanges() AddrRanges {
+ r := addrRanges{}
+ r.init(testSysStat)
+ return AddrRanges{r, true}
+}
+
+// MakeAddrRanges creates a new addrRanges populated with
+// the ranges in a.
+//
+// The returned AddrRanges is immutable, so methods like
+// Add will fail.
+func MakeAddrRanges(a ...AddrRange) AddrRanges {
+ // Methods that manipulate the backing store of addrRanges.ranges should
+ // not be used on the result from this function (e.g. add) since they may
+ // trigger reallocation. That would normally be fine, except the new
+ // backing store won't come from the heap, but from persistentalloc, so
+ // we'll leak some memory implicitly.
+ ranges := make([]addrRange, 0, len(a))
+ total := uintptr(0)
+ for _, r := range a {
+ ranges = append(ranges, r.addrRange)
+ total += r.Size()
+ }
+ return AddrRanges{addrRanges{
+ ranges: ranges,
+ totalBytes: total,
+ sysStat: testSysStat,
+ }, false}
+}
+
+// Ranges returns a copy of the ranges described by the
+// addrRanges.
+func (a *AddrRanges) Ranges() []AddrRange {
+ result := make([]AddrRange, 0, len(a.addrRanges.ranges))
+ for _, r := range a.addrRanges.ranges {
+ result = append(result, AddrRange{r})
+ }
+ return result
+}
+
+// FindSucc returns the successor to base. See addrRanges.findSucc
+// for more details.
+func (a *AddrRanges) FindSucc(base uintptr) int {
+ return a.findSucc(base)
+}
+
+// Add adds a new AddrRange to the AddrRanges.
+//
+// The AddrRange must be mutable (i.e. created by NewAddrRanges),
+// otherwise this method will throw.
+func (a *AddrRanges) Add(r AddrRange) {
+ if !a.mutable {
+ throw("attempt to mutate immutable AddrRanges")
+ }
+ a.add(r.addrRange)
+}
+
+// TotalBytes returns the totalBytes field of the addrRanges.
+func (a *AddrRanges) TotalBytes() uintptr {
+ return a.addrRanges.totalBytes
+}
+
+// BitRange represents a range over a bitmap.
+type BitRange struct {
+ I, N uint // bit index and length in bits
+}
+
+// NewPageAlloc creates a new page allocator for testing and
+// initializes it with the scav and chunks maps. Each key in these maps
+// represents a chunk index and each value is a series of bit ranges to
+// set within each bitmap's chunk.
+//
+// The initialization of the pageAlloc preserves the invariant that if a
+// scavenged bit is set the alloc bit is necessarily unset, so some
+// of the bits described by scav may be cleared in the final bitmap if
+// ranges in chunks overlap with them.
+//
+// scav is optional, and if nil, the scavenged bitmap will be cleared
+// (as opposed to all 1s, which it usually is). Furthermore, every
+// chunk index in scav must appear in chunks; ones that do not are
+// ignored.
+func NewPageAlloc(chunks, scav map[ChunkIdx][]BitRange) *PageAlloc {
+ p := new(pageAlloc)
+
+ // We've got an entry, so initialize the pageAlloc.
+ p.init(new(mutex), testSysStat, true)
+ lockInit(p.mheapLock, lockRankMheap)
+ for i, init := range chunks {
+ addr := chunkBase(chunkIdx(i))
+
+ // Mark the chunk's existence in the pageAlloc.
+ systemstack(func() {
+ lock(p.mheapLock)
+ p.grow(addr, pallocChunkBytes)
+ unlock(p.mheapLock)
+ })
+
+ // Initialize the bitmap and update pageAlloc metadata.
+ ci := chunkIndex(addr)
+ chunk := p.chunkOf(ci)
+
+ // Clear all the scavenged bits which grow set.
+ chunk.scavenged.clearRange(0, pallocChunkPages)
+
+ // Simulate the allocation and subsequent free of all pages in
+ // the chunk for the scavenge index. This sets the state equivalent
+ // with all pages within the index being free.
+ p.scav.index.alloc(ci, pallocChunkPages)
+ p.scav.index.free(ci, 0, pallocChunkPages)
+
+ // Apply scavenge state if applicable.
+ if scav != nil {
+ if scvg, ok := scav[i]; ok {
+ for _, s := range scvg {
+ // Ignore the case of s.N == 0. setRange doesn't handle
+ // it and it's a no-op anyway.
+ if s.N != 0 {
+ chunk.scavenged.setRange(s.I, s.N)
+ }
+ }
+ }
+ }
+
+ // Apply alloc state.
+ for _, s := range init {
+ // Ignore the case of s.N == 0. allocRange doesn't handle
+ // it and it's a no-op anyway.
+ if s.N != 0 {
+ chunk.allocRange(s.I, s.N)
+
+ // Make sure the scavenge index is updated.
+ p.scav.index.alloc(ci, s.N)
+ }
+ }
+
+ // Update heap metadata for the allocRange calls above.
+ systemstack(func() {
+ lock(p.mheapLock)
+ p.update(addr, pallocChunkPages, false, false)
+ unlock(p.mheapLock)
+ })
+ }
+
+ return (*PageAlloc)(p)
+}
+
+// FreePageAlloc releases hard OS resources owned by the pageAlloc. Once this
+// is called the pageAlloc may no longer be used. The object itself will be
+// collected by the garbage collector once it is no longer live.
+func FreePageAlloc(pp *PageAlloc) {
+ p := (*pageAlloc)(pp)
+
+ // Free all the mapped space for the summary levels.
+ if pageAlloc64Bit != 0 {
+ for l := 0; l < summaryLevels; l++ {
+ sysFreeOS(unsafe.Pointer(&p.summary[l][0]), uintptr(cap(p.summary[l]))*pallocSumBytes)
+ }
+ } else {
+ resSize := uintptr(0)
+ for _, s := range p.summary {
+ resSize += uintptr(cap(s)) * pallocSumBytes
+ }
+ sysFreeOS(unsafe.Pointer(&p.summary[0][0]), alignUp(resSize, physPageSize))
+ }
+
+ // Free extra data structures.
+ sysFreeOS(unsafe.Pointer(&p.scav.index.chunks[0]), uintptr(cap(p.scav.index.chunks))*unsafe.Sizeof(atomicScavChunkData{}))
+
+ // Subtract back out whatever we mapped for the summaries.
+ // sysUsed adds to p.sysStat and memstats.mappedReady no matter what
+ // (and in anger should actually be accounted for), and there's no other
+ // way to figure out how much we actually mapped.
+ gcController.mappedReady.Add(-int64(p.summaryMappedReady))
+ testSysStat.add(-int64(p.summaryMappedReady))
+
+ // Free the mapped space for chunks.
+ for i := range p.chunks {
+ if x := p.chunks[i]; x != nil {
+ p.chunks[i] = nil
+ // This memory comes from sysAlloc and will always be page-aligned.
+ sysFree(unsafe.Pointer(x), unsafe.Sizeof(*p.chunks[0]), testSysStat)
+ }
+ }
+}
+
+// BaseChunkIdx is a convenient chunkIdx value which works on both
+// 64 bit and 32 bit platforms, allowing the tests to share code
+// between the two.
+//
+// This should not be higher than 0x100*pallocChunkBytes to support
+// mips and mipsle, which only have 31-bit address spaces.
+var BaseChunkIdx = func() ChunkIdx {
+ var prefix uintptr
+ if pageAlloc64Bit != 0 {
+ prefix = 0xc000
+ } else {
+ prefix = 0x100
+ }
+ baseAddr := prefix * pallocChunkBytes
+ if goos.IsAix != 0 {
+ baseAddr += arenaBaseOffset
+ }
+ return ChunkIdx(chunkIndex(baseAddr))
+}()
+
+// PageBase returns an address given a chunk index and a page index
+// relative to that chunk.
+func PageBase(c ChunkIdx, pageIdx uint) uintptr {
+ return chunkBase(chunkIdx(c)) + uintptr(pageIdx)*pageSize
+}
+
+type BitsMismatch struct {
+ Base uintptr
+ Got, Want uint64
+}
+
+func CheckScavengedBitsCleared(mismatches []BitsMismatch) (n int, ok bool) {
+ ok = true
+
+ // Run on the system stack to avoid stack growth allocation.
+ systemstack(func() {
+ getg().m.mallocing++
+
+ // Lock so that we can safely access the bitmap.
+ lock(&mheap_.lock)
+ chunkLoop:
+ for i := mheap_.pages.start; i < mheap_.pages.end; i++ {
+ chunk := mheap_.pages.tryChunkOf(i)
+ if chunk == nil {
+ continue
+ }
+ for j := 0; j < pallocChunkPages/64; j++ {
+ // Run over each 64-bit bitmap section and ensure
+ // scavenged is being cleared properly on allocation.
+ // If a used bit and scavenged bit are both set, that's
+ // an error, and could indicate a larger problem, or
+ // an accounting problem.
+ want := chunk.scavenged[j] &^ chunk.pallocBits[j]
+ got := chunk.scavenged[j]
+ if want != got {
+ ok = false
+ if n >= len(mismatches) {
+ break chunkLoop
+ }
+ mismatches[n] = BitsMismatch{
+ Base: chunkBase(i) + uintptr(j)*64*pageSize,
+ Got: got,
+ Want: want,
+ }
+ n++
+ }
+ }
+ }
+ unlock(&mheap_.lock)
+
+ getg().m.mallocing--
+ })
+ return
+}
+
+func PageCachePagesLeaked() (leaked uintptr) {
+ stopTheWorld(stwForTestPageCachePagesLeaked)
+
+ // Walk over destroyed Ps and look for unflushed caches.
+ deadp := allp[len(allp):cap(allp)]
+ for _, p := range deadp {
+ // Since we're going past len(allp) we may see nil Ps.
+ // Just ignore them.
+ if p != nil {
+ leaked += uintptr(sys.OnesCount64(p.pcache.cache))
+ }
+ }
+
+ startTheWorld()
+ return
+}
+
+var Semacquire = semacquire
+var Semrelease1 = semrelease1
+
+func SemNwait(addr *uint32) uint32 {
+ root := semtable.rootFor(addr)
+ return root.nwait.Load()
+}
+
+const SemTableSize = semTabSize
+
+// SemTable is a wrapper around semTable exported for testing.
+type SemTable struct {
+ semTable
+}
+
+// Enqueue simulates enqueuing a waiter for a semaphore (or lock) at addr.
+func (t *SemTable) Enqueue(addr *uint32) {
+ s := acquireSudog()
+ s.releasetime = 0
+ s.acquiretime = 0
+ s.ticket = 0
+ t.semTable.rootFor(addr).queue(addr, s, false)
+}
+
+// Dequeue simulates dequeuing a waiter for a semaphore (or lock) at addr.
+//
+// Returns true if there actually was a waiter to be dequeued.
+func (t *SemTable) Dequeue(addr *uint32) bool {
+ s, _ := t.semTable.rootFor(addr).dequeue(addr)
+ if s != nil {
+ releaseSudog(s)
+ return true
+ }
+ return false
+}
+
+// mspan wrapper for testing.
+type MSpan mspan
+
+// Allocate an mspan for testing.
+func AllocMSpan() *MSpan {
+ var s *mspan
+ systemstack(func() {
+ lock(&mheap_.lock)
+ s = (*mspan)(mheap_.spanalloc.alloc())
+ unlock(&mheap_.lock)
+ })
+ return (*MSpan)(s)
+}
+
+// Free an allocated mspan.
+func FreeMSpan(s *MSpan) {
+ systemstack(func() {
+ lock(&mheap_.lock)
+ mheap_.spanalloc.free(unsafe.Pointer(s))
+ unlock(&mheap_.lock)
+ })
+}
+
+func MSpanCountAlloc(ms *MSpan, bits []byte) int {
+ s := (*mspan)(ms)
+ s.nelems = uintptr(len(bits) * 8)
+ s.gcmarkBits = (*gcBits)(unsafe.Pointer(&bits[0]))
+ result := s.countAlloc()
+ s.gcmarkBits = nil
+ return result
+}
+
+const (
+ TimeHistSubBucketBits = timeHistSubBucketBits
+ TimeHistNumSubBuckets = timeHistNumSubBuckets
+ TimeHistNumBuckets = timeHistNumBuckets
+ TimeHistMinBucketBits = timeHistMinBucketBits
+ TimeHistMaxBucketBits = timeHistMaxBucketBits
+)
+
+type TimeHistogram timeHistogram
+
+// Counts returns the counts for the given bucket, subBucket indices.
+// Returns true if the bucket was valid, otherwise returns the counts
+// for the overflow bucket if bucket > 0 or the underflow bucket if
+// bucket < 0, and false.
+func (th *TimeHistogram) Count(bucket, subBucket int) (uint64, bool) {
+ t := (*timeHistogram)(th)
+ if bucket < 0 {
+ return t.underflow.Load(), false
+ }
+ i := bucket*TimeHistNumSubBuckets + subBucket
+ if i >= len(t.counts) {
+ return t.overflow.Load(), false
+ }
+ return t.counts[i].Load(), true
+}
+
+func (th *TimeHistogram) Record(duration int64) {
+ (*timeHistogram)(th).record(duration)
+}
+
+var TimeHistogramMetricsBuckets = timeHistogramMetricsBuckets
+
+func SetIntArgRegs(a int) int {
+ lock(&finlock)
+ old := intArgRegs
+ if a >= 0 {
+ intArgRegs = a
+ }
+ unlock(&finlock)
+ return old
+}
+
+func FinalizerGAsleep() bool {
+ return fingStatus.Load()&fingWait != 0
+}
+
+// For GCTestMoveStackOnNextCall, it's important not to introduce an
+// extra layer of call, since then there's a return before the "real"
+// next call.
+var GCTestMoveStackOnNextCall = gcTestMoveStackOnNextCall
+
+// For GCTestIsReachable, it's important that we do this as a call so
+// escape analysis can see through it.
+func GCTestIsReachable(ptrs ...unsafe.Pointer) (mask uint64) {
+ return gcTestIsReachable(ptrs...)
+}
+
+// For GCTestPointerClass, it's important that we do this as a call so
+// escape analysis can see through it.
+//
+// This is nosplit because gcTestPointerClass is.
+//
+//go:nosplit
+func GCTestPointerClass(p unsafe.Pointer) string {
+ return gcTestPointerClass(p)
+}
+
+const Raceenabled = raceenabled
+
+const (
+ GCBackgroundUtilization = gcBackgroundUtilization
+ GCGoalUtilization = gcGoalUtilization
+ DefaultHeapMinimum = defaultHeapMinimum
+ MemoryLimitHeapGoalHeadroomPercent = memoryLimitHeapGoalHeadroomPercent
+ MemoryLimitMinHeapGoalHeadroom = memoryLimitMinHeapGoalHeadroom
+)
+
+type GCController struct {
+ gcControllerState
+}
+
+func NewGCController(gcPercent int, memoryLimit int64) *GCController {
+ // Force the controller to escape. We're going to
+ // do 64-bit atomics on it, and if it gets stack-allocated
+ // on a 32-bit architecture, it may get allocated unaligned
+ // space.
+ g := Escape(new(GCController))
+ g.gcControllerState.test = true // Mark it as a test copy.
+ g.init(int32(gcPercent), memoryLimit)
+ return g
+}
+
+func (c *GCController) StartCycle(stackSize, globalsSize uint64, scannableFrac float64, gomaxprocs int) {
+ trigger, _ := c.trigger()
+ if c.heapMarked > trigger {
+ trigger = c.heapMarked
+ }
+ c.maxStackScan.Store(stackSize)
+ c.globalsScan.Store(globalsSize)
+ c.heapLive.Store(trigger)
+ c.heapScan.Add(int64(float64(trigger-c.heapMarked) * scannableFrac))
+ c.startCycle(0, gomaxprocs, gcTrigger{kind: gcTriggerHeap})
+}
+
+func (c *GCController) AssistWorkPerByte() float64 {
+ return c.assistWorkPerByte.Load()
+}
+
+func (c *GCController) HeapGoal() uint64 {
+ return c.heapGoal()
+}
+
+func (c *GCController) HeapLive() uint64 {
+ return c.heapLive.Load()
+}
+
+func (c *GCController) HeapMarked() uint64 {
+ return c.heapMarked
+}
+
+func (c *GCController) Triggered() uint64 {
+ return c.triggered
+}
+
+type GCControllerReviseDelta struct {
+ HeapLive int64
+ HeapScan int64
+ HeapScanWork int64
+ StackScanWork int64
+ GlobalsScanWork int64
+}
+
+func (c *GCController) Revise(d GCControllerReviseDelta) {
+ c.heapLive.Add(d.HeapLive)
+ c.heapScan.Add(d.HeapScan)
+ c.heapScanWork.Add(d.HeapScanWork)
+ c.stackScanWork.Add(d.StackScanWork)
+ c.globalsScanWork.Add(d.GlobalsScanWork)
+ c.revise()
+}
+
+func (c *GCController) EndCycle(bytesMarked uint64, assistTime, elapsed int64, gomaxprocs int) {
+ c.assistTime.Store(assistTime)
+ c.endCycle(elapsed, gomaxprocs, false)
+ c.resetLive(bytesMarked)
+ c.commit(false)
+}
+
+func (c *GCController) AddIdleMarkWorker() bool {
+ return c.addIdleMarkWorker()
+}
+
+func (c *GCController) NeedIdleMarkWorker() bool {
+ return c.needIdleMarkWorker()
+}
+
+func (c *GCController) RemoveIdleMarkWorker() {
+ c.removeIdleMarkWorker()
+}
+
+func (c *GCController) SetMaxIdleMarkWorkers(max int32) {
+ c.setMaxIdleMarkWorkers(max)
+}
+
+var alwaysFalse bool
+var escapeSink any
+
+func Escape[T any](x T) T {
+ if alwaysFalse {
+ escapeSink = x
+ }
+ return x
+}
+
+// Acquirem blocks preemption.
+func Acquirem() {
+ acquirem()
+}
+
+func Releasem() {
+ releasem(getg().m)
+}
+
+var Timediv = timediv
+
+type PIController struct {
+ piController
+}
+
+func NewPIController(kp, ti, tt, min, max float64) *PIController {
+ return &PIController{piController{
+ kp: kp,
+ ti: ti,
+ tt: tt,
+ min: min,
+ max: max,
+ }}
+}
+
+func (c *PIController) Next(input, setpoint, period float64) (float64, bool) {
+ return c.piController.next(input, setpoint, period)
+}
+
+const (
+ CapacityPerProc = capacityPerProc
+ GCCPULimiterUpdatePeriod = gcCPULimiterUpdatePeriod
+)
+
+type GCCPULimiter struct {
+ limiter gcCPULimiterState
+}
+
+func NewGCCPULimiter(now int64, gomaxprocs int32) *GCCPULimiter {
+ // Force the controller to escape. We're going to
+ // do 64-bit atomics on it, and if it gets stack-allocated
+ // on a 32-bit architecture, it may get allocated unaligned
+ // space.
+ l := Escape(new(GCCPULimiter))
+ l.limiter.test = true
+ l.limiter.resetCapacity(now, gomaxprocs)
+ return l
+}
+
+func (l *GCCPULimiter) Fill() uint64 {
+ return l.limiter.bucket.fill
+}
+
+func (l *GCCPULimiter) Capacity() uint64 {
+ return l.limiter.bucket.capacity
+}
+
+func (l *GCCPULimiter) Overflow() uint64 {
+ return l.limiter.overflow
+}
+
+func (l *GCCPULimiter) Limiting() bool {
+ return l.limiter.limiting()
+}
+
+func (l *GCCPULimiter) NeedUpdate(now int64) bool {
+ return l.limiter.needUpdate(now)
+}
+
+func (l *GCCPULimiter) StartGCTransition(enableGC bool, now int64) {
+ l.limiter.startGCTransition(enableGC, now)
+}
+
+func (l *GCCPULimiter) FinishGCTransition(now int64) {
+ l.limiter.finishGCTransition(now)
+}
+
+func (l *GCCPULimiter) Update(now int64) {
+ l.limiter.update(now)
+}
+
+func (l *GCCPULimiter) AddAssistTime(t int64) {
+ l.limiter.addAssistTime(t)
+}
+
+func (l *GCCPULimiter) ResetCapacity(now int64, nprocs int32) {
+ l.limiter.resetCapacity(now, nprocs)
+}
+
+const ScavengePercent = scavengePercent
+
+type Scavenger struct {
+ Sleep func(int64) int64
+ Scavenge func(uintptr) (uintptr, int64)
+ ShouldStop func() bool
+ GoMaxProcs func() int32
+
+ released atomic.Uintptr
+ scavenger scavengerState
+ stop chan<- struct{}
+ done <-chan struct{}
+}
+
+func (s *Scavenger) Start() {
+ if s.Sleep == nil || s.Scavenge == nil || s.ShouldStop == nil || s.GoMaxProcs == nil {
+ panic("must populate all stubs")
+ }
+
+ // Install hooks.
+ s.scavenger.sleepStub = s.Sleep
+ s.scavenger.scavenge = s.Scavenge
+ s.scavenger.shouldStop = s.ShouldStop
+ s.scavenger.gomaxprocs = s.GoMaxProcs
+
+ // Start up scavenger goroutine, and wait for it to be ready.
+ stop := make(chan struct{})
+ s.stop = stop
+ done := make(chan struct{})
+ s.done = done
+ go func() {
+ // This should match bgscavenge, loosely.
+ s.scavenger.init()
+ s.scavenger.park()
+ for {
+ select {
+ case <-stop:
+ close(done)
+ return
+ default:
+ }
+ released, workTime := s.scavenger.run()
+ if released == 0 {
+ s.scavenger.park()
+ continue
+ }
+ s.released.Add(released)
+ s.scavenger.sleep(workTime)
+ }
+ }()
+ if !s.BlockUntilParked(1e9 /* 1 second */) {
+ panic("timed out waiting for scavenger to get ready")
+ }
+}
+
+// BlockUntilParked blocks until the scavenger parks, or until
+// timeout is exceeded. Returns true if the scavenger parked.
+//
+// Note that in testing, parked means something slightly different.
+// In anger, the scavenger parks to sleep, too, but in testing,
+// it only parks when it actually has no work to do.
+func (s *Scavenger) BlockUntilParked(timeout int64) bool {
+ // Just spin, waiting for it to park.
+ //
+ // The actual parking process is racy with respect to
+ // wakeups, which is fine, but for testing we need something
+ // a bit more robust.
+ start := nanotime()
+ for nanotime()-start < timeout {
+ lock(&s.scavenger.lock)
+ parked := s.scavenger.parked
+ unlock(&s.scavenger.lock)
+ if parked {
+ return true
+ }
+ Gosched()
+ }
+ return false
+}
+
+// Released returns how many bytes the scavenger released.
+func (s *Scavenger) Released() uintptr {
+ return s.released.Load()
+}
+
+// Wake wakes up a parked scavenger to keep running.
+func (s *Scavenger) Wake() {
+ s.scavenger.wake()
+}
+
+// Stop cleans up the scavenger's resources. The scavenger
+// must be parked for this to work.
+func (s *Scavenger) Stop() {
+ lock(&s.scavenger.lock)
+ parked := s.scavenger.parked
+ unlock(&s.scavenger.lock)
+ if !parked {
+ panic("tried to clean up scavenger that is not parked")
+ }
+ close(s.stop)
+ s.Wake()
+ <-s.done
+}
+
+type ScavengeIndex struct {
+ i scavengeIndex
+}
+
+func NewScavengeIndex(min, max ChunkIdx) *ScavengeIndex {
+ s := new(ScavengeIndex)
+ // This is a bit lazy but we easily guarantee we'll be able
+ // to reference all the relevant chunks. The worst-case
+ // memory usage here is 512 MiB, but tests generally use
+ // small offsets from BaseChunkIdx, which results in ~100s
+ // of KiB in memory use.
+ //
+ // This may still be worth making better, at least by sharing
+ // this fairly large array across calls with a sync.Pool or
+ // something. Currently, when the tests are run serially,
+ // it takes around 0.5s. Not all that much, but if we have
+ // a lot of tests like this it could add up.
+ s.i.chunks = make([]atomicScavChunkData, max)
+ s.i.min.Store(uintptr(min))
+ s.i.max.Store(uintptr(max))
+ s.i.minHeapIdx.Store(uintptr(min))
+ s.i.test = true
+ return s
+}
+
+func (s *ScavengeIndex) Find(force bool) (ChunkIdx, uint) {
+ ci, off := s.i.find(force)
+ return ChunkIdx(ci), off
+}
+
+func (s *ScavengeIndex) AllocRange(base, limit uintptr) {
+ sc, ec := chunkIndex(base), chunkIndex(limit-1)
+ si, ei := chunkPageIndex(base), chunkPageIndex(limit-1)
+
+ if sc == ec {
+ // The range doesn't cross any chunk boundaries.
+ s.i.alloc(sc, ei+1-si)
+ } else {
+ // The range crosses at least one chunk boundary.
+ s.i.alloc(sc, pallocChunkPages-si)
+ for c := sc + 1; c < ec; c++ {
+ s.i.alloc(c, pallocChunkPages)
+ }
+ s.i.alloc(ec, ei+1)
+ }
+}
+
+func (s *ScavengeIndex) FreeRange(base, limit uintptr) {
+ sc, ec := chunkIndex(base), chunkIndex(limit-1)
+ si, ei := chunkPageIndex(base), chunkPageIndex(limit-1)
+
+ if sc == ec {
+ // The range doesn't cross any chunk boundaries.
+ s.i.free(sc, si, ei+1-si)
+ } else {
+ // The range crosses at least one chunk boundary.
+ s.i.free(sc, si, pallocChunkPages-si)
+ for c := sc + 1; c < ec; c++ {
+ s.i.free(c, 0, pallocChunkPages)
+ }
+ s.i.free(ec, 0, ei+1)
+ }
+}
+
+func (s *ScavengeIndex) ResetSearchAddrs() {
+ for _, a := range []*atomicOffAddr{&s.i.searchAddrBg, &s.i.searchAddrForce} {
+ addr, marked := a.Load()
+ if marked {
+ a.StoreUnmark(addr, addr)
+ }
+ a.Clear()
+ }
+ s.i.freeHWM = minOffAddr
+}
+
+func (s *ScavengeIndex) NextGen() {
+ s.i.nextGen()
+}
+
+func (s *ScavengeIndex) SetEmpty(ci ChunkIdx) {
+ s.i.setEmpty(chunkIdx(ci))
+}
+
+func (s *ScavengeIndex) SetNoHugePage(ci ChunkIdx) {
+ s.i.setNoHugePage(chunkIdx(ci))
+}
+
+func CheckPackScavChunkData(gen uint32, inUse, lastInUse uint16, flags uint8) bool {
+ sc0 := scavChunkData{
+ gen: gen,
+ inUse: inUse,
+ lastInUse: lastInUse,
+ scavChunkFlags: scavChunkFlags(flags),
+ }
+ scp := sc0.pack()
+ sc1 := unpackScavChunkData(scp)
+ return sc0 == sc1
+}
+
+const GTrackingPeriod = gTrackingPeriod
+
+var ZeroBase = unsafe.Pointer(&zerobase)
+
+const UserArenaChunkBytes = userArenaChunkBytes
+
+type UserArena struct {
+ arena *userArena
+}
+
+func NewUserArena() *UserArena {
+ return &UserArena{newUserArena()}
+}
+
+func (a *UserArena) New(out *any) {
+ i := efaceOf(out)
+ typ := i._type
+ if typ.Kind_&kindMask != kindPtr {
+ panic("new result of non-ptr type")
+ }
+ typ = (*ptrtype)(unsafe.Pointer(typ)).Elem
+ i.data = a.arena.new(typ)
+}
+
+func (a *UserArena) Slice(sl any, cap int) {
+ a.arena.slice(sl, cap)
+}
+
+func (a *UserArena) Free() {
+ a.arena.free()
+}
+
+func GlobalWaitingArenaChunks() int {
+ n := 0
+ systemstack(func() {
+ lock(&mheap_.lock)
+ for s := mheap_.userArena.quarantineList.first; s != nil; s = s.next {
+ n++
+ }
+ unlock(&mheap_.lock)
+ })
+ return n
+}
+
+func UserArenaClone[T any](s T) T {
+ return arena_heapify(s).(T)
+}
+
+var AlignUp = alignUp
+
+// BlockUntilEmptyFinalizerQueue blocks until either the finalizer
+// queue is emptied (and the finalizers have executed) or the timeout
+// is reached. Returns true if the finalizer queue was emptied.
+func BlockUntilEmptyFinalizerQueue(timeout int64) bool {
+ start := nanotime()
+ for nanotime()-start < timeout {
+ lock(&finlock)
+ // We know the queue has been drained when both finq is nil
+ // and the finalizer g has stopped executing.
+ empty := finq == nil
+ empty = empty && readgstatus(fing) == _Gwaiting && fing.waitreason == waitReasonFinalizerWait
+ unlock(&finlock)
+ if empty {
+ return true
+ }
+ Gosched()
+ }
+ return false
+}
+
+func FrameStartLine(f *Frame) int {
+ return f.startLine
+}
+
+// PersistentAlloc allocates some memory that lives outside the Go heap.
+// This memory will never be freed; use sparingly.
+func PersistentAlloc(n uintptr) unsafe.Pointer {
+ return persistentalloc(n, 0, &memstats.other_sys)
+}
+
+// FPCallers works like Callers and uses frame pointer unwinding to populate
+// pcBuf with the return addresses of the physical frames on the stack.
+func FPCallers(pcBuf []uintptr) int {
+ return fpTracebackPCs(unsafe.Pointer(getfp()), pcBuf)
+}
+
+const FramePointerEnabled = framepointer_enabled
+
+var (
+ IsPinned = isPinned
+ GetPinCounter = pinnerGetPinCounter
+)
+
+func SetPinnerLeakPanic(f func()) {
+ pinnerLeakPanic = f
+}
+func GetPinnerLeakPanic() func() {
+ return pinnerLeakPanic
+}