summaryrefslogtreecommitdiffstats
path: root/src/runtime/memclr_amd64.s
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:19:13 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:19:13 +0000
commitccd992355df7192993c666236047820244914598 (patch)
treef00fea65147227b7743083c6148396f74cd66935 /src/runtime/memclr_amd64.s
parentInitial commit. (diff)
downloadgolang-1.21-ccd992355df7192993c666236047820244914598.tar.xz
golang-1.21-ccd992355df7192993c666236047820244914598.zip
Adding upstream version 1.21.8.upstream/1.21.8
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/runtime/memclr_amd64.s')
-rw-r--r--src/runtime/memclr_amd64.s218
1 files changed, 218 insertions, 0 deletions
diff --git a/src/runtime/memclr_amd64.s b/src/runtime/memclr_amd64.s
new file mode 100644
index 0000000..19bfa6f
--- /dev/null
+++ b/src/runtime/memclr_amd64.s
@@ -0,0 +1,218 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !plan9
+
+#include "go_asm.h"
+#include "textflag.h"
+#include "asm_amd64.h"
+
+// See memclrNoHeapPointers Go doc for important implementation constraints.
+
+// func memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr)
+// ABIInternal for performance.
+TEXT runtime·memclrNoHeapPointers<ABIInternal>(SB), NOSPLIT, $0-16
+ // AX = ptr
+ // BX = n
+ MOVQ AX, DI // DI = ptr
+ XORQ AX, AX
+
+ // MOVOU seems always faster than REP STOSQ when Enhanced REP STOSQ is not available.
+tail:
+ // BSR+branch table make almost all memmove/memclr benchmarks worse. Not worth doing.
+ TESTQ BX, BX
+ JEQ _0
+ CMPQ BX, $2
+ JBE _1or2
+ CMPQ BX, $4
+ JBE _3or4
+ CMPQ BX, $8
+ JB _5through7
+ JE _8
+ CMPQ BX, $16
+ JBE _9through16
+ CMPQ BX, $32
+ JBE _17through32
+ CMPQ BX, $64
+ JBE _33through64
+ CMPQ BX, $128
+ JBE _65through128
+ CMPQ BX, $256
+ JBE _129through256
+
+ CMPB internal∕cpu·X86+const_offsetX86HasERMS(SB), $1 // enhanced REP MOVSB/STOSB
+ JNE skip_erms
+
+ // If the size is less than 2kb, do not use ERMS as it has a big start-up cost.
+ // Table 3-4. Relative Performance of Memcpy() Using ERMSB Vs. 128-bit AVX
+ // in the Intel Optimization Guide shows better performance for ERMSB starting
+ // from 2KB. Benchmarks show the similar threshold for REP STOS vs AVX.
+ CMPQ BX, $2048
+ JAE loop_preheader_erms
+
+skip_erms:
+#ifndef hasAVX2
+ CMPB internal∕cpu·X86+const_offsetX86HasAVX2(SB), $1
+ JE loop_preheader_avx2
+ // TODO: for really big clears, use MOVNTDQ, even without AVX2.
+
+loop:
+ MOVOU X15, 0(DI)
+ MOVOU X15, 16(DI)
+ MOVOU X15, 32(DI)
+ MOVOU X15, 48(DI)
+ MOVOU X15, 64(DI)
+ MOVOU X15, 80(DI)
+ MOVOU X15, 96(DI)
+ MOVOU X15, 112(DI)
+ MOVOU X15, 128(DI)
+ MOVOU X15, 144(DI)
+ MOVOU X15, 160(DI)
+ MOVOU X15, 176(DI)
+ MOVOU X15, 192(DI)
+ MOVOU X15, 208(DI)
+ MOVOU X15, 224(DI)
+ MOVOU X15, 240(DI)
+ SUBQ $256, BX
+ ADDQ $256, DI
+ CMPQ BX, $256
+ JAE loop
+ JMP tail
+#endif
+
+loop_preheader_avx2:
+ VPXOR X0, X0, X0
+ // For smaller sizes MOVNTDQ may be faster or slower depending on hardware.
+ // For larger sizes it is always faster, even on dual Xeons with 30M cache.
+ // TODO take into account actual LLC size. E. g. glibc uses LLC size/2.
+ CMPQ BX, $0x2000000
+ JAE loop_preheader_avx2_huge
+
+loop_avx2:
+ VMOVDQU Y0, 0(DI)
+ VMOVDQU Y0, 32(DI)
+ VMOVDQU Y0, 64(DI)
+ VMOVDQU Y0, 96(DI)
+ SUBQ $128, BX
+ ADDQ $128, DI
+ CMPQ BX, $128
+ JAE loop_avx2
+ VMOVDQU Y0, -32(DI)(BX*1)
+ VMOVDQU Y0, -64(DI)(BX*1)
+ VMOVDQU Y0, -96(DI)(BX*1)
+ VMOVDQU Y0, -128(DI)(BX*1)
+ VZEROUPPER
+ RET
+
+loop_preheader_erms:
+#ifndef hasAVX2
+ CMPB internal∕cpu·X86+const_offsetX86HasAVX2(SB), $1
+ JNE loop_erms
+#endif
+
+ VPXOR X0, X0, X0
+ // At this point both ERMS and AVX2 is supported. While REP STOS can use a no-RFO
+ // write protocol, ERMS could show the same or slower performance comparing to
+ // Non-Temporal Stores when the size is bigger than LLC depending on hardware.
+ CMPQ BX, $0x2000000
+ JAE loop_preheader_avx2_huge
+
+loop_erms:
+ // STOSQ is used to guarantee that the whole zeroed pointer-sized word is visible
+ // for a memory subsystem as the GC requires this.
+ MOVQ BX, CX
+ SHRQ $3, CX
+ ANDQ $7, BX
+ REP; STOSQ
+ JMP tail
+
+loop_preheader_avx2_huge:
+ // Align to 32 byte boundary
+ VMOVDQU Y0, 0(DI)
+ MOVQ DI, SI
+ ADDQ $32, DI
+ ANDQ $~31, DI
+ SUBQ DI, SI
+ ADDQ SI, BX
+loop_avx2_huge:
+ VMOVNTDQ Y0, 0(DI)
+ VMOVNTDQ Y0, 32(DI)
+ VMOVNTDQ Y0, 64(DI)
+ VMOVNTDQ Y0, 96(DI)
+ SUBQ $128, BX
+ ADDQ $128, DI
+ CMPQ BX, $128
+ JAE loop_avx2_huge
+ // In the description of MOVNTDQ in [1]
+ // "... fencing operation implemented with the SFENCE or MFENCE instruction
+ // should be used in conjunction with MOVNTDQ instructions..."
+ // [1] 64-ia-32-architectures-software-developer-manual-325462.pdf
+ SFENCE
+ VMOVDQU Y0, -32(DI)(BX*1)
+ VMOVDQU Y0, -64(DI)(BX*1)
+ VMOVDQU Y0, -96(DI)(BX*1)
+ VMOVDQU Y0, -128(DI)(BX*1)
+ VZEROUPPER
+ RET
+
+_1or2:
+ MOVB AX, (DI)
+ MOVB AX, -1(DI)(BX*1)
+ RET
+_0:
+ RET
+_3or4:
+ MOVW AX, (DI)
+ MOVW AX, -2(DI)(BX*1)
+ RET
+_5through7:
+ MOVL AX, (DI)
+ MOVL AX, -4(DI)(BX*1)
+ RET
+_8:
+ // We need a separate case for 8 to make sure we clear pointers atomically.
+ MOVQ AX, (DI)
+ RET
+_9through16:
+ MOVQ AX, (DI)
+ MOVQ AX, -8(DI)(BX*1)
+ RET
+_17through32:
+ MOVOU X15, (DI)
+ MOVOU X15, -16(DI)(BX*1)
+ RET
+_33through64:
+ MOVOU X15, (DI)
+ MOVOU X15, 16(DI)
+ MOVOU X15, -32(DI)(BX*1)
+ MOVOU X15, -16(DI)(BX*1)
+ RET
+_65through128:
+ MOVOU X15, (DI)
+ MOVOU X15, 16(DI)
+ MOVOU X15, 32(DI)
+ MOVOU X15, 48(DI)
+ MOVOU X15, -64(DI)(BX*1)
+ MOVOU X15, -48(DI)(BX*1)
+ MOVOU X15, -32(DI)(BX*1)
+ MOVOU X15, -16(DI)(BX*1)
+ RET
+_129through256:
+ MOVOU X15, (DI)
+ MOVOU X15, 16(DI)
+ MOVOU X15, 32(DI)
+ MOVOU X15, 48(DI)
+ MOVOU X15, 64(DI)
+ MOVOU X15, 80(DI)
+ MOVOU X15, 96(DI)
+ MOVOU X15, 112(DI)
+ MOVOU X15, -128(DI)(BX*1)
+ MOVOU X15, -112(DI)(BX*1)
+ MOVOU X15, -96(DI)(BX*1)
+ MOVOU X15, -80(DI)(BX*1)
+ MOVOU X15, -64(DI)(BX*1)
+ MOVOU X15, -48(DI)(BX*1)
+ MOVOU X15, -32(DI)(BX*1)
+ MOVOU X15, -16(DI)(BX*1)
+ RET