summaryrefslogtreecommitdiffstats
path: root/src/runtime/mgcpacer.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:19:13 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:19:13 +0000
commitccd992355df7192993c666236047820244914598 (patch)
treef00fea65147227b7743083c6148396f74cd66935 /src/runtime/mgcpacer.go
parentInitial commit. (diff)
downloadgolang-1.21-ccd992355df7192993c666236047820244914598.tar.xz
golang-1.21-ccd992355df7192993c666236047820244914598.zip
Adding upstream version 1.21.8.upstream/1.21.8
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/runtime/mgcpacer.go')
-rw-r--r--src/runtime/mgcpacer.go1444
1 files changed, 1444 insertions, 0 deletions
diff --git a/src/runtime/mgcpacer.go b/src/runtime/mgcpacer.go
new file mode 100644
index 0000000..32e19f9
--- /dev/null
+++ b/src/runtime/mgcpacer.go
@@ -0,0 +1,1444 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package runtime
+
+import (
+ "internal/cpu"
+ "internal/goexperiment"
+ "runtime/internal/atomic"
+ _ "unsafe" // for go:linkname
+)
+
+const (
+ // gcGoalUtilization is the goal CPU utilization for
+ // marking as a fraction of GOMAXPROCS.
+ //
+ // Increasing the goal utilization will shorten GC cycles as the GC
+ // has more resources behind it, lessening costs from the write barrier,
+ // but comes at the cost of increasing mutator latency.
+ gcGoalUtilization = gcBackgroundUtilization
+
+ // gcBackgroundUtilization is the fixed CPU utilization for background
+ // marking. It must be <= gcGoalUtilization. The difference between
+ // gcGoalUtilization and gcBackgroundUtilization will be made up by
+ // mark assists. The scheduler will aim to use within 50% of this
+ // goal.
+ //
+ // As a general rule, there's little reason to set gcBackgroundUtilization
+ // < gcGoalUtilization. One reason might be in mostly idle applications,
+ // where goroutines are unlikely to assist at all, so the actual
+ // utilization will be lower than the goal. But this is moot point
+ // because the idle mark workers already soak up idle CPU resources.
+ // These two values are still kept separate however because they are
+ // distinct conceptually, and in previous iterations of the pacer the
+ // distinction was more important.
+ gcBackgroundUtilization = 0.25
+
+ // gcCreditSlack is the amount of scan work credit that can
+ // accumulate locally before updating gcController.heapScanWork and,
+ // optionally, gcController.bgScanCredit. Lower values give a more
+ // accurate assist ratio and make it more likely that assists will
+ // successfully steal background credit. Higher values reduce memory
+ // contention.
+ gcCreditSlack = 2000
+
+ // gcAssistTimeSlack is the nanoseconds of mutator assist time that
+ // can accumulate on a P before updating gcController.assistTime.
+ gcAssistTimeSlack = 5000
+
+ // gcOverAssistWork determines how many extra units of scan work a GC
+ // assist does when an assist happens. This amortizes the cost of an
+ // assist by pre-paying for this many bytes of future allocations.
+ gcOverAssistWork = 64 << 10
+
+ // defaultHeapMinimum is the value of heapMinimum for GOGC==100.
+ defaultHeapMinimum = (goexperiment.HeapMinimum512KiBInt)*(512<<10) +
+ (1-goexperiment.HeapMinimum512KiBInt)*(4<<20)
+
+ // maxStackScanSlack is the bytes of stack space allocated or freed
+ // that can accumulate on a P before updating gcController.stackSize.
+ maxStackScanSlack = 8 << 10
+
+ // memoryLimitMinHeapGoalHeadroom is the minimum amount of headroom the
+ // pacer gives to the heap goal when operating in the memory-limited regime.
+ // That is, it'll reduce the heap goal by this many extra bytes off of the
+ // base calculation, at minimum.
+ memoryLimitMinHeapGoalHeadroom = 1 << 20
+
+ // memoryLimitHeapGoalHeadroomPercent is how headroom the memory-limit-based
+ // heap goal should have as a percent of the maximum possible heap goal allowed
+ // to maintain the memory limit.
+ memoryLimitHeapGoalHeadroomPercent = 3
+)
+
+// gcController implements the GC pacing controller that determines
+// when to trigger concurrent garbage collection and how much marking
+// work to do in mutator assists and background marking.
+//
+// It calculates the ratio between the allocation rate (in terms of CPU
+// time) and the GC scan throughput to determine the heap size at which to
+// trigger a GC cycle such that no GC assists are required to finish on time.
+// This algorithm thus optimizes GC CPU utilization to the dedicated background
+// mark utilization of 25% of GOMAXPROCS by minimizing GC assists.
+// GOMAXPROCS. The high-level design of this algorithm is documented
+// at https://github.com/golang/proposal/blob/master/design/44167-gc-pacer-redesign.md.
+// See https://golang.org/s/go15gcpacing for additional historical context.
+var gcController gcControllerState
+
+type gcControllerState struct {
+ // Initialized from GOGC. GOGC=off means no GC.
+ gcPercent atomic.Int32
+
+ // memoryLimit is the soft memory limit in bytes.
+ //
+ // Initialized from GOMEMLIMIT. GOMEMLIMIT=off is equivalent to MaxInt64
+ // which means no soft memory limit in practice.
+ //
+ // This is an int64 instead of a uint64 to more easily maintain parity with
+ // the SetMemoryLimit API, which sets a maximum at MaxInt64. This value
+ // should never be negative.
+ memoryLimit atomic.Int64
+
+ // heapMinimum is the minimum heap size at which to trigger GC.
+ // For small heaps, this overrides the usual GOGC*live set rule.
+ //
+ // When there is a very small live set but a lot of allocation, simply
+ // collecting when the heap reaches GOGC*live results in many GC
+ // cycles and high total per-GC overhead. This minimum amortizes this
+ // per-GC overhead while keeping the heap reasonably small.
+ //
+ // During initialization this is set to 4MB*GOGC/100. In the case of
+ // GOGC==0, this will set heapMinimum to 0, resulting in constant
+ // collection even when the heap size is small, which is useful for
+ // debugging.
+ heapMinimum uint64
+
+ // runway is the amount of runway in heap bytes allocated by the
+ // application that we want to give the GC once it starts.
+ //
+ // This is computed from consMark during mark termination.
+ runway atomic.Uint64
+
+ // consMark is the estimated per-CPU consMark ratio for the application.
+ //
+ // It represents the ratio between the application's allocation
+ // rate, as bytes allocated per CPU-time, and the GC's scan rate,
+ // as bytes scanned per CPU-time.
+ // The units of this ratio are (B / cpu-ns) / (B / cpu-ns).
+ //
+ // At a high level, this value is computed as the bytes of memory
+ // allocated (cons) per unit of scan work completed (mark) in a GC
+ // cycle, divided by the CPU time spent on each activity.
+ //
+ // Updated at the end of each GC cycle, in endCycle.
+ consMark float64
+
+ // lastConsMark is the computed cons/mark value for the previous 4 GC
+ // cycles. Note that this is *not* the last value of consMark, but the
+ // measured cons/mark value in endCycle.
+ lastConsMark [4]float64
+
+ // gcPercentHeapGoal is the goal heapLive for when next GC ends derived
+ // from gcPercent.
+ //
+ // Set to ^uint64(0) if gcPercent is disabled.
+ gcPercentHeapGoal atomic.Uint64
+
+ // sweepDistMinTrigger is the minimum trigger to ensure a minimum
+ // sweep distance.
+ //
+ // This bound is also special because it applies to both the trigger
+ // *and* the goal (all other trigger bounds must be based *on* the goal).
+ //
+ // It is computed ahead of time, at commit time. The theory is that,
+ // absent a sudden change to a parameter like gcPercent, the trigger
+ // will be chosen to always give the sweeper enough headroom. However,
+ // such a change might dramatically and suddenly move up the trigger,
+ // in which case we need to ensure the sweeper still has enough headroom.
+ sweepDistMinTrigger atomic.Uint64
+
+ // triggered is the point at which the current GC cycle actually triggered.
+ // Only valid during the mark phase of a GC cycle, otherwise set to ^uint64(0).
+ //
+ // Updated while the world is stopped.
+ triggered uint64
+
+ // lastHeapGoal is the value of heapGoal at the moment the last GC
+ // ended. Note that this is distinct from the last value heapGoal had,
+ // because it could change if e.g. gcPercent changes.
+ //
+ // Read and written with the world stopped or with mheap_.lock held.
+ lastHeapGoal uint64
+
+ // heapLive is the number of bytes considered live by the GC.
+ // That is: retained by the most recent GC plus allocated
+ // since then. heapLive ≤ memstats.totalAlloc-memstats.totalFree, since
+ // heapAlloc includes unmarked objects that have not yet been swept (and
+ // hence goes up as we allocate and down as we sweep) while heapLive
+ // excludes these objects (and hence only goes up between GCs).
+ //
+ // To reduce contention, this is updated only when obtaining a span
+ // from an mcentral and at this point it counts all of the unallocated
+ // slots in that span (which will be allocated before that mcache
+ // obtains another span from that mcentral). Hence, it slightly
+ // overestimates the "true" live heap size. It's better to overestimate
+ // than to underestimate because 1) this triggers the GC earlier than
+ // necessary rather than potentially too late and 2) this leads to a
+ // conservative GC rate rather than a GC rate that is potentially too
+ // low.
+ //
+ // Whenever this is updated, call traceHeapAlloc() and
+ // this gcControllerState's revise() method.
+ heapLive atomic.Uint64
+
+ // heapScan is the number of bytes of "scannable" heap. This is the
+ // live heap (as counted by heapLive), but omitting no-scan objects and
+ // no-scan tails of objects.
+ //
+ // This value is fixed at the start of a GC cycle. It represents the
+ // maximum scannable heap.
+ heapScan atomic.Uint64
+
+ // lastHeapScan is the number of bytes of heap that were scanned
+ // last GC cycle. It is the same as heapMarked, but only
+ // includes the "scannable" parts of objects.
+ //
+ // Updated when the world is stopped.
+ lastHeapScan uint64
+
+ // lastStackScan is the number of bytes of stack that were scanned
+ // last GC cycle.
+ lastStackScan atomic.Uint64
+
+ // maxStackScan is the amount of allocated goroutine stack space in
+ // use by goroutines.
+ //
+ // This number tracks allocated goroutine stack space rather than used
+ // goroutine stack space (i.e. what is actually scanned) because used
+ // goroutine stack space is much harder to measure cheaply. By using
+ // allocated space, we make an overestimate; this is OK, it's better
+ // to conservatively overcount than undercount.
+ maxStackScan atomic.Uint64
+
+ // globalsScan is the total amount of global variable space
+ // that is scannable.
+ globalsScan atomic.Uint64
+
+ // heapMarked is the number of bytes marked by the previous
+ // GC. After mark termination, heapLive == heapMarked, but
+ // unlike heapLive, heapMarked does not change until the
+ // next mark termination.
+ heapMarked uint64
+
+ // heapScanWork is the total heap scan work performed this cycle.
+ // stackScanWork is the total stack scan work performed this cycle.
+ // globalsScanWork is the total globals scan work performed this cycle.
+ //
+ // These are updated atomically during the cycle. Updates occur in
+ // bounded batches, since they are both written and read
+ // throughout the cycle. At the end of the cycle, heapScanWork is how
+ // much of the retained heap is scannable.
+ //
+ // Currently these are measured in bytes. For most uses, this is an
+ // opaque unit of work, but for estimation the definition is important.
+ //
+ // Note that stackScanWork includes only stack space scanned, not all
+ // of the allocated stack.
+ heapScanWork atomic.Int64
+ stackScanWork atomic.Int64
+ globalsScanWork atomic.Int64
+
+ // bgScanCredit is the scan work credit accumulated by the concurrent
+ // background scan. This credit is accumulated by the background scan
+ // and stolen by mutator assists. Updates occur in bounded batches,
+ // since it is both written and read throughout the cycle.
+ bgScanCredit atomic.Int64
+
+ // assistTime is the nanoseconds spent in mutator assists
+ // during this cycle. This is updated atomically, and must also
+ // be updated atomically even during a STW, because it is read
+ // by sysmon. Updates occur in bounded batches, since it is both
+ // written and read throughout the cycle.
+ assistTime atomic.Int64
+
+ // dedicatedMarkTime is the nanoseconds spent in dedicated mark workers
+ // during this cycle. This is updated at the end of the concurrent mark
+ // phase.
+ dedicatedMarkTime atomic.Int64
+
+ // fractionalMarkTime is the nanoseconds spent in the fractional mark
+ // worker during this cycle. This is updated throughout the cycle and
+ // will be up-to-date if the fractional mark worker is not currently
+ // running.
+ fractionalMarkTime atomic.Int64
+
+ // idleMarkTime is the nanoseconds spent in idle marking during this
+ // cycle. This is updated throughout the cycle.
+ idleMarkTime atomic.Int64
+
+ // markStartTime is the absolute start time in nanoseconds
+ // that assists and background mark workers started.
+ markStartTime int64
+
+ // dedicatedMarkWorkersNeeded is the number of dedicated mark workers
+ // that need to be started. This is computed at the beginning of each
+ // cycle and decremented as dedicated mark workers get started.
+ dedicatedMarkWorkersNeeded atomic.Int64
+
+ // idleMarkWorkers is two packed int32 values in a single uint64.
+ // These two values are always updated simultaneously.
+ //
+ // The bottom int32 is the current number of idle mark workers executing.
+ //
+ // The top int32 is the maximum number of idle mark workers allowed to
+ // execute concurrently. Normally, this number is just gomaxprocs. However,
+ // during periodic GC cycles it is set to 0 because the system is idle
+ // anyway; there's no need to go full blast on all of GOMAXPROCS.
+ //
+ // The maximum number of idle mark workers is used to prevent new workers
+ // from starting, but it is not a hard maximum. It is possible (but
+ // exceedingly rare) for the current number of idle mark workers to
+ // transiently exceed the maximum. This could happen if the maximum changes
+ // just after a GC ends, and an M with no P.
+ //
+ // Note that if we have no dedicated mark workers, we set this value to
+ // 1 in this case we only have fractional GC workers which aren't scheduled
+ // strictly enough to ensure GC progress. As a result, idle-priority mark
+ // workers are vital to GC progress in these situations.
+ //
+ // For example, consider a situation in which goroutines block on the GC
+ // (such as via runtime.GOMAXPROCS) and only fractional mark workers are
+ // scheduled (e.g. GOMAXPROCS=1). Without idle-priority mark workers, the
+ // last running M might skip scheduling a fractional mark worker if its
+ // utilization goal is met, such that once it goes to sleep (because there's
+ // nothing to do), there will be nothing else to spin up a new M for the
+ // fractional worker in the future, stalling GC progress and causing a
+ // deadlock. However, idle-priority workers will *always* run when there is
+ // nothing left to do, ensuring the GC makes progress.
+ //
+ // See github.com/golang/go/issues/44163 for more details.
+ idleMarkWorkers atomic.Uint64
+
+ // assistWorkPerByte is the ratio of scan work to allocated
+ // bytes that should be performed by mutator assists. This is
+ // computed at the beginning of each cycle and updated every
+ // time heapScan is updated.
+ assistWorkPerByte atomic.Float64
+
+ // assistBytesPerWork is 1/assistWorkPerByte.
+ //
+ // Note that because this is read and written independently
+ // from assistWorkPerByte users may notice a skew between
+ // the two values, and such a state should be safe.
+ assistBytesPerWork atomic.Float64
+
+ // fractionalUtilizationGoal is the fraction of wall clock
+ // time that should be spent in the fractional mark worker on
+ // each P that isn't running a dedicated worker.
+ //
+ // For example, if the utilization goal is 25% and there are
+ // no dedicated workers, this will be 0.25. If the goal is
+ // 25%, there is one dedicated worker, and GOMAXPROCS is 5,
+ // this will be 0.05 to make up the missing 5%.
+ //
+ // If this is zero, no fractional workers are needed.
+ fractionalUtilizationGoal float64
+
+ // These memory stats are effectively duplicates of fields from
+ // memstats.heapStats but are updated atomically or with the world
+ // stopped and don't provide the same consistency guarantees.
+ //
+ // Because the runtime is responsible for managing a memory limit, it's
+ // useful to couple these stats more tightly to the gcController, which
+ // is intimately connected to how that memory limit is maintained.
+ heapInUse sysMemStat // bytes in mSpanInUse spans
+ heapReleased sysMemStat // bytes released to the OS
+ heapFree sysMemStat // bytes not in any span, but not released to the OS
+ totalAlloc atomic.Uint64 // total bytes allocated
+ totalFree atomic.Uint64 // total bytes freed
+ mappedReady atomic.Uint64 // total virtual memory in the Ready state (see mem.go).
+
+ // test indicates that this is a test-only copy of gcControllerState.
+ test bool
+
+ _ cpu.CacheLinePad
+}
+
+func (c *gcControllerState) init(gcPercent int32, memoryLimit int64) {
+ c.heapMinimum = defaultHeapMinimum
+ c.triggered = ^uint64(0)
+ c.setGCPercent(gcPercent)
+ c.setMemoryLimit(memoryLimit)
+ c.commit(true) // No sweep phase in the first GC cycle.
+ // N.B. Don't bother calling traceHeapGoal. Tracing is never enabled at
+ // initialization time.
+ // N.B. No need to call revise; there's no GC enabled during
+ // initialization.
+}
+
+// startCycle resets the GC controller's state and computes estimates
+// for a new GC cycle. The caller must hold worldsema and the world
+// must be stopped.
+func (c *gcControllerState) startCycle(markStartTime int64, procs int, trigger gcTrigger) {
+ c.heapScanWork.Store(0)
+ c.stackScanWork.Store(0)
+ c.globalsScanWork.Store(0)
+ c.bgScanCredit.Store(0)
+ c.assistTime.Store(0)
+ c.dedicatedMarkTime.Store(0)
+ c.fractionalMarkTime.Store(0)
+ c.idleMarkTime.Store(0)
+ c.markStartTime = markStartTime
+ c.triggered = c.heapLive.Load()
+
+ // Compute the background mark utilization goal. In general,
+ // this may not come out exactly. We round the number of
+ // dedicated workers so that the utilization is closest to
+ // 25%. For small GOMAXPROCS, this would introduce too much
+ // error, so we add fractional workers in that case.
+ totalUtilizationGoal := float64(procs) * gcBackgroundUtilization
+ dedicatedMarkWorkersNeeded := int64(totalUtilizationGoal + 0.5)
+ utilError := float64(dedicatedMarkWorkersNeeded)/totalUtilizationGoal - 1
+ const maxUtilError = 0.3
+ if utilError < -maxUtilError || utilError > maxUtilError {
+ // Rounding put us more than 30% off our goal. With
+ // gcBackgroundUtilization of 25%, this happens for
+ // GOMAXPROCS<=3 or GOMAXPROCS=6. Enable fractional
+ // workers to compensate.
+ if float64(dedicatedMarkWorkersNeeded) > totalUtilizationGoal {
+ // Too many dedicated workers.
+ dedicatedMarkWorkersNeeded--
+ }
+ c.fractionalUtilizationGoal = (totalUtilizationGoal - float64(dedicatedMarkWorkersNeeded)) / float64(procs)
+ } else {
+ c.fractionalUtilizationGoal = 0
+ }
+
+ // In STW mode, we just want dedicated workers.
+ if debug.gcstoptheworld > 0 {
+ dedicatedMarkWorkersNeeded = int64(procs)
+ c.fractionalUtilizationGoal = 0
+ }
+
+ // Clear per-P state
+ for _, p := range allp {
+ p.gcAssistTime = 0
+ p.gcFractionalMarkTime = 0
+ }
+
+ if trigger.kind == gcTriggerTime {
+ // During a periodic GC cycle, reduce the number of idle mark workers
+ // required. However, we need at least one dedicated mark worker or
+ // idle GC worker to ensure GC progress in some scenarios (see comment
+ // on maxIdleMarkWorkers).
+ if dedicatedMarkWorkersNeeded > 0 {
+ c.setMaxIdleMarkWorkers(0)
+ } else {
+ // TODO(mknyszek): The fundamental reason why we need this is because
+ // we can't count on the fractional mark worker to get scheduled.
+ // Fix that by ensuring it gets scheduled according to its quota even
+ // if the rest of the application is idle.
+ c.setMaxIdleMarkWorkers(1)
+ }
+ } else {
+ // N.B. gomaxprocs and dedicatedMarkWorkersNeeded are guaranteed not to
+ // change during a GC cycle.
+ c.setMaxIdleMarkWorkers(int32(procs) - int32(dedicatedMarkWorkersNeeded))
+ }
+
+ // Compute initial values for controls that are updated
+ // throughout the cycle.
+ c.dedicatedMarkWorkersNeeded.Store(dedicatedMarkWorkersNeeded)
+ c.revise()
+
+ if debug.gcpacertrace > 0 {
+ heapGoal := c.heapGoal()
+ assistRatio := c.assistWorkPerByte.Load()
+ print("pacer: assist ratio=", assistRatio,
+ " (scan ", gcController.heapScan.Load()>>20, " MB in ",
+ work.initialHeapLive>>20, "->",
+ heapGoal>>20, " MB)",
+ " workers=", dedicatedMarkWorkersNeeded,
+ "+", c.fractionalUtilizationGoal, "\n")
+ }
+}
+
+// revise updates the assist ratio during the GC cycle to account for
+// improved estimates. This should be called whenever gcController.heapScan,
+// gcController.heapLive, or if any inputs to gcController.heapGoal are
+// updated. It is safe to call concurrently, but it may race with other
+// calls to revise.
+//
+// The result of this race is that the two assist ratio values may not line
+// up or may be stale. In practice this is OK because the assist ratio
+// moves slowly throughout a GC cycle, and the assist ratio is a best-effort
+// heuristic anyway. Furthermore, no part of the heuristic depends on
+// the two assist ratio values being exact reciprocals of one another, since
+// the two values are used to convert values from different sources.
+//
+// The worst case result of this raciness is that we may miss a larger shift
+// in the ratio (say, if we decide to pace more aggressively against the
+// hard heap goal) but even this "hard goal" is best-effort (see #40460).
+// The dedicated GC should ensure we don't exceed the hard goal by too much
+// in the rare case we do exceed it.
+//
+// It should only be called when gcBlackenEnabled != 0 (because this
+// is when assists are enabled and the necessary statistics are
+// available).
+func (c *gcControllerState) revise() {
+ gcPercent := c.gcPercent.Load()
+ if gcPercent < 0 {
+ // If GC is disabled but we're running a forced GC,
+ // act like GOGC is huge for the below calculations.
+ gcPercent = 100000
+ }
+ live := c.heapLive.Load()
+ scan := c.heapScan.Load()
+ work := c.heapScanWork.Load() + c.stackScanWork.Load() + c.globalsScanWork.Load()
+
+ // Assume we're under the soft goal. Pace GC to complete at
+ // heapGoal assuming the heap is in steady-state.
+ heapGoal := int64(c.heapGoal())
+
+ // The expected scan work is computed as the amount of bytes scanned last
+ // GC cycle (both heap and stack), plus our estimate of globals work for this cycle.
+ scanWorkExpected := int64(c.lastHeapScan + c.lastStackScan.Load() + c.globalsScan.Load())
+
+ // maxScanWork is a worst-case estimate of the amount of scan work that
+ // needs to be performed in this GC cycle. Specifically, it represents
+ // the case where *all* scannable memory turns out to be live, and
+ // *all* allocated stack space is scannable.
+ maxStackScan := c.maxStackScan.Load()
+ maxScanWork := int64(scan + maxStackScan + c.globalsScan.Load())
+ if work > scanWorkExpected {
+ // We've already done more scan work than expected. Because our expectation
+ // is based on a steady-state scannable heap size, we assume this means our
+ // heap is growing. Compute a new heap goal that takes our existing runway
+ // computed for scanWorkExpected and extrapolates it to maxScanWork, the worst-case
+ // scan work. This keeps our assist ratio stable if the heap continues to grow.
+ //
+ // The effect of this mechanism is that assists stay flat in the face of heap
+ // growths. It's OK to use more memory this cycle to scan all the live heap,
+ // because the next GC cycle is inevitably going to use *at least* that much
+ // memory anyway.
+ extHeapGoal := int64(float64(heapGoal-int64(c.triggered))/float64(scanWorkExpected)*float64(maxScanWork)) + int64(c.triggered)
+ scanWorkExpected = maxScanWork
+
+ // hardGoal is a hard limit on the amount that we're willing to push back the
+ // heap goal, and that's twice the heap goal (i.e. if GOGC=100 and the heap and/or
+ // stacks and/or globals grow to twice their size, this limits the current GC cycle's
+ // growth to 4x the original live heap's size).
+ //
+ // This maintains the invariant that we use no more memory than the next GC cycle
+ // will anyway.
+ hardGoal := int64((1.0 + float64(gcPercent)/100.0) * float64(heapGoal))
+ if extHeapGoal > hardGoal {
+ extHeapGoal = hardGoal
+ }
+ heapGoal = extHeapGoal
+ }
+ if int64(live) > heapGoal {
+ // We're already past our heap goal, even the extrapolated one.
+ // Leave ourselves some extra runway, so in the worst case we
+ // finish by that point.
+ const maxOvershoot = 1.1
+ heapGoal = int64(float64(heapGoal) * maxOvershoot)
+
+ // Compute the upper bound on the scan work remaining.
+ scanWorkExpected = maxScanWork
+ }
+
+ // Compute the remaining scan work estimate.
+ //
+ // Note that we currently count allocations during GC as both
+ // scannable heap (heapScan) and scan work completed
+ // (scanWork), so allocation will change this difference
+ // slowly in the soft regime and not at all in the hard
+ // regime.
+ scanWorkRemaining := scanWorkExpected - work
+ if scanWorkRemaining < 1000 {
+ // We set a somewhat arbitrary lower bound on
+ // remaining scan work since if we aim a little high,
+ // we can miss by a little.
+ //
+ // We *do* need to enforce that this is at least 1,
+ // since marking is racy and double-scanning objects
+ // may legitimately make the remaining scan work
+ // negative, even in the hard goal regime.
+ scanWorkRemaining = 1000
+ }
+
+ // Compute the heap distance remaining.
+ heapRemaining := heapGoal - int64(live)
+ if heapRemaining <= 0 {
+ // This shouldn't happen, but if it does, avoid
+ // dividing by zero or setting the assist negative.
+ heapRemaining = 1
+ }
+
+ // Compute the mutator assist ratio so by the time the mutator
+ // allocates the remaining heap bytes up to heapGoal, it will
+ // have done (or stolen) the remaining amount of scan work.
+ // Note that the assist ratio values are updated atomically
+ // but not together. This means there may be some degree of
+ // skew between the two values. This is generally OK as the
+ // values shift relatively slowly over the course of a GC
+ // cycle.
+ assistWorkPerByte := float64(scanWorkRemaining) / float64(heapRemaining)
+ assistBytesPerWork := float64(heapRemaining) / float64(scanWorkRemaining)
+ c.assistWorkPerByte.Store(assistWorkPerByte)
+ c.assistBytesPerWork.Store(assistBytesPerWork)
+}
+
+// endCycle computes the consMark estimate for the next cycle.
+// userForced indicates whether the current GC cycle was forced
+// by the application.
+func (c *gcControllerState) endCycle(now int64, procs int, userForced bool) {
+ // Record last heap goal for the scavenger.
+ // We'll be updating the heap goal soon.
+ gcController.lastHeapGoal = c.heapGoal()
+
+ // Compute the duration of time for which assists were turned on.
+ assistDuration := now - c.markStartTime
+
+ // Assume background mark hit its utilization goal.
+ utilization := gcBackgroundUtilization
+ // Add assist utilization; avoid divide by zero.
+ if assistDuration > 0 {
+ utilization += float64(c.assistTime.Load()) / float64(assistDuration*int64(procs))
+ }
+
+ if c.heapLive.Load() <= c.triggered {
+ // Shouldn't happen, but let's be very safe about this in case the
+ // GC is somehow extremely short.
+ //
+ // In this case though, the only reasonable value for c.heapLive-c.triggered
+ // would be 0, which isn't really all that useful, i.e. the GC was so short
+ // that it didn't matter.
+ //
+ // Ignore this case and don't update anything.
+ return
+ }
+ idleUtilization := 0.0
+ if assistDuration > 0 {
+ idleUtilization = float64(c.idleMarkTime.Load()) / float64(assistDuration*int64(procs))
+ }
+ // Determine the cons/mark ratio.
+ //
+ // The units we want for the numerator and denominator are both B / cpu-ns.
+ // We get this by taking the bytes allocated or scanned, and divide by the amount of
+ // CPU time it took for those operations. For allocations, that CPU time is
+ //
+ // assistDuration * procs * (1 - utilization)
+ //
+ // Where utilization includes just background GC workers and assists. It does *not*
+ // include idle GC work time, because in theory the mutator is free to take that at
+ // any point.
+ //
+ // For scanning, that CPU time is
+ //
+ // assistDuration * procs * (utilization + idleUtilization)
+ //
+ // In this case, we *include* idle utilization, because that is additional CPU time that
+ // the GC had available to it.
+ //
+ // In effect, idle GC time is sort of double-counted here, but it's very weird compared
+ // to other kinds of GC work, because of how fluid it is. Namely, because the mutator is
+ // *always* free to take it.
+ //
+ // So this calculation is really:
+ // (heapLive-trigger) / (assistDuration * procs * (1-utilization)) /
+ // (scanWork) / (assistDuration * procs * (utilization+idleUtilization))
+ //
+ // Note that because we only care about the ratio, assistDuration and procs cancel out.
+ scanWork := c.heapScanWork.Load() + c.stackScanWork.Load() + c.globalsScanWork.Load()
+ currentConsMark := (float64(c.heapLive.Load()-c.triggered) * (utilization + idleUtilization)) /
+ (float64(scanWork) * (1 - utilization))
+
+ // Update our cons/mark estimate. This is the maximum of the value we just computed and the last
+ // 4 cons/mark values we measured. The reason we take the maximum here is to bias a noisy
+ // cons/mark measurement toward fewer assists at the expense of additional GC cycles (starting
+ // earlier).
+ oldConsMark := c.consMark
+ c.consMark = currentConsMark
+ for i := range c.lastConsMark {
+ if c.lastConsMark[i] > c.consMark {
+ c.consMark = c.lastConsMark[i]
+ }
+ }
+ copy(c.lastConsMark[:], c.lastConsMark[1:])
+ c.lastConsMark[len(c.lastConsMark)-1] = currentConsMark
+
+ if debug.gcpacertrace > 0 {
+ printlock()
+ goal := gcGoalUtilization * 100
+ print("pacer: ", int(utilization*100), "% CPU (", int(goal), " exp.) for ")
+ print(c.heapScanWork.Load(), "+", c.stackScanWork.Load(), "+", c.globalsScanWork.Load(), " B work (", c.lastHeapScan+c.lastStackScan.Load()+c.globalsScan.Load(), " B exp.) ")
+ live := c.heapLive.Load()
+ print("in ", c.triggered, " B -> ", live, " B (∆goal ", int64(live)-int64(c.lastHeapGoal), ", cons/mark ", oldConsMark, ")")
+ println()
+ printunlock()
+ }
+}
+
+// enlistWorker encourages another dedicated mark worker to start on
+// another P if there are spare worker slots. It is used by putfull
+// when more work is made available.
+//
+//go:nowritebarrier
+func (c *gcControllerState) enlistWorker() {
+ // If there are idle Ps, wake one so it will run an idle worker.
+ // NOTE: This is suspected of causing deadlocks. See golang.org/issue/19112.
+ //
+ // if sched.npidle.Load() != 0 && sched.nmspinning.Load() == 0 {
+ // wakep()
+ // return
+ // }
+
+ // There are no idle Ps. If we need more dedicated workers,
+ // try to preempt a running P so it will switch to a worker.
+ if c.dedicatedMarkWorkersNeeded.Load() <= 0 {
+ return
+ }
+ // Pick a random other P to preempt.
+ if gomaxprocs <= 1 {
+ return
+ }
+ gp := getg()
+ if gp == nil || gp.m == nil || gp.m.p == 0 {
+ return
+ }
+ myID := gp.m.p.ptr().id
+ for tries := 0; tries < 5; tries++ {
+ id := int32(fastrandn(uint32(gomaxprocs - 1)))
+ if id >= myID {
+ id++
+ }
+ p := allp[id]
+ if p.status != _Prunning {
+ continue
+ }
+ if preemptone(p) {
+ return
+ }
+ }
+}
+
+// findRunnableGCWorker returns a background mark worker for pp if it
+// should be run. This must only be called when gcBlackenEnabled != 0.
+func (c *gcControllerState) findRunnableGCWorker(pp *p, now int64) (*g, int64) {
+ if gcBlackenEnabled == 0 {
+ throw("gcControllerState.findRunnable: blackening not enabled")
+ }
+
+ // Since we have the current time, check if the GC CPU limiter
+ // hasn't had an update in a while. This check is necessary in
+ // case the limiter is on but hasn't been checked in a while and
+ // so may have left sufficient headroom to turn off again.
+ if now == 0 {
+ now = nanotime()
+ }
+ if gcCPULimiter.needUpdate(now) {
+ gcCPULimiter.update(now)
+ }
+
+ if !gcMarkWorkAvailable(pp) {
+ // No work to be done right now. This can happen at
+ // the end of the mark phase when there are still
+ // assists tapering off. Don't bother running a worker
+ // now because it'll just return immediately.
+ return nil, now
+ }
+
+ // Grab a worker before we commit to running below.
+ node := (*gcBgMarkWorkerNode)(gcBgMarkWorkerPool.pop())
+ if node == nil {
+ // There is at least one worker per P, so normally there are
+ // enough workers to run on all Ps, if necessary. However, once
+ // a worker enters gcMarkDone it may park without rejoining the
+ // pool, thus freeing a P with no corresponding worker.
+ // gcMarkDone never depends on another worker doing work, so it
+ // is safe to simply do nothing here.
+ //
+ // If gcMarkDone bails out without completing the mark phase,
+ // it will always do so with queued global work. Thus, that P
+ // will be immediately eligible to re-run the worker G it was
+ // just using, ensuring work can complete.
+ return nil, now
+ }
+
+ decIfPositive := func(val *atomic.Int64) bool {
+ for {
+ v := val.Load()
+ if v <= 0 {
+ return false
+ }
+
+ if val.CompareAndSwap(v, v-1) {
+ return true
+ }
+ }
+ }
+
+ if decIfPositive(&c.dedicatedMarkWorkersNeeded) {
+ // This P is now dedicated to marking until the end of
+ // the concurrent mark phase.
+ pp.gcMarkWorkerMode = gcMarkWorkerDedicatedMode
+ } else if c.fractionalUtilizationGoal == 0 {
+ // No need for fractional workers.
+ gcBgMarkWorkerPool.push(&node.node)
+ return nil, now
+ } else {
+ // Is this P behind on the fractional utilization
+ // goal?
+ //
+ // This should be kept in sync with pollFractionalWorkerExit.
+ delta := now - c.markStartTime
+ if delta > 0 && float64(pp.gcFractionalMarkTime)/float64(delta) > c.fractionalUtilizationGoal {
+ // Nope. No need to run a fractional worker.
+ gcBgMarkWorkerPool.push(&node.node)
+ return nil, now
+ }
+ // Run a fractional worker.
+ pp.gcMarkWorkerMode = gcMarkWorkerFractionalMode
+ }
+
+ // Run the background mark worker.
+ gp := node.gp.ptr()
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ if traceEnabled() {
+ traceGoUnpark(gp, 0)
+ }
+ return gp, now
+}
+
+// resetLive sets up the controller state for the next mark phase after the end
+// of the previous one. Must be called after endCycle and before commit, before
+// the world is started.
+//
+// The world must be stopped.
+func (c *gcControllerState) resetLive(bytesMarked uint64) {
+ c.heapMarked = bytesMarked
+ c.heapLive.Store(bytesMarked)
+ c.heapScan.Store(uint64(c.heapScanWork.Load()))
+ c.lastHeapScan = uint64(c.heapScanWork.Load())
+ c.lastStackScan.Store(uint64(c.stackScanWork.Load()))
+ c.triggered = ^uint64(0) // Reset triggered.
+
+ // heapLive was updated, so emit a trace event.
+ if traceEnabled() {
+ traceHeapAlloc(bytesMarked)
+ }
+}
+
+// markWorkerStop must be called whenever a mark worker stops executing.
+//
+// It updates mark work accounting in the controller by a duration of
+// work in nanoseconds and other bookkeeping.
+//
+// Safe to execute at any time.
+func (c *gcControllerState) markWorkerStop(mode gcMarkWorkerMode, duration int64) {
+ switch mode {
+ case gcMarkWorkerDedicatedMode:
+ c.dedicatedMarkTime.Add(duration)
+ c.dedicatedMarkWorkersNeeded.Add(1)
+ case gcMarkWorkerFractionalMode:
+ c.fractionalMarkTime.Add(duration)
+ case gcMarkWorkerIdleMode:
+ c.idleMarkTime.Add(duration)
+ c.removeIdleMarkWorker()
+ default:
+ throw("markWorkerStop: unknown mark worker mode")
+ }
+}
+
+func (c *gcControllerState) update(dHeapLive, dHeapScan int64) {
+ if dHeapLive != 0 {
+ live := gcController.heapLive.Add(dHeapLive)
+ if traceEnabled() {
+ // gcController.heapLive changed.
+ traceHeapAlloc(live)
+ }
+ }
+ if gcBlackenEnabled == 0 {
+ // Update heapScan when we're not in a current GC. It is fixed
+ // at the beginning of a cycle.
+ if dHeapScan != 0 {
+ gcController.heapScan.Add(dHeapScan)
+ }
+ } else {
+ // gcController.heapLive changed.
+ c.revise()
+ }
+}
+
+func (c *gcControllerState) addScannableStack(pp *p, amount int64) {
+ if pp == nil {
+ c.maxStackScan.Add(amount)
+ return
+ }
+ pp.maxStackScanDelta += amount
+ if pp.maxStackScanDelta >= maxStackScanSlack || pp.maxStackScanDelta <= -maxStackScanSlack {
+ c.maxStackScan.Add(pp.maxStackScanDelta)
+ pp.maxStackScanDelta = 0
+ }
+}
+
+func (c *gcControllerState) addGlobals(amount int64) {
+ c.globalsScan.Add(amount)
+}
+
+// heapGoal returns the current heap goal.
+func (c *gcControllerState) heapGoal() uint64 {
+ goal, _ := c.heapGoalInternal()
+ return goal
+}
+
+// heapGoalInternal is the implementation of heapGoal which returns additional
+// information that is necessary for computing the trigger.
+//
+// The returned minTrigger is always <= goal.
+func (c *gcControllerState) heapGoalInternal() (goal, minTrigger uint64) {
+ // Start with the goal calculated for gcPercent.
+ goal = c.gcPercentHeapGoal.Load()
+
+ // Check if the memory-limit-based goal is smaller, and if so, pick that.
+ if newGoal := c.memoryLimitHeapGoal(); newGoal < goal {
+ goal = newGoal
+ } else {
+ // We're not limited by the memory limit goal, so perform a series of
+ // adjustments that might move the goal forward in a variety of circumstances.
+
+ sweepDistTrigger := c.sweepDistMinTrigger.Load()
+ if sweepDistTrigger > goal {
+ // Set the goal to maintain a minimum sweep distance since
+ // the last call to commit. Note that we never want to do this
+ // if we're in the memory limit regime, because it could push
+ // the goal up.
+ goal = sweepDistTrigger
+ }
+ // Since we ignore the sweep distance trigger in the memory
+ // limit regime, we need to ensure we don't propagate it to
+ // the trigger, because it could cause a violation of the
+ // invariant that the trigger < goal.
+ minTrigger = sweepDistTrigger
+
+ // Ensure that the heap goal is at least a little larger than
+ // the point at which we triggered. This may not be the case if GC
+ // start is delayed or if the allocation that pushed gcController.heapLive
+ // over trigger is large or if the trigger is really close to
+ // GOGC. Assist is proportional to this distance, so enforce a
+ // minimum distance, even if it means going over the GOGC goal
+ // by a tiny bit.
+ //
+ // Ignore this if we're in the memory limit regime: we'd prefer to
+ // have the GC respond hard about how close we are to the goal than to
+ // push the goal back in such a manner that it could cause us to exceed
+ // the memory limit.
+ const minRunway = 64 << 10
+ if c.triggered != ^uint64(0) && goal < c.triggered+minRunway {
+ goal = c.triggered + minRunway
+ }
+ }
+ return
+}
+
+// memoryLimitHeapGoal returns a heap goal derived from memoryLimit.
+func (c *gcControllerState) memoryLimitHeapGoal() uint64 {
+ // Start by pulling out some values we'll need. Be careful about overflow.
+ var heapFree, heapAlloc, mappedReady uint64
+ for {
+ heapFree = c.heapFree.load() // Free and unscavenged memory.
+ heapAlloc = c.totalAlloc.Load() - c.totalFree.Load() // Heap object bytes in use.
+ mappedReady = c.mappedReady.Load() // Total unreleased mapped memory.
+ if heapFree+heapAlloc <= mappedReady {
+ break
+ }
+ // It is impossible for total unreleased mapped memory to exceed heap memory, but
+ // because these stats are updated independently, we may observe a partial update
+ // including only some values. Thus, we appear to break the invariant. However,
+ // this condition is necessarily transient, so just try again. In the case of a
+ // persistent accounting error, we'll deadlock here.
+ }
+
+ // Below we compute a goal from memoryLimit. There are a few things to be aware of.
+ // Firstly, the memoryLimit does not easily compare to the heap goal: the former
+ // is total mapped memory by the runtime that hasn't been released, while the latter is
+ // only heap object memory. Intuitively, the way we convert from one to the other is to
+ // subtract everything from memoryLimit that both contributes to the memory limit (so,
+ // ignore scavenged memory) and doesn't contain heap objects. This isn't quite what
+ // lines up with reality, but it's a good starting point.
+ //
+ // In practice this computation looks like the following:
+ //
+ // goal := memoryLimit - ((mappedReady - heapFree - heapAlloc) + max(mappedReady - memoryLimit, 0))
+ // ^1 ^2
+ // goal -= goal / 100 * memoryLimitHeapGoalHeadroomPercent
+ // ^3
+ //
+ // Let's break this down.
+ //
+ // The first term (marker 1) is everything that contributes to the memory limit and isn't
+ // or couldn't become heap objects. It represents, broadly speaking, non-heap overheads.
+ // One oddity you may have noticed is that we also subtract out heapFree, i.e. unscavenged
+ // memory that may contain heap objects in the future.
+ //
+ // Let's take a step back. In an ideal world, this term would look something like just
+ // the heap goal. That is, we "reserve" enough space for the heap to grow to the heap
+ // goal, and subtract out everything else. This is of course impossible; the definition
+ // is circular! However, this impossible definition contains a key insight: the amount
+ // we're *going* to use matters just as much as whatever we're currently using.
+ //
+ // Consider if the heap shrinks to 1/10th its size, leaving behind lots of free and
+ // unscavenged memory. mappedReady - heapAlloc will be quite large, because of that free
+ // and unscavenged memory, pushing the goal down significantly.
+ //
+ // heapFree is also safe to exclude from the memory limit because in the steady-state, it's
+ // just a pool of memory for future heap allocations, and making new allocations from heapFree
+ // memory doesn't increase overall memory use. In transient states, the scavenger and the
+ // allocator actively manage the pool of heapFree memory to maintain the memory limit.
+ //
+ // The second term (marker 2) is the amount of memory we've exceeded the limit by, and is
+ // intended to help recover from such a situation. By pushing the heap goal down, we also
+ // push the trigger down, triggering and finishing a GC sooner in order to make room for
+ // other memory sources. Note that since we're effectively reducing the heap goal by X bytes,
+ // we're actually giving more than X bytes of headroom back, because the heap goal is in
+ // terms of heap objects, but it takes more than X bytes (e.g. due to fragmentation) to store
+ // X bytes worth of objects.
+ //
+ // The final adjustment (marker 3) reduces the maximum possible memory limit heap goal by
+ // memoryLimitHeapGoalPercent. As the name implies, this is to provide additional headroom in
+ // the face of pacing inaccuracies, and also to leave a buffer of unscavenged memory so the
+ // allocator isn't constantly scavenging. The reduction amount also has a fixed minimum
+ // (memoryLimitMinHeapGoalHeadroom, not pictured) because the aforementioned pacing inaccuracies
+ // disproportionately affect small heaps: as heaps get smaller, the pacer's inputs get fuzzier.
+ // Shorter GC cycles and less GC work means noisy external factors like the OS scheduler have a
+ // greater impact.
+
+ memoryLimit := uint64(c.memoryLimit.Load())
+
+ // Compute term 1.
+ nonHeapMemory := mappedReady - heapFree - heapAlloc
+
+ // Compute term 2.
+ var overage uint64
+ if mappedReady > memoryLimit {
+ overage = mappedReady - memoryLimit
+ }
+
+ if nonHeapMemory+overage >= memoryLimit {
+ // We're at a point where non-heap memory exceeds the memory limit on its own.
+ // There's honestly not much we can do here but just trigger GCs continuously
+ // and let the CPU limiter reign that in. Something has to give at this point.
+ // Set it to heapMarked, the lowest possible goal.
+ return c.heapMarked
+ }
+
+ // Compute the goal.
+ goal := memoryLimit - (nonHeapMemory + overage)
+
+ // Apply some headroom to the goal to account for pacing inaccuracies and to reduce
+ // the impact of scavenging at allocation time in response to a high allocation rate
+ // when GOGC=off. See issue #57069. Also, be careful about small limits.
+ headroom := goal / 100 * memoryLimitHeapGoalHeadroomPercent
+ if headroom < memoryLimitMinHeapGoalHeadroom {
+ // Set a fixed minimum to deal with the particularly large effect pacing inaccuracies
+ // have for smaller heaps.
+ headroom = memoryLimitMinHeapGoalHeadroom
+ }
+ if goal < headroom || goal-headroom < headroom {
+ goal = headroom
+ } else {
+ goal = goal - headroom
+ }
+ // Don't let us go below the live heap. A heap goal below the live heap doesn't make sense.
+ if goal < c.heapMarked {
+ goal = c.heapMarked
+ }
+ return goal
+}
+
+const (
+ // These constants determine the bounds on the GC trigger as a fraction
+ // of heap bytes allocated between the start of a GC (heapLive == heapMarked)
+ // and the end of a GC (heapLive == heapGoal).
+ //
+ // The constants are obscured in this way for efficiency. The denominator
+ // of the fraction is always a power-of-two for a quick division, so that
+ // the numerator is a single constant integer multiplication.
+ triggerRatioDen = 64
+
+ // The minimum trigger constant was chosen empirically: given a sufficiently
+ // fast/scalable allocator with 48 Ps that could drive the trigger ratio
+ // to <0.05, this constant causes applications to retain the same peak
+ // RSS compared to not having this allocator.
+ minTriggerRatioNum = 45 // ~0.7
+
+ // The maximum trigger constant is chosen somewhat arbitrarily, but the
+ // current constant has served us well over the years.
+ maxTriggerRatioNum = 61 // ~0.95
+)
+
+// trigger returns the current point at which a GC should trigger along with
+// the heap goal.
+//
+// The returned value may be compared against heapLive to determine whether
+// the GC should trigger. Thus, the GC trigger condition should be (but may
+// not be, in the case of small movements for efficiency) checked whenever
+// the heap goal may change.
+func (c *gcControllerState) trigger() (uint64, uint64) {
+ goal, minTrigger := c.heapGoalInternal()
+
+ // Invariant: the trigger must always be less than the heap goal.
+ //
+ // Note that the memory limit sets a hard maximum on our heap goal,
+ // but the live heap may grow beyond it.
+
+ if c.heapMarked >= goal {
+ // The goal should never be smaller than heapMarked, but let's be
+ // defensive about it. The only reasonable trigger here is one that
+ // causes a continuous GC cycle at heapMarked, but respect the goal
+ // if it came out as smaller than that.
+ return goal, goal
+ }
+
+ // Below this point, c.heapMarked < goal.
+
+ // heapMarked is our absolute minimum, and it's possible the trigger
+ // bound we get from heapGoalinternal is less than that.
+ if minTrigger < c.heapMarked {
+ minTrigger = c.heapMarked
+ }
+
+ // If we let the trigger go too low, then if the application
+ // is allocating very rapidly we might end up in a situation
+ // where we're allocating black during a nearly always-on GC.
+ // The result of this is a growing heap and ultimately an
+ // increase in RSS. By capping us at a point >0, we're essentially
+ // saying that we're OK using more CPU during the GC to prevent
+ // this growth in RSS.
+ triggerLowerBound := uint64(((goal-c.heapMarked)/triggerRatioDen)*minTriggerRatioNum) + c.heapMarked
+ if minTrigger < triggerLowerBound {
+ minTrigger = triggerLowerBound
+ }
+
+ // For small heaps, set the max trigger point at maxTriggerRatio of the way
+ // from the live heap to the heap goal. This ensures we always have *some*
+ // headroom when the GC actually starts. For larger heaps, set the max trigger
+ // point at the goal, minus the minimum heap size.
+ //
+ // This choice follows from the fact that the minimum heap size is chosen
+ // to reflect the costs of a GC with no work to do. With a large heap but
+ // very little scan work to perform, this gives us exactly as much runway
+ // as we would need, in the worst case.
+ maxTrigger := uint64(((goal-c.heapMarked)/triggerRatioDen)*maxTriggerRatioNum) + c.heapMarked
+ if goal > defaultHeapMinimum && goal-defaultHeapMinimum > maxTrigger {
+ maxTrigger = goal - defaultHeapMinimum
+ }
+ if maxTrigger < minTrigger {
+ maxTrigger = minTrigger
+ }
+
+ // Compute the trigger from our bounds and the runway stored by commit.
+ var trigger uint64
+ runway := c.runway.Load()
+ if runway > goal {
+ trigger = minTrigger
+ } else {
+ trigger = goal - runway
+ }
+ if trigger < minTrigger {
+ trigger = minTrigger
+ }
+ if trigger > maxTrigger {
+ trigger = maxTrigger
+ }
+ if trigger > goal {
+ print("trigger=", trigger, " heapGoal=", goal, "\n")
+ print("minTrigger=", minTrigger, " maxTrigger=", maxTrigger, "\n")
+ throw("produced a trigger greater than the heap goal")
+ }
+ return trigger, goal
+}
+
+// commit recomputes all pacing parameters needed to derive the
+// trigger and the heap goal. Namely, the gcPercent-based heap goal,
+// and the amount of runway we want to give the GC this cycle.
+//
+// This can be called any time. If GC is the in the middle of a
+// concurrent phase, it will adjust the pacing of that phase.
+//
+// isSweepDone should be the result of calling isSweepDone(),
+// unless we're testing or we know we're executing during a GC cycle.
+//
+// This depends on gcPercent, gcController.heapMarked, and
+// gcController.heapLive. These must be up to date.
+//
+// Callers must call gcControllerState.revise after calling this
+// function if the GC is enabled.
+//
+// mheap_.lock must be held or the world must be stopped.
+func (c *gcControllerState) commit(isSweepDone bool) {
+ if !c.test {
+ assertWorldStoppedOrLockHeld(&mheap_.lock)
+ }
+
+ if isSweepDone {
+ // The sweep is done, so there aren't any restrictions on the trigger
+ // we need to think about.
+ c.sweepDistMinTrigger.Store(0)
+ } else {
+ // Concurrent sweep happens in the heap growth
+ // from gcController.heapLive to trigger. Make sure we
+ // give the sweeper some runway if it doesn't have enough.
+ c.sweepDistMinTrigger.Store(c.heapLive.Load() + sweepMinHeapDistance)
+ }
+
+ // Compute the next GC goal, which is when the allocated heap
+ // has grown by GOGC/100 over where it started the last cycle,
+ // plus additional runway for non-heap sources of GC work.
+ gcPercentHeapGoal := ^uint64(0)
+ if gcPercent := c.gcPercent.Load(); gcPercent >= 0 {
+ gcPercentHeapGoal = c.heapMarked + (c.heapMarked+c.lastStackScan.Load()+c.globalsScan.Load())*uint64(gcPercent)/100
+ }
+ // Apply the minimum heap size here. It's defined in terms of gcPercent
+ // and is only updated by functions that call commit.
+ if gcPercentHeapGoal < c.heapMinimum {
+ gcPercentHeapGoal = c.heapMinimum
+ }
+ c.gcPercentHeapGoal.Store(gcPercentHeapGoal)
+
+ // Compute the amount of runway we want the GC to have by using our
+ // estimate of the cons/mark ratio.
+ //
+ // The idea is to take our expected scan work, and multiply it by
+ // the cons/mark ratio to determine how long it'll take to complete
+ // that scan work in terms of bytes allocated. This gives us our GC's
+ // runway.
+ //
+ // However, the cons/mark ratio is a ratio of rates per CPU-second, but
+ // here we care about the relative rates for some division of CPU
+ // resources among the mutator and the GC.
+ //
+ // To summarize, we have B / cpu-ns, and we want B / ns. We get that
+ // by multiplying by our desired division of CPU resources. We choose
+ // to express CPU resources as GOMAPROCS*fraction. Note that because
+ // we're working with a ratio here, we can omit the number of CPU cores,
+ // because they'll appear in the numerator and denominator and cancel out.
+ // As a result, this is basically just "weighing" the cons/mark ratio by
+ // our desired division of resources.
+ //
+ // Furthermore, by setting the runway so that CPU resources are divided
+ // this way, assuming that the cons/mark ratio is correct, we make that
+ // division a reality.
+ c.runway.Store(uint64((c.consMark * (1 - gcGoalUtilization) / (gcGoalUtilization)) * float64(c.lastHeapScan+c.lastStackScan.Load()+c.globalsScan.Load())))
+}
+
+// setGCPercent updates gcPercent. commit must be called after.
+// Returns the old value of gcPercent.
+//
+// The world must be stopped, or mheap_.lock must be held.
+func (c *gcControllerState) setGCPercent(in int32) int32 {
+ if !c.test {
+ assertWorldStoppedOrLockHeld(&mheap_.lock)
+ }
+
+ out := c.gcPercent.Load()
+ if in < 0 {
+ in = -1
+ }
+ c.heapMinimum = defaultHeapMinimum * uint64(in) / 100
+ c.gcPercent.Store(in)
+
+ return out
+}
+
+//go:linkname setGCPercent runtime/debug.setGCPercent
+func setGCPercent(in int32) (out int32) {
+ // Run on the system stack since we grab the heap lock.
+ systemstack(func() {
+ lock(&mheap_.lock)
+ out = gcController.setGCPercent(in)
+ gcControllerCommit()
+ unlock(&mheap_.lock)
+ })
+
+ // If we just disabled GC, wait for any concurrent GC mark to
+ // finish so we always return with no GC running.
+ if in < 0 {
+ gcWaitOnMark(work.cycles.Load())
+ }
+
+ return out
+}
+
+func readGOGC() int32 {
+ p := gogetenv("GOGC")
+ if p == "off" {
+ return -1
+ }
+ if n, ok := atoi32(p); ok {
+ return n
+ }
+ return 100
+}
+
+// setMemoryLimit updates memoryLimit. commit must be called after
+// Returns the old value of memoryLimit.
+//
+// The world must be stopped, or mheap_.lock must be held.
+func (c *gcControllerState) setMemoryLimit(in int64) int64 {
+ if !c.test {
+ assertWorldStoppedOrLockHeld(&mheap_.lock)
+ }
+
+ out := c.memoryLimit.Load()
+ if in >= 0 {
+ c.memoryLimit.Store(in)
+ }
+
+ return out
+}
+
+//go:linkname setMemoryLimit runtime/debug.setMemoryLimit
+func setMemoryLimit(in int64) (out int64) {
+ // Run on the system stack since we grab the heap lock.
+ systemstack(func() {
+ lock(&mheap_.lock)
+ out = gcController.setMemoryLimit(in)
+ if in < 0 || out == in {
+ // If we're just checking the value or not changing
+ // it, there's no point in doing the rest.
+ unlock(&mheap_.lock)
+ return
+ }
+ gcControllerCommit()
+ unlock(&mheap_.lock)
+ })
+ return out
+}
+
+func readGOMEMLIMIT() int64 {
+ p := gogetenv("GOMEMLIMIT")
+ if p == "" || p == "off" {
+ return maxInt64
+ }
+ n, ok := parseByteCount(p)
+ if !ok {
+ print("GOMEMLIMIT=", p, "\n")
+ throw("malformed GOMEMLIMIT; see `go doc runtime/debug.SetMemoryLimit`")
+ }
+ return n
+}
+
+// addIdleMarkWorker attempts to add a new idle mark worker.
+//
+// If this returns true, the caller must become an idle mark worker unless
+// there's no background mark worker goroutines in the pool. This case is
+// harmless because there are already background mark workers running.
+// If this returns false, the caller must NOT become an idle mark worker.
+//
+// nosplit because it may be called without a P.
+//
+//go:nosplit
+func (c *gcControllerState) addIdleMarkWorker() bool {
+ for {
+ old := c.idleMarkWorkers.Load()
+ n, max := int32(old&uint64(^uint32(0))), int32(old>>32)
+ if n >= max {
+ // See the comment on idleMarkWorkers for why
+ // n > max is tolerated.
+ return false
+ }
+ if n < 0 {
+ print("n=", n, " max=", max, "\n")
+ throw("negative idle mark workers")
+ }
+ new := uint64(uint32(n+1)) | (uint64(max) << 32)
+ if c.idleMarkWorkers.CompareAndSwap(old, new) {
+ return true
+ }
+ }
+}
+
+// needIdleMarkWorker is a hint as to whether another idle mark worker is needed.
+//
+// The caller must still call addIdleMarkWorker to become one. This is mainly
+// useful for a quick check before an expensive operation.
+//
+// nosplit because it may be called without a P.
+//
+//go:nosplit
+func (c *gcControllerState) needIdleMarkWorker() bool {
+ p := c.idleMarkWorkers.Load()
+ n, max := int32(p&uint64(^uint32(0))), int32(p>>32)
+ return n < max
+}
+
+// removeIdleMarkWorker must be called when an new idle mark worker stops executing.
+func (c *gcControllerState) removeIdleMarkWorker() {
+ for {
+ old := c.idleMarkWorkers.Load()
+ n, max := int32(old&uint64(^uint32(0))), int32(old>>32)
+ if n-1 < 0 {
+ print("n=", n, " max=", max, "\n")
+ throw("negative idle mark workers")
+ }
+ new := uint64(uint32(n-1)) | (uint64(max) << 32)
+ if c.idleMarkWorkers.CompareAndSwap(old, new) {
+ return
+ }
+ }
+}
+
+// setMaxIdleMarkWorkers sets the maximum number of idle mark workers allowed.
+//
+// This method is optimistic in that it does not wait for the number of
+// idle mark workers to reduce to max before returning; it assumes the workers
+// will deschedule themselves.
+func (c *gcControllerState) setMaxIdleMarkWorkers(max int32) {
+ for {
+ old := c.idleMarkWorkers.Load()
+ n := int32(old & uint64(^uint32(0)))
+ if n < 0 {
+ print("n=", n, " max=", max, "\n")
+ throw("negative idle mark workers")
+ }
+ new := uint64(uint32(n)) | (uint64(max) << 32)
+ if c.idleMarkWorkers.CompareAndSwap(old, new) {
+ return
+ }
+ }
+}
+
+// gcControllerCommit is gcController.commit, but passes arguments from live
+// (non-test) data. It also updates any consumers of the GC pacing, such as
+// sweep pacing and the background scavenger.
+//
+// Calls gcController.commit.
+//
+// The heap lock must be held, so this must be executed on the system stack.
+//
+//go:systemstack
+func gcControllerCommit() {
+ assertWorldStoppedOrLockHeld(&mheap_.lock)
+
+ gcController.commit(isSweepDone())
+
+ // Update mark pacing.
+ if gcphase != _GCoff {
+ gcController.revise()
+ }
+
+ // TODO(mknyszek): This isn't really accurate any longer because the heap
+ // goal is computed dynamically. Still useful to snapshot, but not as useful.
+ if traceEnabled() {
+ traceHeapGoal()
+ }
+
+ trigger, heapGoal := gcController.trigger()
+ gcPaceSweeper(trigger)
+ gcPaceScavenger(gcController.memoryLimit.Load(), heapGoal, gcController.lastHeapGoal)
+}