summaryrefslogtreecommitdiffstats
path: root/src/runtime/mheap.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:19:13 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:19:13 +0000
commitccd992355df7192993c666236047820244914598 (patch)
treef00fea65147227b7743083c6148396f74cd66935 /src/runtime/mheap.go
parentInitial commit. (diff)
downloadgolang-1.21-ccd992355df7192993c666236047820244914598.tar.xz
golang-1.21-ccd992355df7192993c666236047820244914598.zip
Adding upstream version 1.21.8.upstream/1.21.8
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/runtime/mheap.go')
-rw-r--r--src/runtime/mheap.go2260
1 files changed, 2260 insertions, 0 deletions
diff --git a/src/runtime/mheap.go b/src/runtime/mheap.go
new file mode 100644
index 0000000..f836d91
--- /dev/null
+++ b/src/runtime/mheap.go
@@ -0,0 +1,2260 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Page heap.
+//
+// See malloc.go for overview.
+
+package runtime
+
+import (
+ "internal/cpu"
+ "internal/goarch"
+ "runtime/internal/atomic"
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+const (
+ // minPhysPageSize is a lower-bound on the physical page size. The
+ // true physical page size may be larger than this. In contrast,
+ // sys.PhysPageSize is an upper-bound on the physical page size.
+ minPhysPageSize = 4096
+
+ // maxPhysPageSize is the maximum page size the runtime supports.
+ maxPhysPageSize = 512 << 10
+
+ // maxPhysHugePageSize sets an upper-bound on the maximum huge page size
+ // that the runtime supports.
+ maxPhysHugePageSize = pallocChunkBytes
+
+ // pagesPerReclaimerChunk indicates how many pages to scan from the
+ // pageInUse bitmap at a time. Used by the page reclaimer.
+ //
+ // Higher values reduce contention on scanning indexes (such as
+ // h.reclaimIndex), but increase the minimum latency of the
+ // operation.
+ //
+ // The time required to scan this many pages can vary a lot depending
+ // on how many spans are actually freed. Experimentally, it can
+ // scan for pages at ~300 GB/ms on a 2.6GHz Core i7, but can only
+ // free spans at ~32 MB/ms. Using 512 pages bounds this at
+ // roughly 100µs.
+ //
+ // Must be a multiple of the pageInUse bitmap element size and
+ // must also evenly divide pagesPerArena.
+ pagesPerReclaimerChunk = 512
+
+ // physPageAlignedStacks indicates whether stack allocations must be
+ // physical page aligned. This is a requirement for MAP_STACK on
+ // OpenBSD.
+ physPageAlignedStacks = GOOS == "openbsd"
+)
+
+// Main malloc heap.
+// The heap itself is the "free" and "scav" treaps,
+// but all the other global data is here too.
+//
+// mheap must not be heap-allocated because it contains mSpanLists,
+// which must not be heap-allocated.
+type mheap struct {
+ _ sys.NotInHeap
+
+ // lock must only be acquired on the system stack, otherwise a g
+ // could self-deadlock if its stack grows with the lock held.
+ lock mutex
+
+ pages pageAlloc // page allocation data structure
+
+ sweepgen uint32 // sweep generation, see comment in mspan; written during STW
+
+ // allspans is a slice of all mspans ever created. Each mspan
+ // appears exactly once.
+ //
+ // The memory for allspans is manually managed and can be
+ // reallocated and move as the heap grows.
+ //
+ // In general, allspans is protected by mheap_.lock, which
+ // prevents concurrent access as well as freeing the backing
+ // store. Accesses during STW might not hold the lock, but
+ // must ensure that allocation cannot happen around the
+ // access (since that may free the backing store).
+ allspans []*mspan // all spans out there
+
+ // Proportional sweep
+ //
+ // These parameters represent a linear function from gcController.heapLive
+ // to page sweep count. The proportional sweep system works to
+ // stay in the black by keeping the current page sweep count
+ // above this line at the current gcController.heapLive.
+ //
+ // The line has slope sweepPagesPerByte and passes through a
+ // basis point at (sweepHeapLiveBasis, pagesSweptBasis). At
+ // any given time, the system is at (gcController.heapLive,
+ // pagesSwept) in this space.
+ //
+ // It is important that the line pass through a point we
+ // control rather than simply starting at a 0,0 origin
+ // because that lets us adjust sweep pacing at any time while
+ // accounting for current progress. If we could only adjust
+ // the slope, it would create a discontinuity in debt if any
+ // progress has already been made.
+ pagesInUse atomic.Uintptr // pages of spans in stats mSpanInUse
+ pagesSwept atomic.Uint64 // pages swept this cycle
+ pagesSweptBasis atomic.Uint64 // pagesSwept to use as the origin of the sweep ratio
+ sweepHeapLiveBasis uint64 // value of gcController.heapLive to use as the origin of sweep ratio; written with lock, read without
+ sweepPagesPerByte float64 // proportional sweep ratio; written with lock, read without
+
+ // Page reclaimer state
+
+ // reclaimIndex is the page index in allArenas of next page to
+ // reclaim. Specifically, it refers to page (i %
+ // pagesPerArena) of arena allArenas[i / pagesPerArena].
+ //
+ // If this is >= 1<<63, the page reclaimer is done scanning
+ // the page marks.
+ reclaimIndex atomic.Uint64
+
+ // reclaimCredit is spare credit for extra pages swept. Since
+ // the page reclaimer works in large chunks, it may reclaim
+ // more than requested. Any spare pages released go to this
+ // credit pool.
+ reclaimCredit atomic.Uintptr
+
+ // arenas is the heap arena map. It points to the metadata for
+ // the heap for every arena frame of the entire usable virtual
+ // address space.
+ //
+ // Use arenaIndex to compute indexes into this array.
+ //
+ // For regions of the address space that are not backed by the
+ // Go heap, the arena map contains nil.
+ //
+ // Modifications are protected by mheap_.lock. Reads can be
+ // performed without locking; however, a given entry can
+ // transition from nil to non-nil at any time when the lock
+ // isn't held. (Entries never transitions back to nil.)
+ //
+ // In general, this is a two-level mapping consisting of an L1
+ // map and possibly many L2 maps. This saves space when there
+ // are a huge number of arena frames. However, on many
+ // platforms (even 64-bit), arenaL1Bits is 0, making this
+ // effectively a single-level map. In this case, arenas[0]
+ // will never be nil.
+ arenas [1 << arenaL1Bits]*[1 << arenaL2Bits]*heapArena
+
+ // arenasHugePages indicates whether arenas' L2 entries are eligible
+ // to be backed by huge pages.
+ arenasHugePages bool
+
+ // heapArenaAlloc is pre-reserved space for allocating heapArena
+ // objects. This is only used on 32-bit, where we pre-reserve
+ // this space to avoid interleaving it with the heap itself.
+ heapArenaAlloc linearAlloc
+
+ // arenaHints is a list of addresses at which to attempt to
+ // add more heap arenas. This is initially populated with a
+ // set of general hint addresses, and grown with the bounds of
+ // actual heap arena ranges.
+ arenaHints *arenaHint
+
+ // arena is a pre-reserved space for allocating heap arenas
+ // (the actual arenas). This is only used on 32-bit.
+ arena linearAlloc
+
+ // allArenas is the arenaIndex of every mapped arena. This can
+ // be used to iterate through the address space.
+ //
+ // Access is protected by mheap_.lock. However, since this is
+ // append-only and old backing arrays are never freed, it is
+ // safe to acquire mheap_.lock, copy the slice header, and
+ // then release mheap_.lock.
+ allArenas []arenaIdx
+
+ // sweepArenas is a snapshot of allArenas taken at the
+ // beginning of the sweep cycle. This can be read safely by
+ // simply blocking GC (by disabling preemption).
+ sweepArenas []arenaIdx
+
+ // markArenas is a snapshot of allArenas taken at the beginning
+ // of the mark cycle. Because allArenas is append-only, neither
+ // this slice nor its contents will change during the mark, so
+ // it can be read safely.
+ markArenas []arenaIdx
+
+ // curArena is the arena that the heap is currently growing
+ // into. This should always be physPageSize-aligned.
+ curArena struct {
+ base, end uintptr
+ }
+
+ // central free lists for small size classes.
+ // the padding makes sure that the mcentrals are
+ // spaced CacheLinePadSize bytes apart, so that each mcentral.lock
+ // gets its own cache line.
+ // central is indexed by spanClass.
+ central [numSpanClasses]struct {
+ mcentral mcentral
+ pad [(cpu.CacheLinePadSize - unsafe.Sizeof(mcentral{})%cpu.CacheLinePadSize) % cpu.CacheLinePadSize]byte
+ }
+
+ spanalloc fixalloc // allocator for span*
+ cachealloc fixalloc // allocator for mcache*
+ specialfinalizeralloc fixalloc // allocator for specialfinalizer*
+ specialprofilealloc fixalloc // allocator for specialprofile*
+ specialReachableAlloc fixalloc // allocator for specialReachable
+ specialPinCounterAlloc fixalloc // allocator for specialPinCounter
+ speciallock mutex // lock for special record allocators.
+ arenaHintAlloc fixalloc // allocator for arenaHints
+
+ // User arena state.
+ //
+ // Protected by mheap_.lock.
+ userArena struct {
+ // arenaHints is a list of addresses at which to attempt to
+ // add more heap arenas for user arena chunks. This is initially
+ // populated with a set of general hint addresses, and grown with
+ // the bounds of actual heap arena ranges.
+ arenaHints *arenaHint
+
+ // quarantineList is a list of user arena spans that have been set to fault, but
+ // are waiting for all pointers into them to go away. Sweeping handles
+ // identifying when this is true, and moves the span to the ready list.
+ quarantineList mSpanList
+
+ // readyList is a list of empty user arena spans that are ready for reuse.
+ readyList mSpanList
+ }
+
+ unused *specialfinalizer // never set, just here to force the specialfinalizer type into DWARF
+}
+
+var mheap_ mheap
+
+// A heapArena stores metadata for a heap arena. heapArenas are stored
+// outside of the Go heap and accessed via the mheap_.arenas index.
+type heapArena struct {
+ _ sys.NotInHeap
+
+ // bitmap stores the pointer/scalar bitmap for the words in
+ // this arena. See mbitmap.go for a description.
+ // This array uses 1 bit per word of heap, or 1.6% of the heap size (for 64-bit).
+ bitmap [heapArenaBitmapWords]uintptr
+
+ // If the ith bit of noMorePtrs is true, then there are no more
+ // pointers for the object containing the word described by the
+ // high bit of bitmap[i].
+ // In that case, bitmap[i+1], ... must be zero until the start
+ // of the next object.
+ // We never operate on these entries using bit-parallel techniques,
+ // so it is ok if they are small. Also, they can't be bigger than
+ // uint16 because at that size a single noMorePtrs entry
+ // represents 8K of memory, the minimum size of a span. Any larger
+ // and we'd have to worry about concurrent updates.
+ // This array uses 1 bit per word of bitmap, or .024% of the heap size (for 64-bit).
+ noMorePtrs [heapArenaBitmapWords / 8]uint8
+
+ // spans maps from virtual address page ID within this arena to *mspan.
+ // For allocated spans, their pages map to the span itself.
+ // For free spans, only the lowest and highest pages map to the span itself.
+ // Internal pages map to an arbitrary span.
+ // For pages that have never been allocated, spans entries are nil.
+ //
+ // Modifications are protected by mheap.lock. Reads can be
+ // performed without locking, but ONLY from indexes that are
+ // known to contain in-use or stack spans. This means there
+ // must not be a safe-point between establishing that an
+ // address is live and looking it up in the spans array.
+ spans [pagesPerArena]*mspan
+
+ // pageInUse is a bitmap that indicates which spans are in
+ // state mSpanInUse. This bitmap is indexed by page number,
+ // but only the bit corresponding to the first page in each
+ // span is used.
+ //
+ // Reads and writes are atomic.
+ pageInUse [pagesPerArena / 8]uint8
+
+ // pageMarks is a bitmap that indicates which spans have any
+ // marked objects on them. Like pageInUse, only the bit
+ // corresponding to the first page in each span is used.
+ //
+ // Writes are done atomically during marking. Reads are
+ // non-atomic and lock-free since they only occur during
+ // sweeping (and hence never race with writes).
+ //
+ // This is used to quickly find whole spans that can be freed.
+ //
+ // TODO(austin): It would be nice if this was uint64 for
+ // faster scanning, but we don't have 64-bit atomic bit
+ // operations.
+ pageMarks [pagesPerArena / 8]uint8
+
+ // pageSpecials is a bitmap that indicates which spans have
+ // specials (finalizers or other). Like pageInUse, only the bit
+ // corresponding to the first page in each span is used.
+ //
+ // Writes are done atomically whenever a special is added to
+ // a span and whenever the last special is removed from a span.
+ // Reads are done atomically to find spans containing specials
+ // during marking.
+ pageSpecials [pagesPerArena / 8]uint8
+
+ // checkmarks stores the debug.gccheckmark state. It is only
+ // used if debug.gccheckmark > 0.
+ checkmarks *checkmarksMap
+
+ // zeroedBase marks the first byte of the first page in this
+ // arena which hasn't been used yet and is therefore already
+ // zero. zeroedBase is relative to the arena base.
+ // Increases monotonically until it hits heapArenaBytes.
+ //
+ // This field is sufficient to determine if an allocation
+ // needs to be zeroed because the page allocator follows an
+ // address-ordered first-fit policy.
+ //
+ // Read atomically and written with an atomic CAS.
+ zeroedBase uintptr
+}
+
+// arenaHint is a hint for where to grow the heap arenas. See
+// mheap_.arenaHints.
+type arenaHint struct {
+ _ sys.NotInHeap
+ addr uintptr
+ down bool
+ next *arenaHint
+}
+
+// An mspan is a run of pages.
+//
+// When a mspan is in the heap free treap, state == mSpanFree
+// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
+// If the mspan is in the heap scav treap, then in addition to the
+// above scavenged == true. scavenged == false in all other cases.
+//
+// When a mspan is allocated, state == mSpanInUse or mSpanManual
+// and heapmap(i) == span for all s->start <= i < s->start+s->npages.
+
+// Every mspan is in one doubly-linked list, either in the mheap's
+// busy list or one of the mcentral's span lists.
+
+// An mspan representing actual memory has state mSpanInUse,
+// mSpanManual, or mSpanFree. Transitions between these states are
+// constrained as follows:
+//
+// - A span may transition from free to in-use or manual during any GC
+// phase.
+//
+// - During sweeping (gcphase == _GCoff), a span may transition from
+// in-use to free (as a result of sweeping) or manual to free (as a
+// result of stacks being freed).
+//
+// - During GC (gcphase != _GCoff), a span *must not* transition from
+// manual or in-use to free. Because concurrent GC may read a pointer
+// and then look up its span, the span state must be monotonic.
+//
+// Setting mspan.state to mSpanInUse or mSpanManual must be done
+// atomically and only after all other span fields are valid.
+// Likewise, if inspecting a span is contingent on it being
+// mSpanInUse, the state should be loaded atomically and checked
+// before depending on other fields. This allows the garbage collector
+// to safely deal with potentially invalid pointers, since resolving
+// such pointers may race with a span being allocated.
+type mSpanState uint8
+
+const (
+ mSpanDead mSpanState = iota
+ mSpanInUse // allocated for garbage collected heap
+ mSpanManual // allocated for manual management (e.g., stack allocator)
+)
+
+// mSpanStateNames are the names of the span states, indexed by
+// mSpanState.
+var mSpanStateNames = []string{
+ "mSpanDead",
+ "mSpanInUse",
+ "mSpanManual",
+}
+
+// mSpanStateBox holds an atomic.Uint8 to provide atomic operations on
+// an mSpanState. This is a separate type to disallow accidental comparison
+// or assignment with mSpanState.
+type mSpanStateBox struct {
+ s atomic.Uint8
+}
+
+// It is nosplit to match get, below.
+
+//go:nosplit
+func (b *mSpanStateBox) set(s mSpanState) {
+ b.s.Store(uint8(s))
+}
+
+// It is nosplit because it's called indirectly by typedmemclr,
+// which must not be preempted.
+
+//go:nosplit
+func (b *mSpanStateBox) get() mSpanState {
+ return mSpanState(b.s.Load())
+}
+
+// mSpanList heads a linked list of spans.
+type mSpanList struct {
+ _ sys.NotInHeap
+ first *mspan // first span in list, or nil if none
+ last *mspan // last span in list, or nil if none
+}
+
+type mspan struct {
+ _ sys.NotInHeap
+ next *mspan // next span in list, or nil if none
+ prev *mspan // previous span in list, or nil if none
+ list *mSpanList // For debugging. TODO: Remove.
+
+ startAddr uintptr // address of first byte of span aka s.base()
+ npages uintptr // number of pages in span
+
+ manualFreeList gclinkptr // list of free objects in mSpanManual spans
+
+ // freeindex is the slot index between 0 and nelems at which to begin scanning
+ // for the next free object in this span.
+ // Each allocation scans allocBits starting at freeindex until it encounters a 0
+ // indicating a free object. freeindex is then adjusted so that subsequent scans begin
+ // just past the newly discovered free object.
+ //
+ // If freeindex == nelem, this span has no free objects.
+ //
+ // allocBits is a bitmap of objects in this span.
+ // If n >= freeindex and allocBits[n/8] & (1<<(n%8)) is 0
+ // then object n is free;
+ // otherwise, object n is allocated. Bits starting at nelem are
+ // undefined and should never be referenced.
+ //
+ // Object n starts at address n*elemsize + (start << pageShift).
+ freeindex uintptr
+ // TODO: Look up nelems from sizeclass and remove this field if it
+ // helps performance.
+ nelems uintptr // number of object in the span.
+
+ // Cache of the allocBits at freeindex. allocCache is shifted
+ // such that the lowest bit corresponds to the bit freeindex.
+ // allocCache holds the complement of allocBits, thus allowing
+ // ctz (count trailing zero) to use it directly.
+ // allocCache may contain bits beyond s.nelems; the caller must ignore
+ // these.
+ allocCache uint64
+
+ // allocBits and gcmarkBits hold pointers to a span's mark and
+ // allocation bits. The pointers are 8 byte aligned.
+ // There are three arenas where this data is held.
+ // free: Dirty arenas that are no longer accessed
+ // and can be reused.
+ // next: Holds information to be used in the next GC cycle.
+ // current: Information being used during this GC cycle.
+ // previous: Information being used during the last GC cycle.
+ // A new GC cycle starts with the call to finishsweep_m.
+ // finishsweep_m moves the previous arena to the free arena,
+ // the current arena to the previous arena, and
+ // the next arena to the current arena.
+ // The next arena is populated as the spans request
+ // memory to hold gcmarkBits for the next GC cycle as well
+ // as allocBits for newly allocated spans.
+ //
+ // The pointer arithmetic is done "by hand" instead of using
+ // arrays to avoid bounds checks along critical performance
+ // paths.
+ // The sweep will free the old allocBits and set allocBits to the
+ // gcmarkBits. The gcmarkBits are replaced with a fresh zeroed
+ // out memory.
+ allocBits *gcBits
+ gcmarkBits *gcBits
+ pinnerBits *gcBits // bitmap for pinned objects; accessed atomically
+
+ // sweep generation:
+ // if sweepgen == h->sweepgen - 2, the span needs sweeping
+ // if sweepgen == h->sweepgen - 1, the span is currently being swept
+ // if sweepgen == h->sweepgen, the span is swept and ready to use
+ // if sweepgen == h->sweepgen + 1, the span was cached before sweep began and is still cached, and needs sweeping
+ // if sweepgen == h->sweepgen + 3, the span was swept and then cached and is still cached
+ // h->sweepgen is incremented by 2 after every GC
+
+ sweepgen uint32
+ divMul uint32 // for divide by elemsize
+ allocCount uint16 // number of allocated objects
+ spanclass spanClass // size class and noscan (uint8)
+ state mSpanStateBox // mSpanInUse etc; accessed atomically (get/set methods)
+ needzero uint8 // needs to be zeroed before allocation
+ isUserArenaChunk bool // whether or not this span represents a user arena
+ allocCountBeforeCache uint16 // a copy of allocCount that is stored just before this span is cached
+ elemsize uintptr // computed from sizeclass or from npages
+ limit uintptr // end of data in span
+ speciallock mutex // guards specials list and changes to pinnerBits
+ specials *special // linked list of special records sorted by offset.
+ userArenaChunkFree addrRange // interval for managing chunk allocation
+
+ // freeIndexForScan is like freeindex, except that freeindex is
+ // used by the allocator whereas freeIndexForScan is used by the
+ // GC scanner. They are two fields so that the GC sees the object
+ // is allocated only when the object and the heap bits are
+ // initialized (see also the assignment of freeIndexForScan in
+ // mallocgc, and issue 54596).
+ freeIndexForScan uintptr
+}
+
+func (s *mspan) base() uintptr {
+ return s.startAddr
+}
+
+func (s *mspan) layout() (size, n, total uintptr) {
+ total = s.npages << _PageShift
+ size = s.elemsize
+ if size > 0 {
+ n = total / size
+ }
+ return
+}
+
+// recordspan adds a newly allocated span to h.allspans.
+//
+// This only happens the first time a span is allocated from
+// mheap.spanalloc (it is not called when a span is reused).
+//
+// Write barriers are disallowed here because it can be called from
+// gcWork when allocating new workbufs. However, because it's an
+// indirect call from the fixalloc initializer, the compiler can't see
+// this.
+//
+// The heap lock must be held.
+//
+//go:nowritebarrierrec
+func recordspan(vh unsafe.Pointer, p unsafe.Pointer) {
+ h := (*mheap)(vh)
+ s := (*mspan)(p)
+
+ assertLockHeld(&h.lock)
+
+ if len(h.allspans) >= cap(h.allspans) {
+ n := 64 * 1024 / goarch.PtrSize
+ if n < cap(h.allspans)*3/2 {
+ n = cap(h.allspans) * 3 / 2
+ }
+ var new []*mspan
+ sp := (*slice)(unsafe.Pointer(&new))
+ sp.array = sysAlloc(uintptr(n)*goarch.PtrSize, &memstats.other_sys)
+ if sp.array == nil {
+ throw("runtime: cannot allocate memory")
+ }
+ sp.len = len(h.allspans)
+ sp.cap = n
+ if len(h.allspans) > 0 {
+ copy(new, h.allspans)
+ }
+ oldAllspans := h.allspans
+ *(*notInHeapSlice)(unsafe.Pointer(&h.allspans)) = *(*notInHeapSlice)(unsafe.Pointer(&new))
+ if len(oldAllspans) != 0 {
+ sysFree(unsafe.Pointer(&oldAllspans[0]), uintptr(cap(oldAllspans))*unsafe.Sizeof(oldAllspans[0]), &memstats.other_sys)
+ }
+ }
+ h.allspans = h.allspans[:len(h.allspans)+1]
+ h.allspans[len(h.allspans)-1] = s
+}
+
+// A spanClass represents the size class and noscan-ness of a span.
+//
+// Each size class has a noscan spanClass and a scan spanClass. The
+// noscan spanClass contains only noscan objects, which do not contain
+// pointers and thus do not need to be scanned by the garbage
+// collector.
+type spanClass uint8
+
+const (
+ numSpanClasses = _NumSizeClasses << 1
+ tinySpanClass = spanClass(tinySizeClass<<1 | 1)
+)
+
+func makeSpanClass(sizeclass uint8, noscan bool) spanClass {
+ return spanClass(sizeclass<<1) | spanClass(bool2int(noscan))
+}
+
+func (sc spanClass) sizeclass() int8 {
+ return int8(sc >> 1)
+}
+
+func (sc spanClass) noscan() bool {
+ return sc&1 != 0
+}
+
+// arenaIndex returns the index into mheap_.arenas of the arena
+// containing metadata for p. This index combines of an index into the
+// L1 map and an index into the L2 map and should be used as
+// mheap_.arenas[ai.l1()][ai.l2()].
+//
+// If p is outside the range of valid heap addresses, either l1() or
+// l2() will be out of bounds.
+//
+// It is nosplit because it's called by spanOf and several other
+// nosplit functions.
+//
+//go:nosplit
+func arenaIndex(p uintptr) arenaIdx {
+ return arenaIdx((p - arenaBaseOffset) / heapArenaBytes)
+}
+
+// arenaBase returns the low address of the region covered by heap
+// arena i.
+func arenaBase(i arenaIdx) uintptr {
+ return uintptr(i)*heapArenaBytes + arenaBaseOffset
+}
+
+type arenaIdx uint
+
+// l1 returns the "l1" portion of an arenaIdx.
+//
+// Marked nosplit because it's called by spanOf and other nosplit
+// functions.
+//
+//go:nosplit
+func (i arenaIdx) l1() uint {
+ if arenaL1Bits == 0 {
+ // Let the compiler optimize this away if there's no
+ // L1 map.
+ return 0
+ } else {
+ return uint(i) >> arenaL1Shift
+ }
+}
+
+// l2 returns the "l2" portion of an arenaIdx.
+//
+// Marked nosplit because it's called by spanOf and other nosplit funcs.
+// functions.
+//
+//go:nosplit
+func (i arenaIdx) l2() uint {
+ if arenaL1Bits == 0 {
+ return uint(i)
+ } else {
+ return uint(i) & (1<<arenaL2Bits - 1)
+ }
+}
+
+// inheap reports whether b is a pointer into a (potentially dead) heap object.
+// It returns false for pointers into mSpanManual spans.
+// Non-preemptible because it is used by write barriers.
+//
+//go:nowritebarrier
+//go:nosplit
+func inheap(b uintptr) bool {
+ return spanOfHeap(b) != nil
+}
+
+// inHeapOrStack is a variant of inheap that returns true for pointers
+// into any allocated heap span.
+//
+//go:nowritebarrier
+//go:nosplit
+func inHeapOrStack(b uintptr) bool {
+ s := spanOf(b)
+ if s == nil || b < s.base() {
+ return false
+ }
+ switch s.state.get() {
+ case mSpanInUse, mSpanManual:
+ return b < s.limit
+ default:
+ return false
+ }
+}
+
+// spanOf returns the span of p. If p does not point into the heap
+// arena or no span has ever contained p, spanOf returns nil.
+//
+// If p does not point to allocated memory, this may return a non-nil
+// span that does *not* contain p. If this is a possibility, the
+// caller should either call spanOfHeap or check the span bounds
+// explicitly.
+//
+// Must be nosplit because it has callers that are nosplit.
+//
+//go:nosplit
+func spanOf(p uintptr) *mspan {
+ // This function looks big, but we use a lot of constant
+ // folding around arenaL1Bits to get it under the inlining
+ // budget. Also, many of the checks here are safety checks
+ // that Go needs to do anyway, so the generated code is quite
+ // short.
+ ri := arenaIndex(p)
+ if arenaL1Bits == 0 {
+ // If there's no L1, then ri.l1() can't be out of bounds but ri.l2() can.
+ if ri.l2() >= uint(len(mheap_.arenas[0])) {
+ return nil
+ }
+ } else {
+ // If there's an L1, then ri.l1() can be out of bounds but ri.l2() can't.
+ if ri.l1() >= uint(len(mheap_.arenas)) {
+ return nil
+ }
+ }
+ l2 := mheap_.arenas[ri.l1()]
+ if arenaL1Bits != 0 && l2 == nil { // Should never happen if there's no L1.
+ return nil
+ }
+ ha := l2[ri.l2()]
+ if ha == nil {
+ return nil
+ }
+ return ha.spans[(p/pageSize)%pagesPerArena]
+}
+
+// spanOfUnchecked is equivalent to spanOf, but the caller must ensure
+// that p points into an allocated heap arena.
+//
+// Must be nosplit because it has callers that are nosplit.
+//
+//go:nosplit
+func spanOfUnchecked(p uintptr) *mspan {
+ ai := arenaIndex(p)
+ return mheap_.arenas[ai.l1()][ai.l2()].spans[(p/pageSize)%pagesPerArena]
+}
+
+// spanOfHeap is like spanOf, but returns nil if p does not point to a
+// heap object.
+//
+// Must be nosplit because it has callers that are nosplit.
+//
+//go:nosplit
+func spanOfHeap(p uintptr) *mspan {
+ s := spanOf(p)
+ // s is nil if it's never been allocated. Otherwise, we check
+ // its state first because we don't trust this pointer, so we
+ // have to synchronize with span initialization. Then, it's
+ // still possible we picked up a stale span pointer, so we
+ // have to check the span's bounds.
+ if s == nil || s.state.get() != mSpanInUse || p < s.base() || p >= s.limit {
+ return nil
+ }
+ return s
+}
+
+// pageIndexOf returns the arena, page index, and page mask for pointer p.
+// The caller must ensure p is in the heap.
+func pageIndexOf(p uintptr) (arena *heapArena, pageIdx uintptr, pageMask uint8) {
+ ai := arenaIndex(p)
+ arena = mheap_.arenas[ai.l1()][ai.l2()]
+ pageIdx = ((p / pageSize) / 8) % uintptr(len(arena.pageInUse))
+ pageMask = byte(1 << ((p / pageSize) % 8))
+ return
+}
+
+// Initialize the heap.
+func (h *mheap) init() {
+ lockInit(&h.lock, lockRankMheap)
+ lockInit(&h.speciallock, lockRankMheapSpecial)
+
+ h.spanalloc.init(unsafe.Sizeof(mspan{}), recordspan, unsafe.Pointer(h), &memstats.mspan_sys)
+ h.cachealloc.init(unsafe.Sizeof(mcache{}), nil, nil, &memstats.mcache_sys)
+ h.specialfinalizeralloc.init(unsafe.Sizeof(specialfinalizer{}), nil, nil, &memstats.other_sys)
+ h.specialprofilealloc.init(unsafe.Sizeof(specialprofile{}), nil, nil, &memstats.other_sys)
+ h.specialReachableAlloc.init(unsafe.Sizeof(specialReachable{}), nil, nil, &memstats.other_sys)
+ h.specialPinCounterAlloc.init(unsafe.Sizeof(specialPinCounter{}), nil, nil, &memstats.other_sys)
+ h.arenaHintAlloc.init(unsafe.Sizeof(arenaHint{}), nil, nil, &memstats.other_sys)
+
+ // Don't zero mspan allocations. Background sweeping can
+ // inspect a span concurrently with allocating it, so it's
+ // important that the span's sweepgen survive across freeing
+ // and re-allocating a span to prevent background sweeping
+ // from improperly cas'ing it from 0.
+ //
+ // This is safe because mspan contains no heap pointers.
+ h.spanalloc.zero = false
+
+ // h->mapcache needs no init
+
+ for i := range h.central {
+ h.central[i].mcentral.init(spanClass(i))
+ }
+
+ h.pages.init(&h.lock, &memstats.gcMiscSys, false)
+}
+
+// reclaim sweeps and reclaims at least npage pages into the heap.
+// It is called before allocating npage pages to keep growth in check.
+//
+// reclaim implements the page-reclaimer half of the sweeper.
+//
+// h.lock must NOT be held.
+func (h *mheap) reclaim(npage uintptr) {
+ // TODO(austin): Half of the time spent freeing spans is in
+ // locking/unlocking the heap (even with low contention). We
+ // could make the slow path here several times faster by
+ // batching heap frees.
+
+ // Bail early if there's no more reclaim work.
+ if h.reclaimIndex.Load() >= 1<<63 {
+ return
+ }
+
+ // Disable preemption so the GC can't start while we're
+ // sweeping, so we can read h.sweepArenas, and so
+ // traceGCSweepStart/Done pair on the P.
+ mp := acquirem()
+
+ if traceEnabled() {
+ traceGCSweepStart()
+ }
+
+ arenas := h.sweepArenas
+ locked := false
+ for npage > 0 {
+ // Pull from accumulated credit first.
+ if credit := h.reclaimCredit.Load(); credit > 0 {
+ take := credit
+ if take > npage {
+ // Take only what we need.
+ take = npage
+ }
+ if h.reclaimCredit.CompareAndSwap(credit, credit-take) {
+ npage -= take
+ }
+ continue
+ }
+
+ // Claim a chunk of work.
+ idx := uintptr(h.reclaimIndex.Add(pagesPerReclaimerChunk) - pagesPerReclaimerChunk)
+ if idx/pagesPerArena >= uintptr(len(arenas)) {
+ // Page reclaiming is done.
+ h.reclaimIndex.Store(1 << 63)
+ break
+ }
+
+ if !locked {
+ // Lock the heap for reclaimChunk.
+ lock(&h.lock)
+ locked = true
+ }
+
+ // Scan this chunk.
+ nfound := h.reclaimChunk(arenas, idx, pagesPerReclaimerChunk)
+ if nfound <= npage {
+ npage -= nfound
+ } else {
+ // Put spare pages toward global credit.
+ h.reclaimCredit.Add(nfound - npage)
+ npage = 0
+ }
+ }
+ if locked {
+ unlock(&h.lock)
+ }
+
+ if traceEnabled() {
+ traceGCSweepDone()
+ }
+ releasem(mp)
+}
+
+// reclaimChunk sweeps unmarked spans that start at page indexes [pageIdx, pageIdx+n).
+// It returns the number of pages returned to the heap.
+//
+// h.lock must be held and the caller must be non-preemptible. Note: h.lock may be
+// temporarily unlocked and re-locked in order to do sweeping or if tracing is
+// enabled.
+func (h *mheap) reclaimChunk(arenas []arenaIdx, pageIdx, n uintptr) uintptr {
+ // The heap lock must be held because this accesses the
+ // heapArena.spans arrays using potentially non-live pointers.
+ // In particular, if a span were freed and merged concurrently
+ // with this probing heapArena.spans, it would be possible to
+ // observe arbitrary, stale span pointers.
+ assertLockHeld(&h.lock)
+
+ n0 := n
+ var nFreed uintptr
+ sl := sweep.active.begin()
+ if !sl.valid {
+ return 0
+ }
+ for n > 0 {
+ ai := arenas[pageIdx/pagesPerArena]
+ ha := h.arenas[ai.l1()][ai.l2()]
+
+ // Get a chunk of the bitmap to work on.
+ arenaPage := uint(pageIdx % pagesPerArena)
+ inUse := ha.pageInUse[arenaPage/8:]
+ marked := ha.pageMarks[arenaPage/8:]
+ if uintptr(len(inUse)) > n/8 {
+ inUse = inUse[:n/8]
+ marked = marked[:n/8]
+ }
+
+ // Scan this bitmap chunk for spans that are in-use
+ // but have no marked objects on them.
+ for i := range inUse {
+ inUseUnmarked := atomic.Load8(&inUse[i]) &^ marked[i]
+ if inUseUnmarked == 0 {
+ continue
+ }
+
+ for j := uint(0); j < 8; j++ {
+ if inUseUnmarked&(1<<j) != 0 {
+ s := ha.spans[arenaPage+uint(i)*8+j]
+ if s, ok := sl.tryAcquire(s); ok {
+ npages := s.npages
+ unlock(&h.lock)
+ if s.sweep(false) {
+ nFreed += npages
+ }
+ lock(&h.lock)
+ // Reload inUse. It's possible nearby
+ // spans were freed when we dropped the
+ // lock and we don't want to get stale
+ // pointers from the spans array.
+ inUseUnmarked = atomic.Load8(&inUse[i]) &^ marked[i]
+ }
+ }
+ }
+ }
+
+ // Advance.
+ pageIdx += uintptr(len(inUse) * 8)
+ n -= uintptr(len(inUse) * 8)
+ }
+ sweep.active.end(sl)
+ if traceEnabled() {
+ unlock(&h.lock)
+ // Account for pages scanned but not reclaimed.
+ traceGCSweepSpan((n0 - nFreed) * pageSize)
+ lock(&h.lock)
+ }
+
+ assertLockHeld(&h.lock) // Must be locked on return.
+ return nFreed
+}
+
+// spanAllocType represents the type of allocation to make, or
+// the type of allocation to be freed.
+type spanAllocType uint8
+
+const (
+ spanAllocHeap spanAllocType = iota // heap span
+ spanAllocStack // stack span
+ spanAllocPtrScalarBits // unrolled GC prog bitmap span
+ spanAllocWorkBuf // work buf span
+)
+
+// manual returns true if the span allocation is manually managed.
+func (s spanAllocType) manual() bool {
+ return s != spanAllocHeap
+}
+
+// alloc allocates a new span of npage pages from the GC'd heap.
+//
+// spanclass indicates the span's size class and scannability.
+//
+// Returns a span that has been fully initialized. span.needzero indicates
+// whether the span has been zeroed. Note that it may not be.
+func (h *mheap) alloc(npages uintptr, spanclass spanClass) *mspan {
+ // Don't do any operations that lock the heap on the G stack.
+ // It might trigger stack growth, and the stack growth code needs
+ // to be able to allocate heap.
+ var s *mspan
+ systemstack(func() {
+ // To prevent excessive heap growth, before allocating n pages
+ // we need to sweep and reclaim at least n pages.
+ if !isSweepDone() {
+ h.reclaim(npages)
+ }
+ s = h.allocSpan(npages, spanAllocHeap, spanclass)
+ })
+ return s
+}
+
+// allocManual allocates a manually-managed span of npage pages.
+// allocManual returns nil if allocation fails.
+//
+// allocManual adds the bytes used to *stat, which should be a
+// memstats in-use field. Unlike allocations in the GC'd heap, the
+// allocation does *not* count toward heapInUse.
+//
+// The memory backing the returned span may not be zeroed if
+// span.needzero is set.
+//
+// allocManual must be called on the system stack because it may
+// acquire the heap lock via allocSpan. See mheap for details.
+//
+// If new code is written to call allocManual, do NOT use an
+// existing spanAllocType value and instead declare a new one.
+//
+//go:systemstack
+func (h *mheap) allocManual(npages uintptr, typ spanAllocType) *mspan {
+ if !typ.manual() {
+ throw("manual span allocation called with non-manually-managed type")
+ }
+ return h.allocSpan(npages, typ, 0)
+}
+
+// setSpans modifies the span map so [spanOf(base), spanOf(base+npage*pageSize))
+// is s.
+func (h *mheap) setSpans(base, npage uintptr, s *mspan) {
+ p := base / pageSize
+ ai := arenaIndex(base)
+ ha := h.arenas[ai.l1()][ai.l2()]
+ for n := uintptr(0); n < npage; n++ {
+ i := (p + n) % pagesPerArena
+ if i == 0 {
+ ai = arenaIndex(base + n*pageSize)
+ ha = h.arenas[ai.l1()][ai.l2()]
+ }
+ ha.spans[i] = s
+ }
+}
+
+// allocNeedsZero checks if the region of address space [base, base+npage*pageSize),
+// assumed to be allocated, needs to be zeroed, updating heap arena metadata for
+// future allocations.
+//
+// This must be called each time pages are allocated from the heap, even if the page
+// allocator can otherwise prove the memory it's allocating is already zero because
+// they're fresh from the operating system. It updates heapArena metadata that is
+// critical for future page allocations.
+//
+// There are no locking constraints on this method.
+func (h *mheap) allocNeedsZero(base, npage uintptr) (needZero bool) {
+ for npage > 0 {
+ ai := arenaIndex(base)
+ ha := h.arenas[ai.l1()][ai.l2()]
+
+ zeroedBase := atomic.Loaduintptr(&ha.zeroedBase)
+ arenaBase := base % heapArenaBytes
+ if arenaBase < zeroedBase {
+ // We extended into the non-zeroed part of the
+ // arena, so this region needs to be zeroed before use.
+ //
+ // zeroedBase is monotonically increasing, so if we see this now then
+ // we can be sure we need to zero this memory region.
+ //
+ // We still need to update zeroedBase for this arena, and
+ // potentially more arenas.
+ needZero = true
+ }
+ // We may observe arenaBase > zeroedBase if we're racing with one or more
+ // allocations which are acquiring memory directly before us in the address
+ // space. But, because we know no one else is acquiring *this* memory, it's
+ // still safe to not zero.
+
+ // Compute how far into the arena we extend into, capped
+ // at heapArenaBytes.
+ arenaLimit := arenaBase + npage*pageSize
+ if arenaLimit > heapArenaBytes {
+ arenaLimit = heapArenaBytes
+ }
+ // Increase ha.zeroedBase so it's >= arenaLimit.
+ // We may be racing with other updates.
+ for arenaLimit > zeroedBase {
+ if atomic.Casuintptr(&ha.zeroedBase, zeroedBase, arenaLimit) {
+ break
+ }
+ zeroedBase = atomic.Loaduintptr(&ha.zeroedBase)
+ // Double check basic conditions of zeroedBase.
+ if zeroedBase <= arenaLimit && zeroedBase > arenaBase {
+ // The zeroedBase moved into the space we were trying to
+ // claim. That's very bad, and indicates someone allocated
+ // the same region we did.
+ throw("potentially overlapping in-use allocations detected")
+ }
+ }
+
+ // Move base forward and subtract from npage to move into
+ // the next arena, or finish.
+ base += arenaLimit - arenaBase
+ npage -= (arenaLimit - arenaBase) / pageSize
+ }
+ return
+}
+
+// tryAllocMSpan attempts to allocate an mspan object from
+// the P-local cache, but may fail.
+//
+// h.lock need not be held.
+//
+// This caller must ensure that its P won't change underneath
+// it during this function. Currently to ensure that we enforce
+// that the function is run on the system stack, because that's
+// the only place it is used now. In the future, this requirement
+// may be relaxed if its use is necessary elsewhere.
+//
+//go:systemstack
+func (h *mheap) tryAllocMSpan() *mspan {
+ pp := getg().m.p.ptr()
+ // If we don't have a p or the cache is empty, we can't do
+ // anything here.
+ if pp == nil || pp.mspancache.len == 0 {
+ return nil
+ }
+ // Pull off the last entry in the cache.
+ s := pp.mspancache.buf[pp.mspancache.len-1]
+ pp.mspancache.len--
+ return s
+}
+
+// allocMSpanLocked allocates an mspan object.
+//
+// h.lock must be held.
+//
+// allocMSpanLocked must be called on the system stack because
+// its caller holds the heap lock. See mheap for details.
+// Running on the system stack also ensures that we won't
+// switch Ps during this function. See tryAllocMSpan for details.
+//
+//go:systemstack
+func (h *mheap) allocMSpanLocked() *mspan {
+ assertLockHeld(&h.lock)
+
+ pp := getg().m.p.ptr()
+ if pp == nil {
+ // We don't have a p so just do the normal thing.
+ return (*mspan)(h.spanalloc.alloc())
+ }
+ // Refill the cache if necessary.
+ if pp.mspancache.len == 0 {
+ const refillCount = len(pp.mspancache.buf) / 2
+ for i := 0; i < refillCount; i++ {
+ pp.mspancache.buf[i] = (*mspan)(h.spanalloc.alloc())
+ }
+ pp.mspancache.len = refillCount
+ }
+ // Pull off the last entry in the cache.
+ s := pp.mspancache.buf[pp.mspancache.len-1]
+ pp.mspancache.len--
+ return s
+}
+
+// freeMSpanLocked free an mspan object.
+//
+// h.lock must be held.
+//
+// freeMSpanLocked must be called on the system stack because
+// its caller holds the heap lock. See mheap for details.
+// Running on the system stack also ensures that we won't
+// switch Ps during this function. See tryAllocMSpan for details.
+//
+//go:systemstack
+func (h *mheap) freeMSpanLocked(s *mspan) {
+ assertLockHeld(&h.lock)
+
+ pp := getg().m.p.ptr()
+ // First try to free the mspan directly to the cache.
+ if pp != nil && pp.mspancache.len < len(pp.mspancache.buf) {
+ pp.mspancache.buf[pp.mspancache.len] = s
+ pp.mspancache.len++
+ return
+ }
+ // Failing that (or if we don't have a p), just free it to
+ // the heap.
+ h.spanalloc.free(unsafe.Pointer(s))
+}
+
+// allocSpan allocates an mspan which owns npages worth of memory.
+//
+// If typ.manual() == false, allocSpan allocates a heap span of class spanclass
+// and updates heap accounting. If manual == true, allocSpan allocates a
+// manually-managed span (spanclass is ignored), and the caller is
+// responsible for any accounting related to its use of the span. Either
+// way, allocSpan will atomically add the bytes in the newly allocated
+// span to *sysStat.
+//
+// The returned span is fully initialized.
+//
+// h.lock must not be held.
+//
+// allocSpan must be called on the system stack both because it acquires
+// the heap lock and because it must block GC transitions.
+//
+//go:systemstack
+func (h *mheap) allocSpan(npages uintptr, typ spanAllocType, spanclass spanClass) (s *mspan) {
+ // Function-global state.
+ gp := getg()
+ base, scav := uintptr(0), uintptr(0)
+ growth := uintptr(0)
+
+ // On some platforms we need to provide physical page aligned stack
+ // allocations. Where the page size is less than the physical page
+ // size, we already manage to do this by default.
+ needPhysPageAlign := physPageAlignedStacks && typ == spanAllocStack && pageSize < physPageSize
+
+ // If the allocation is small enough, try the page cache!
+ // The page cache does not support aligned allocations, so we cannot use
+ // it if we need to provide a physical page aligned stack allocation.
+ pp := gp.m.p.ptr()
+ if !needPhysPageAlign && pp != nil && npages < pageCachePages/4 {
+ c := &pp.pcache
+
+ // If the cache is empty, refill it.
+ if c.empty() {
+ lock(&h.lock)
+ *c = h.pages.allocToCache()
+ unlock(&h.lock)
+ }
+
+ // Try to allocate from the cache.
+ base, scav = c.alloc(npages)
+ if base != 0 {
+ s = h.tryAllocMSpan()
+ if s != nil {
+ goto HaveSpan
+ }
+ // We have a base but no mspan, so we need
+ // to lock the heap.
+ }
+ }
+
+ // For one reason or another, we couldn't get the
+ // whole job done without the heap lock.
+ lock(&h.lock)
+
+ if needPhysPageAlign {
+ // Overallocate by a physical page to allow for later alignment.
+ extraPages := physPageSize / pageSize
+
+ // Find a big enough region first, but then only allocate the
+ // aligned portion. We can't just allocate and then free the
+ // edges because we need to account for scavenged memory, and
+ // that's difficult with alloc.
+ //
+ // Note that we skip updates to searchAddr here. It's OK if
+ // it's stale and higher than normal; it'll operate correctly,
+ // just come with a performance cost.
+ base, _ = h.pages.find(npages + extraPages)
+ if base == 0 {
+ var ok bool
+ growth, ok = h.grow(npages + extraPages)
+ if !ok {
+ unlock(&h.lock)
+ return nil
+ }
+ base, _ = h.pages.find(npages + extraPages)
+ if base == 0 {
+ throw("grew heap, but no adequate free space found")
+ }
+ }
+ base = alignUp(base, physPageSize)
+ scav = h.pages.allocRange(base, npages)
+ }
+
+ if base == 0 {
+ // Try to acquire a base address.
+ base, scav = h.pages.alloc(npages)
+ if base == 0 {
+ var ok bool
+ growth, ok = h.grow(npages)
+ if !ok {
+ unlock(&h.lock)
+ return nil
+ }
+ base, scav = h.pages.alloc(npages)
+ if base == 0 {
+ throw("grew heap, but no adequate free space found")
+ }
+ }
+ }
+ if s == nil {
+ // We failed to get an mspan earlier, so grab
+ // one now that we have the heap lock.
+ s = h.allocMSpanLocked()
+ }
+ unlock(&h.lock)
+
+HaveSpan:
+ // Decide if we need to scavenge in response to what we just allocated.
+ // Specifically, we track the maximum amount of memory to scavenge of all
+ // the alternatives below, assuming that the maximum satisfies *all*
+ // conditions we check (e.g. if we need to scavenge X to satisfy the
+ // memory limit and Y to satisfy heap-growth scavenging, and Y > X, then
+ // it's fine to pick Y, because the memory limit is still satisfied).
+ //
+ // It's fine to do this after allocating because we expect any scavenged
+ // pages not to get touched until we return. Simultaneously, it's important
+ // to do this before calling sysUsed because that may commit address space.
+ bytesToScavenge := uintptr(0)
+ forceScavenge := false
+ if limit := gcController.memoryLimit.Load(); !gcCPULimiter.limiting() {
+ // Assist with scavenging to maintain the memory limit by the amount
+ // that we expect to page in.
+ inuse := gcController.mappedReady.Load()
+ // Be careful about overflow, especially with uintptrs. Even on 32-bit platforms
+ // someone can set a really big memory limit that isn't maxInt64.
+ if uint64(scav)+inuse > uint64(limit) {
+ bytesToScavenge = uintptr(uint64(scav) + inuse - uint64(limit))
+ forceScavenge = true
+ }
+ }
+ if goal := scavenge.gcPercentGoal.Load(); goal != ^uint64(0) && growth > 0 {
+ // We just caused a heap growth, so scavenge down what will soon be used.
+ // By scavenging inline we deal with the failure to allocate out of
+ // memory fragments by scavenging the memory fragments that are least
+ // likely to be re-used.
+ //
+ // Only bother with this because we're not using a memory limit. We don't
+ // care about heap growths as long as we're under the memory limit, and the
+ // previous check for scaving already handles that.
+ if retained := heapRetained(); retained+uint64(growth) > goal {
+ // The scavenging algorithm requires the heap lock to be dropped so it
+ // can acquire it only sparingly. This is a potentially expensive operation
+ // so it frees up other goroutines to allocate in the meanwhile. In fact,
+ // they can make use of the growth we just created.
+ todo := growth
+ if overage := uintptr(retained + uint64(growth) - goal); todo > overage {
+ todo = overage
+ }
+ if todo > bytesToScavenge {
+ bytesToScavenge = todo
+ }
+ }
+ }
+ // There are a few very limited circumstances where we won't have a P here.
+ // It's OK to simply skip scavenging in these cases. Something else will notice
+ // and pick up the tab.
+ var now int64
+ if pp != nil && bytesToScavenge > 0 {
+ // Measure how long we spent scavenging and add that measurement to the assist
+ // time so we can track it for the GC CPU limiter.
+ //
+ // Limiter event tracking might be disabled if we end up here
+ // while on a mark worker.
+ start := nanotime()
+ track := pp.limiterEvent.start(limiterEventScavengeAssist, start)
+
+ // Scavenge, but back out if the limiter turns on.
+ released := h.pages.scavenge(bytesToScavenge, func() bool {
+ return gcCPULimiter.limiting()
+ }, forceScavenge)
+
+ mheap_.pages.scav.releasedEager.Add(released)
+
+ // Finish up accounting.
+ now = nanotime()
+ if track {
+ pp.limiterEvent.stop(limiterEventScavengeAssist, now)
+ }
+ scavenge.assistTime.Add(now - start)
+ }
+
+ // Initialize the span.
+ h.initSpan(s, typ, spanclass, base, npages)
+
+ // Commit and account for any scavenged memory that the span now owns.
+ nbytes := npages * pageSize
+ if scav != 0 {
+ // sysUsed all the pages that are actually available
+ // in the span since some of them might be scavenged.
+ sysUsed(unsafe.Pointer(base), nbytes, scav)
+ gcController.heapReleased.add(-int64(scav))
+ }
+ // Update stats.
+ gcController.heapFree.add(-int64(nbytes - scav))
+ if typ == spanAllocHeap {
+ gcController.heapInUse.add(int64(nbytes))
+ }
+ // Update consistent stats.
+ stats := memstats.heapStats.acquire()
+ atomic.Xaddint64(&stats.committed, int64(scav))
+ atomic.Xaddint64(&stats.released, -int64(scav))
+ switch typ {
+ case spanAllocHeap:
+ atomic.Xaddint64(&stats.inHeap, int64(nbytes))
+ case spanAllocStack:
+ atomic.Xaddint64(&stats.inStacks, int64(nbytes))
+ case spanAllocPtrScalarBits:
+ atomic.Xaddint64(&stats.inPtrScalarBits, int64(nbytes))
+ case spanAllocWorkBuf:
+ atomic.Xaddint64(&stats.inWorkBufs, int64(nbytes))
+ }
+ memstats.heapStats.release()
+
+ pageTraceAlloc(pp, now, base, npages)
+ return s
+}
+
+// initSpan initializes a blank span s which will represent the range
+// [base, base+npages*pageSize). typ is the type of span being allocated.
+func (h *mheap) initSpan(s *mspan, typ spanAllocType, spanclass spanClass, base, npages uintptr) {
+ // At this point, both s != nil and base != 0, and the heap
+ // lock is no longer held. Initialize the span.
+ s.init(base, npages)
+ if h.allocNeedsZero(base, npages) {
+ s.needzero = 1
+ }
+ nbytes := npages * pageSize
+ if typ.manual() {
+ s.manualFreeList = 0
+ s.nelems = 0
+ s.limit = s.base() + s.npages*pageSize
+ s.state.set(mSpanManual)
+ } else {
+ // We must set span properties before the span is published anywhere
+ // since we're not holding the heap lock.
+ s.spanclass = spanclass
+ if sizeclass := spanclass.sizeclass(); sizeclass == 0 {
+ s.elemsize = nbytes
+ s.nelems = 1
+ s.divMul = 0
+ } else {
+ s.elemsize = uintptr(class_to_size[sizeclass])
+ s.nelems = nbytes / s.elemsize
+ s.divMul = class_to_divmagic[sizeclass]
+ }
+
+ // Initialize mark and allocation structures.
+ s.freeindex = 0
+ s.freeIndexForScan = 0
+ s.allocCache = ^uint64(0) // all 1s indicating all free.
+ s.gcmarkBits = newMarkBits(s.nelems)
+ s.allocBits = newAllocBits(s.nelems)
+
+ // It's safe to access h.sweepgen without the heap lock because it's
+ // only ever updated with the world stopped and we run on the
+ // systemstack which blocks a STW transition.
+ atomic.Store(&s.sweepgen, h.sweepgen)
+
+ // Now that the span is filled in, set its state. This
+ // is a publication barrier for the other fields in
+ // the span. While valid pointers into this span
+ // should never be visible until the span is returned,
+ // if the garbage collector finds an invalid pointer,
+ // access to the span may race with initialization of
+ // the span. We resolve this race by atomically
+ // setting the state after the span is fully
+ // initialized, and atomically checking the state in
+ // any situation where a pointer is suspect.
+ s.state.set(mSpanInUse)
+ }
+
+ // Publish the span in various locations.
+
+ // This is safe to call without the lock held because the slots
+ // related to this span will only ever be read or modified by
+ // this thread until pointers into the span are published (and
+ // we execute a publication barrier at the end of this function
+ // before that happens) or pageInUse is updated.
+ h.setSpans(s.base(), npages, s)
+
+ if !typ.manual() {
+ // Mark in-use span in arena page bitmap.
+ //
+ // This publishes the span to the page sweeper, so
+ // it's imperative that the span be completely initialized
+ // prior to this line.
+ arena, pageIdx, pageMask := pageIndexOf(s.base())
+ atomic.Or8(&arena.pageInUse[pageIdx], pageMask)
+
+ // Update related page sweeper stats.
+ h.pagesInUse.Add(npages)
+ }
+
+ // Make sure the newly allocated span will be observed
+ // by the GC before pointers into the span are published.
+ publicationBarrier()
+}
+
+// Try to add at least npage pages of memory to the heap,
+// returning how much the heap grew by and whether it worked.
+//
+// h.lock must be held.
+func (h *mheap) grow(npage uintptr) (uintptr, bool) {
+ assertLockHeld(&h.lock)
+
+ // We must grow the heap in whole palloc chunks.
+ // We call sysMap below but note that because we
+ // round up to pallocChunkPages which is on the order
+ // of MiB (generally >= to the huge page size) we
+ // won't be calling it too much.
+ ask := alignUp(npage, pallocChunkPages) * pageSize
+
+ totalGrowth := uintptr(0)
+ // This may overflow because ask could be very large
+ // and is otherwise unrelated to h.curArena.base.
+ end := h.curArena.base + ask
+ nBase := alignUp(end, physPageSize)
+ if nBase > h.curArena.end || /* overflow */ end < h.curArena.base {
+ // Not enough room in the current arena. Allocate more
+ // arena space. This may not be contiguous with the
+ // current arena, so we have to request the full ask.
+ av, asize := h.sysAlloc(ask, &h.arenaHints, true)
+ if av == nil {
+ inUse := gcController.heapFree.load() + gcController.heapReleased.load() + gcController.heapInUse.load()
+ print("runtime: out of memory: cannot allocate ", ask, "-byte block (", inUse, " in use)\n")
+ return 0, false
+ }
+
+ if uintptr(av) == h.curArena.end {
+ // The new space is contiguous with the old
+ // space, so just extend the current space.
+ h.curArena.end = uintptr(av) + asize
+ } else {
+ // The new space is discontiguous. Track what
+ // remains of the current space and switch to
+ // the new space. This should be rare.
+ if size := h.curArena.end - h.curArena.base; size != 0 {
+ // Transition this space from Reserved to Prepared and mark it
+ // as released since we'll be able to start using it after updating
+ // the page allocator and releasing the lock at any time.
+ sysMap(unsafe.Pointer(h.curArena.base), size, &gcController.heapReleased)
+ // Update stats.
+ stats := memstats.heapStats.acquire()
+ atomic.Xaddint64(&stats.released, int64(size))
+ memstats.heapStats.release()
+ // Update the page allocator's structures to make this
+ // space ready for allocation.
+ h.pages.grow(h.curArena.base, size)
+ totalGrowth += size
+ }
+ // Switch to the new space.
+ h.curArena.base = uintptr(av)
+ h.curArena.end = uintptr(av) + asize
+ }
+
+ // Recalculate nBase.
+ // We know this won't overflow, because sysAlloc returned
+ // a valid region starting at h.curArena.base which is at
+ // least ask bytes in size.
+ nBase = alignUp(h.curArena.base+ask, physPageSize)
+ }
+
+ // Grow into the current arena.
+ v := h.curArena.base
+ h.curArena.base = nBase
+
+ // Transition the space we're going to use from Reserved to Prepared.
+ //
+ // The allocation is always aligned to the heap arena
+ // size which is always > physPageSize, so its safe to
+ // just add directly to heapReleased.
+ sysMap(unsafe.Pointer(v), nBase-v, &gcController.heapReleased)
+
+ // The memory just allocated counts as both released
+ // and idle, even though it's not yet backed by spans.
+ stats := memstats.heapStats.acquire()
+ atomic.Xaddint64(&stats.released, int64(nBase-v))
+ memstats.heapStats.release()
+
+ // Update the page allocator's structures to make this
+ // space ready for allocation.
+ h.pages.grow(v, nBase-v)
+ totalGrowth += nBase - v
+ return totalGrowth, true
+}
+
+// Free the span back into the heap.
+func (h *mheap) freeSpan(s *mspan) {
+ systemstack(func() {
+ pageTraceFree(getg().m.p.ptr(), 0, s.base(), s.npages)
+
+ lock(&h.lock)
+ if msanenabled {
+ // Tell msan that this entire span is no longer in use.
+ base := unsafe.Pointer(s.base())
+ bytes := s.npages << _PageShift
+ msanfree(base, bytes)
+ }
+ if asanenabled {
+ // Tell asan that this entire span is no longer in use.
+ base := unsafe.Pointer(s.base())
+ bytes := s.npages << _PageShift
+ asanpoison(base, bytes)
+ }
+ h.freeSpanLocked(s, spanAllocHeap)
+ unlock(&h.lock)
+ })
+}
+
+// freeManual frees a manually-managed span returned by allocManual.
+// typ must be the same as the spanAllocType passed to the allocManual that
+// allocated s.
+//
+// This must only be called when gcphase == _GCoff. See mSpanState for
+// an explanation.
+//
+// freeManual must be called on the system stack because it acquires
+// the heap lock. See mheap for details.
+//
+//go:systemstack
+func (h *mheap) freeManual(s *mspan, typ spanAllocType) {
+ pageTraceFree(getg().m.p.ptr(), 0, s.base(), s.npages)
+
+ s.needzero = 1
+ lock(&h.lock)
+ h.freeSpanLocked(s, typ)
+ unlock(&h.lock)
+}
+
+func (h *mheap) freeSpanLocked(s *mspan, typ spanAllocType) {
+ assertLockHeld(&h.lock)
+
+ switch s.state.get() {
+ case mSpanManual:
+ if s.allocCount != 0 {
+ throw("mheap.freeSpanLocked - invalid stack free")
+ }
+ case mSpanInUse:
+ if s.isUserArenaChunk {
+ throw("mheap.freeSpanLocked - invalid free of user arena chunk")
+ }
+ if s.allocCount != 0 || s.sweepgen != h.sweepgen {
+ print("mheap.freeSpanLocked - span ", s, " ptr ", hex(s.base()), " allocCount ", s.allocCount, " sweepgen ", s.sweepgen, "/", h.sweepgen, "\n")
+ throw("mheap.freeSpanLocked - invalid free")
+ }
+ h.pagesInUse.Add(-s.npages)
+
+ // Clear in-use bit in arena page bitmap.
+ arena, pageIdx, pageMask := pageIndexOf(s.base())
+ atomic.And8(&arena.pageInUse[pageIdx], ^pageMask)
+ default:
+ throw("mheap.freeSpanLocked - invalid span state")
+ }
+
+ // Update stats.
+ //
+ // Mirrors the code in allocSpan.
+ nbytes := s.npages * pageSize
+ gcController.heapFree.add(int64(nbytes))
+ if typ == spanAllocHeap {
+ gcController.heapInUse.add(-int64(nbytes))
+ }
+ // Update consistent stats.
+ stats := memstats.heapStats.acquire()
+ switch typ {
+ case spanAllocHeap:
+ atomic.Xaddint64(&stats.inHeap, -int64(nbytes))
+ case spanAllocStack:
+ atomic.Xaddint64(&stats.inStacks, -int64(nbytes))
+ case spanAllocPtrScalarBits:
+ atomic.Xaddint64(&stats.inPtrScalarBits, -int64(nbytes))
+ case spanAllocWorkBuf:
+ atomic.Xaddint64(&stats.inWorkBufs, -int64(nbytes))
+ }
+ memstats.heapStats.release()
+
+ // Mark the space as free.
+ h.pages.free(s.base(), s.npages)
+
+ // Free the span structure. We no longer have a use for it.
+ s.state.set(mSpanDead)
+ h.freeMSpanLocked(s)
+}
+
+// scavengeAll acquires the heap lock (blocking any additional
+// manipulation of the page allocator) and iterates over the whole
+// heap, scavenging every free page available.
+//
+// Must run on the system stack because it acquires the heap lock.
+//
+//go:systemstack
+func (h *mheap) scavengeAll() {
+ // Disallow malloc or panic while holding the heap lock. We do
+ // this here because this is a non-mallocgc entry-point to
+ // the mheap API.
+ gp := getg()
+ gp.m.mallocing++
+
+ // Force scavenge everything.
+ released := h.pages.scavenge(^uintptr(0), nil, true)
+
+ gp.m.mallocing--
+
+ if debug.scavtrace > 0 {
+ printScavTrace(0, released, true)
+ }
+}
+
+//go:linkname runtime_debug_freeOSMemory runtime/debug.freeOSMemory
+func runtime_debug_freeOSMemory() {
+ GC()
+ systemstack(func() { mheap_.scavengeAll() })
+}
+
+// Initialize a new span with the given start and npages.
+func (span *mspan) init(base uintptr, npages uintptr) {
+ // span is *not* zeroed.
+ span.next = nil
+ span.prev = nil
+ span.list = nil
+ span.startAddr = base
+ span.npages = npages
+ span.allocCount = 0
+ span.spanclass = 0
+ span.elemsize = 0
+ span.speciallock.key = 0
+ span.specials = nil
+ span.needzero = 0
+ span.freeindex = 0
+ span.freeIndexForScan = 0
+ span.allocBits = nil
+ span.gcmarkBits = nil
+ span.pinnerBits = nil
+ span.state.set(mSpanDead)
+ lockInit(&span.speciallock, lockRankMspanSpecial)
+}
+
+func (span *mspan) inList() bool {
+ return span.list != nil
+}
+
+// Initialize an empty doubly-linked list.
+func (list *mSpanList) init() {
+ list.first = nil
+ list.last = nil
+}
+
+func (list *mSpanList) remove(span *mspan) {
+ if span.list != list {
+ print("runtime: failed mSpanList.remove span.npages=", span.npages,
+ " span=", span, " prev=", span.prev, " span.list=", span.list, " list=", list, "\n")
+ throw("mSpanList.remove")
+ }
+ if list.first == span {
+ list.first = span.next
+ } else {
+ span.prev.next = span.next
+ }
+ if list.last == span {
+ list.last = span.prev
+ } else {
+ span.next.prev = span.prev
+ }
+ span.next = nil
+ span.prev = nil
+ span.list = nil
+}
+
+func (list *mSpanList) isEmpty() bool {
+ return list.first == nil
+}
+
+func (list *mSpanList) insert(span *mspan) {
+ if span.next != nil || span.prev != nil || span.list != nil {
+ println("runtime: failed mSpanList.insert", span, span.next, span.prev, span.list)
+ throw("mSpanList.insert")
+ }
+ span.next = list.first
+ if list.first != nil {
+ // The list contains at least one span; link it in.
+ // The last span in the list doesn't change.
+ list.first.prev = span
+ } else {
+ // The list contains no spans, so this is also the last span.
+ list.last = span
+ }
+ list.first = span
+ span.list = list
+}
+
+func (list *mSpanList) insertBack(span *mspan) {
+ if span.next != nil || span.prev != nil || span.list != nil {
+ println("runtime: failed mSpanList.insertBack", span, span.next, span.prev, span.list)
+ throw("mSpanList.insertBack")
+ }
+ span.prev = list.last
+ if list.last != nil {
+ // The list contains at least one span.
+ list.last.next = span
+ } else {
+ // The list contains no spans, so this is also the first span.
+ list.first = span
+ }
+ list.last = span
+ span.list = list
+}
+
+// takeAll removes all spans from other and inserts them at the front
+// of list.
+func (list *mSpanList) takeAll(other *mSpanList) {
+ if other.isEmpty() {
+ return
+ }
+
+ // Reparent everything in other to list.
+ for s := other.first; s != nil; s = s.next {
+ s.list = list
+ }
+
+ // Concatenate the lists.
+ if list.isEmpty() {
+ *list = *other
+ } else {
+ // Neither list is empty. Put other before list.
+ other.last.next = list.first
+ list.first.prev = other.last
+ list.first = other.first
+ }
+
+ other.first, other.last = nil, nil
+}
+
+const (
+ _KindSpecialFinalizer = 1
+ _KindSpecialProfile = 2
+ // _KindSpecialReachable is a special used for tracking
+ // reachability during testing.
+ _KindSpecialReachable = 3
+ // _KindSpecialPinCounter is a special used for objects that are pinned
+ // multiple times
+ _KindSpecialPinCounter = 4
+ // Note: The finalizer special must be first because if we're freeing
+ // an object, a finalizer special will cause the freeing operation
+ // to abort, and we want to keep the other special records around
+ // if that happens.
+)
+
+type special struct {
+ _ sys.NotInHeap
+ next *special // linked list in span
+ offset uint16 // span offset of object
+ kind byte // kind of special
+}
+
+// spanHasSpecials marks a span as having specials in the arena bitmap.
+func spanHasSpecials(s *mspan) {
+ arenaPage := (s.base() / pageSize) % pagesPerArena
+ ai := arenaIndex(s.base())
+ ha := mheap_.arenas[ai.l1()][ai.l2()]
+ atomic.Or8(&ha.pageSpecials[arenaPage/8], uint8(1)<<(arenaPage%8))
+}
+
+// spanHasNoSpecials marks a span as having no specials in the arena bitmap.
+func spanHasNoSpecials(s *mspan) {
+ arenaPage := (s.base() / pageSize) % pagesPerArena
+ ai := arenaIndex(s.base())
+ ha := mheap_.arenas[ai.l1()][ai.l2()]
+ atomic.And8(&ha.pageSpecials[arenaPage/8], ^(uint8(1) << (arenaPage % 8)))
+}
+
+// Adds the special record s to the list of special records for
+// the object p. All fields of s should be filled in except for
+// offset & next, which this routine will fill in.
+// Returns true if the special was successfully added, false otherwise.
+// (The add will fail only if a record with the same p and s->kind
+// already exists.)
+func addspecial(p unsafe.Pointer, s *special) bool {
+ span := spanOfHeap(uintptr(p))
+ if span == nil {
+ throw("addspecial on invalid pointer")
+ }
+
+ // Ensure that the span is swept.
+ // Sweeping accesses the specials list w/o locks, so we have
+ // to synchronize with it. And it's just much safer.
+ mp := acquirem()
+ span.ensureSwept()
+
+ offset := uintptr(p) - span.base()
+ kind := s.kind
+
+ lock(&span.speciallock)
+
+ // Find splice point, check for existing record.
+ iter, exists := span.specialFindSplicePoint(offset, kind)
+ if !exists {
+ // Splice in record, fill in offset.
+ s.offset = uint16(offset)
+ s.next = *iter
+ *iter = s
+ spanHasSpecials(span)
+ }
+
+ unlock(&span.speciallock)
+ releasem(mp)
+ return !exists // already exists
+}
+
+// Removes the Special record of the given kind for the object p.
+// Returns the record if the record existed, nil otherwise.
+// The caller must FixAlloc_Free the result.
+func removespecial(p unsafe.Pointer, kind uint8) *special {
+ span := spanOfHeap(uintptr(p))
+ if span == nil {
+ throw("removespecial on invalid pointer")
+ }
+
+ // Ensure that the span is swept.
+ // Sweeping accesses the specials list w/o locks, so we have
+ // to synchronize with it. And it's just much safer.
+ mp := acquirem()
+ span.ensureSwept()
+
+ offset := uintptr(p) - span.base()
+
+ var result *special
+ lock(&span.speciallock)
+
+ iter, exists := span.specialFindSplicePoint(offset, kind)
+ if exists {
+ s := *iter
+ *iter = s.next
+ result = s
+ }
+ if span.specials == nil {
+ spanHasNoSpecials(span)
+ }
+ unlock(&span.speciallock)
+ releasem(mp)
+ return result
+}
+
+// Find a splice point in the sorted list and check for an already existing
+// record. Returns a pointer to the next-reference in the list predecessor.
+// Returns true, if the referenced item is an exact match.
+func (span *mspan) specialFindSplicePoint(offset uintptr, kind byte) (**special, bool) {
+ // Find splice point, check for existing record.
+ iter := &span.specials
+ found := false
+ for {
+ s := *iter
+ if s == nil {
+ break
+ }
+ if offset == uintptr(s.offset) && kind == s.kind {
+ found = true
+ break
+ }
+ if offset < uintptr(s.offset) || (offset == uintptr(s.offset) && kind < s.kind) {
+ break
+ }
+ iter = &s.next
+ }
+ return iter, found
+}
+
+// The described object has a finalizer set for it.
+//
+// specialfinalizer is allocated from non-GC'd memory, so any heap
+// pointers must be specially handled.
+type specialfinalizer struct {
+ _ sys.NotInHeap
+ special special
+ fn *funcval // May be a heap pointer.
+ nret uintptr
+ fint *_type // May be a heap pointer, but always live.
+ ot *ptrtype // May be a heap pointer, but always live.
+}
+
+// Adds a finalizer to the object p. Returns true if it succeeded.
+func addfinalizer(p unsafe.Pointer, f *funcval, nret uintptr, fint *_type, ot *ptrtype) bool {
+ lock(&mheap_.speciallock)
+ s := (*specialfinalizer)(mheap_.specialfinalizeralloc.alloc())
+ unlock(&mheap_.speciallock)
+ s.special.kind = _KindSpecialFinalizer
+ s.fn = f
+ s.nret = nret
+ s.fint = fint
+ s.ot = ot
+ if addspecial(p, &s.special) {
+ // This is responsible for maintaining the same
+ // GC-related invariants as markrootSpans in any
+ // situation where it's possible that markrootSpans
+ // has already run but mark termination hasn't yet.
+ if gcphase != _GCoff {
+ base, span, _ := findObject(uintptr(p), 0, 0)
+ mp := acquirem()
+ gcw := &mp.p.ptr().gcw
+ // Mark everything reachable from the object
+ // so it's retained for the finalizer.
+ if !span.spanclass.noscan() {
+ scanobject(base, gcw)
+ }
+ // Mark the finalizer itself, since the
+ // special isn't part of the GC'd heap.
+ scanblock(uintptr(unsafe.Pointer(&s.fn)), goarch.PtrSize, &oneptrmask[0], gcw, nil)
+ releasem(mp)
+ }
+ return true
+ }
+
+ // There was an old finalizer
+ lock(&mheap_.speciallock)
+ mheap_.specialfinalizeralloc.free(unsafe.Pointer(s))
+ unlock(&mheap_.speciallock)
+ return false
+}
+
+// Removes the finalizer (if any) from the object p.
+func removefinalizer(p unsafe.Pointer) {
+ s := (*specialfinalizer)(unsafe.Pointer(removespecial(p, _KindSpecialFinalizer)))
+ if s == nil {
+ return // there wasn't a finalizer to remove
+ }
+ lock(&mheap_.speciallock)
+ mheap_.specialfinalizeralloc.free(unsafe.Pointer(s))
+ unlock(&mheap_.speciallock)
+}
+
+// The described object is being heap profiled.
+type specialprofile struct {
+ _ sys.NotInHeap
+ special special
+ b *bucket
+}
+
+// Set the heap profile bucket associated with addr to b.
+func setprofilebucket(p unsafe.Pointer, b *bucket) {
+ lock(&mheap_.speciallock)
+ s := (*specialprofile)(mheap_.specialprofilealloc.alloc())
+ unlock(&mheap_.speciallock)
+ s.special.kind = _KindSpecialProfile
+ s.b = b
+ if !addspecial(p, &s.special) {
+ throw("setprofilebucket: profile already set")
+ }
+}
+
+// specialReachable tracks whether an object is reachable on the next
+// GC cycle. This is used by testing.
+type specialReachable struct {
+ special special
+ done bool
+ reachable bool
+}
+
+// specialPinCounter tracks whether an object is pinned multiple times.
+type specialPinCounter struct {
+ special special
+ counter uintptr
+}
+
+// specialsIter helps iterate over specials lists.
+type specialsIter struct {
+ pprev **special
+ s *special
+}
+
+func newSpecialsIter(span *mspan) specialsIter {
+ return specialsIter{&span.specials, span.specials}
+}
+
+func (i *specialsIter) valid() bool {
+ return i.s != nil
+}
+
+func (i *specialsIter) next() {
+ i.pprev = &i.s.next
+ i.s = *i.pprev
+}
+
+// unlinkAndNext removes the current special from the list and moves
+// the iterator to the next special. It returns the unlinked special.
+func (i *specialsIter) unlinkAndNext() *special {
+ cur := i.s
+ i.s = cur.next
+ *i.pprev = i.s
+ return cur
+}
+
+// freeSpecial performs any cleanup on special s and deallocates it.
+// s must already be unlinked from the specials list.
+func freeSpecial(s *special, p unsafe.Pointer, size uintptr) {
+ switch s.kind {
+ case _KindSpecialFinalizer:
+ sf := (*specialfinalizer)(unsafe.Pointer(s))
+ queuefinalizer(p, sf.fn, sf.nret, sf.fint, sf.ot)
+ lock(&mheap_.speciallock)
+ mheap_.specialfinalizeralloc.free(unsafe.Pointer(sf))
+ unlock(&mheap_.speciallock)
+ case _KindSpecialProfile:
+ sp := (*specialprofile)(unsafe.Pointer(s))
+ mProf_Free(sp.b, size)
+ lock(&mheap_.speciallock)
+ mheap_.specialprofilealloc.free(unsafe.Pointer(sp))
+ unlock(&mheap_.speciallock)
+ case _KindSpecialReachable:
+ sp := (*specialReachable)(unsafe.Pointer(s))
+ sp.done = true
+ // The creator frees these.
+ case _KindSpecialPinCounter:
+ lock(&mheap_.speciallock)
+ mheap_.specialPinCounterAlloc.free(unsafe.Pointer(s))
+ unlock(&mheap_.speciallock)
+ default:
+ throw("bad special kind")
+ panic("not reached")
+ }
+}
+
+// gcBits is an alloc/mark bitmap. This is always used as gcBits.x.
+type gcBits struct {
+ _ sys.NotInHeap
+ x uint8
+}
+
+// bytep returns a pointer to the n'th byte of b.
+func (b *gcBits) bytep(n uintptr) *uint8 {
+ return addb(&b.x, n)
+}
+
+// bitp returns a pointer to the byte containing bit n and a mask for
+// selecting that bit from *bytep.
+func (b *gcBits) bitp(n uintptr) (bytep *uint8, mask uint8) {
+ return b.bytep(n / 8), 1 << (n % 8)
+}
+
+const gcBitsChunkBytes = uintptr(64 << 10)
+const gcBitsHeaderBytes = unsafe.Sizeof(gcBitsHeader{})
+
+type gcBitsHeader struct {
+ free uintptr // free is the index into bits of the next free byte.
+ next uintptr // *gcBits triggers recursive type bug. (issue 14620)
+}
+
+type gcBitsArena struct {
+ _ sys.NotInHeap
+ // gcBitsHeader // side step recursive type bug (issue 14620) by including fields by hand.
+ free uintptr // free is the index into bits of the next free byte; read/write atomically
+ next *gcBitsArena
+ bits [gcBitsChunkBytes - gcBitsHeaderBytes]gcBits
+}
+
+var gcBitsArenas struct {
+ lock mutex
+ free *gcBitsArena
+ next *gcBitsArena // Read atomically. Write atomically under lock.
+ current *gcBitsArena
+ previous *gcBitsArena
+}
+
+// tryAlloc allocates from b or returns nil if b does not have enough room.
+// This is safe to call concurrently.
+func (b *gcBitsArena) tryAlloc(bytes uintptr) *gcBits {
+ if b == nil || atomic.Loaduintptr(&b.free)+bytes > uintptr(len(b.bits)) {
+ return nil
+ }
+ // Try to allocate from this block.
+ end := atomic.Xadduintptr(&b.free, bytes)
+ if end > uintptr(len(b.bits)) {
+ return nil
+ }
+ // There was enough room.
+ start := end - bytes
+ return &b.bits[start]
+}
+
+// newMarkBits returns a pointer to 8 byte aligned bytes
+// to be used for a span's mark bits.
+func newMarkBits(nelems uintptr) *gcBits {
+ blocksNeeded := uintptr((nelems + 63) / 64)
+ bytesNeeded := blocksNeeded * 8
+
+ // Try directly allocating from the current head arena.
+ head := (*gcBitsArena)(atomic.Loadp(unsafe.Pointer(&gcBitsArenas.next)))
+ if p := head.tryAlloc(bytesNeeded); p != nil {
+ return p
+ }
+
+ // There's not enough room in the head arena. We may need to
+ // allocate a new arena.
+ lock(&gcBitsArenas.lock)
+ // Try the head arena again, since it may have changed. Now
+ // that we hold the lock, the list head can't change, but its
+ // free position still can.
+ if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil {
+ unlock(&gcBitsArenas.lock)
+ return p
+ }
+
+ // Allocate a new arena. This may temporarily drop the lock.
+ fresh := newArenaMayUnlock()
+ // If newArenaMayUnlock dropped the lock, another thread may
+ // have put a fresh arena on the "next" list. Try allocating
+ // from next again.
+ if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil {
+ // Put fresh back on the free list.
+ // TODO: Mark it "already zeroed"
+ fresh.next = gcBitsArenas.free
+ gcBitsArenas.free = fresh
+ unlock(&gcBitsArenas.lock)
+ return p
+ }
+
+ // Allocate from the fresh arena. We haven't linked it in yet, so
+ // this cannot race and is guaranteed to succeed.
+ p := fresh.tryAlloc(bytesNeeded)
+ if p == nil {
+ throw("markBits overflow")
+ }
+
+ // Add the fresh arena to the "next" list.
+ fresh.next = gcBitsArenas.next
+ atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), unsafe.Pointer(fresh))
+
+ unlock(&gcBitsArenas.lock)
+ return p
+}
+
+// newAllocBits returns a pointer to 8 byte aligned bytes
+// to be used for this span's alloc bits.
+// newAllocBits is used to provide newly initialized spans
+// allocation bits. For spans not being initialized the
+// mark bits are repurposed as allocation bits when
+// the span is swept.
+func newAllocBits(nelems uintptr) *gcBits {
+ return newMarkBits(nelems)
+}
+
+// nextMarkBitArenaEpoch establishes a new epoch for the arenas
+// holding the mark bits. The arenas are named relative to the
+// current GC cycle which is demarcated by the call to finishweep_m.
+//
+// All current spans have been swept.
+// During that sweep each span allocated room for its gcmarkBits in
+// gcBitsArenas.next block. gcBitsArenas.next becomes the gcBitsArenas.current
+// where the GC will mark objects and after each span is swept these bits
+// will be used to allocate objects.
+// gcBitsArenas.current becomes gcBitsArenas.previous where the span's
+// gcAllocBits live until all the spans have been swept during this GC cycle.
+// The span's sweep extinguishes all the references to gcBitsArenas.previous
+// by pointing gcAllocBits into the gcBitsArenas.current.
+// The gcBitsArenas.previous is released to the gcBitsArenas.free list.
+func nextMarkBitArenaEpoch() {
+ lock(&gcBitsArenas.lock)
+ if gcBitsArenas.previous != nil {
+ if gcBitsArenas.free == nil {
+ gcBitsArenas.free = gcBitsArenas.previous
+ } else {
+ // Find end of previous arenas.
+ last := gcBitsArenas.previous
+ for last = gcBitsArenas.previous; last.next != nil; last = last.next {
+ }
+ last.next = gcBitsArenas.free
+ gcBitsArenas.free = gcBitsArenas.previous
+ }
+ }
+ gcBitsArenas.previous = gcBitsArenas.current
+ gcBitsArenas.current = gcBitsArenas.next
+ atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), nil) // newMarkBits calls newArena when needed
+ unlock(&gcBitsArenas.lock)
+}
+
+// newArenaMayUnlock allocates and zeroes a gcBits arena.
+// The caller must hold gcBitsArena.lock. This may temporarily release it.
+func newArenaMayUnlock() *gcBitsArena {
+ var result *gcBitsArena
+ if gcBitsArenas.free == nil {
+ unlock(&gcBitsArenas.lock)
+ result = (*gcBitsArena)(sysAlloc(gcBitsChunkBytes, &memstats.gcMiscSys))
+ if result == nil {
+ throw("runtime: cannot allocate memory")
+ }
+ lock(&gcBitsArenas.lock)
+ } else {
+ result = gcBitsArenas.free
+ gcBitsArenas.free = gcBitsArenas.free.next
+ memclrNoHeapPointers(unsafe.Pointer(result), gcBitsChunkBytes)
+ }
+ result.next = nil
+ // If result.bits is not 8 byte aligned adjust index so
+ // that &result.bits[result.free] is 8 byte aligned.
+ if uintptr(unsafe.Offsetof(gcBitsArena{}.bits))&7 == 0 {
+ result.free = 0
+ } else {
+ result.free = 8 - (uintptr(unsafe.Pointer(&result.bits[0])) & 7)
+ }
+ return result
+}