summaryrefslogtreecommitdiffstats
path: root/src/runtime/os_linux.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:19:13 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:19:13 +0000
commitccd992355df7192993c666236047820244914598 (patch)
treef00fea65147227b7743083c6148396f74cd66935 /src/runtime/os_linux.go
parentInitial commit. (diff)
downloadgolang-1.21-ccd992355df7192993c666236047820244914598.tar.xz
golang-1.21-ccd992355df7192993c666236047820244914598.zip
Adding upstream version 1.21.8.upstream/1.21.8
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/runtime/os_linux.go')
-rw-r--r--src/runtime/os_linux.go918
1 files changed, 918 insertions, 0 deletions
diff --git a/src/runtime/os_linux.go b/src/runtime/os_linux.go
new file mode 100644
index 0000000..0b05610
--- /dev/null
+++ b/src/runtime/os_linux.go
@@ -0,0 +1,918 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package runtime
+
+import (
+ "internal/abi"
+ "internal/goarch"
+ "runtime/internal/atomic"
+ "runtime/internal/syscall"
+ "unsafe"
+)
+
+// sigPerThreadSyscall is the same signal (SIGSETXID) used by glibc for
+// per-thread syscalls on Linux. We use it for the same purpose in non-cgo
+// binaries.
+const sigPerThreadSyscall = _SIGRTMIN + 1
+
+type mOS struct {
+ // profileTimer holds the ID of the POSIX interval timer for profiling CPU
+ // usage on this thread.
+ //
+ // It is valid when the profileTimerValid field is true. A thread
+ // creates and manages its own timer, and these fields are read and written
+ // only by this thread. But because some of the reads on profileTimerValid
+ // are in signal handling code, this field should be atomic type.
+ profileTimer int32
+ profileTimerValid atomic.Bool
+
+ // needPerThreadSyscall indicates that a per-thread syscall is required
+ // for doAllThreadsSyscall.
+ needPerThreadSyscall atomic.Uint8
+}
+
+//go:noescape
+func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32
+
+// Linux futex.
+//
+// futexsleep(uint32 *addr, uint32 val)
+// futexwakeup(uint32 *addr)
+//
+// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
+// Futexwakeup wakes up threads sleeping on addr.
+// Futexsleep is allowed to wake up spuriously.
+
+const (
+ _FUTEX_PRIVATE_FLAG = 128
+ _FUTEX_WAIT_PRIVATE = 0 | _FUTEX_PRIVATE_FLAG
+ _FUTEX_WAKE_PRIVATE = 1 | _FUTEX_PRIVATE_FLAG
+)
+
+// Atomically,
+//
+// if(*addr == val) sleep
+//
+// Might be woken up spuriously; that's allowed.
+// Don't sleep longer than ns; ns < 0 means forever.
+//
+//go:nosplit
+func futexsleep(addr *uint32, val uint32, ns int64) {
+ // Some Linux kernels have a bug where futex of
+ // FUTEX_WAIT returns an internal error code
+ // as an errno. Libpthread ignores the return value
+ // here, and so can we: as it says a few lines up,
+ // spurious wakeups are allowed.
+ if ns < 0 {
+ futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, nil, nil, 0)
+ return
+ }
+
+ var ts timespec
+ ts.setNsec(ns)
+ futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, unsafe.Pointer(&ts), nil, 0)
+}
+
+// If any procs are sleeping on addr, wake up at most cnt.
+//
+//go:nosplit
+func futexwakeup(addr *uint32, cnt uint32) {
+ ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE_PRIVATE, cnt, nil, nil, 0)
+ if ret >= 0 {
+ return
+ }
+
+ // I don't know that futex wakeup can return
+ // EAGAIN or EINTR, but if it does, it would be
+ // safe to loop and call futex again.
+ systemstack(func() {
+ print("futexwakeup addr=", addr, " returned ", ret, "\n")
+ })
+
+ *(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
+}
+
+func getproccount() int32 {
+ // This buffer is huge (8 kB) but we are on the system stack
+ // and there should be plenty of space (64 kB).
+ // Also this is a leaf, so we're not holding up the memory for long.
+ // See golang.org/issue/11823.
+ // The suggested behavior here is to keep trying with ever-larger
+ // buffers, but we don't have a dynamic memory allocator at the
+ // moment, so that's a bit tricky and seems like overkill.
+ const maxCPUs = 64 * 1024
+ var buf [maxCPUs / 8]byte
+ r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0])
+ if r < 0 {
+ return 1
+ }
+ n := int32(0)
+ for _, v := range buf[:r] {
+ for v != 0 {
+ n += int32(v & 1)
+ v >>= 1
+ }
+ }
+ if n == 0 {
+ n = 1
+ }
+ return n
+}
+
+// Clone, the Linux rfork.
+const (
+ _CLONE_VM = 0x100
+ _CLONE_FS = 0x200
+ _CLONE_FILES = 0x400
+ _CLONE_SIGHAND = 0x800
+ _CLONE_PTRACE = 0x2000
+ _CLONE_VFORK = 0x4000
+ _CLONE_PARENT = 0x8000
+ _CLONE_THREAD = 0x10000
+ _CLONE_NEWNS = 0x20000
+ _CLONE_SYSVSEM = 0x40000
+ _CLONE_SETTLS = 0x80000
+ _CLONE_PARENT_SETTID = 0x100000
+ _CLONE_CHILD_CLEARTID = 0x200000
+ _CLONE_UNTRACED = 0x800000
+ _CLONE_CHILD_SETTID = 0x1000000
+ _CLONE_STOPPED = 0x2000000
+ _CLONE_NEWUTS = 0x4000000
+ _CLONE_NEWIPC = 0x8000000
+
+ // As of QEMU 2.8.0 (5ea2fc84d), user emulation requires all six of these
+ // flags to be set when creating a thread; attempts to share the other
+ // five but leave SYSVSEM unshared will fail with -EINVAL.
+ //
+ // In non-QEMU environments CLONE_SYSVSEM is inconsequential as we do not
+ // use System V semaphores.
+
+ cloneFlags = _CLONE_VM | /* share memory */
+ _CLONE_FS | /* share cwd, etc */
+ _CLONE_FILES | /* share fd table */
+ _CLONE_SIGHAND | /* share sig handler table */
+ _CLONE_SYSVSEM | /* share SysV semaphore undo lists (see issue #20763) */
+ _CLONE_THREAD /* revisit - okay for now */
+)
+
+//go:noescape
+func clone(flags int32, stk, mp, gp, fn unsafe.Pointer) int32
+
+// May run with m.p==nil, so write barriers are not allowed.
+//
+//go:nowritebarrier
+func newosproc(mp *m) {
+ stk := unsafe.Pointer(mp.g0.stack.hi)
+ /*
+ * note: strace gets confused if we use CLONE_PTRACE here.
+ */
+ if false {
+ print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", abi.FuncPCABI0(clone), " id=", mp.id, " ostk=", &mp, "\n")
+ }
+
+ // Disable signals during clone, so that the new thread starts
+ // with signals disabled. It will enable them in minit.
+ var oset sigset
+ sigprocmask(_SIG_SETMASK, &sigset_all, &oset)
+ ret := retryOnEAGAIN(func() int32 {
+ r := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(abi.FuncPCABI0(mstart)))
+ // clone returns positive TID, negative errno.
+ // We don't care about the TID.
+ if r >= 0 {
+ return 0
+ }
+ return -r
+ })
+ sigprocmask(_SIG_SETMASK, &oset, nil)
+
+ if ret != 0 {
+ print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", ret, ")\n")
+ if ret == _EAGAIN {
+ println("runtime: may need to increase max user processes (ulimit -u)")
+ }
+ throw("newosproc")
+ }
+}
+
+// Version of newosproc that doesn't require a valid G.
+//
+//go:nosplit
+func newosproc0(stacksize uintptr, fn unsafe.Pointer) {
+ stack := sysAlloc(stacksize, &memstats.stacks_sys)
+ if stack == nil {
+ writeErrStr(failallocatestack)
+ exit(1)
+ }
+ ret := clone(cloneFlags, unsafe.Pointer(uintptr(stack)+stacksize), nil, nil, fn)
+ if ret < 0 {
+ writeErrStr(failthreadcreate)
+ exit(1)
+ }
+}
+
+const (
+ _AT_NULL = 0 // End of vector
+ _AT_PAGESZ = 6 // System physical page size
+ _AT_HWCAP = 16 // hardware capability bit vector
+ _AT_SECURE = 23 // secure mode boolean
+ _AT_RANDOM = 25 // introduced in 2.6.29
+ _AT_HWCAP2 = 26 // hardware capability bit vector 2
+)
+
+var procAuxv = []byte("/proc/self/auxv\x00")
+
+var addrspace_vec [1]byte
+
+func mincore(addr unsafe.Pointer, n uintptr, dst *byte) int32
+
+var auxvreadbuf [128]uintptr
+
+func sysargs(argc int32, argv **byte) {
+ n := argc + 1
+
+ // skip over argv, envp to get to auxv
+ for argv_index(argv, n) != nil {
+ n++
+ }
+
+ // skip NULL separator
+ n++
+
+ // now argv+n is auxv
+ auxvp := (*[1 << 28]uintptr)(add(unsafe.Pointer(argv), uintptr(n)*goarch.PtrSize))
+
+ if pairs := sysauxv(auxvp[:]); pairs != 0 {
+ auxv = auxvp[: pairs*2 : pairs*2]
+ return
+ }
+ // In some situations we don't get a loader-provided
+ // auxv, such as when loaded as a library on Android.
+ // Fall back to /proc/self/auxv.
+ fd := open(&procAuxv[0], 0 /* O_RDONLY */, 0)
+ if fd < 0 {
+ // On Android, /proc/self/auxv might be unreadable (issue 9229), so we fallback to
+ // try using mincore to detect the physical page size.
+ // mincore should return EINVAL when address is not a multiple of system page size.
+ const size = 256 << 10 // size of memory region to allocate
+ p, err := mmap(nil, size, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0)
+ if err != 0 {
+ return
+ }
+ var n uintptr
+ for n = 4 << 10; n < size; n <<= 1 {
+ err := mincore(unsafe.Pointer(uintptr(p)+n), 1, &addrspace_vec[0])
+ if err == 0 {
+ physPageSize = n
+ break
+ }
+ }
+ if physPageSize == 0 {
+ physPageSize = size
+ }
+ munmap(p, size)
+ return
+ }
+
+ n = read(fd, noescape(unsafe.Pointer(&auxvreadbuf[0])), int32(unsafe.Sizeof(auxvreadbuf)))
+ closefd(fd)
+ if n < 0 {
+ return
+ }
+ // Make sure buf is terminated, even if we didn't read
+ // the whole file.
+ auxvreadbuf[len(auxvreadbuf)-2] = _AT_NULL
+ pairs := sysauxv(auxvreadbuf[:])
+ auxv = auxvreadbuf[: pairs*2 : pairs*2]
+}
+
+// startupRandomData holds random bytes initialized at startup. These come from
+// the ELF AT_RANDOM auxiliary vector.
+var startupRandomData []byte
+
+// secureMode holds the value of AT_SECURE passed in the auxiliary vector.
+var secureMode bool
+
+func sysauxv(auxv []uintptr) (pairs int) {
+ var i int
+ for ; auxv[i] != _AT_NULL; i += 2 {
+ tag, val := auxv[i], auxv[i+1]
+ switch tag {
+ case _AT_RANDOM:
+ // The kernel provides a pointer to 16-bytes
+ // worth of random data.
+ startupRandomData = (*[16]byte)(unsafe.Pointer(val))[:]
+
+ case _AT_PAGESZ:
+ physPageSize = val
+
+ case _AT_SECURE:
+ secureMode = val == 1
+ }
+
+ archauxv(tag, val)
+ vdsoauxv(tag, val)
+ }
+ return i / 2
+}
+
+var sysTHPSizePath = []byte("/sys/kernel/mm/transparent_hugepage/hpage_pmd_size\x00")
+
+func getHugePageSize() uintptr {
+ var numbuf [20]byte
+ fd := open(&sysTHPSizePath[0], 0 /* O_RDONLY */, 0)
+ if fd < 0 {
+ return 0
+ }
+ ptr := noescape(unsafe.Pointer(&numbuf[0]))
+ n := read(fd, ptr, int32(len(numbuf)))
+ closefd(fd)
+ if n <= 0 {
+ return 0
+ }
+ n-- // remove trailing newline
+ v, ok := atoi(slicebytetostringtmp((*byte)(ptr), int(n)))
+ if !ok || v < 0 {
+ v = 0
+ }
+ if v&(v-1) != 0 {
+ // v is not a power of 2
+ return 0
+ }
+ return uintptr(v)
+}
+
+func osinit() {
+ ncpu = getproccount()
+ physHugePageSize = getHugePageSize()
+ if iscgo {
+ // #42494 glibc and musl reserve some signals for
+ // internal use and require they not be blocked by
+ // the rest of a normal C runtime. When the go runtime
+ // blocks...unblocks signals, temporarily, the blocked
+ // interval of time is generally very short. As such,
+ // these expectations of *libc code are mostly met by
+ // the combined go+cgo system of threads. However,
+ // when go causes a thread to exit, via a return from
+ // mstart(), the combined runtime can deadlock if
+ // these signals are blocked. Thus, don't block these
+ // signals when exiting threads.
+ // - glibc: SIGCANCEL (32), SIGSETXID (33)
+ // - musl: SIGTIMER (32), SIGCANCEL (33), SIGSYNCCALL (34)
+ sigdelset(&sigsetAllExiting, 32)
+ sigdelset(&sigsetAllExiting, 33)
+ sigdelset(&sigsetAllExiting, 34)
+ }
+ osArchInit()
+}
+
+var urandom_dev = []byte("/dev/urandom\x00")
+
+func getRandomData(r []byte) {
+ if startupRandomData != nil {
+ n := copy(r, startupRandomData)
+ extendRandom(r, n)
+ return
+ }
+ fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
+ n := read(fd, unsafe.Pointer(&r[0]), int32(len(r)))
+ closefd(fd)
+ extendRandom(r, int(n))
+}
+
+func goenvs() {
+ goenvs_unix()
+}
+
+// Called to do synchronous initialization of Go code built with
+// -buildmode=c-archive or -buildmode=c-shared.
+// None of the Go runtime is initialized.
+//
+//go:nosplit
+//go:nowritebarrierrec
+func libpreinit() {
+ initsig(true)
+}
+
+// Called to initialize a new m (including the bootstrap m).
+// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
+func mpreinit(mp *m) {
+ mp.gsignal = malg(32 * 1024) // Linux wants >= 2K
+ mp.gsignal.m = mp
+}
+
+func gettid() uint32
+
+// Called to initialize a new m (including the bootstrap m).
+// Called on the new thread, cannot allocate memory.
+func minit() {
+ minitSignals()
+
+ // Cgo-created threads and the bootstrap m are missing a
+ // procid. We need this for asynchronous preemption and it's
+ // useful in debuggers.
+ getg().m.procid = uint64(gettid())
+}
+
+// Called from dropm to undo the effect of an minit.
+//
+//go:nosplit
+func unminit() {
+ unminitSignals()
+}
+
+// Called from exitm, but not from drop, to undo the effect of thread-owned
+// resources in minit, semacreate, or elsewhere. Do not take locks after calling this.
+func mdestroy(mp *m) {
+}
+
+//#ifdef GOARCH_386
+//#define sa_handler k_sa_handler
+//#endif
+
+func sigreturn__sigaction()
+func sigtramp() // Called via C ABI
+func cgoSigtramp()
+
+//go:noescape
+func sigaltstack(new, old *stackt)
+
+//go:noescape
+func setitimer(mode int32, new, old *itimerval)
+
+//go:noescape
+func timer_create(clockid int32, sevp *sigevent, timerid *int32) int32
+
+//go:noescape
+func timer_settime(timerid int32, flags int32, new, old *itimerspec) int32
+
+//go:noescape
+func timer_delete(timerid int32) int32
+
+//go:noescape
+func rtsigprocmask(how int32, new, old *sigset, size int32)
+
+//go:nosplit
+//go:nowritebarrierrec
+func sigprocmask(how int32, new, old *sigset) {
+ rtsigprocmask(how, new, old, int32(unsafe.Sizeof(*new)))
+}
+
+func raise(sig uint32)
+func raiseproc(sig uint32)
+
+//go:noescape
+func sched_getaffinity(pid, len uintptr, buf *byte) int32
+func osyield()
+
+//go:nosplit
+func osyield_no_g() {
+ osyield()
+}
+
+func pipe2(flags int32) (r, w int32, errno int32)
+
+//go:nosplit
+func fcntl(fd, cmd, arg int32) (ret int32, errno int32) {
+ r, _, err := syscall.Syscall6(syscall.SYS_FCNTL, uintptr(fd), uintptr(cmd), uintptr(arg), 0, 0, 0)
+ return int32(r), int32(err)
+}
+
+const (
+ _si_max_size = 128
+ _sigev_max_size = 64
+)
+
+//go:nosplit
+//go:nowritebarrierrec
+func setsig(i uint32, fn uintptr) {
+ var sa sigactiont
+ sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER | _SA_RESTART
+ sigfillset(&sa.sa_mask)
+ // Although Linux manpage says "sa_restorer element is obsolete and
+ // should not be used". x86_64 kernel requires it. Only use it on
+ // x86.
+ if GOARCH == "386" || GOARCH == "amd64" {
+ sa.sa_restorer = abi.FuncPCABI0(sigreturn__sigaction)
+ }
+ if fn == abi.FuncPCABIInternal(sighandler) { // abi.FuncPCABIInternal(sighandler) matches the callers in signal_unix.go
+ if iscgo {
+ fn = abi.FuncPCABI0(cgoSigtramp)
+ } else {
+ fn = abi.FuncPCABI0(sigtramp)
+ }
+ }
+ sa.sa_handler = fn
+ sigaction(i, &sa, nil)
+}
+
+//go:nosplit
+//go:nowritebarrierrec
+func setsigstack(i uint32) {
+ var sa sigactiont
+ sigaction(i, nil, &sa)
+ if sa.sa_flags&_SA_ONSTACK != 0 {
+ return
+ }
+ sa.sa_flags |= _SA_ONSTACK
+ sigaction(i, &sa, nil)
+}
+
+//go:nosplit
+//go:nowritebarrierrec
+func getsig(i uint32) uintptr {
+ var sa sigactiont
+ sigaction(i, nil, &sa)
+ return sa.sa_handler
+}
+
+// setSignalstackSP sets the ss_sp field of a stackt.
+//
+//go:nosplit
+func setSignalstackSP(s *stackt, sp uintptr) {
+ *(*uintptr)(unsafe.Pointer(&s.ss_sp)) = sp
+}
+
+//go:nosplit
+func (c *sigctxt) fixsigcode(sig uint32) {
+}
+
+// sysSigaction calls the rt_sigaction system call.
+//
+//go:nosplit
+func sysSigaction(sig uint32, new, old *sigactiont) {
+ if rt_sigaction(uintptr(sig), new, old, unsafe.Sizeof(sigactiont{}.sa_mask)) != 0 {
+ // Workaround for bugs in QEMU user mode emulation.
+ //
+ // QEMU turns calls to the sigaction system call into
+ // calls to the C library sigaction call; the C
+ // library call rejects attempts to call sigaction for
+ // SIGCANCEL (32) or SIGSETXID (33).
+ //
+ // QEMU rejects calling sigaction on SIGRTMAX (64).
+ //
+ // Just ignore the error in these case. There isn't
+ // anything we can do about it anyhow.
+ if sig != 32 && sig != 33 && sig != 64 {
+ // Use system stack to avoid split stack overflow on ppc64/ppc64le.
+ systemstack(func() {
+ throw("sigaction failed")
+ })
+ }
+ }
+}
+
+// rt_sigaction is implemented in assembly.
+//
+//go:noescape
+func rt_sigaction(sig uintptr, new, old *sigactiont, size uintptr) int32
+
+func getpid() int
+func tgkill(tgid, tid, sig int)
+
+// signalM sends a signal to mp.
+func signalM(mp *m, sig int) {
+ tgkill(getpid(), int(mp.procid), sig)
+}
+
+// validSIGPROF compares this signal delivery's code against the signal sources
+// that the profiler uses, returning whether the delivery should be processed.
+// To be processed, a signal delivery from a known profiling mechanism should
+// correspond to the best profiling mechanism available to this thread. Signals
+// from other sources are always considered valid.
+//
+//go:nosplit
+func validSIGPROF(mp *m, c *sigctxt) bool {
+ code := int32(c.sigcode())
+ setitimer := code == _SI_KERNEL
+ timer_create := code == _SI_TIMER
+
+ if !(setitimer || timer_create) {
+ // The signal doesn't correspond to a profiling mechanism that the
+ // runtime enables itself. There's no reason to process it, but there's
+ // no reason to ignore it either.
+ return true
+ }
+
+ if mp == nil {
+ // Since we don't have an M, we can't check if there's an active
+ // per-thread timer for this thread. We don't know how long this thread
+ // has been around, and if it happened to interact with the Go scheduler
+ // at a time when profiling was active (causing it to have a per-thread
+ // timer). But it may have never interacted with the Go scheduler, or
+ // never while profiling was active. To avoid double-counting, process
+ // only signals from setitimer.
+ //
+ // When a custom cgo traceback function has been registered (on
+ // platforms that support runtime.SetCgoTraceback), SIGPROF signals
+ // delivered to a thread that cannot find a matching M do this check in
+ // the assembly implementations of runtime.cgoSigtramp.
+ return setitimer
+ }
+
+ // Having an M means the thread interacts with the Go scheduler, and we can
+ // check whether there's an active per-thread timer for this thread.
+ if mp.profileTimerValid.Load() {
+ // If this M has its own per-thread CPU profiling interval timer, we
+ // should track the SIGPROF signals that come from that timer (for
+ // accurate reporting of its CPU usage; see issue 35057) and ignore any
+ // that it gets from the process-wide setitimer (to not over-count its
+ // CPU consumption).
+ return timer_create
+ }
+
+ // No active per-thread timer means the only valid profiler is setitimer.
+ return setitimer
+}
+
+func setProcessCPUProfiler(hz int32) {
+ setProcessCPUProfilerTimer(hz)
+}
+
+func setThreadCPUProfiler(hz int32) {
+ mp := getg().m
+ mp.profilehz = hz
+
+ // destroy any active timer
+ if mp.profileTimerValid.Load() {
+ timerid := mp.profileTimer
+ mp.profileTimerValid.Store(false)
+ mp.profileTimer = 0
+
+ ret := timer_delete(timerid)
+ if ret != 0 {
+ print("runtime: failed to disable profiling timer; timer_delete(", timerid, ") errno=", -ret, "\n")
+ throw("timer_delete")
+ }
+ }
+
+ if hz == 0 {
+ // If the goal was to disable profiling for this thread, then the job's done.
+ return
+ }
+
+ // The period of the timer should be 1/Hz. For every "1/Hz" of additional
+ // work, the user should expect one additional sample in the profile.
+ //
+ // But to scale down to very small amounts of application work, to observe
+ // even CPU usage of "one tenth" of the requested period, set the initial
+ // timing delay in a different way: So that "one tenth" of a period of CPU
+ // spend shows up as a 10% chance of one sample (for an expected value of
+ // 0.1 samples), and so that "two and six tenths" periods of CPU spend show
+ // up as a 60% chance of 3 samples and a 40% chance of 2 samples (for an
+ // expected value of 2.6). Set the initial delay to a value in the unifom
+ // random distribution between 0 and the desired period. And because "0"
+ // means "disable timer", add 1 so the half-open interval [0,period) turns
+ // into (0,period].
+ //
+ // Otherwise, this would show up as a bias away from short-lived threads and
+ // from threads that are only occasionally active: for example, when the
+ // garbage collector runs on a mostly-idle system, the additional threads it
+ // activates may do a couple milliseconds of GC-related work and nothing
+ // else in the few seconds that the profiler observes.
+ spec := new(itimerspec)
+ spec.it_value.setNsec(1 + int64(fastrandn(uint32(1e9/hz))))
+ spec.it_interval.setNsec(1e9 / int64(hz))
+
+ var timerid int32
+ var sevp sigevent
+ sevp.notify = _SIGEV_THREAD_ID
+ sevp.signo = _SIGPROF
+ sevp.sigev_notify_thread_id = int32(mp.procid)
+ ret := timer_create(_CLOCK_THREAD_CPUTIME_ID, &sevp, &timerid)
+ if ret != 0 {
+ // If we cannot create a timer for this M, leave profileTimerValid false
+ // to fall back to the process-wide setitimer profiler.
+ return
+ }
+
+ ret = timer_settime(timerid, 0, spec, nil)
+ if ret != 0 {
+ print("runtime: failed to configure profiling timer; timer_settime(", timerid,
+ ", 0, {interval: {",
+ spec.it_interval.tv_sec, "s + ", spec.it_interval.tv_nsec, "ns} value: {",
+ spec.it_value.tv_sec, "s + ", spec.it_value.tv_nsec, "ns}}, nil) errno=", -ret, "\n")
+ throw("timer_settime")
+ }
+
+ mp.profileTimer = timerid
+ mp.profileTimerValid.Store(true)
+}
+
+// perThreadSyscallArgs contains the system call number, arguments, and
+// expected return values for a system call to be executed on all threads.
+type perThreadSyscallArgs struct {
+ trap uintptr
+ a1 uintptr
+ a2 uintptr
+ a3 uintptr
+ a4 uintptr
+ a5 uintptr
+ a6 uintptr
+ r1 uintptr
+ r2 uintptr
+}
+
+// perThreadSyscall is the system call to execute for the ongoing
+// doAllThreadsSyscall.
+//
+// perThreadSyscall may only be written while mp.needPerThreadSyscall == 0 on
+// all Ms.
+var perThreadSyscall perThreadSyscallArgs
+
+// syscall_runtime_doAllThreadsSyscall and executes a specified system call on
+// all Ms.
+//
+// The system call is expected to succeed and return the same value on every
+// thread. If any threads do not match, the runtime throws.
+//
+//go:linkname syscall_runtime_doAllThreadsSyscall syscall.runtime_doAllThreadsSyscall
+//go:uintptrescapes
+func syscall_runtime_doAllThreadsSyscall(trap, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2, err uintptr) {
+ if iscgo {
+ // In cgo, we are not aware of threads created in C, so this approach will not work.
+ panic("doAllThreadsSyscall not supported with cgo enabled")
+ }
+
+ // STW to guarantee that user goroutines see an atomic change to thread
+ // state. Without STW, goroutines could migrate Ms while change is in
+ // progress and e.g., see state old -> new -> old -> new.
+ //
+ // N.B. Internally, this function does not depend on STW to
+ // successfully change every thread. It is only needed for user
+ // expectations, per above.
+ stopTheWorld(stwAllThreadsSyscall)
+
+ // This function depends on several properties:
+ //
+ // 1. All OS threads that already exist are associated with an M in
+ // allm. i.e., we won't miss any pre-existing threads.
+ // 2. All Ms listed in allm will eventually have an OS thread exist.
+ // i.e., they will set procid and be able to receive signals.
+ // 3. OS threads created after we read allm will clone from a thread
+ // that has executed the system call. i.e., they inherit the
+ // modified state.
+ //
+ // We achieve these through different mechanisms:
+ //
+ // 1. Addition of new Ms to allm in allocm happens before clone of its
+ // OS thread later in newm.
+ // 2. newm does acquirem to avoid being preempted, ensuring that new Ms
+ // created in allocm will eventually reach OS thread clone later in
+ // newm.
+ // 3. We take allocmLock for write here to prevent allocation of new Ms
+ // while this function runs. Per (1), this prevents clone of OS
+ // threads that are not yet in allm.
+ allocmLock.lock()
+
+ // Disable preemption, preventing us from changing Ms, as we handle
+ // this M specially.
+ //
+ // N.B. STW and lock() above do this as well, this is added for extra
+ // clarity.
+ acquirem()
+
+ // N.B. allocmLock also prevents concurrent execution of this function,
+ // serializing use of perThreadSyscall, mp.needPerThreadSyscall, and
+ // ensuring all threads execute system calls from multiple calls in the
+ // same order.
+
+ r1, r2, errno := syscall.Syscall6(trap, a1, a2, a3, a4, a5, a6)
+ if GOARCH == "ppc64" || GOARCH == "ppc64le" {
+ // TODO(https://go.dev/issue/51192 ): ppc64 doesn't use r2.
+ r2 = 0
+ }
+ if errno != 0 {
+ releasem(getg().m)
+ allocmLock.unlock()
+ startTheWorld()
+ return r1, r2, errno
+ }
+
+ perThreadSyscall = perThreadSyscallArgs{
+ trap: trap,
+ a1: a1,
+ a2: a2,
+ a3: a3,
+ a4: a4,
+ a5: a5,
+ a6: a6,
+ r1: r1,
+ r2: r2,
+ }
+
+ // Wait for all threads to start.
+ //
+ // As described above, some Ms have been added to allm prior to
+ // allocmLock, but not yet completed OS clone and set procid.
+ //
+ // At minimum we must wait for a thread to set procid before we can
+ // send it a signal.
+ //
+ // We take this one step further and wait for all threads to start
+ // before sending any signals. This prevents system calls from getting
+ // applied twice: once in the parent and once in the child, like so:
+ //
+ // A B C
+ // add C to allm
+ // doAllThreadsSyscall
+ // allocmLock.lock()
+ // signal B
+ // <receive signal>
+ // execute syscall
+ // <signal return>
+ // clone C
+ // <thread start>
+ // set procid
+ // signal C
+ // <receive signal>
+ // execute syscall
+ // <signal return>
+ //
+ // In this case, thread C inherited the syscall-modified state from
+ // thread B and did not need to execute the syscall, but did anyway
+ // because doAllThreadsSyscall could not be sure whether it was
+ // required.
+ //
+ // Some system calls may not be idempotent, so we ensure each thread
+ // executes the system call exactly once.
+ for mp := allm; mp != nil; mp = mp.alllink {
+ for atomic.Load64(&mp.procid) == 0 {
+ // Thread is starting.
+ osyield()
+ }
+ }
+
+ // Signal every other thread, where they will execute perThreadSyscall
+ // from the signal handler.
+ gp := getg()
+ tid := gp.m.procid
+ for mp := allm; mp != nil; mp = mp.alllink {
+ if atomic.Load64(&mp.procid) == tid {
+ // Our thread already performed the syscall.
+ continue
+ }
+ mp.needPerThreadSyscall.Store(1)
+ signalM(mp, sigPerThreadSyscall)
+ }
+
+ // Wait for all threads to complete.
+ for mp := allm; mp != nil; mp = mp.alllink {
+ if mp.procid == tid {
+ continue
+ }
+ for mp.needPerThreadSyscall.Load() != 0 {
+ osyield()
+ }
+ }
+
+ perThreadSyscall = perThreadSyscallArgs{}
+
+ releasem(getg().m)
+ allocmLock.unlock()
+ startTheWorld()
+
+ return r1, r2, errno
+}
+
+// runPerThreadSyscall runs perThreadSyscall for this M if required.
+//
+// This function throws if the system call returns with anything other than the
+// expected values.
+//
+//go:nosplit
+func runPerThreadSyscall() {
+ gp := getg()
+ if gp.m.needPerThreadSyscall.Load() == 0 {
+ return
+ }
+
+ args := perThreadSyscall
+ r1, r2, errno := syscall.Syscall6(args.trap, args.a1, args.a2, args.a3, args.a4, args.a5, args.a6)
+ if GOARCH == "ppc64" || GOARCH == "ppc64le" {
+ // TODO(https://go.dev/issue/51192 ): ppc64 doesn't use r2.
+ r2 = 0
+ }
+ if errno != 0 || r1 != args.r1 || r2 != args.r2 {
+ print("trap:", args.trap, ", a123456=[", args.a1, ",", args.a2, ",", args.a3, ",", args.a4, ",", args.a5, ",", args.a6, "]\n")
+ print("results: got {r1=", r1, ",r2=", r2, ",errno=", errno, "}, want {r1=", args.r1, ",r2=", args.r2, ",errno=0}\n")
+ fatal("AllThreadsSyscall6 results differ between threads; runtime corrupted")
+ }
+
+ gp.m.needPerThreadSyscall.Store(0)
+}
+
+const (
+ _SI_USER = 0
+ _SI_TKILL = -6
+)
+
+// sigFromUser reports whether the signal was sent because of a call
+// to kill or tgkill.
+//
+//go:nosplit
+func (c *sigctxt) sigFromUser() bool {
+ code := int32(c.sigcode())
+ return code == _SI_USER || code == _SI_TKILL
+}