summaryrefslogtreecommitdiffstats
path: root/src/crypto/internal/nistec/generate.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/internal/nistec/generate.go')
-rw-r--r--src/crypto/internal/nistec/generate.go639
1 files changed, 639 insertions, 0 deletions
diff --git a/src/crypto/internal/nistec/generate.go b/src/crypto/internal/nistec/generate.go
new file mode 100644
index 0000000..0e84cef
--- /dev/null
+++ b/src/crypto/internal/nistec/generate.go
@@ -0,0 +1,639 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build ignore
+
+package main
+
+// Running this generator requires addchain v0.4.0, which can be installed with
+//
+// go install github.com/mmcloughlin/addchain/cmd/addchain@v0.4.0
+//
+
+import (
+ "bytes"
+ "crypto/elliptic"
+ "fmt"
+ "go/format"
+ "io"
+ "log"
+ "math/big"
+ "os"
+ "os/exec"
+ "strings"
+ "text/template"
+)
+
+var curves = []struct {
+ P string
+ Element string
+ Params *elliptic.CurveParams
+ BuildTags string
+}{
+ {
+ P: "P224",
+ Element: "fiat.P224Element",
+ Params: elliptic.P224().Params(),
+ },
+ {
+ P: "P256",
+ Element: "fiat.P256Element",
+ Params: elliptic.P256().Params(),
+ BuildTags: "!amd64 && !arm64 && !ppc64le && !s390x",
+ },
+ {
+ P: "P384",
+ Element: "fiat.P384Element",
+ Params: elliptic.P384().Params(),
+ },
+ {
+ P: "P521",
+ Element: "fiat.P521Element",
+ Params: elliptic.P521().Params(),
+ },
+}
+
+func main() {
+ t := template.Must(template.New("tmplNISTEC").Parse(tmplNISTEC))
+
+ tmplAddchainFile, err := os.CreateTemp("", "addchain-template")
+ if err != nil {
+ log.Fatal(err)
+ }
+ defer os.Remove(tmplAddchainFile.Name())
+ if _, err := io.WriteString(tmplAddchainFile, tmplAddchain); err != nil {
+ log.Fatal(err)
+ }
+ if err := tmplAddchainFile.Close(); err != nil {
+ log.Fatal(err)
+ }
+
+ for _, c := range curves {
+ p := strings.ToLower(c.P)
+ elementLen := (c.Params.BitSize + 7) / 8
+ B := fmt.Sprintf("%#v", c.Params.B.FillBytes(make([]byte, elementLen)))
+ Gx := fmt.Sprintf("%#v", c.Params.Gx.FillBytes(make([]byte, elementLen)))
+ Gy := fmt.Sprintf("%#v", c.Params.Gy.FillBytes(make([]byte, elementLen)))
+
+ log.Printf("Generating %s.go...", p)
+ f, err := os.Create(p + ".go")
+ if err != nil {
+ log.Fatal(err)
+ }
+ defer f.Close()
+ buf := &bytes.Buffer{}
+ if err := t.Execute(buf, map[string]interface{}{
+ "P": c.P, "p": p, "B": B, "Gx": Gx, "Gy": Gy,
+ "Element": c.Element, "ElementLen": elementLen,
+ "BuildTags": c.BuildTags,
+ }); err != nil {
+ log.Fatal(err)
+ }
+ out, err := format.Source(buf.Bytes())
+ if err != nil {
+ log.Fatal(err)
+ }
+ if _, err := f.Write(out); err != nil {
+ log.Fatal(err)
+ }
+
+ // If p = 3 mod 4, implement modular square root by exponentiation.
+ mod4 := new(big.Int).Mod(c.Params.P, big.NewInt(4))
+ if mod4.Cmp(big.NewInt(3)) != 0 {
+ continue
+ }
+
+ exp := new(big.Int).Add(c.Params.P, big.NewInt(1))
+ exp.Div(exp, big.NewInt(4))
+
+ tmp, err := os.CreateTemp("", "addchain-"+p)
+ if err != nil {
+ log.Fatal(err)
+ }
+ defer os.Remove(tmp.Name())
+ cmd := exec.Command("addchain", "search", fmt.Sprintf("%d", exp))
+ cmd.Stderr = os.Stderr
+ cmd.Stdout = tmp
+ if err := cmd.Run(); err != nil {
+ log.Fatal(err)
+ }
+ if err := tmp.Close(); err != nil {
+ log.Fatal(err)
+ }
+ cmd = exec.Command("addchain", "gen", "-tmpl", tmplAddchainFile.Name(), tmp.Name())
+ cmd.Stderr = os.Stderr
+ out, err = cmd.Output()
+ if err != nil {
+ log.Fatal(err)
+ }
+ out = bytes.Replace(out, []byte("Element"), []byte(c.Element), -1)
+ out = bytes.Replace(out, []byte("sqrtCandidate"), []byte(p+"SqrtCandidate"), -1)
+ out, err = format.Source(out)
+ if err != nil {
+ log.Fatal(err)
+ }
+ if _, err := f.Write(out); err != nil {
+ log.Fatal(err)
+ }
+ }
+}
+
+const tmplNISTEC = `// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Code generated by generate.go. DO NOT EDIT.
+
+{{ if .BuildTags }}
+//go:build {{ .BuildTags }}
+{{ end }}
+
+package nistec
+
+import (
+ "crypto/internal/nistec/fiat"
+ "crypto/subtle"
+ "errors"
+ "sync"
+)
+
+// {{.p}}ElementLength is the length of an element of the base or scalar field,
+// which have the same bytes length for all NIST P curves.
+const {{.p}}ElementLength = {{ .ElementLen }}
+
+// {{.P}}Point is a {{.P}} point. The zero value is NOT valid.
+type {{.P}}Point struct {
+ // The point is represented in projective coordinates (X:Y:Z),
+ // where x = X/Z and y = Y/Z.
+ x, y, z *{{.Element}}
+}
+
+// New{{.P}}Point returns a new {{.P}}Point representing the point at infinity point.
+func New{{.P}}Point() *{{.P}}Point {
+ return &{{.P}}Point{
+ x: new({{.Element}}),
+ y: new({{.Element}}).One(),
+ z: new({{.Element}}),
+ }
+}
+
+// SetGenerator sets p to the canonical generator and returns p.
+func (p *{{.P}}Point) SetGenerator() *{{.P}}Point {
+ p.x.SetBytes({{.Gx}})
+ p.y.SetBytes({{.Gy}})
+ p.z.One()
+ return p
+}
+
+// Set sets p = q and returns p.
+func (p *{{.P}}Point) Set(q *{{.P}}Point) *{{.P}}Point {
+ p.x.Set(q.x)
+ p.y.Set(q.y)
+ p.z.Set(q.z)
+ return p
+}
+
+// SetBytes sets p to the compressed, uncompressed, or infinity value encoded in
+// b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on
+// the curve, it returns nil and an error, and the receiver is unchanged.
+// Otherwise, it returns p.
+func (p *{{.P}}Point) SetBytes(b []byte) (*{{.P}}Point, error) {
+ switch {
+ // Point at infinity.
+ case len(b) == 1 && b[0] == 0:
+ return p.Set(New{{.P}}Point()), nil
+
+ // Uncompressed form.
+ case len(b) == 1+2*{{.p}}ElementLength && b[0] == 4:
+ x, err := new({{.Element}}).SetBytes(b[1 : 1+{{.p}}ElementLength])
+ if err != nil {
+ return nil, err
+ }
+ y, err := new({{.Element}}).SetBytes(b[1+{{.p}}ElementLength:])
+ if err != nil {
+ return nil, err
+ }
+ if err := {{.p}}CheckOnCurve(x, y); err != nil {
+ return nil, err
+ }
+ p.x.Set(x)
+ p.y.Set(y)
+ p.z.One()
+ return p, nil
+
+ // Compressed form.
+ case len(b) == 1+{{.p}}ElementLength && (b[0] == 2 || b[0] == 3):
+ x, err := new({{.Element}}).SetBytes(b[1:])
+ if err != nil {
+ return nil, err
+ }
+
+ // y² = x³ - 3x + b
+ y := {{.p}}Polynomial(new({{.Element}}), x)
+ if !{{.p}}Sqrt(y, y) {
+ return nil, errors.New("invalid {{.P}} compressed point encoding")
+ }
+
+ // Select the positive or negative root, as indicated by the least
+ // significant bit, based on the encoding type byte.
+ otherRoot := new({{.Element}})
+ otherRoot.Sub(otherRoot, y)
+ cond := y.Bytes()[{{.p}}ElementLength-1]&1 ^ b[0]&1
+ y.Select(otherRoot, y, int(cond))
+
+ p.x.Set(x)
+ p.y.Set(y)
+ p.z.One()
+ return p, nil
+
+ default:
+ return nil, errors.New("invalid {{.P}} point encoding")
+ }
+}
+
+
+var _{{.p}}B *{{.Element}}
+var _{{.p}}BOnce sync.Once
+
+func {{.p}}B() *{{.Element}} {
+ _{{.p}}BOnce.Do(func() {
+ _{{.p}}B, _ = new({{.Element}}).SetBytes({{.B}})
+ })
+ return _{{.p}}B
+}
+
+// {{.p}}Polynomial sets y2 to x³ - 3x + b, and returns y2.
+func {{.p}}Polynomial(y2, x *{{.Element}}) *{{.Element}} {
+ y2.Square(x)
+ y2.Mul(y2, x)
+
+ threeX := new({{.Element}}).Add(x, x)
+ threeX.Add(threeX, x)
+ y2.Sub(y2, threeX)
+
+ return y2.Add(y2, {{.p}}B())
+}
+
+func {{.p}}CheckOnCurve(x, y *{{.Element}}) error {
+ // y² = x³ - 3x + b
+ rhs := {{.p}}Polynomial(new({{.Element}}), x)
+ lhs := new({{.Element}}).Square(y)
+ if rhs.Equal(lhs) != 1 {
+ return errors.New("{{.P}} point not on curve")
+ }
+ return nil
+}
+
+// Bytes returns the uncompressed or infinity encoding of p, as specified in
+// SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at
+// infinity is shorter than all other encodings.
+func (p *{{.P}}Point) Bytes() []byte {
+ // This function is outlined to make the allocations inline in the caller
+ // rather than happen on the heap.
+ var out [1+2*{{.p}}ElementLength]byte
+ return p.bytes(&out)
+}
+
+func (p *{{.P}}Point) bytes(out *[1+2*{{.p}}ElementLength]byte) []byte {
+ if p.z.IsZero() == 1 {
+ return append(out[:0], 0)
+ }
+
+ zinv := new({{.Element}}).Invert(p.z)
+ x := new({{.Element}}).Mul(p.x, zinv)
+ y := new({{.Element}}).Mul(p.y, zinv)
+
+ buf := append(out[:0], 4)
+ buf = append(buf, x.Bytes()...)
+ buf = append(buf, y.Bytes()...)
+ return buf
+}
+
+// BytesX returns the encoding of the x-coordinate of p, as specified in SEC 1,
+// Version 2.0, Section 2.3.5, or an error if p is the point at infinity.
+func (p *{{.P}}Point) BytesX() ([]byte, error) {
+ // This function is outlined to make the allocations inline in the caller
+ // rather than happen on the heap.
+ var out [{{.p}}ElementLength]byte
+ return p.bytesX(&out)
+}
+
+func (p *{{.P}}Point) bytesX(out *[{{.p}}ElementLength]byte) ([]byte, error) {
+ if p.z.IsZero() == 1 {
+ return nil, errors.New("{{.P}} point is the point at infinity")
+ }
+
+ zinv := new({{.Element}}).Invert(p.z)
+ x := new({{.Element}}).Mul(p.x, zinv)
+
+ return append(out[:0], x.Bytes()...), nil
+}
+
+// BytesCompressed returns the compressed or infinity encoding of p, as
+// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
+// point at infinity is shorter than all other encodings.
+func (p *{{.P}}Point) BytesCompressed() []byte {
+ // This function is outlined to make the allocations inline in the caller
+ // rather than happen on the heap.
+ var out [1 + {{.p}}ElementLength]byte
+ return p.bytesCompressed(&out)
+}
+
+func (p *{{.P}}Point) bytesCompressed(out *[1 + {{.p}}ElementLength]byte) []byte {
+ if p.z.IsZero() == 1 {
+ return append(out[:0], 0)
+ }
+
+ zinv := new({{.Element}}).Invert(p.z)
+ x := new({{.Element}}).Mul(p.x, zinv)
+ y := new({{.Element}}).Mul(p.y, zinv)
+
+ // Encode the sign of the y coordinate (indicated by the least significant
+ // bit) as the encoding type (2 or 3).
+ buf := append(out[:0], 2)
+ buf[0] |= y.Bytes()[{{.p}}ElementLength-1] & 1
+ buf = append(buf, x.Bytes()...)
+ return buf
+}
+
+// Add sets q = p1 + p2, and returns q. The points may overlap.
+func (q *{{.P}}Point) Add(p1, p2 *{{.P}}Point) *{{.P}}Point {
+ // Complete addition formula for a = -3 from "Complete addition formulas for
+ // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.
+
+ t0 := new({{.Element}}).Mul(p1.x, p2.x) // t0 := X1 * X2
+ t1 := new({{.Element}}).Mul(p1.y, p2.y) // t1 := Y1 * Y2
+ t2 := new({{.Element}}).Mul(p1.z, p2.z) // t2 := Z1 * Z2
+ t3 := new({{.Element}}).Add(p1.x, p1.y) // t3 := X1 + Y1
+ t4 := new({{.Element}}).Add(p2.x, p2.y) // t4 := X2 + Y2
+ t3.Mul(t3, t4) // t3 := t3 * t4
+ t4.Add(t0, t1) // t4 := t0 + t1
+ t3.Sub(t3, t4) // t3 := t3 - t4
+ t4.Add(p1.y, p1.z) // t4 := Y1 + Z1
+ x3 := new({{.Element}}).Add(p2.y, p2.z) // X3 := Y2 + Z2
+ t4.Mul(t4, x3) // t4 := t4 * X3
+ x3.Add(t1, t2) // X3 := t1 + t2
+ t4.Sub(t4, x3) // t4 := t4 - X3
+ x3.Add(p1.x, p1.z) // X3 := X1 + Z1
+ y3 := new({{.Element}}).Add(p2.x, p2.z) // Y3 := X2 + Z2
+ x3.Mul(x3, y3) // X3 := X3 * Y3
+ y3.Add(t0, t2) // Y3 := t0 + t2
+ y3.Sub(x3, y3) // Y3 := X3 - Y3
+ z3 := new({{.Element}}).Mul({{.p}}B(), t2) // Z3 := b * t2
+ x3.Sub(y3, z3) // X3 := Y3 - Z3
+ z3.Add(x3, x3) // Z3 := X3 + X3
+ x3.Add(x3, z3) // X3 := X3 + Z3
+ z3.Sub(t1, x3) // Z3 := t1 - X3
+ x3.Add(t1, x3) // X3 := t1 + X3
+ y3.Mul({{.p}}B(), y3) // Y3 := b * Y3
+ t1.Add(t2, t2) // t1 := t2 + t2
+ t2.Add(t1, t2) // t2 := t1 + t2
+ y3.Sub(y3, t2) // Y3 := Y3 - t2
+ y3.Sub(y3, t0) // Y3 := Y3 - t0
+ t1.Add(y3, y3) // t1 := Y3 + Y3
+ y3.Add(t1, y3) // Y3 := t1 + Y3
+ t1.Add(t0, t0) // t1 := t0 + t0
+ t0.Add(t1, t0) // t0 := t1 + t0
+ t0.Sub(t0, t2) // t0 := t0 - t2
+ t1.Mul(t4, y3) // t1 := t4 * Y3
+ t2.Mul(t0, y3) // t2 := t0 * Y3
+ y3.Mul(x3, z3) // Y3 := X3 * Z3
+ y3.Add(y3, t2) // Y3 := Y3 + t2
+ x3.Mul(t3, x3) // X3 := t3 * X3
+ x3.Sub(x3, t1) // X3 := X3 - t1
+ z3.Mul(t4, z3) // Z3 := t4 * Z3
+ t1.Mul(t3, t0) // t1 := t3 * t0
+ z3.Add(z3, t1) // Z3 := Z3 + t1
+
+ q.x.Set(x3)
+ q.y.Set(y3)
+ q.z.Set(z3)
+ return q
+}
+
+// Double sets q = p + p, and returns q. The points may overlap.
+func (q *{{.P}}Point) Double(p *{{.P}}Point) *{{.P}}Point {
+ // Complete addition formula for a = -3 from "Complete addition formulas for
+ // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.
+
+ t0 := new({{.Element}}).Square(p.x) // t0 := X ^ 2
+ t1 := new({{.Element}}).Square(p.y) // t1 := Y ^ 2
+ t2 := new({{.Element}}).Square(p.z) // t2 := Z ^ 2
+ t3 := new({{.Element}}).Mul(p.x, p.y) // t3 := X * Y
+ t3.Add(t3, t3) // t3 := t3 + t3
+ z3 := new({{.Element}}).Mul(p.x, p.z) // Z3 := X * Z
+ z3.Add(z3, z3) // Z3 := Z3 + Z3
+ y3 := new({{.Element}}).Mul({{.p}}B(), t2) // Y3 := b * t2
+ y3.Sub(y3, z3) // Y3 := Y3 - Z3
+ x3 := new({{.Element}}).Add(y3, y3) // X3 := Y3 + Y3
+ y3.Add(x3, y3) // Y3 := X3 + Y3
+ x3.Sub(t1, y3) // X3 := t1 - Y3
+ y3.Add(t1, y3) // Y3 := t1 + Y3
+ y3.Mul(x3, y3) // Y3 := X3 * Y3
+ x3.Mul(x3, t3) // X3 := X3 * t3
+ t3.Add(t2, t2) // t3 := t2 + t2
+ t2.Add(t2, t3) // t2 := t2 + t3
+ z3.Mul({{.p}}B(), z3) // Z3 := b * Z3
+ z3.Sub(z3, t2) // Z3 := Z3 - t2
+ z3.Sub(z3, t0) // Z3 := Z3 - t0
+ t3.Add(z3, z3) // t3 := Z3 + Z3
+ z3.Add(z3, t3) // Z3 := Z3 + t3
+ t3.Add(t0, t0) // t3 := t0 + t0
+ t0.Add(t3, t0) // t0 := t3 + t0
+ t0.Sub(t0, t2) // t0 := t0 - t2
+ t0.Mul(t0, z3) // t0 := t0 * Z3
+ y3.Add(y3, t0) // Y3 := Y3 + t0
+ t0.Mul(p.y, p.z) // t0 := Y * Z
+ t0.Add(t0, t0) // t0 := t0 + t0
+ z3.Mul(t0, z3) // Z3 := t0 * Z3
+ x3.Sub(x3, z3) // X3 := X3 - Z3
+ z3.Mul(t0, t1) // Z3 := t0 * t1
+ z3.Add(z3, z3) // Z3 := Z3 + Z3
+ z3.Add(z3, z3) // Z3 := Z3 + Z3
+
+ q.x.Set(x3)
+ q.y.Set(y3)
+ q.z.Set(z3)
+ return q
+}
+
+// Select sets q to p1 if cond == 1, and to p2 if cond == 0.
+func (q *{{.P}}Point) Select(p1, p2 *{{.P}}Point, cond int) *{{.P}}Point {
+ q.x.Select(p1.x, p2.x, cond)
+ q.y.Select(p1.y, p2.y, cond)
+ q.z.Select(p1.z, p2.z, cond)
+ return q
+}
+
+// A {{.p}}Table holds the first 15 multiples of a point at offset -1, so [1]P
+// is at table[0], [15]P is at table[14], and [0]P is implicitly the identity
+// point.
+type {{.p}}Table [15]*{{.P}}Point
+
+// Select selects the n-th multiple of the table base point into p. It works in
+// constant time by iterating over every entry of the table. n must be in [0, 15].
+func (table *{{.p}}Table) Select(p *{{.P}}Point, n uint8) {
+ if n >= 16 {
+ panic("nistec: internal error: {{.p}}Table called with out-of-bounds value")
+ }
+ p.Set(New{{.P}}Point())
+ for i := uint8(1); i < 16; i++ {
+ cond := subtle.ConstantTimeByteEq(i, n)
+ p.Select(table[i-1], p, cond)
+ }
+}
+
+// ScalarMult sets p = scalar * q, and returns p.
+func (p *{{.P}}Point) ScalarMult(q *{{.P}}Point, scalar []byte) (*{{.P}}Point, error) {
+ // Compute a {{.p}}Table for the base point q. The explicit New{{.P}}Point
+ // calls get inlined, letting the allocations live on the stack.
+ var table = {{.p}}Table{New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(),
+ New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(),
+ New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(),
+ New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point()}
+ table[0].Set(q)
+ for i := 1; i < 15; i += 2 {
+ table[i].Double(table[i/2])
+ table[i+1].Add(table[i], q)
+ }
+
+ // Instead of doing the classic double-and-add chain, we do it with a
+ // four-bit window: we double four times, and then add [0-15]P.
+ t := New{{.P}}Point()
+ p.Set(New{{.P}}Point())
+ for i, byte := range scalar {
+ // No need to double on the first iteration, as p is the identity at
+ // this point, and [N]∞ = ∞.
+ if i != 0 {
+ p.Double(p)
+ p.Double(p)
+ p.Double(p)
+ p.Double(p)
+ }
+
+ windowValue := byte >> 4
+ table.Select(t, windowValue)
+ p.Add(p, t)
+
+ p.Double(p)
+ p.Double(p)
+ p.Double(p)
+ p.Double(p)
+
+ windowValue = byte & 0b1111
+ table.Select(t, windowValue)
+ p.Add(p, t)
+ }
+
+ return p, nil
+}
+
+var {{.p}}GeneratorTable *[{{.p}}ElementLength * 2]{{.p}}Table
+var {{.p}}GeneratorTableOnce sync.Once
+
+// generatorTable returns a sequence of {{.p}}Tables. The first table contains
+// multiples of G. Each successive table is the previous table doubled four
+// times.
+func (p *{{.P}}Point) generatorTable() *[{{.p}}ElementLength * 2]{{.p}}Table {
+ {{.p}}GeneratorTableOnce.Do(func() {
+ {{.p}}GeneratorTable = new([{{.p}}ElementLength * 2]{{.p}}Table)
+ base := New{{.P}}Point().SetGenerator()
+ for i := 0; i < {{.p}}ElementLength*2; i++ {
+ {{.p}}GeneratorTable[i][0] = New{{.P}}Point().Set(base)
+ for j := 1; j < 15; j++ {
+ {{.p}}GeneratorTable[i][j] = New{{.P}}Point().Add({{.p}}GeneratorTable[i][j-1], base)
+ }
+ base.Double(base)
+ base.Double(base)
+ base.Double(base)
+ base.Double(base)
+ }
+ })
+ return {{.p}}GeneratorTable
+}
+
+// ScalarBaseMult sets p = scalar * B, where B is the canonical generator, and
+// returns p.
+func (p *{{.P}}Point) ScalarBaseMult(scalar []byte) (*{{.P}}Point, error) {
+ if len(scalar) != {{.p}}ElementLength {
+ return nil, errors.New("invalid scalar length")
+ }
+ tables := p.generatorTable()
+
+ // This is also a scalar multiplication with a four-bit window like in
+ // ScalarMult, but in this case the doublings are precomputed. The value
+ // [windowValue]G added at iteration k would normally get doubled
+ // (totIterations-k)×4 times, but with a larger precomputation we can
+ // instead add [2^((totIterations-k)×4)][windowValue]G and avoid the
+ // doublings between iterations.
+ t := New{{.P}}Point()
+ p.Set(New{{.P}}Point())
+ tableIndex := len(tables) - 1
+ for _, byte := range scalar {
+ windowValue := byte >> 4
+ tables[tableIndex].Select(t, windowValue)
+ p.Add(p, t)
+ tableIndex--
+
+ windowValue = byte & 0b1111
+ tables[tableIndex].Select(t, windowValue)
+ p.Add(p, t)
+ tableIndex--
+ }
+
+ return p, nil
+}
+
+// {{.p}}Sqrt sets e to a square root of x. If x is not a square, {{.p}}Sqrt returns
+// false and e is unchanged. e and x can overlap.
+func {{.p}}Sqrt(e, x *{{ .Element }}) (isSquare bool) {
+ candidate := new({{ .Element }})
+ {{.p}}SqrtCandidate(candidate, x)
+ square := new({{ .Element }}).Square(candidate)
+ if square.Equal(x) != 1 {
+ return false
+ }
+ e.Set(candidate)
+ return true
+}
+`
+
+const tmplAddchain = `
+// sqrtCandidate sets z to a square root candidate for x. z and x must not overlap.
+func sqrtCandidate(z, x *Element) {
+ // Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
+ //
+ // The sequence of {{ .Ops.Adds }} multiplications and {{ .Ops.Doubles }} squarings is derived from the
+ // following addition chain generated with {{ .Meta.Module }} {{ .Meta.ReleaseTag }}.
+ //
+ {{- range lines (format .Script) }}
+ // {{ . }}
+ {{- end }}
+ //
+
+ {{- range .Program.Temporaries }}
+ var {{ . }} = new(Element)
+ {{- end }}
+ {{ range $i := .Program.Instructions -}}
+ {{- with add $i.Op }}
+ {{ $i.Output }}.Mul({{ .X }}, {{ .Y }})
+ {{- end -}}
+
+ {{- with double $i.Op }}
+ {{ $i.Output }}.Square({{ .X }})
+ {{- end -}}
+
+ {{- with shift $i.Op -}}
+ {{- $first := 0 -}}
+ {{- if ne $i.Output.Identifier .X.Identifier }}
+ {{ $i.Output }}.Square({{ .X }})
+ {{- $first = 1 -}}
+ {{- end }}
+ for s := {{ $first }}; s < {{ .S }}; s++ {
+ {{ $i.Output }}.Square({{ $i.Output }})
+ }
+ {{- end -}}
+ {{- end }}
+}
+`