summaryrefslogtreecommitdiffstats
path: root/src/syscall/exec_linux.go
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/syscall/exec_linux.go719
1 files changed, 719 insertions, 0 deletions
diff --git a/src/syscall/exec_linux.go b/src/syscall/exec_linux.go
new file mode 100644
index 0000000..dfbb38a
--- /dev/null
+++ b/src/syscall/exec_linux.go
@@ -0,0 +1,719 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build linux
+
+package syscall
+
+import (
+ "internal/itoa"
+ "runtime"
+ "unsafe"
+)
+
+// Linux unshare/clone/clone2/clone3 flags, architecture-independent,
+// copied from linux/sched.h.
+const (
+ CLONE_VM = 0x00000100 // set if VM shared between processes
+ CLONE_FS = 0x00000200 // set if fs info shared between processes
+ CLONE_FILES = 0x00000400 // set if open files shared between processes
+ CLONE_SIGHAND = 0x00000800 // set if signal handlers and blocked signals shared
+ CLONE_PIDFD = 0x00001000 // set if a pidfd should be placed in parent
+ CLONE_PTRACE = 0x00002000 // set if we want to let tracing continue on the child too
+ CLONE_VFORK = 0x00004000 // set if the parent wants the child to wake it up on mm_release
+ CLONE_PARENT = 0x00008000 // set if we want to have the same parent as the cloner
+ CLONE_THREAD = 0x00010000 // Same thread group?
+ CLONE_NEWNS = 0x00020000 // New mount namespace group
+ CLONE_SYSVSEM = 0x00040000 // share system V SEM_UNDO semantics
+ CLONE_SETTLS = 0x00080000 // create a new TLS for the child
+ CLONE_PARENT_SETTID = 0x00100000 // set the TID in the parent
+ CLONE_CHILD_CLEARTID = 0x00200000 // clear the TID in the child
+ CLONE_DETACHED = 0x00400000 // Unused, ignored
+ CLONE_UNTRACED = 0x00800000 // set if the tracing process can't force CLONE_PTRACE on this clone
+ CLONE_CHILD_SETTID = 0x01000000 // set the TID in the child
+ CLONE_NEWCGROUP = 0x02000000 // New cgroup namespace
+ CLONE_NEWUTS = 0x04000000 // New utsname namespace
+ CLONE_NEWIPC = 0x08000000 // New ipc namespace
+ CLONE_NEWUSER = 0x10000000 // New user namespace
+ CLONE_NEWPID = 0x20000000 // New pid namespace
+ CLONE_NEWNET = 0x40000000 // New network namespace
+ CLONE_IO = 0x80000000 // Clone io context
+
+ // Flags for the clone3() syscall.
+
+ CLONE_CLEAR_SIGHAND = 0x100000000 // Clear any signal handler and reset to SIG_DFL.
+ CLONE_INTO_CGROUP = 0x200000000 // Clone into a specific cgroup given the right permissions.
+
+ // Cloning flags intersect with CSIGNAL so can be used with unshare and clone3
+ // syscalls only:
+
+ CLONE_NEWTIME = 0x00000080 // New time namespace
+)
+
+// SysProcIDMap holds Container ID to Host ID mappings used for User Namespaces in Linux.
+// See user_namespaces(7).
+type SysProcIDMap struct {
+ ContainerID int // Container ID.
+ HostID int // Host ID.
+ Size int // Size.
+}
+
+type SysProcAttr struct {
+ Chroot string // Chroot.
+ Credential *Credential // Credential.
+ // Ptrace tells the child to call ptrace(PTRACE_TRACEME).
+ // Call runtime.LockOSThread before starting a process with this set,
+ // and don't call UnlockOSThread until done with PtraceSyscall calls.
+ Ptrace bool
+ Setsid bool // Create session.
+ // Setpgid sets the process group ID of the child to Pgid,
+ // or, if Pgid == 0, to the new child's process ID.
+ Setpgid bool
+ // Setctty sets the controlling terminal of the child to
+ // file descriptor Ctty. Ctty must be a descriptor number
+ // in the child process: an index into ProcAttr.Files.
+ // This is only meaningful if Setsid is true.
+ Setctty bool
+ Noctty bool // Detach fd 0 from controlling terminal
+ Ctty int // Controlling TTY fd
+ // Foreground places the child process group in the foreground.
+ // This implies Setpgid. The Ctty field must be set to
+ // the descriptor of the controlling TTY.
+ // Unlike Setctty, in this case Ctty must be a descriptor
+ // number in the parent process.
+ Foreground bool
+ Pgid int // Child's process group ID if Setpgid.
+ // Pdeathsig, if non-zero, is a signal that the kernel will send to
+ // the child process when the creating thread dies. Note that the signal
+ // is sent on thread termination, which may happen before process termination.
+ // There are more details at https://go.dev/issue/27505.
+ Pdeathsig Signal
+ Cloneflags uintptr // Flags for clone calls (Linux only)
+ Unshareflags uintptr // Flags for unshare calls (Linux only)
+ UidMappings []SysProcIDMap // User ID mappings for user namespaces.
+ GidMappings []SysProcIDMap // Group ID mappings for user namespaces.
+ // GidMappingsEnableSetgroups enabling setgroups syscall.
+ // If false, then setgroups syscall will be disabled for the child process.
+ // This parameter is no-op if GidMappings == nil. Otherwise for unprivileged
+ // users this should be set to false for mappings work.
+ GidMappingsEnableSetgroups bool
+ AmbientCaps []uintptr // Ambient capabilities (Linux only)
+ UseCgroupFD bool // Whether to make use of the CgroupFD field.
+ CgroupFD int // File descriptor of a cgroup to put the new process into.
+}
+
+var (
+ none = [...]byte{'n', 'o', 'n', 'e', 0}
+ slash = [...]byte{'/', 0}
+)
+
+// Implemented in runtime package.
+func runtime_BeforeFork()
+func runtime_AfterFork()
+func runtime_AfterForkInChild()
+
+// Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child.
+// If a dup or exec fails, write the errno error to pipe.
+// (Pipe is close-on-exec so if exec succeeds, it will be closed.)
+// In the child, this function must not acquire any locks, because
+// they might have been locked at the time of the fork. This means
+// no rescheduling, no malloc calls, and no new stack segments.
+// For the same reason compiler does not race instrument it.
+// The calls to RawSyscall are okay because they are assembly
+// functions that do not grow the stack.
+//
+//go:norace
+func forkAndExecInChild(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid int, err Errno) {
+ // Set up and fork. This returns immediately in the parent or
+ // if there's an error.
+ upid, err, mapPipe, locked := forkAndExecInChild1(argv0, argv, envv, chroot, dir, attr, sys, pipe)
+ if locked {
+ runtime_AfterFork()
+ }
+ if err != 0 {
+ return 0, err
+ }
+
+ // parent; return PID
+ pid = int(upid)
+
+ if sys.UidMappings != nil || sys.GidMappings != nil {
+ Close(mapPipe[0])
+ var err2 Errno
+ // uid/gid mappings will be written after fork and unshare(2) for user
+ // namespaces.
+ if sys.Unshareflags&CLONE_NEWUSER == 0 {
+ if err := writeUidGidMappings(pid, sys); err != nil {
+ err2 = err.(Errno)
+ }
+ }
+ RawSyscall(SYS_WRITE, uintptr(mapPipe[1]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2))
+ Close(mapPipe[1])
+ }
+
+ return pid, 0
+}
+
+const _LINUX_CAPABILITY_VERSION_3 = 0x20080522
+
+type capHeader struct {
+ version uint32
+ pid int32
+}
+
+type capData struct {
+ effective uint32
+ permitted uint32
+ inheritable uint32
+}
+type caps struct {
+ hdr capHeader
+ data [2]capData
+}
+
+// See CAP_TO_INDEX in linux/capability.h:
+func capToIndex(cap uintptr) uintptr { return cap >> 5 }
+
+// See CAP_TO_MASK in linux/capability.h:
+func capToMask(cap uintptr) uint32 { return 1 << uint(cap&31) }
+
+// cloneArgs holds arguments for clone3 Linux syscall.
+type cloneArgs struct {
+ flags uint64 // Flags bit mask
+ pidFD uint64 // Where to store PID file descriptor (int *)
+ childTID uint64 // Where to store child TID, in child's memory (pid_t *)
+ parentTID uint64 // Where to store child TID, in parent's memory (pid_t *)
+ exitSignal uint64 // Signal to deliver to parent on child termination
+ stack uint64 // Pointer to lowest byte of stack
+ stackSize uint64 // Size of stack
+ tls uint64 // Location of new TLS
+ setTID uint64 // Pointer to a pid_t array (since Linux 5.5)
+ setTIDSize uint64 // Number of elements in set_tid (since Linux 5.5)
+ cgroup uint64 // File descriptor for target cgroup of child (since Linux 5.7)
+}
+
+// forkAndExecInChild1 implements the body of forkAndExecInChild up to
+// the parent's post-fork path. This is a separate function so we can
+// separate the child's and parent's stack frames if we're using
+// vfork.
+//
+// This is go:noinline because the point is to keep the stack frames
+// of this and forkAndExecInChild separate.
+//
+//go:noinline
+//go:norace
+//go:nocheckptr
+func forkAndExecInChild1(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid uintptr, err1 Errno, mapPipe [2]int, locked bool) {
+ // Defined in linux/prctl.h starting with Linux 4.3.
+ const (
+ PR_CAP_AMBIENT = 0x2f
+ PR_CAP_AMBIENT_RAISE = 0x2
+ )
+
+ // vfork requires that the child not touch any of the parent's
+ // active stack frames. Hence, the child does all post-fork
+ // processing in this stack frame and never returns, while the
+ // parent returns immediately from this frame and does all
+ // post-fork processing in the outer frame.
+ //
+ // Declare all variables at top in case any
+ // declarations require heap allocation (e.g., err2).
+ // ":=" should not be used to declare any variable after
+ // the call to runtime_BeforeFork.
+ //
+ // NOTE(bcmills): The allocation behavior described in the above comment
+ // seems to lack a corresponding test, and it may be rendered invalid
+ // by an otherwise-correct change in the compiler.
+ var (
+ err2 Errno
+ nextfd int
+ i int
+ caps caps
+ fd1, flags uintptr
+ puid, psetgroups, pgid []byte
+ uidmap, setgroups, gidmap []byte
+ clone3 *cloneArgs
+ pgrp int32
+ dirfd int
+ cred *Credential
+ ngroups, groups uintptr
+ c uintptr
+ )
+
+ rlim, rlimOK := origRlimitNofile.Load().(Rlimit)
+
+ if sys.UidMappings != nil {
+ puid = []byte("/proc/self/uid_map\000")
+ uidmap = formatIDMappings(sys.UidMappings)
+ }
+
+ if sys.GidMappings != nil {
+ psetgroups = []byte("/proc/self/setgroups\000")
+ pgid = []byte("/proc/self/gid_map\000")
+
+ if sys.GidMappingsEnableSetgroups {
+ setgroups = []byte("allow\000")
+ } else {
+ setgroups = []byte("deny\000")
+ }
+ gidmap = formatIDMappings(sys.GidMappings)
+ }
+
+ // Record parent PID so child can test if it has died.
+ ppid, _ := rawSyscallNoError(SYS_GETPID, 0, 0, 0)
+
+ // Guard against side effects of shuffling fds below.
+ // Make sure that nextfd is beyond any currently open files so
+ // that we can't run the risk of overwriting any of them.
+ fd := make([]int, len(attr.Files))
+ nextfd = len(attr.Files)
+ for i, ufd := range attr.Files {
+ if nextfd < int(ufd) {
+ nextfd = int(ufd)
+ }
+ fd[i] = int(ufd)
+ }
+ nextfd++
+
+ // Allocate another pipe for parent to child communication for
+ // synchronizing writing of User ID/Group ID mappings.
+ if sys.UidMappings != nil || sys.GidMappings != nil {
+ if err := forkExecPipe(mapPipe[:]); err != nil {
+ err1 = err.(Errno)
+ return
+ }
+ }
+
+ flags = sys.Cloneflags
+ if sys.Cloneflags&CLONE_NEWUSER == 0 && sys.Unshareflags&CLONE_NEWUSER == 0 {
+ flags |= CLONE_VFORK | CLONE_VM
+ }
+ // Whether to use clone3.
+ if sys.UseCgroupFD {
+ clone3 = &cloneArgs{
+ flags: uint64(flags) | CLONE_INTO_CGROUP,
+ exitSignal: uint64(SIGCHLD),
+ cgroup: uint64(sys.CgroupFD),
+ }
+ } else if flags&CLONE_NEWTIME != 0 {
+ clone3 = &cloneArgs{
+ flags: uint64(flags),
+ exitSignal: uint64(SIGCHLD),
+ }
+ }
+
+ // About to call fork.
+ // No more allocation or calls of non-assembly functions.
+ runtime_BeforeFork()
+ locked = true
+ if clone3 != nil {
+ pid, err1 = rawVforkSyscall(_SYS_clone3, uintptr(unsafe.Pointer(clone3)), unsafe.Sizeof(*clone3))
+ } else {
+ flags |= uintptr(SIGCHLD)
+ if runtime.GOARCH == "s390x" {
+ // On Linux/s390, the first two arguments of clone(2) are swapped.
+ pid, err1 = rawVforkSyscall(SYS_CLONE, 0, flags)
+ } else {
+ pid, err1 = rawVforkSyscall(SYS_CLONE, flags, 0)
+ }
+ }
+ if err1 != 0 || pid != 0 {
+ // If we're in the parent, we must return immediately
+ // so we're not in the same stack frame as the child.
+ // This can at most use the return PC, which the child
+ // will not modify, and the results of
+ // rawVforkSyscall, which must have been written after
+ // the child was replaced.
+ return
+ }
+
+ // Fork succeeded, now in child.
+
+ // Enable the "keep capabilities" flag to set ambient capabilities later.
+ if len(sys.AmbientCaps) > 0 {
+ _, _, err1 = RawSyscall6(SYS_PRCTL, PR_SET_KEEPCAPS, 1, 0, 0, 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Wait for User ID/Group ID mappings to be written.
+ if sys.UidMappings != nil || sys.GidMappings != nil {
+ if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(mapPipe[1]), 0, 0); err1 != 0 {
+ goto childerror
+ }
+ pid, _, err1 = RawSyscall(SYS_READ, uintptr(mapPipe[0]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2))
+ if err1 != 0 {
+ goto childerror
+ }
+ if pid != unsafe.Sizeof(err2) {
+ err1 = EINVAL
+ goto childerror
+ }
+ if err2 != 0 {
+ err1 = err2
+ goto childerror
+ }
+ }
+
+ // Session ID
+ if sys.Setsid {
+ _, _, err1 = RawSyscall(SYS_SETSID, 0, 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Set process group
+ if sys.Setpgid || sys.Foreground {
+ // Place child in process group.
+ _, _, err1 = RawSyscall(SYS_SETPGID, 0, uintptr(sys.Pgid), 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ if sys.Foreground {
+ pgrp = int32(sys.Pgid)
+ if pgrp == 0 {
+ pid, _ = rawSyscallNoError(SYS_GETPID, 0, 0, 0)
+
+ pgrp = int32(pid)
+ }
+
+ // Place process group in foreground.
+ _, _, err1 = RawSyscall(SYS_IOCTL, uintptr(sys.Ctty), uintptr(TIOCSPGRP), uintptr(unsafe.Pointer(&pgrp)))
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Restore the signal mask. We do this after TIOCSPGRP to avoid
+ // having the kernel send a SIGTTOU signal to the process group.
+ runtime_AfterForkInChild()
+
+ // Unshare
+ if sys.Unshareflags != 0 {
+ _, _, err1 = RawSyscall(SYS_UNSHARE, sys.Unshareflags, 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+
+ if sys.Unshareflags&CLONE_NEWUSER != 0 && sys.GidMappings != nil {
+ dirfd = int(_AT_FDCWD)
+ if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&psetgroups[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 {
+ goto childerror
+ }
+ pid, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&setgroups[0])), uintptr(len(setgroups)))
+ if err1 != 0 {
+ goto childerror
+ }
+ if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
+ goto childerror
+ }
+
+ if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&pgid[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 {
+ goto childerror
+ }
+ pid, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&gidmap[0])), uintptr(len(gidmap)))
+ if err1 != 0 {
+ goto childerror
+ }
+ if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
+ goto childerror
+ }
+ }
+
+ if sys.Unshareflags&CLONE_NEWUSER != 0 && sys.UidMappings != nil {
+ dirfd = int(_AT_FDCWD)
+ if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&puid[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 {
+ goto childerror
+ }
+ pid, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&uidmap[0])), uintptr(len(uidmap)))
+ if err1 != 0 {
+ goto childerror
+ }
+ if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // The unshare system call in Linux doesn't unshare mount points
+ // mounted with --shared. Systemd mounts / with --shared. For a
+ // long discussion of the pros and cons of this see debian bug 739593.
+ // The Go model of unsharing is more like Plan 9, where you ask
+ // to unshare and the namespaces are unconditionally unshared.
+ // To make this model work we must further mark / as MS_PRIVATE.
+ // This is what the standard unshare command does.
+ if sys.Unshareflags&CLONE_NEWNS == CLONE_NEWNS {
+ _, _, err1 = RawSyscall6(SYS_MOUNT, uintptr(unsafe.Pointer(&none[0])), uintptr(unsafe.Pointer(&slash[0])), 0, MS_REC|MS_PRIVATE, 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+ }
+
+ // Chroot
+ if chroot != nil {
+ _, _, err1 = RawSyscall(SYS_CHROOT, uintptr(unsafe.Pointer(chroot)), 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // User and groups
+ if cred = sys.Credential; cred != nil {
+ ngroups = uintptr(len(cred.Groups))
+ groups = uintptr(0)
+ if ngroups > 0 {
+ groups = uintptr(unsafe.Pointer(&cred.Groups[0]))
+ }
+ if !(sys.GidMappings != nil && !sys.GidMappingsEnableSetgroups && ngroups == 0) && !cred.NoSetGroups {
+ _, _, err1 = RawSyscall(_SYS_setgroups, ngroups, groups, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+ _, _, err1 = RawSyscall(sys_SETGID, uintptr(cred.Gid), 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ _, _, err1 = RawSyscall(sys_SETUID, uintptr(cred.Uid), 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ if len(sys.AmbientCaps) != 0 {
+ // Ambient capabilities were added in the 4.3 kernel,
+ // so it is safe to always use _LINUX_CAPABILITY_VERSION_3.
+ caps.hdr.version = _LINUX_CAPABILITY_VERSION_3
+
+ if _, _, err1 = RawSyscall(SYS_CAPGET, uintptr(unsafe.Pointer(&caps.hdr)), uintptr(unsafe.Pointer(&caps.data[0])), 0); err1 != 0 {
+ goto childerror
+ }
+
+ for _, c = range sys.AmbientCaps {
+ // Add the c capability to the permitted and inheritable capability mask,
+ // otherwise we will not be able to add it to the ambient capability mask.
+ caps.data[capToIndex(c)].permitted |= capToMask(c)
+ caps.data[capToIndex(c)].inheritable |= capToMask(c)
+ }
+
+ if _, _, err1 = RawSyscall(SYS_CAPSET, uintptr(unsafe.Pointer(&caps.hdr)), uintptr(unsafe.Pointer(&caps.data[0])), 0); err1 != 0 {
+ goto childerror
+ }
+
+ for _, c = range sys.AmbientCaps {
+ _, _, err1 = RawSyscall6(SYS_PRCTL, PR_CAP_AMBIENT, uintptr(PR_CAP_AMBIENT_RAISE), c, 0, 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+ }
+
+ // Chdir
+ if dir != nil {
+ _, _, err1 = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Parent death signal
+ if sys.Pdeathsig != 0 {
+ _, _, err1 = RawSyscall6(SYS_PRCTL, PR_SET_PDEATHSIG, uintptr(sys.Pdeathsig), 0, 0, 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+
+ // Signal self if parent is already dead. This might cause a
+ // duplicate signal in rare cases, but it won't matter when
+ // using SIGKILL.
+ pid, _ = rawSyscallNoError(SYS_GETPPID, 0, 0, 0)
+ if pid != ppid {
+ pid, _ = rawSyscallNoError(SYS_GETPID, 0, 0, 0)
+ _, _, err1 = RawSyscall(SYS_KILL, pid, uintptr(sys.Pdeathsig), 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+ }
+
+ // Pass 1: look for fd[i] < i and move those up above len(fd)
+ // so that pass 2 won't stomp on an fd it needs later.
+ if pipe < nextfd {
+ _, _, err1 = RawSyscall(SYS_DUP3, uintptr(pipe), uintptr(nextfd), O_CLOEXEC)
+ if err1 != 0 {
+ goto childerror
+ }
+ pipe = nextfd
+ nextfd++
+ }
+ for i = 0; i < len(fd); i++ {
+ if fd[i] >= 0 && fd[i] < i {
+ if nextfd == pipe { // don't stomp on pipe
+ nextfd++
+ }
+ _, _, err1 = RawSyscall(SYS_DUP3, uintptr(fd[i]), uintptr(nextfd), O_CLOEXEC)
+ if err1 != 0 {
+ goto childerror
+ }
+ fd[i] = nextfd
+ nextfd++
+ }
+ }
+
+ // Pass 2: dup fd[i] down onto i.
+ for i = 0; i < len(fd); i++ {
+ if fd[i] == -1 {
+ RawSyscall(SYS_CLOSE, uintptr(i), 0, 0)
+ continue
+ }
+ if fd[i] == i {
+ // dup2(i, i) won't clear close-on-exec flag on Linux,
+ // probably not elsewhere either.
+ _, _, err1 = RawSyscall(fcntl64Syscall, uintptr(fd[i]), F_SETFD, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ continue
+ }
+ // The new fd is created NOT close-on-exec,
+ // which is exactly what we want.
+ _, _, err1 = RawSyscall(SYS_DUP3, uintptr(fd[i]), uintptr(i), 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // By convention, we don't close-on-exec the fds we are
+ // started with, so if len(fd) < 3, close 0, 1, 2 as needed.
+ // Programs that know they inherit fds >= 3 will need
+ // to set them close-on-exec.
+ for i = len(fd); i < 3; i++ {
+ RawSyscall(SYS_CLOSE, uintptr(i), 0, 0)
+ }
+
+ // Detach fd 0 from tty
+ if sys.Noctty {
+ _, _, err1 = RawSyscall(SYS_IOCTL, 0, uintptr(TIOCNOTTY), 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Set the controlling TTY to Ctty
+ if sys.Setctty {
+ _, _, err1 = RawSyscall(SYS_IOCTL, uintptr(sys.Ctty), uintptr(TIOCSCTTY), 1)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Restore original rlimit.
+ if rlimOK && rlim.Cur != 0 {
+ rawSetrlimit(RLIMIT_NOFILE, &rlim)
+ }
+
+ // Enable tracing if requested.
+ // Do this right before exec so that we don't unnecessarily trace the runtime
+ // setting up after the fork. See issue #21428.
+ if sys.Ptrace {
+ _, _, err1 = RawSyscall(SYS_PTRACE, uintptr(PTRACE_TRACEME), 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Time to exec.
+ _, _, err1 = RawSyscall(SYS_EXECVE,
+ uintptr(unsafe.Pointer(argv0)),
+ uintptr(unsafe.Pointer(&argv[0])),
+ uintptr(unsafe.Pointer(&envv[0])))
+
+childerror:
+ // send error code on pipe
+ RawSyscall(SYS_WRITE, uintptr(pipe), uintptr(unsafe.Pointer(&err1)), unsafe.Sizeof(err1))
+ for {
+ RawSyscall(SYS_EXIT, 253, 0, 0)
+ }
+}
+
+func formatIDMappings(idMap []SysProcIDMap) []byte {
+ var data []byte
+ for _, im := range idMap {
+ data = append(data, itoa.Itoa(im.ContainerID)+" "+itoa.Itoa(im.HostID)+" "+itoa.Itoa(im.Size)+"\n"...)
+ }
+ return data
+}
+
+// writeIDMappings writes the user namespace User ID or Group ID mappings to the specified path.
+func writeIDMappings(path string, idMap []SysProcIDMap) error {
+ fd, err := Open(path, O_RDWR, 0)
+ if err != nil {
+ return err
+ }
+
+ if _, err := Write(fd, formatIDMappings(idMap)); err != nil {
+ Close(fd)
+ return err
+ }
+
+ if err := Close(fd); err != nil {
+ return err
+ }
+
+ return nil
+}
+
+// writeSetgroups writes to /proc/PID/setgroups "deny" if enable is false
+// and "allow" if enable is true.
+// This is needed since kernel 3.19, because you can't write gid_map without
+// disabling setgroups() system call.
+func writeSetgroups(pid int, enable bool) error {
+ sgf := "/proc/" + itoa.Itoa(pid) + "/setgroups"
+ fd, err := Open(sgf, O_RDWR, 0)
+ if err != nil {
+ return err
+ }
+
+ var data []byte
+ if enable {
+ data = []byte("allow")
+ } else {
+ data = []byte("deny")
+ }
+
+ if _, err := Write(fd, data); err != nil {
+ Close(fd)
+ return err
+ }
+
+ return Close(fd)
+}
+
+// writeUidGidMappings writes User ID and Group ID mappings for user namespaces
+// for a process and it is called from the parent process.
+func writeUidGidMappings(pid int, sys *SysProcAttr) error {
+ if sys.UidMappings != nil {
+ uidf := "/proc/" + itoa.Itoa(pid) + "/uid_map"
+ if err := writeIDMappings(uidf, sys.UidMappings); err != nil {
+ return err
+ }
+ }
+
+ if sys.GidMappings != nil {
+ // If the kernel is too old to support /proc/PID/setgroups, writeSetGroups will return ENOENT; this is OK.
+ if err := writeSetgroups(pid, sys.GidMappingsEnableSetgroups); err != nil && err != ENOENT {
+ return err
+ }
+ gidf := "/proc/" + itoa.Itoa(pid) + "/gid_map"
+ if err := writeIDMappings(gidf, sys.GidMappings); err != nil {
+ return err
+ }
+ }
+
+ return nil
+}