// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package compare contains code for generating comparison // routines for structs, strings and interfaces. package compare import ( "cmd/compile/internal/base" "cmd/compile/internal/ir" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "fmt" "math/bits" "sort" ) // IsRegularMemory reports whether t can be compared/hashed as regular memory. func IsRegularMemory(t *types.Type) bool { a, _ := types.AlgType(t) return a == types.AMEM } // Memrun finds runs of struct fields for which memory-only algs are appropriate. // t is the parent struct type, and start is the field index at which to start the run. // size is the length in bytes of the memory included in the run. // next is the index just after the end of the memory run. func Memrun(t *types.Type, start int) (size int64, next int) { next = start for { next++ if next == t.NumFields() { break } // Stop run after a padded field. if types.IsPaddedField(t, next-1) { break } // Also, stop before a blank or non-memory field. if f := t.Field(next); f.Sym.IsBlank() || !IsRegularMemory(f.Type) { break } // For issue 46283, don't combine fields if the resulting load would // require a larger alignment than the component fields. if base.Ctxt.Arch.Alignment > 1 { align := t.Alignment() if off := t.Field(start).Offset; off&(align-1) != 0 { // Offset is less aligned than the containing type. // Use offset to determine alignment. align = 1 << uint(bits.TrailingZeros64(uint64(off))) } size := t.Field(next).End() - t.Field(start).Offset if size > align { break } } } return t.Field(next-1).End() - t.Field(start).Offset, next } // EqCanPanic reports whether == on type t could panic (has an interface somewhere). // t must be comparable. func EqCanPanic(t *types.Type) bool { switch t.Kind() { default: return false case types.TINTER: return true case types.TARRAY: return EqCanPanic(t.Elem()) case types.TSTRUCT: for _, f := range t.FieldSlice() { if !f.Sym.IsBlank() && EqCanPanic(f.Type) { return true } } return false } } // EqStructCost returns the cost of an equality comparison of two structs. // // The cost is determined using an algorithm which takes into consideration // the size of the registers in the current architecture and the size of the // memory-only fields in the struct. func EqStructCost(t *types.Type) int64 { cost := int64(0) for i, fields := 0, t.FieldSlice(); i < len(fields); { f := fields[i] // Skip blank-named fields. if f.Sym.IsBlank() { i++ continue } n, _, next := eqStructFieldCost(t, i) cost += n i = next } return cost } // eqStructFieldCost returns the cost of an equality comparison of two struct fields. // t is the parent struct type, and i is the index of the field in the parent struct type. // eqStructFieldCost may compute the cost of several adjacent fields at once. It returns // the cost, the size of the set of fields it computed the cost for (in bytes), and the // index of the first field not part of the set of fields for which the cost // has already been calculated. func eqStructFieldCost(t *types.Type, i int) (int64, int64, int) { var ( cost = int64(0) regSize = int64(types.RegSize) size int64 next int ) if base.Ctxt.Arch.CanMergeLoads { // If we can merge adjacent loads then we can calculate the cost of the // comparison using the size of the memory run and the size of the registers. size, next = Memrun(t, i) cost = size / regSize if size%regSize != 0 { cost++ } return cost, size, next } // If we cannot merge adjacent loads then we have to use the size of the // field and take into account the type to determine how many loads and compares // are needed. ft := t.Field(i).Type size = ft.Size() next = i + 1 return calculateCostForType(ft), size, next } func calculateCostForType(t *types.Type) int64 { var cost int64 switch t.Kind() { case types.TSTRUCT: return EqStructCost(t) case types.TSLICE: // Slices are not comparable. base.Fatalf("calculateCostForType: unexpected slice type") case types.TARRAY: elemCost := calculateCostForType(t.Elem()) cost = t.NumElem() * elemCost case types.TSTRING, types.TINTER, types.TCOMPLEX64, types.TCOMPLEX128: cost = 2 case types.TINT64, types.TUINT64: cost = 8 / int64(types.RegSize) default: cost = 1 } return cost } // EqStruct compares two structs np and nq for equality. // It works by building a list of boolean conditions to satisfy. // Conditions must be evaluated in the returned order and // properly short-circuited by the caller. // The first return value is the flattened list of conditions, // the second value is a boolean indicating whether any of the // comparisons could panic. func EqStruct(t *types.Type, np, nq ir.Node) ([]ir.Node, bool) { // The conditions are a list-of-lists. Conditions are reorderable // within each inner list. The outer lists must be evaluated in order. var conds [][]ir.Node conds = append(conds, []ir.Node{}) and := func(n ir.Node) { i := len(conds) - 1 conds[i] = append(conds[i], n) } // Walk the struct using memequal for runs of AMEM // and calling specific equality tests for the others. for i, fields := 0, t.FieldSlice(); i < len(fields); { f := fields[i] // Skip blank-named fields. if f.Sym.IsBlank() { i++ continue } typeCanPanic := EqCanPanic(f.Type) // Compare non-memory fields with field equality. if !IsRegularMemory(f.Type) { if typeCanPanic { // Enforce ordering by starting a new set of reorderable conditions. conds = append(conds, []ir.Node{}) } p := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym) q := ir.NewSelectorExpr(base.Pos, ir.OXDOT, nq, f.Sym) switch { case f.Type.IsString(): eqlen, eqmem := EqString(p, q) and(eqlen) and(eqmem) default: and(ir.NewBinaryExpr(base.Pos, ir.OEQ, p, q)) } if typeCanPanic { // Also enforce ordering after something that can panic. conds = append(conds, []ir.Node{}) } i++ continue } cost, size, next := eqStructFieldCost(t, i) if cost <= 4 { // Cost of 4 or less: use plain field equality. s := fields[i:next] for _, f := range s { and(eqfield(np, nq, ir.OEQ, f.Sym)) } } else { // Higher cost: use memequal. cc := eqmem(np, nq, f.Sym, size) and(cc) } i = next } // Sort conditions to put runtime calls last. // Preserve the rest of the ordering. var flatConds []ir.Node for _, c := range conds { isCall := func(n ir.Node) bool { return n.Op() == ir.OCALL || n.Op() == ir.OCALLFUNC } sort.SliceStable(c, func(i, j int) bool { return !isCall(c[i]) && isCall(c[j]) }) flatConds = append(flatConds, c...) } return flatConds, len(conds) > 1 } // EqString returns the nodes // // len(s) == len(t) // // and // // memequal(s.ptr, t.ptr, len(s)) // // which can be used to construct string equality comparison. // eqlen must be evaluated before eqmem, and shortcircuiting is required. func EqString(s, t ir.Node) (eqlen *ir.BinaryExpr, eqmem *ir.CallExpr) { s = typecheck.Conv(s, types.Types[types.TSTRING]) t = typecheck.Conv(t, types.Types[types.TSTRING]) sptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, s) tptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, t) slen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, s), types.Types[types.TUINTPTR]) tlen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, t), types.Types[types.TUINTPTR]) // Pick the 3rd arg to memequal. Both slen and tlen are fine to use, because we short // circuit the memequal call if they aren't the same. But if one is a constant some // memequal optimizations are easier to apply. probablyConstant := func(n ir.Node) bool { if n.Op() == ir.OCONVNOP { n = n.(*ir.ConvExpr).X } if n.Op() == ir.OLITERAL { return true } if n.Op() != ir.ONAME { return false } name := n.(*ir.Name) if name.Class != ir.PAUTO { return false } if def := name.Defn; def == nil { // n starts out as the empty string return true } else if def.Op() == ir.OAS && (def.(*ir.AssignStmt).Y == nil || def.(*ir.AssignStmt).Y.Op() == ir.OLITERAL) { // n starts out as a constant string return true } return false } cmplen := slen if probablyConstant(t) && !probablyConstant(s) { cmplen = tlen } fn := typecheck.LookupRuntime("memequal") fn = typecheck.SubstArgTypes(fn, types.Types[types.TUINT8], types.Types[types.TUINT8]) call := typecheck.Call(base.Pos, fn, []ir.Node{sptr, tptr, ir.Copy(cmplen)}, false).(*ir.CallExpr) cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, slen, tlen) cmp = typecheck.Expr(cmp).(*ir.BinaryExpr) cmp.SetType(types.Types[types.TBOOL]) return cmp, call } // EqInterface returns the nodes // // s.tab == t.tab (or s.typ == t.typ, as appropriate) // // and // // ifaceeq(s.tab, s.data, t.data) (or efaceeq(s.typ, s.data, t.data), as appropriate) // // which can be used to construct interface equality comparison. // eqtab must be evaluated before eqdata, and shortcircuiting is required. func EqInterface(s, t ir.Node) (eqtab *ir.BinaryExpr, eqdata *ir.CallExpr) { if !types.Identical(s.Type(), t.Type()) { base.Fatalf("EqInterface %v %v", s.Type(), t.Type()) } // func ifaceeq(tab *uintptr, x, y unsafe.Pointer) (ret bool) // func efaceeq(typ *uintptr, x, y unsafe.Pointer) (ret bool) var fn ir.Node if s.Type().IsEmptyInterface() { fn = typecheck.LookupRuntime("efaceeq") } else { fn = typecheck.LookupRuntime("ifaceeq") } stab := ir.NewUnaryExpr(base.Pos, ir.OITAB, s) ttab := ir.NewUnaryExpr(base.Pos, ir.OITAB, t) sdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, s) tdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, t) sdata.SetType(types.Types[types.TUNSAFEPTR]) tdata.SetType(types.Types[types.TUNSAFEPTR]) sdata.SetTypecheck(1) tdata.SetTypecheck(1) call := typecheck.Call(base.Pos, fn, []ir.Node{stab, sdata, tdata}, false).(*ir.CallExpr) cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, stab, ttab) cmp = typecheck.Expr(cmp).(*ir.BinaryExpr) cmp.SetType(types.Types[types.TBOOL]) return cmp, call } // eqfield returns the node // // p.field == q.field func eqfield(p ir.Node, q ir.Node, op ir.Op, field *types.Sym) ir.Node { nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, p, field) ny := ir.NewSelectorExpr(base.Pos, ir.OXDOT, q, field) ne := ir.NewBinaryExpr(base.Pos, op, nx, ny) return ne } // eqmem returns the node // // memequal(&p.field, &q.field, size) func eqmem(p ir.Node, q ir.Node, field *types.Sym, size int64) ir.Node { nx := typecheck.Expr(typecheck.NodAddr(ir.NewSelectorExpr(base.Pos, ir.OXDOT, p, field))) ny := typecheck.Expr(typecheck.NodAddr(ir.NewSelectorExpr(base.Pos, ir.OXDOT, q, field))) fn, needsize := eqmemfunc(size, nx.Type().Elem()) call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil) call.Args.Append(nx) call.Args.Append(ny) if needsize { call.Args.Append(ir.NewInt(base.Pos, size)) } return call } func eqmemfunc(size int64, t *types.Type) (fn *ir.Name, needsize bool) { if !base.Ctxt.Arch.CanMergeLoads && t.Alignment() < int64(base.Ctxt.Arch.Alignment) && t.Alignment() < t.Size() { // We can't use larger comparisons if the value might not be aligned // enough for the larger comparison. See issues 46283 and 67160. size = 0 } switch size { default: fn = typecheck.LookupRuntime("memequal") needsize = true case 1, 2, 4, 8, 16: buf := fmt.Sprintf("memequal%d", int(size)*8) fn = typecheck.LookupRuntime(buf) } fn = typecheck.SubstArgTypes(fn, t, t) return fn, needsize }