// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package noder import ( "go/constant" "cmd/compile/internal/base" "cmd/compile/internal/ir" "cmd/compile/internal/syntax" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "cmd/compile/internal/types2" "cmd/internal/src" ) // Helpers for constructing typed IR nodes. // // TODO(mdempsky): Move into their own package so they can be easily // reused by iimport and frontend optimizations. type ImplicitNode interface { ir.Node SetImplicit(x bool) } // Implicit returns n after marking it as Implicit. func Implicit(n ImplicitNode) ImplicitNode { n.SetImplicit(true) return n } // typed returns n after setting its type to typ. func typed(typ *types.Type, n ir.Node) ir.Node { n.SetType(typ) n.SetTypecheck(1) return n } // Values func OrigConst(pos src.XPos, typ *types.Type, val constant.Value, op ir.Op, raw string) ir.Node { orig := ir.NewRawOrigExpr(pos, op, raw) return ir.NewConstExpr(val, typed(typ, orig)) } // FixValue returns val after converting and truncating it as // appropriate for typ. func FixValue(typ *types.Type, val constant.Value) constant.Value { assert(typ.Kind() != types.TFORW) switch { case typ.IsInteger(): val = constant.ToInt(val) case typ.IsFloat(): val = constant.ToFloat(val) case typ.IsComplex(): val = constant.ToComplex(val) } if !typ.IsUntyped() { val = typecheck.DefaultLit(ir.NewBasicLit(src.NoXPos, val), typ).Val() } ir.AssertValidTypeForConst(typ, val) return val } func Nil(pos src.XPos, typ *types.Type) ir.Node { return typed(typ, ir.NewNilExpr(pos)) } // Expressions func Addr(pos src.XPos, x ir.Node) *ir.AddrExpr { n := typecheck.NodAddrAt(pos, x) typed(types.NewPtr(x.Type()), n) return n } func Assert(pos src.XPos, x ir.Node, typ *types.Type) ir.Node { return typed(typ, ir.NewTypeAssertExpr(pos, x, nil)) } func Binary(pos src.XPos, op ir.Op, typ *types.Type, x, y ir.Node) *ir.BinaryExpr { switch op { case ir.OADD: n := ir.NewBinaryExpr(pos, op, x, y) typed(typ, n) return n default: n := ir.NewBinaryExpr(pos, op, x, y) typed(x.Type(), n) return n } } func Compare(pos src.XPos, typ *types.Type, op ir.Op, x, y ir.Node) *ir.BinaryExpr { n := ir.NewBinaryExpr(pos, op, x, y) typed(typ, n) return n } func Deref(pos src.XPos, typ *types.Type, x ir.Node) *ir.StarExpr { n := ir.NewStarExpr(pos, x) typed(typ, n) return n } func DotField(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr { op, typ := ir.ODOT, x.Type() if typ.IsPtr() { op, typ = ir.ODOTPTR, typ.Elem() } if !typ.IsStruct() { base.FatalfAt(pos, "DotField of non-struct: %L", x) } // TODO(mdempsky): This is the backend's responsibility. types.CalcSize(typ) field := typ.Field(index) return dot(pos, field.Type, op, x, field) } func DotMethod(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr { method := method(x.Type(), index) // Method value. typ := typecheck.NewMethodType(method.Type, nil) return dot(pos, typ, ir.OMETHVALUE, x, method) } // MethodExpr returns a OMETHEXPR node with the indicated index into the methods // of typ. The receiver type is set from recv, which is different from typ if the // method was accessed via embedded fields. Similarly, the X value of the // ir.SelectorExpr is recv, the original OTYPE node before passing through the // embedded fields. func MethodExpr(pos src.XPos, recv ir.Node, embed *types.Type, index int) *ir.SelectorExpr { method := method(embed, index) typ := typecheck.NewMethodType(method.Type, recv.Type()) // The method expression T.m requires a wrapper when T // is different from m's declared receiver type. We // normally generate these wrappers while writing out // runtime type descriptors, which is always done for // types declared at package scope. However, we need // to make sure to generate wrappers for anonymous // receiver types too. if recv.Sym() == nil { typecheck.NeedRuntimeType(recv.Type()) } return dot(pos, typ, ir.OMETHEXPR, recv, method) } func dot(pos src.XPos, typ *types.Type, op ir.Op, x ir.Node, selection *types.Field) *ir.SelectorExpr { n := ir.NewSelectorExpr(pos, op, x, selection.Sym) n.Selection = selection typed(typ, n) return n } // TODO(mdempsky): Move to package types. func method(typ *types.Type, index int) *types.Field { if typ.IsInterface() { return typ.AllMethods().Index(index) } return types.ReceiverBaseType(typ).Methods().Index(index) } func Index(pos src.XPos, typ *types.Type, x, index ir.Node) *ir.IndexExpr { n := ir.NewIndexExpr(pos, x, index) typed(typ, n) return n } func Slice(pos src.XPos, typ *types.Type, x, low, high, max ir.Node) *ir.SliceExpr { op := ir.OSLICE if max != nil { op = ir.OSLICE3 } n := ir.NewSliceExpr(pos, op, x, low, high, max) typed(typ, n) return n } func Unary(pos src.XPos, typ *types.Type, op ir.Op, x ir.Node) ir.Node { switch op { case ir.OADDR: return Addr(pos, x) case ir.ODEREF: return Deref(pos, typ, x) } if op == ir.ORECV { if typ.IsFuncArgStruct() && typ.NumFields() == 2 { // Remove the second boolean type (if provided by type2), // since that works better with the rest of the compiler // (which will add it back in later). assert(typ.Field(1).Type.Kind() == types.TBOOL) typ = typ.Field(0).Type } } return typed(typ, ir.NewUnaryExpr(pos, op, x)) } // Statements var one = constant.MakeInt64(1) func IncDec(pos src.XPos, op ir.Op, x ir.Node) *ir.AssignOpStmt { assert(x.Type() != nil) bl := ir.NewBasicLit(pos, one) bl = typecheck.DefaultLit(bl, x.Type()) return ir.NewAssignOpStmt(pos, op, x, bl) } func idealType(tv syntax.TypeAndValue) types2.Type { // The gc backend expects all expressions to have a concrete type, and // types2 mostly satisfies this expectation already. But there are a few // cases where the Go spec doesn't require converting to concrete type, // and so types2 leaves them untyped. So we need to fix those up here. typ := tv.Type if basic, ok := typ.(*types2.Basic); ok && basic.Info()&types2.IsUntyped != 0 { switch basic.Kind() { case types2.UntypedNil: // ok; can appear in type switch case clauses // TODO(mdempsky): Handle as part of type switches instead? case types2.UntypedInt, types2.UntypedFloat, types2.UntypedComplex: // Untyped rhs of non-constant shift, e.g. x << 1.0. // If we have a constant value, it must be an int >= 0. if tv.Value != nil { s := constant.ToInt(tv.Value) assert(s.Kind() == constant.Int && constant.Sign(s) >= 0) } typ = types2.Typ[types2.Uint] case types2.UntypedBool: typ = types2.Typ[types2.Bool] // expression in "if" or "for" condition case types2.UntypedString: typ = types2.Typ[types2.String] // argument to "append" or "copy" calls default: return nil } } return typ } func isTypeParam(t types2.Type) bool { _, ok := t.(*types2.TypeParam) return ok } // isNotInHeap reports whether typ is or contains an element of type // runtime/internal/sys.NotInHeap. func isNotInHeap(typ types2.Type) bool { if named, ok := typ.(*types2.Named); ok { if obj := named.Obj(); obj.Name() == "nih" && obj.Pkg().Path() == "runtime/internal/sys" { return true } typ = named.Underlying() } switch typ := typ.(type) { case *types2.Array: return isNotInHeap(typ.Elem()) case *types2.Struct: for i := 0; i < typ.NumFields(); i++ { if isNotInHeap(typ.Field(i).Type()) { return true } } return false default: return false } }