// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssagen import ( "bufio" "bytes" "fmt" "go/constant" "html" "internal/buildcfg" "os" "path/filepath" "sort" "strings" "cmd/compile/internal/abi" "cmd/compile/internal/base" "cmd/compile/internal/ir" "cmd/compile/internal/liveness" "cmd/compile/internal/objw" "cmd/compile/internal/reflectdata" "cmd/compile/internal/ssa" "cmd/compile/internal/staticdata" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "cmd/internal/obj" "cmd/internal/src" "cmd/internal/sys" rtabi "internal/abi" ) var ssaConfig *ssa.Config var ssaCaches []ssa.Cache var ssaDump string // early copy of $GOSSAFUNC; the func name to dump output for var ssaDir string // optional destination for ssa dump file var ssaDumpStdout bool // whether to dump to stdout var ssaDumpCFG string // generate CFGs for these phases const ssaDumpFile = "ssa.html" // ssaDumpInlined holds all inlined functions when ssaDump contains a function name. var ssaDumpInlined []*ir.Func func DumpInline(fn *ir.Func) { if ssaDump != "" && ssaDump == ir.FuncName(fn) { ssaDumpInlined = append(ssaDumpInlined, fn) } } func InitEnv() { ssaDump = os.Getenv("GOSSAFUNC") ssaDir = os.Getenv("GOSSADIR") if ssaDump != "" { if strings.HasSuffix(ssaDump, "+") { ssaDump = ssaDump[:len(ssaDump)-1] ssaDumpStdout = true } spl := strings.Split(ssaDump, ":") if len(spl) > 1 { ssaDump = spl[0] ssaDumpCFG = spl[1] } } } func InitConfig() { types_ := ssa.NewTypes() if Arch.SoftFloat { softfloatInit() } // Generate a few pointer types that are uncommon in the frontend but common in the backend. // Caching is disabled in the backend, so generating these here avoids allocations. _ = types.NewPtr(types.Types[types.TINTER]) // *interface{} _ = types.NewPtr(types.NewPtr(types.Types[types.TSTRING])) // **string _ = types.NewPtr(types.NewSlice(types.Types[types.TINTER])) // *[]interface{} _ = types.NewPtr(types.NewPtr(types.ByteType)) // **byte _ = types.NewPtr(types.NewSlice(types.ByteType)) // *[]byte _ = types.NewPtr(types.NewSlice(types.Types[types.TSTRING])) // *[]string _ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[types.TUINT8]))) // ***uint8 _ = types.NewPtr(types.Types[types.TINT16]) // *int16 _ = types.NewPtr(types.Types[types.TINT64]) // *int64 _ = types.NewPtr(types.ErrorType) // *error types.NewPtrCacheEnabled = false ssaConfig = ssa.NewConfig(base.Ctxt.Arch.Name, *types_, base.Ctxt, base.Flag.N == 0, Arch.SoftFloat) ssaConfig.Race = base.Flag.Race ssaCaches = make([]ssa.Cache, base.Flag.LowerC) // Set up some runtime functions we'll need to call. ir.Syms.AssertE2I = typecheck.LookupRuntimeFunc("assertE2I") ir.Syms.AssertE2I2 = typecheck.LookupRuntimeFunc("assertE2I2") ir.Syms.AssertI2I = typecheck.LookupRuntimeFunc("assertI2I") ir.Syms.AssertI2I2 = typecheck.LookupRuntimeFunc("assertI2I2") ir.Syms.CgoCheckMemmove = typecheck.LookupRuntimeFunc("cgoCheckMemmove") ir.Syms.CgoCheckPtrWrite = typecheck.LookupRuntimeFunc("cgoCheckPtrWrite") ir.Syms.CheckPtrAlignment = typecheck.LookupRuntimeFunc("checkptrAlignment") ir.Syms.Deferproc = typecheck.LookupRuntimeFunc("deferproc") ir.Syms.DeferprocStack = typecheck.LookupRuntimeFunc("deferprocStack") ir.Syms.Deferreturn = typecheck.LookupRuntimeFunc("deferreturn") ir.Syms.Duffcopy = typecheck.LookupRuntimeFunc("duffcopy") ir.Syms.Duffzero = typecheck.LookupRuntimeFunc("duffzero") ir.Syms.GCWriteBarrier[0] = typecheck.LookupRuntimeFunc("gcWriteBarrier1") ir.Syms.GCWriteBarrier[1] = typecheck.LookupRuntimeFunc("gcWriteBarrier2") ir.Syms.GCWriteBarrier[2] = typecheck.LookupRuntimeFunc("gcWriteBarrier3") ir.Syms.GCWriteBarrier[3] = typecheck.LookupRuntimeFunc("gcWriteBarrier4") ir.Syms.GCWriteBarrier[4] = typecheck.LookupRuntimeFunc("gcWriteBarrier5") ir.Syms.GCWriteBarrier[5] = typecheck.LookupRuntimeFunc("gcWriteBarrier6") ir.Syms.GCWriteBarrier[6] = typecheck.LookupRuntimeFunc("gcWriteBarrier7") ir.Syms.GCWriteBarrier[7] = typecheck.LookupRuntimeFunc("gcWriteBarrier8") ir.Syms.Goschedguarded = typecheck.LookupRuntimeFunc("goschedguarded") ir.Syms.Growslice = typecheck.LookupRuntimeFunc("growslice") ir.Syms.Memmove = typecheck.LookupRuntimeFunc("memmove") ir.Syms.Msanread = typecheck.LookupRuntimeFunc("msanread") ir.Syms.Msanwrite = typecheck.LookupRuntimeFunc("msanwrite") ir.Syms.Msanmove = typecheck.LookupRuntimeFunc("msanmove") ir.Syms.Asanread = typecheck.LookupRuntimeFunc("asanread") ir.Syms.Asanwrite = typecheck.LookupRuntimeFunc("asanwrite") ir.Syms.Newobject = typecheck.LookupRuntimeFunc("newobject") ir.Syms.Newproc = typecheck.LookupRuntimeFunc("newproc") ir.Syms.Panicdivide = typecheck.LookupRuntimeFunc("panicdivide") ir.Syms.PanicdottypeE = typecheck.LookupRuntimeFunc("panicdottypeE") ir.Syms.PanicdottypeI = typecheck.LookupRuntimeFunc("panicdottypeI") ir.Syms.Panicnildottype = typecheck.LookupRuntimeFunc("panicnildottype") ir.Syms.Panicoverflow = typecheck.LookupRuntimeFunc("panicoverflow") ir.Syms.Panicshift = typecheck.LookupRuntimeFunc("panicshift") ir.Syms.Raceread = typecheck.LookupRuntimeFunc("raceread") ir.Syms.Racereadrange = typecheck.LookupRuntimeFunc("racereadrange") ir.Syms.Racewrite = typecheck.LookupRuntimeFunc("racewrite") ir.Syms.Racewriterange = typecheck.LookupRuntimeFunc("racewriterange") ir.Syms.WBZero = typecheck.LookupRuntimeFunc("wbZero") ir.Syms.WBMove = typecheck.LookupRuntimeFunc("wbMove") ir.Syms.X86HasPOPCNT = typecheck.LookupRuntimeVar("x86HasPOPCNT") // bool ir.Syms.X86HasSSE41 = typecheck.LookupRuntimeVar("x86HasSSE41") // bool ir.Syms.X86HasFMA = typecheck.LookupRuntimeVar("x86HasFMA") // bool ir.Syms.ARMHasVFPv4 = typecheck.LookupRuntimeVar("armHasVFPv4") // bool ir.Syms.ARM64HasATOMICS = typecheck.LookupRuntimeVar("arm64HasATOMICS") // bool ir.Syms.Staticuint64s = typecheck.LookupRuntimeVar("staticuint64s") ir.Syms.Typedmemmove = typecheck.LookupRuntimeFunc("typedmemmove") ir.Syms.Udiv = typecheck.LookupRuntimeVar("udiv") // asm func with special ABI ir.Syms.WriteBarrier = typecheck.LookupRuntimeVar("writeBarrier") // struct { bool; ... } ir.Syms.Zerobase = typecheck.LookupRuntimeVar("zerobase") if Arch.LinkArch.Family == sys.Wasm { BoundsCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeFunc("goPanicIndex") BoundsCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeFunc("goPanicIndexU") BoundsCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeFunc("goPanicSliceAlen") BoundsCheckFunc[ssa.BoundsSliceAlenU] = typecheck.LookupRuntimeFunc("goPanicSliceAlenU") BoundsCheckFunc[ssa.BoundsSliceAcap] = typecheck.LookupRuntimeFunc("goPanicSliceAcap") BoundsCheckFunc[ssa.BoundsSliceAcapU] = typecheck.LookupRuntimeFunc("goPanicSliceAcapU") BoundsCheckFunc[ssa.BoundsSliceB] = typecheck.LookupRuntimeFunc("goPanicSliceB") BoundsCheckFunc[ssa.BoundsSliceBU] = typecheck.LookupRuntimeFunc("goPanicSliceBU") BoundsCheckFunc[ssa.BoundsSlice3Alen] = typecheck.LookupRuntimeFunc("goPanicSlice3Alen") BoundsCheckFunc[ssa.BoundsSlice3AlenU] = typecheck.LookupRuntimeFunc("goPanicSlice3AlenU") BoundsCheckFunc[ssa.BoundsSlice3Acap] = typecheck.LookupRuntimeFunc("goPanicSlice3Acap") BoundsCheckFunc[ssa.BoundsSlice3AcapU] = typecheck.LookupRuntimeFunc("goPanicSlice3AcapU") BoundsCheckFunc[ssa.BoundsSlice3B] = typecheck.LookupRuntimeFunc("goPanicSlice3B") BoundsCheckFunc[ssa.BoundsSlice3BU] = typecheck.LookupRuntimeFunc("goPanicSlice3BU") BoundsCheckFunc[ssa.BoundsSlice3C] = typecheck.LookupRuntimeFunc("goPanicSlice3C") BoundsCheckFunc[ssa.BoundsSlice3CU] = typecheck.LookupRuntimeFunc("goPanicSlice3CU") BoundsCheckFunc[ssa.BoundsConvert] = typecheck.LookupRuntimeFunc("goPanicSliceConvert") } else { BoundsCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeFunc("panicIndex") BoundsCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeFunc("panicIndexU") BoundsCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeFunc("panicSliceAlen") BoundsCheckFunc[ssa.BoundsSliceAlenU] = typecheck.LookupRuntimeFunc("panicSliceAlenU") BoundsCheckFunc[ssa.BoundsSliceAcap] = typecheck.LookupRuntimeFunc("panicSliceAcap") BoundsCheckFunc[ssa.BoundsSliceAcapU] = typecheck.LookupRuntimeFunc("panicSliceAcapU") BoundsCheckFunc[ssa.BoundsSliceB] = typecheck.LookupRuntimeFunc("panicSliceB") BoundsCheckFunc[ssa.BoundsSliceBU] = typecheck.LookupRuntimeFunc("panicSliceBU") BoundsCheckFunc[ssa.BoundsSlice3Alen] = typecheck.LookupRuntimeFunc("panicSlice3Alen") BoundsCheckFunc[ssa.BoundsSlice3AlenU] = typecheck.LookupRuntimeFunc("panicSlice3AlenU") BoundsCheckFunc[ssa.BoundsSlice3Acap] = typecheck.LookupRuntimeFunc("panicSlice3Acap") BoundsCheckFunc[ssa.BoundsSlice3AcapU] = typecheck.LookupRuntimeFunc("panicSlice3AcapU") BoundsCheckFunc[ssa.BoundsSlice3B] = typecheck.LookupRuntimeFunc("panicSlice3B") BoundsCheckFunc[ssa.BoundsSlice3BU] = typecheck.LookupRuntimeFunc("panicSlice3BU") BoundsCheckFunc[ssa.BoundsSlice3C] = typecheck.LookupRuntimeFunc("panicSlice3C") BoundsCheckFunc[ssa.BoundsSlice3CU] = typecheck.LookupRuntimeFunc("panicSlice3CU") BoundsCheckFunc[ssa.BoundsConvert] = typecheck.LookupRuntimeFunc("panicSliceConvert") } if Arch.LinkArch.PtrSize == 4 { ExtendCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeVar("panicExtendIndex") ExtendCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeVar("panicExtendIndexU") ExtendCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeVar("panicExtendSliceAlen") ExtendCheckFunc[ssa.BoundsSliceAlenU] = typecheck.LookupRuntimeVar("panicExtendSliceAlenU") ExtendCheckFunc[ssa.BoundsSliceAcap] = typecheck.LookupRuntimeVar("panicExtendSliceAcap") ExtendCheckFunc[ssa.BoundsSliceAcapU] = typecheck.LookupRuntimeVar("panicExtendSliceAcapU") ExtendCheckFunc[ssa.BoundsSliceB] = typecheck.LookupRuntimeVar("panicExtendSliceB") ExtendCheckFunc[ssa.BoundsSliceBU] = typecheck.LookupRuntimeVar("panicExtendSliceBU") ExtendCheckFunc[ssa.BoundsSlice3Alen] = typecheck.LookupRuntimeVar("panicExtendSlice3Alen") ExtendCheckFunc[ssa.BoundsSlice3AlenU] = typecheck.LookupRuntimeVar("panicExtendSlice3AlenU") ExtendCheckFunc[ssa.BoundsSlice3Acap] = typecheck.LookupRuntimeVar("panicExtendSlice3Acap") ExtendCheckFunc[ssa.BoundsSlice3AcapU] = typecheck.LookupRuntimeVar("panicExtendSlice3AcapU") ExtendCheckFunc[ssa.BoundsSlice3B] = typecheck.LookupRuntimeVar("panicExtendSlice3B") ExtendCheckFunc[ssa.BoundsSlice3BU] = typecheck.LookupRuntimeVar("panicExtendSlice3BU") ExtendCheckFunc[ssa.BoundsSlice3C] = typecheck.LookupRuntimeVar("panicExtendSlice3C") ExtendCheckFunc[ssa.BoundsSlice3CU] = typecheck.LookupRuntimeVar("panicExtendSlice3CU") } // Wasm (all asm funcs with special ABIs) ir.Syms.WasmDiv = typecheck.LookupRuntimeVar("wasmDiv") ir.Syms.WasmTruncS = typecheck.LookupRuntimeVar("wasmTruncS") ir.Syms.WasmTruncU = typecheck.LookupRuntimeVar("wasmTruncU") ir.Syms.SigPanic = typecheck.LookupRuntimeFunc("sigpanic") } // AbiForBodylessFuncStackMap returns the ABI for a bodyless function's stack map. // This is not necessarily the ABI used to call it. // Currently (1.17 dev) such a stack map is always ABI0; // any ABI wrapper that is present is nosplit, hence a precise // stack map is not needed there (the parameters survive only long // enough to call the wrapped assembly function). // This always returns a freshly copied ABI. func AbiForBodylessFuncStackMap(fn *ir.Func) *abi.ABIConfig { return ssaConfig.ABI0.Copy() // No idea what races will result, be safe } // abiForFunc implements ABI policy for a function, but does not return a copy of the ABI. // Passing a nil function returns the default ABI based on experiment configuration. func abiForFunc(fn *ir.Func, abi0, abi1 *abi.ABIConfig) *abi.ABIConfig { if buildcfg.Experiment.RegabiArgs { // Select the ABI based on the function's defining ABI. if fn == nil { return abi1 } switch fn.ABI { case obj.ABI0: return abi0 case obj.ABIInternal: // TODO(austin): Clean up the nomenclature here. // It's not clear that "abi1" is ABIInternal. return abi1 } base.Fatalf("function %v has unknown ABI %v", fn, fn.ABI) panic("not reachable") } a := abi0 if fn != nil { if fn.Pragma&ir.RegisterParams != 0 { // TODO(register args) remove after register abi is working a = abi1 } } return a } // dvarint writes a varint v to the funcdata in symbol x and returns the new offset. func dvarint(x *obj.LSym, off int, v int64) int { if v < 0 || v > 1e9 { panic(fmt.Sprintf("dvarint: bad offset for funcdata - %v", v)) } if v < 1<<7 { return objw.Uint8(x, off, uint8(v)) } off = objw.Uint8(x, off, uint8((v&127)|128)) if v < 1<<14 { return objw.Uint8(x, off, uint8(v>>7)) } off = objw.Uint8(x, off, uint8(((v>>7)&127)|128)) if v < 1<<21 { return objw.Uint8(x, off, uint8(v>>14)) } off = objw.Uint8(x, off, uint8(((v>>14)&127)|128)) if v < 1<<28 { return objw.Uint8(x, off, uint8(v>>21)) } off = objw.Uint8(x, off, uint8(((v>>21)&127)|128)) return objw.Uint8(x, off, uint8(v>>28)) } // emitOpenDeferInfo emits FUNCDATA information about the defers in a function // that is using open-coded defers. This funcdata is used to determine the active // defers in a function and execute those defers during panic processing. // // The funcdata is all encoded in varints (since values will almost always be less than // 128, but stack offsets could potentially be up to 2Gbyte). All "locations" (offsets) // for stack variables are specified as the number of bytes below varp (pointer to the // top of the local variables) for their starting address. The format is: // // - Offset of the deferBits variable // - Number of defers in the function // - Information about each defer call, in reverse order of appearance in the function: // - Offset of the closure value to call func (s *state) emitOpenDeferInfo() { x := base.Ctxt.Lookup(s.curfn.LSym.Name + ".opendefer") x.Set(obj.AttrContentAddressable, true) s.curfn.LSym.Func().OpenCodedDeferInfo = x off := 0 off = dvarint(x, off, -s.deferBitsTemp.FrameOffset()) off = dvarint(x, off, int64(len(s.openDefers))) // Write in reverse-order, for ease of running in that order at runtime for i := len(s.openDefers) - 1; i >= 0; i-- { r := s.openDefers[i] off = dvarint(x, off, -r.closureNode.FrameOffset()) } } func okOffset(offset int64) int64 { if offset == types.BOGUS_FUNARG_OFFSET { panic(fmt.Errorf("Bogus offset %d", offset)) } return offset } // buildssa builds an SSA function for fn. // worker indicates which of the backend workers is doing the processing. func buildssa(fn *ir.Func, worker int) *ssa.Func { name := ir.FuncName(fn) printssa := false if ssaDump != "" { // match either a simple name e.g. "(*Reader).Reset", package.name e.g. "compress/gzip.(*Reader).Reset", or subpackage name "gzip.(*Reader).Reset" pkgDotName := base.Ctxt.Pkgpath + "." + name printssa = name == ssaDump || strings.HasSuffix(pkgDotName, ssaDump) && (pkgDotName == ssaDump || strings.HasSuffix(pkgDotName, "/"+ssaDump)) } var astBuf *bytes.Buffer if printssa { astBuf = &bytes.Buffer{} ir.FDumpList(astBuf, "buildssa-enter", fn.Enter) ir.FDumpList(astBuf, "buildssa-body", fn.Body) ir.FDumpList(astBuf, "buildssa-exit", fn.Exit) if ssaDumpStdout { fmt.Println("generating SSA for", name) fmt.Print(astBuf.String()) } } var s state s.pushLine(fn.Pos()) defer s.popLine() s.hasdefer = fn.HasDefer() if fn.Pragma&ir.CgoUnsafeArgs != 0 { s.cgoUnsafeArgs = true } s.checkPtrEnabled = ir.ShouldCheckPtr(fn, 1) fe := ssafn{ curfn: fn, log: printssa && ssaDumpStdout, } s.curfn = fn s.f = ssa.NewFunc(&fe) s.config = ssaConfig s.f.Type = fn.Type() s.f.Config = ssaConfig s.f.Cache = &ssaCaches[worker] s.f.Cache.Reset() s.f.Name = name s.f.PrintOrHtmlSSA = printssa if fn.Pragma&ir.Nosplit != 0 { s.f.NoSplit = true } s.f.ABI0 = ssaConfig.ABI0.Copy() // Make a copy to avoid racy map operations in type-register-width cache. s.f.ABI1 = ssaConfig.ABI1.Copy() s.f.ABIDefault = abiForFunc(nil, s.f.ABI0, s.f.ABI1) s.f.ABISelf = abiForFunc(fn, s.f.ABI0, s.f.ABI1) s.panics = map[funcLine]*ssa.Block{} s.softFloat = s.config.SoftFloat // Allocate starting block s.f.Entry = s.f.NewBlock(ssa.BlockPlain) s.f.Entry.Pos = fn.Pos() if printssa { ssaDF := ssaDumpFile if ssaDir != "" { ssaDF = filepath.Join(ssaDir, base.Ctxt.Pkgpath+"."+name+".html") ssaD := filepath.Dir(ssaDF) os.MkdirAll(ssaD, 0755) } s.f.HTMLWriter = ssa.NewHTMLWriter(ssaDF, s.f, ssaDumpCFG) // TODO: generate and print a mapping from nodes to values and blocks dumpSourcesColumn(s.f.HTMLWriter, fn) s.f.HTMLWriter.WriteAST("AST", astBuf) } // Allocate starting values s.labels = map[string]*ssaLabel{} s.fwdVars = map[ir.Node]*ssa.Value{} s.startmem = s.entryNewValue0(ssa.OpInitMem, types.TypeMem) s.hasOpenDefers = base.Flag.N == 0 && s.hasdefer && !s.curfn.OpenCodedDeferDisallowed() switch { case base.Debug.NoOpenDefer != 0: s.hasOpenDefers = false case s.hasOpenDefers && (base.Ctxt.Flag_shared || base.Ctxt.Flag_dynlink) && base.Ctxt.Arch.Name == "386": // Don't support open-coded defers for 386 ONLY when using shared // libraries, because there is extra code (added by rewriteToUseGot()) // preceding the deferreturn/ret code that we don't track correctly. s.hasOpenDefers = false } if s.hasOpenDefers && len(s.curfn.Exit) > 0 { // Skip doing open defers if there is any extra exit code (likely // race detection), since we will not generate that code in the // case of the extra deferreturn/ret segment. s.hasOpenDefers = false } if s.hasOpenDefers { // Similarly, skip if there are any heap-allocated result // parameters that need to be copied back to their stack slots. for _, f := range s.curfn.Type().Results().FieldSlice() { if !f.Nname.(*ir.Name).OnStack() { s.hasOpenDefers = false break } } } if s.hasOpenDefers && s.curfn.NumReturns*s.curfn.NumDefers > 15 { // Since we are generating defer calls at every exit for // open-coded defers, skip doing open-coded defers if there are // too many returns (especially if there are multiple defers). // Open-coded defers are most important for improving performance // for smaller functions (which don't have many returns). s.hasOpenDefers = false } s.sp = s.entryNewValue0(ssa.OpSP, types.Types[types.TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead s.sb = s.entryNewValue0(ssa.OpSB, types.Types[types.TUINTPTR]) s.startBlock(s.f.Entry) s.vars[memVar] = s.startmem if s.hasOpenDefers { // Create the deferBits variable and stack slot. deferBits is a // bitmask showing which of the open-coded defers in this function // have been activated. deferBitsTemp := typecheck.TempAt(src.NoXPos, s.curfn, types.Types[types.TUINT8]) deferBitsTemp.SetAddrtaken(true) s.deferBitsTemp = deferBitsTemp // For this value, AuxInt is initialized to zero by default startDeferBits := s.entryNewValue0(ssa.OpConst8, types.Types[types.TUINT8]) s.vars[deferBitsVar] = startDeferBits s.deferBitsAddr = s.addr(deferBitsTemp) s.store(types.Types[types.TUINT8], s.deferBitsAddr, startDeferBits) // Make sure that the deferBits stack slot is kept alive (for use // by panics) and stores to deferBits are not eliminated, even if // all checking code on deferBits in the function exit can be // eliminated, because the defer statements were all // unconditional. s.vars[memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, deferBitsTemp, s.mem(), false) } var params *abi.ABIParamResultInfo params = s.f.ABISelf.ABIAnalyze(fn.Type(), true) // The backend's stackframe pass prunes away entries from the fn's // Dcl list, including PARAMOUT nodes that correspond to output // params passed in registers. Walk the Dcl list and capture these // nodes to a side list, so that we'll have them available during // DWARF-gen later on. See issue 48573 for more details. var debugInfo ssa.FuncDebug for _, n := range fn.Dcl { if n.Class == ir.PPARAMOUT && n.IsOutputParamInRegisters() { debugInfo.RegOutputParams = append(debugInfo.RegOutputParams, n) } } fn.DebugInfo = &debugInfo // Generate addresses of local declarations s.decladdrs = map[*ir.Name]*ssa.Value{} for _, n := range fn.Dcl { switch n.Class { case ir.PPARAM: // Be aware that blank and unnamed input parameters will not appear here, but do appear in the type s.decladdrs[n] = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(n.Type()), n, s.sp, s.startmem) case ir.PPARAMOUT: s.decladdrs[n] = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(n.Type()), n, s.sp, s.startmem) case ir.PAUTO: // processed at each use, to prevent Addr coming // before the decl. default: s.Fatalf("local variable with class %v unimplemented", n.Class) } } s.f.OwnAux = ssa.OwnAuxCall(fn.LSym, params) // Populate SSAable arguments. for _, n := range fn.Dcl { if n.Class == ir.PPARAM { if s.canSSA(n) { v := s.newValue0A(ssa.OpArg, n.Type(), n) s.vars[n] = v s.addNamedValue(n, v) // This helps with debugging information, not needed for compilation itself. } else { // address was taken AND/OR too large for SSA paramAssignment := ssa.ParamAssignmentForArgName(s.f, n) if len(paramAssignment.Registers) > 0 { if TypeOK(n.Type()) { // SSA-able type, so address was taken -- receive value in OpArg, DO NOT bind to var, store immediately to memory. v := s.newValue0A(ssa.OpArg, n.Type(), n) s.store(n.Type(), s.decladdrs[n], v) } else { // Too big for SSA. // Brute force, and early, do a bunch of stores from registers // TODO fix the nasty storeArgOrLoad recursion in ssa/expand_calls.go so this Just Works with store of a big Arg. s.storeParameterRegsToStack(s.f.ABISelf, paramAssignment, n, s.decladdrs[n], false) } } } } } // Populate closure variables. if fn.Needctxt() { clo := s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr) offset := int64(types.PtrSize) // PtrSize to skip past function entry PC field for _, n := range fn.ClosureVars { typ := n.Type() if !n.Byval() { typ = types.NewPtr(typ) } offset = types.RoundUp(offset, typ.Alignment()) ptr := s.newValue1I(ssa.OpOffPtr, types.NewPtr(typ), offset, clo) offset += typ.Size() // If n is a small variable captured by value, promote // it to PAUTO so it can be converted to SSA. // // Note: While we never capture a variable by value if // the user took its address, we may have generated // runtime calls that did (#43701). Since we don't // convert Addrtaken variables to SSA anyway, no point // in promoting them either. if n.Byval() && !n.Addrtaken() && TypeOK(n.Type()) { n.Class = ir.PAUTO fn.Dcl = append(fn.Dcl, n) s.assign(n, s.load(n.Type(), ptr), false, 0) continue } if !n.Byval() { ptr = s.load(typ, ptr) } s.setHeapaddr(fn.Pos(), n, ptr) } } // Convert the AST-based IR to the SSA-based IR s.stmtList(fn.Enter) s.zeroResults() s.paramsToHeap() s.stmtList(fn.Body) // fallthrough to exit if s.curBlock != nil { s.pushLine(fn.Endlineno) s.exit() s.popLine() } for _, b := range s.f.Blocks { if b.Pos != src.NoXPos { s.updateUnsetPredPos(b) } } s.f.HTMLWriter.WritePhase("before insert phis", "before insert phis") s.insertPhis() // Main call to ssa package to compile function ssa.Compile(s.f) if s.hasOpenDefers { s.emitOpenDeferInfo() } // Record incoming parameter spill information for morestack calls emitted in the assembler. // This is done here, using all the parameters (used, partially used, and unused) because // it mimics the behavior of the former ABI (everything stored) and because it's not 100% // clear if naming conventions are respected in autogenerated code. // TODO figure out exactly what's unused, don't spill it. Make liveness fine-grained, also. for _, p := range params.InParams() { typs, offs := p.RegisterTypesAndOffsets() for i, t := range typs { o := offs[i] // offset within parameter fo := p.FrameOffset(params) // offset of parameter in frame reg := ssa.ObjRegForAbiReg(p.Registers[i], s.f.Config) s.f.RegArgs = append(s.f.RegArgs, ssa.Spill{Reg: reg, Offset: fo + o, Type: t}) } } return s.f } func (s *state) storeParameterRegsToStack(abi *abi.ABIConfig, paramAssignment *abi.ABIParamAssignment, n *ir.Name, addr *ssa.Value, pointersOnly bool) { typs, offs := paramAssignment.RegisterTypesAndOffsets() for i, t := range typs { if pointersOnly && !t.IsPtrShaped() { continue } r := paramAssignment.Registers[i] o := offs[i] op, reg := ssa.ArgOpAndRegisterFor(r, abi) aux := &ssa.AuxNameOffset{Name: n, Offset: o} v := s.newValue0I(op, t, reg) v.Aux = aux p := s.newValue1I(ssa.OpOffPtr, types.NewPtr(t), o, addr) s.store(t, p, v) } } // zeroResults zeros the return values at the start of the function. // We need to do this very early in the function. Defer might stop a // panic and show the return values as they exist at the time of // panic. For precise stacks, the garbage collector assumes results // are always live, so we need to zero them before any allocations, // even allocations to move params/results to the heap. func (s *state) zeroResults() { for _, f := range s.curfn.Type().Results().FieldSlice() { n := f.Nname.(*ir.Name) if !n.OnStack() { // The local which points to the return value is the // thing that needs zeroing. This is already handled // by a Needzero annotation in plive.go:(*liveness).epilogue. continue } // Zero the stack location containing f. if typ := n.Type(); TypeOK(typ) { s.assign(n, s.zeroVal(typ), false, 0) } else { if typ.HasPointers() { s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem()) } s.zero(n.Type(), s.decladdrs[n]) } } } // paramsToHeap produces code to allocate memory for heap-escaped parameters // and to copy non-result parameters' values from the stack. func (s *state) paramsToHeap() { do := func(params *types.Type) { for _, f := range params.FieldSlice() { if f.Nname == nil { continue // anonymous or blank parameter } n := f.Nname.(*ir.Name) if ir.IsBlank(n) || n.OnStack() { continue } s.newHeapaddr(n) if n.Class == ir.PPARAM { s.move(n.Type(), s.expr(n.Heapaddr), s.decladdrs[n]) } } } typ := s.curfn.Type() do(typ.Recvs()) do(typ.Params()) do(typ.Results()) } // newHeapaddr allocates heap memory for n and sets its heap address. func (s *state) newHeapaddr(n *ir.Name) { s.setHeapaddr(n.Pos(), n, s.newObject(n.Type(), nil)) } // setHeapaddr allocates a new PAUTO variable to store ptr (which must be non-nil) // and then sets it as n's heap address. func (s *state) setHeapaddr(pos src.XPos, n *ir.Name, ptr *ssa.Value) { if !ptr.Type.IsPtr() || !types.Identical(n.Type(), ptr.Type.Elem()) { base.FatalfAt(n.Pos(), "setHeapaddr %L with type %v", n, ptr.Type) } // Declare variable to hold address. addr := ir.NewNameAt(pos, &types.Sym{Name: "&" + n.Sym().Name, Pkg: types.LocalPkg}) addr.SetType(types.NewPtr(n.Type())) addr.Class = ir.PAUTO addr.SetUsed(true) addr.Curfn = s.curfn s.curfn.Dcl = append(s.curfn.Dcl, addr) types.CalcSize(addr.Type()) if n.Class == ir.PPARAMOUT { addr.SetIsOutputParamHeapAddr(true) } n.Heapaddr = addr s.assign(addr, ptr, false, 0) } // newObject returns an SSA value denoting new(typ). func (s *state) newObject(typ *types.Type, rtype *ssa.Value) *ssa.Value { if typ.Size() == 0 { return s.newValue1A(ssa.OpAddr, types.NewPtr(typ), ir.Syms.Zerobase, s.sb) } if rtype == nil { rtype = s.reflectType(typ) } return s.rtcall(ir.Syms.Newobject, true, []*types.Type{types.NewPtr(typ)}, rtype)[0] } func (s *state) checkPtrAlignment(n *ir.ConvExpr, v *ssa.Value, count *ssa.Value) { if !n.Type().IsPtr() { s.Fatalf("expected pointer type: %v", n.Type()) } elem, rtypeExpr := n.Type().Elem(), n.ElemRType if count != nil { if !elem.IsArray() { s.Fatalf("expected array type: %v", elem) } elem, rtypeExpr = elem.Elem(), n.ElemElemRType } size := elem.Size() // Casting from larger type to smaller one is ok, so for smallest type, do nothing. if elem.Alignment() == 1 && (size == 0 || size == 1 || count == nil) { return } if count == nil { count = s.constInt(types.Types[types.TUINTPTR], 1) } if count.Type.Size() != s.config.PtrSize { s.Fatalf("expected count fit to a uintptr size, have: %d, want: %d", count.Type.Size(), s.config.PtrSize) } var rtype *ssa.Value if rtypeExpr != nil { rtype = s.expr(rtypeExpr) } else { rtype = s.reflectType(elem) } s.rtcall(ir.Syms.CheckPtrAlignment, true, nil, v, rtype, count) } // reflectType returns an SSA value representing a pointer to typ's // reflection type descriptor. func (s *state) reflectType(typ *types.Type) *ssa.Value { // TODO(mdempsky): Make this Fatalf under Unified IR; frontend needs // to supply RType expressions. lsym := reflectdata.TypeLinksym(typ) return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(types.Types[types.TUINT8]), lsym, s.sb) } func dumpSourcesColumn(writer *ssa.HTMLWriter, fn *ir.Func) { // Read sources of target function fn. fname := base.Ctxt.PosTable.Pos(fn.Pos()).Filename() targetFn, err := readFuncLines(fname, fn.Pos().Line(), fn.Endlineno.Line()) if err != nil { writer.Logf("cannot read sources for function %v: %v", fn, err) } // Read sources of inlined functions. var inlFns []*ssa.FuncLines for _, fi := range ssaDumpInlined { elno := fi.Endlineno fname := base.Ctxt.PosTable.Pos(fi.Pos()).Filename() fnLines, err := readFuncLines(fname, fi.Pos().Line(), elno.Line()) if err != nil { writer.Logf("cannot read sources for inlined function %v: %v", fi, err) continue } inlFns = append(inlFns, fnLines) } sort.Sort(ssa.ByTopo(inlFns)) if targetFn != nil { inlFns = append([]*ssa.FuncLines{targetFn}, inlFns...) } writer.WriteSources("sources", inlFns) } func readFuncLines(file string, start, end uint) (*ssa.FuncLines, error) { f, err := os.Open(os.ExpandEnv(file)) if err != nil { return nil, err } defer f.Close() var lines []string ln := uint(1) scanner := bufio.NewScanner(f) for scanner.Scan() && ln <= end { if ln >= start { lines = append(lines, scanner.Text()) } ln++ } return &ssa.FuncLines{Filename: file, StartLineno: start, Lines: lines}, nil } // updateUnsetPredPos propagates the earliest-value position information for b // towards all of b's predecessors that need a position, and recurs on that // predecessor if its position is updated. B should have a non-empty position. func (s *state) updateUnsetPredPos(b *ssa.Block) { if b.Pos == src.NoXPos { s.Fatalf("Block %s should have a position", b) } bestPos := src.NoXPos for _, e := range b.Preds { p := e.Block() if !p.LackingPos() { continue } if bestPos == src.NoXPos { bestPos = b.Pos for _, v := range b.Values { if v.LackingPos() { continue } if v.Pos != src.NoXPos { // Assume values are still in roughly textual order; // TODO: could also seek minimum position? bestPos = v.Pos break } } } p.Pos = bestPos s.updateUnsetPredPos(p) // We do not expect long chains of these, thus recursion is okay. } } // Information about each open-coded defer. type openDeferInfo struct { // The node representing the call of the defer n *ir.CallExpr // If defer call is closure call, the address of the argtmp where the // closure is stored. closure *ssa.Value // The node representing the argtmp where the closure is stored - used for // function, method, or interface call, to store a closure that panic // processing can use for this defer. closureNode *ir.Name } type state struct { // configuration (arch) information config *ssa.Config // function we're building f *ssa.Func // Node for function curfn *ir.Func // labels in f labels map[string]*ssaLabel // unlabeled break and continue statement tracking breakTo *ssa.Block // current target for plain break statement continueTo *ssa.Block // current target for plain continue statement // current location where we're interpreting the AST curBlock *ssa.Block // variable assignments in the current block (map from variable symbol to ssa value) // *Node is the unique identifier (an ONAME Node) for the variable. // TODO: keep a single varnum map, then make all of these maps slices instead? vars map[ir.Node]*ssa.Value // fwdVars are variables that are used before they are defined in the current block. // This map exists just to coalesce multiple references into a single FwdRef op. // *Node is the unique identifier (an ONAME Node) for the variable. fwdVars map[ir.Node]*ssa.Value // all defined variables at the end of each block. Indexed by block ID. defvars []map[ir.Node]*ssa.Value // addresses of PPARAM and PPARAMOUT variables on the stack. decladdrs map[*ir.Name]*ssa.Value // starting values. Memory, stack pointer, and globals pointer startmem *ssa.Value sp *ssa.Value sb *ssa.Value // value representing address of where deferBits autotmp is stored deferBitsAddr *ssa.Value deferBitsTemp *ir.Name // line number stack. The current line number is top of stack line []src.XPos // the last line number processed; it may have been popped lastPos src.XPos // list of panic calls by function name and line number. // Used to deduplicate panic calls. panics map[funcLine]*ssa.Block cgoUnsafeArgs bool hasdefer bool // whether the function contains a defer statement softFloat bool hasOpenDefers bool // whether we are doing open-coded defers checkPtrEnabled bool // whether to insert checkptr instrumentation // If doing open-coded defers, list of info about the defer calls in // scanning order. Hence, at exit we should run these defers in reverse // order of this list openDefers []*openDeferInfo // For open-coded defers, this is the beginning and end blocks of the last // defer exit code that we have generated so far. We use these to share // code between exits if the shareDeferExits option (disabled by default) // is on. lastDeferExit *ssa.Block // Entry block of last defer exit code we generated lastDeferFinalBlock *ssa.Block // Final block of last defer exit code we generated lastDeferCount int // Number of defers encountered at that point prevCall *ssa.Value // the previous call; use this to tie results to the call op. } type funcLine struct { f *obj.LSym base *src.PosBase line uint } type ssaLabel struct { target *ssa.Block // block identified by this label breakTarget *ssa.Block // block to break to in control flow node identified by this label continueTarget *ssa.Block // block to continue to in control flow node identified by this label } // label returns the label associated with sym, creating it if necessary. func (s *state) label(sym *types.Sym) *ssaLabel { lab := s.labels[sym.Name] if lab == nil { lab = new(ssaLabel) s.labels[sym.Name] = lab } return lab } func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) } func (s *state) Log() bool { return s.f.Log() } func (s *state) Fatalf(msg string, args ...interface{}) { s.f.Frontend().Fatalf(s.peekPos(), msg, args...) } func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) } func (s *state) Debug_checknil() bool { return s.f.Frontend().Debug_checknil() } func ssaMarker(name string) *ir.Name { return typecheck.NewName(&types.Sym{Name: name}) } var ( // marker node for the memory variable memVar = ssaMarker("mem") // marker nodes for temporary variables ptrVar = ssaMarker("ptr") lenVar = ssaMarker("len") capVar = ssaMarker("cap") typVar = ssaMarker("typ") okVar = ssaMarker("ok") deferBitsVar = ssaMarker("deferBits") ) // startBlock sets the current block we're generating code in to b. func (s *state) startBlock(b *ssa.Block) { if s.curBlock != nil { s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock) } s.curBlock = b s.vars = map[ir.Node]*ssa.Value{} for n := range s.fwdVars { delete(s.fwdVars, n) } } // endBlock marks the end of generating code for the current block. // Returns the (former) current block. Returns nil if there is no current // block, i.e. if no code flows to the current execution point. func (s *state) endBlock() *ssa.Block { b := s.curBlock if b == nil { return nil } for len(s.defvars) <= int(b.ID) { s.defvars = append(s.defvars, nil) } s.defvars[b.ID] = s.vars s.curBlock = nil s.vars = nil if b.LackingPos() { // Empty plain blocks get the line of their successor (handled after all blocks created), // except for increment blocks in For statements (handled in ssa conversion of OFOR), // and for blocks ending in GOTO/BREAK/CONTINUE. b.Pos = src.NoXPos } else { b.Pos = s.lastPos } return b } // pushLine pushes a line number on the line number stack. func (s *state) pushLine(line src.XPos) { if !line.IsKnown() { // the frontend may emit node with line number missing, // use the parent line number in this case. line = s.peekPos() if base.Flag.K != 0 { base.Warn("buildssa: unknown position (line 0)") } } else { s.lastPos = line } s.line = append(s.line, line) } // popLine pops the top of the line number stack. func (s *state) popLine() { s.line = s.line[:len(s.line)-1] } // peekPos peeks the top of the line number stack. func (s *state) peekPos() src.XPos { return s.line[len(s.line)-1] } // newValue0 adds a new value with no arguments to the current block. func (s *state) newValue0(op ssa.Op, t *types.Type) *ssa.Value { return s.curBlock.NewValue0(s.peekPos(), op, t) } // newValue0A adds a new value with no arguments and an aux value to the current block. func (s *state) newValue0A(op ssa.Op, t *types.Type, aux ssa.Aux) *ssa.Value { return s.curBlock.NewValue0A(s.peekPos(), op, t, aux) } // newValue0I adds a new value with no arguments and an auxint value to the current block. func (s *state) newValue0I(op ssa.Op, t *types.Type, auxint int64) *ssa.Value { return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint) } // newValue1 adds a new value with one argument to the current block. func (s *state) newValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { return s.curBlock.NewValue1(s.peekPos(), op, t, arg) } // newValue1A adds a new value with one argument and an aux value to the current block. func (s *state) newValue1A(op ssa.Op, t *types.Type, aux ssa.Aux, arg *ssa.Value) *ssa.Value { return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg) } // newValue1Apos adds a new value with one argument and an aux value to the current block. // isStmt determines whether the created values may be a statement or not // (i.e., false means never, yes means maybe). func (s *state) newValue1Apos(op ssa.Op, t *types.Type, aux ssa.Aux, arg *ssa.Value, isStmt bool) *ssa.Value { if isStmt { return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg) } return s.curBlock.NewValue1A(s.peekPos().WithNotStmt(), op, t, aux, arg) } // newValue1I adds a new value with one argument and an auxint value to the current block. func (s *state) newValue1I(op ssa.Op, t *types.Type, aux int64, arg *ssa.Value) *ssa.Value { return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg) } // newValue2 adds a new value with two arguments to the current block. func (s *state) newValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1) } // newValue2A adds a new value with two arguments and an aux value to the current block. func (s *state) newValue2A(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1 *ssa.Value) *ssa.Value { return s.curBlock.NewValue2A(s.peekPos(), op, t, aux, arg0, arg1) } // newValue2Apos adds a new value with two arguments and an aux value to the current block. // isStmt determines whether the created values may be a statement or not // (i.e., false means never, yes means maybe). func (s *state) newValue2Apos(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1 *ssa.Value, isStmt bool) *ssa.Value { if isStmt { return s.curBlock.NewValue2A(s.peekPos(), op, t, aux, arg0, arg1) } return s.curBlock.NewValue2A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1) } // newValue2I adds a new value with two arguments and an auxint value to the current block. func (s *state) newValue2I(op ssa.Op, t *types.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value { return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1) } // newValue3 adds a new value with three arguments to the current block. func (s *state) newValue3(op ssa.Op, t *types.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value { return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2) } // newValue3I adds a new value with three arguments and an auxint value to the current block. func (s *state) newValue3I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value { return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2) } // newValue3A adds a new value with three arguments and an aux value to the current block. func (s *state) newValue3A(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1, arg2 *ssa.Value) *ssa.Value { return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2) } // newValue3Apos adds a new value with three arguments and an aux value to the current block. // isStmt determines whether the created values may be a statement or not // (i.e., false means never, yes means maybe). func (s *state) newValue3Apos(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1, arg2 *ssa.Value, isStmt bool) *ssa.Value { if isStmt { return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2) } return s.curBlock.NewValue3A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1, arg2) } // newValue4 adds a new value with four arguments to the current block. func (s *state) newValue4(op ssa.Op, t *types.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value { return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3) } // newValue4I adds a new value with four arguments and an auxint value to the current block. func (s *state) newValue4I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value { return s.curBlock.NewValue4I(s.peekPos(), op, t, aux, arg0, arg1, arg2, arg3) } func (s *state) entryBlock() *ssa.Block { b := s.f.Entry if base.Flag.N > 0 && s.curBlock != nil { // If optimizations are off, allocate in current block instead. Since with -N // we're not doing the CSE or tighten passes, putting lots of stuff in the // entry block leads to O(n^2) entries in the live value map during regalloc. // See issue 45897. b = s.curBlock } return b } // entryNewValue0 adds a new value with no arguments to the entry block. func (s *state) entryNewValue0(op ssa.Op, t *types.Type) *ssa.Value { return s.entryBlock().NewValue0(src.NoXPos, op, t) } // entryNewValue0A adds a new value with no arguments and an aux value to the entry block. func (s *state) entryNewValue0A(op ssa.Op, t *types.Type, aux ssa.Aux) *ssa.Value { return s.entryBlock().NewValue0A(src.NoXPos, op, t, aux) } // entryNewValue1 adds a new value with one argument to the entry block. func (s *state) entryNewValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { return s.entryBlock().NewValue1(src.NoXPos, op, t, arg) } // entryNewValue1I adds a new value with one argument and an auxint value to the entry block. func (s *state) entryNewValue1I(op ssa.Op, t *types.Type, auxint int64, arg *ssa.Value) *ssa.Value { return s.entryBlock().NewValue1I(src.NoXPos, op, t, auxint, arg) } // entryNewValue1A adds a new value with one argument and an aux value to the entry block. func (s *state) entryNewValue1A(op ssa.Op, t *types.Type, aux ssa.Aux, arg *ssa.Value) *ssa.Value { return s.entryBlock().NewValue1A(src.NoXPos, op, t, aux, arg) } // entryNewValue2 adds a new value with two arguments to the entry block. func (s *state) entryNewValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { return s.entryBlock().NewValue2(src.NoXPos, op, t, arg0, arg1) } // entryNewValue2A adds a new value with two arguments and an aux value to the entry block. func (s *state) entryNewValue2A(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1 *ssa.Value) *ssa.Value { return s.entryBlock().NewValue2A(src.NoXPos, op, t, aux, arg0, arg1) } // const* routines add a new const value to the entry block. func (s *state) constSlice(t *types.Type) *ssa.Value { return s.f.ConstSlice(t) } func (s *state) constInterface(t *types.Type) *ssa.Value { return s.f.ConstInterface(t) } func (s *state) constNil(t *types.Type) *ssa.Value { return s.f.ConstNil(t) } func (s *state) constEmptyString(t *types.Type) *ssa.Value { return s.f.ConstEmptyString(t) } func (s *state) constBool(c bool) *ssa.Value { return s.f.ConstBool(types.Types[types.TBOOL], c) } func (s *state) constInt8(t *types.Type, c int8) *ssa.Value { return s.f.ConstInt8(t, c) } func (s *state) constInt16(t *types.Type, c int16) *ssa.Value { return s.f.ConstInt16(t, c) } func (s *state) constInt32(t *types.Type, c int32) *ssa.Value { return s.f.ConstInt32(t, c) } func (s *state) constInt64(t *types.Type, c int64) *ssa.Value { return s.f.ConstInt64(t, c) } func (s *state) constFloat32(t *types.Type, c float64) *ssa.Value { return s.f.ConstFloat32(t, c) } func (s *state) constFloat64(t *types.Type, c float64) *ssa.Value { return s.f.ConstFloat64(t, c) } func (s *state) constInt(t *types.Type, c int64) *ssa.Value { if s.config.PtrSize == 8 { return s.constInt64(t, c) } if int64(int32(c)) != c { s.Fatalf("integer constant too big %d", c) } return s.constInt32(t, int32(c)) } func (s *state) constOffPtrSP(t *types.Type, c int64) *ssa.Value { return s.f.ConstOffPtrSP(t, c, s.sp) } // newValueOrSfCall* are wrappers around newValue*, which may create a call to a // soft-float runtime function instead (when emitting soft-float code). func (s *state) newValueOrSfCall1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { if s.softFloat { if c, ok := s.sfcall(op, arg); ok { return c } } return s.newValue1(op, t, arg) } func (s *state) newValueOrSfCall2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { if s.softFloat { if c, ok := s.sfcall(op, arg0, arg1); ok { return c } } return s.newValue2(op, t, arg0, arg1) } type instrumentKind uint8 const ( instrumentRead = iota instrumentWrite instrumentMove ) func (s *state) instrument(t *types.Type, addr *ssa.Value, kind instrumentKind) { s.instrument2(t, addr, nil, kind) } // instrumentFields instruments a read/write operation on addr. // If it is instrumenting for MSAN or ASAN and t is a struct type, it instruments // operation for each field, instead of for the whole struct. func (s *state) instrumentFields(t *types.Type, addr *ssa.Value, kind instrumentKind) { if !(base.Flag.MSan || base.Flag.ASan) || !t.IsStruct() { s.instrument(t, addr, kind) return } for _, f := range t.Fields().Slice() { if f.Sym.IsBlank() { continue } offptr := s.newValue1I(ssa.OpOffPtr, types.NewPtr(f.Type), f.Offset, addr) s.instrumentFields(f.Type, offptr, kind) } } func (s *state) instrumentMove(t *types.Type, dst, src *ssa.Value) { if base.Flag.MSan { s.instrument2(t, dst, src, instrumentMove) } else { s.instrument(t, src, instrumentRead) s.instrument(t, dst, instrumentWrite) } } func (s *state) instrument2(t *types.Type, addr, addr2 *ssa.Value, kind instrumentKind) { if !s.curfn.InstrumentBody() { return } w := t.Size() if w == 0 { return // can't race on zero-sized things } if ssa.IsSanitizerSafeAddr(addr) { return } var fn *obj.LSym needWidth := false if addr2 != nil && kind != instrumentMove { panic("instrument2: non-nil addr2 for non-move instrumentation") } if base.Flag.MSan { switch kind { case instrumentRead: fn = ir.Syms.Msanread case instrumentWrite: fn = ir.Syms.Msanwrite case instrumentMove: fn = ir.Syms.Msanmove default: panic("unreachable") } needWidth = true } else if base.Flag.Race && t.NumComponents(types.CountBlankFields) > 1 { // for composite objects we have to write every address // because a write might happen to any subobject. // composites with only one element don't have subobjects, though. switch kind { case instrumentRead: fn = ir.Syms.Racereadrange case instrumentWrite: fn = ir.Syms.Racewriterange default: panic("unreachable") } needWidth = true } else if base.Flag.Race { // for non-composite objects we can write just the start // address, as any write must write the first byte. switch kind { case instrumentRead: fn = ir.Syms.Raceread case instrumentWrite: fn = ir.Syms.Racewrite default: panic("unreachable") } } else if base.Flag.ASan { switch kind { case instrumentRead: fn = ir.Syms.Asanread case instrumentWrite: fn = ir.Syms.Asanwrite default: panic("unreachable") } needWidth = true } else { panic("unreachable") } args := []*ssa.Value{addr} if addr2 != nil { args = append(args, addr2) } if needWidth { args = append(args, s.constInt(types.Types[types.TUINTPTR], w)) } s.rtcall(fn, true, nil, args...) } func (s *state) load(t *types.Type, src *ssa.Value) *ssa.Value { s.instrumentFields(t, src, instrumentRead) return s.rawLoad(t, src) } func (s *state) rawLoad(t *types.Type, src *ssa.Value) *ssa.Value { return s.newValue2(ssa.OpLoad, t, src, s.mem()) } func (s *state) store(t *types.Type, dst, val *ssa.Value) { s.vars[memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, dst, val, s.mem()) } func (s *state) zero(t *types.Type, dst *ssa.Value) { s.instrument(t, dst, instrumentWrite) store := s.newValue2I(ssa.OpZero, types.TypeMem, t.Size(), dst, s.mem()) store.Aux = t s.vars[memVar] = store } func (s *state) move(t *types.Type, dst, src *ssa.Value) { s.moveWhichMayOverlap(t, dst, src, false) } func (s *state) moveWhichMayOverlap(t *types.Type, dst, src *ssa.Value, mayOverlap bool) { s.instrumentMove(t, dst, src) if mayOverlap && t.IsArray() && t.NumElem() > 1 && !ssa.IsInlinableMemmove(dst, src, t.Size(), s.f.Config) { // Normally, when moving Go values of type T from one location to another, // we don't need to worry about partial overlaps. The two Ts must either be // in disjoint (nonoverlapping) memory or in exactly the same location. // There are 2 cases where this isn't true: // 1) Using unsafe you can arrange partial overlaps. // 2) Since Go 1.17, you can use a cast from a slice to a ptr-to-array. // https://go.dev/ref/spec#Conversions_from_slice_to_array_pointer // This feature can be used to construct partial overlaps of array types. // var a [3]int // p := (*[2]int)(a[:]) // q := (*[2]int)(a[1:]) // *p = *q // We don't care about solving 1. Or at least, we haven't historically // and no one has complained. // For 2, we need to ensure that if there might be partial overlap, // then we can't use OpMove; we must use memmove instead. // (memmove handles partial overlap by copying in the correct // direction. OpMove does not.) // // Note that we have to be careful here not to introduce a call when // we're marshaling arguments to a call or unmarshaling results from a call. // Cases where this is happening must pass mayOverlap to false. // (Currently this only happens when unmarshaling results of a call.) if t.HasPointers() { s.rtcall(ir.Syms.Typedmemmove, true, nil, s.reflectType(t), dst, src) // We would have otherwise implemented this move with straightline code, // including a write barrier. Pretend we issue a write barrier here, // so that the write barrier tests work. (Otherwise they'd need to know // the details of IsInlineableMemmove.) s.curfn.SetWBPos(s.peekPos()) } else { s.rtcall(ir.Syms.Memmove, true, nil, dst, src, s.constInt(types.Types[types.TUINTPTR], t.Size())) } ssa.LogLargeCopy(s.f.Name, s.peekPos(), t.Size()) return } store := s.newValue3I(ssa.OpMove, types.TypeMem, t.Size(), dst, src, s.mem()) store.Aux = t s.vars[memVar] = store } // stmtList converts the statement list n to SSA and adds it to s. func (s *state) stmtList(l ir.Nodes) { for _, n := range l { s.stmt(n) } } // stmt converts the statement n to SSA and adds it to s. func (s *state) stmt(n ir.Node) { s.pushLine(n.Pos()) defer s.popLine() // If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere), // then this code is dead. Stop here. if s.curBlock == nil && n.Op() != ir.OLABEL { return } s.stmtList(n.Init()) switch n.Op() { case ir.OBLOCK: n := n.(*ir.BlockStmt) s.stmtList(n.List) // No-ops case ir.ODCLCONST, ir.ODCLTYPE, ir.OFALL: // Expression statements case ir.OCALLFUNC: n := n.(*ir.CallExpr) if ir.IsIntrinsicCall(n) { s.intrinsicCall(n) return } fallthrough case ir.OCALLINTER: n := n.(*ir.CallExpr) s.callResult(n, callNormal) if n.Op() == ir.OCALLFUNC && n.X.Op() == ir.ONAME && n.X.(*ir.Name).Class == ir.PFUNC { if fn := n.X.Sym().Name; base.Flag.CompilingRuntime && fn == "throw" || n.X.Sym().Pkg == ir.Pkgs.Runtime && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block" || fn == "panicmakeslicelen" || fn == "panicmakeslicecap" || fn == "panicunsafeslicelen" || fn == "panicunsafeslicenilptr" || fn == "panicunsafestringlen" || fn == "panicunsafestringnilptr") { m := s.mem() b := s.endBlock() b.Kind = ssa.BlockExit b.SetControl(m) // TODO: never rewrite OPANIC to OCALLFUNC in the // first place. Need to wait until all backends // go through SSA. } } case ir.ODEFER: n := n.(*ir.GoDeferStmt) if base.Debug.Defer > 0 { var defertype string if s.hasOpenDefers { defertype = "open-coded" } else if n.Esc() == ir.EscNever { defertype = "stack-allocated" } else { defertype = "heap-allocated" } base.WarnfAt(n.Pos(), "%s defer", defertype) } if s.hasOpenDefers { s.openDeferRecord(n.Call.(*ir.CallExpr)) } else { d := callDefer if n.Esc() == ir.EscNever { d = callDeferStack } s.callResult(n.Call.(*ir.CallExpr), d) } case ir.OGO: n := n.(*ir.GoDeferStmt) s.callResult(n.Call.(*ir.CallExpr), callGo) case ir.OAS2DOTTYPE: n := n.(*ir.AssignListStmt) var res, resok *ssa.Value if n.Rhs[0].Op() == ir.ODOTTYPE2 { res, resok = s.dottype(n.Rhs[0].(*ir.TypeAssertExpr), true) } else { res, resok = s.dynamicDottype(n.Rhs[0].(*ir.DynamicTypeAssertExpr), true) } deref := false if !TypeOK(n.Rhs[0].Type()) { if res.Op != ssa.OpLoad { s.Fatalf("dottype of non-load") } mem := s.mem() if res.Args[1] != mem { s.Fatalf("memory no longer live from 2-result dottype load") } deref = true res = res.Args[0] } s.assign(n.Lhs[0], res, deref, 0) s.assign(n.Lhs[1], resok, false, 0) return case ir.OAS2FUNC: // We come here only when it is an intrinsic call returning two values. n := n.(*ir.AssignListStmt) call := n.Rhs[0].(*ir.CallExpr) if !ir.IsIntrinsicCall(call) { s.Fatalf("non-intrinsic AS2FUNC not expanded %v", call) } v := s.intrinsicCall(call) v1 := s.newValue1(ssa.OpSelect0, n.Lhs[0].Type(), v) v2 := s.newValue1(ssa.OpSelect1, n.Lhs[1].Type(), v) s.assign(n.Lhs[0], v1, false, 0) s.assign(n.Lhs[1], v2, false, 0) return case ir.ODCL: n := n.(*ir.Decl) if v := n.X; v.Esc() == ir.EscHeap { s.newHeapaddr(v) } case ir.OLABEL: n := n.(*ir.LabelStmt) sym := n.Label if sym.IsBlank() { // Nothing to do because the label isn't targetable. See issue 52278. break } lab := s.label(sym) // The label might already have a target block via a goto. if lab.target == nil { lab.target = s.f.NewBlock(ssa.BlockPlain) } // Go to that label. // (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.) if s.curBlock != nil { b := s.endBlock() b.AddEdgeTo(lab.target) } s.startBlock(lab.target) case ir.OGOTO: n := n.(*ir.BranchStmt) sym := n.Label lab := s.label(sym) if lab.target == nil { lab.target = s.f.NewBlock(ssa.BlockPlain) } b := s.endBlock() b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block. b.AddEdgeTo(lab.target) case ir.OAS: n := n.(*ir.AssignStmt) if n.X == n.Y && n.X.Op() == ir.ONAME { // An x=x assignment. No point in doing anything // here. In addition, skipping this assignment // prevents generating: // VARDEF x // COPY x -> x // which is bad because x is incorrectly considered // dead before the vardef. See issue #14904. return } // mayOverlap keeps track of whether the LHS and RHS might // refer to partially overlapping memory. Partial overlapping can // only happen for arrays, see the comment in moveWhichMayOverlap. // // If both sides of the assignment are not dereferences, then partial // overlap can't happen. Partial overlap can only occur only when the // arrays referenced are strictly smaller parts of the same base array. // If one side of the assignment is a full array, then partial overlap // can't happen. (The arrays are either disjoint or identical.) mayOverlap := n.X.Op() == ir.ODEREF && (n.Y != nil && n.Y.Op() == ir.ODEREF) if n.Y != nil && n.Y.Op() == ir.ODEREF { p := n.Y.(*ir.StarExpr).X for p.Op() == ir.OCONVNOP { p = p.(*ir.ConvExpr).X } if p.Op() == ir.OSPTR && p.(*ir.UnaryExpr).X.Type().IsString() { // Pointer fields of strings point to unmodifiable memory. // That memory can't overlap with the memory being written. mayOverlap = false } } // Evaluate RHS. rhs := n.Y if rhs != nil { switch rhs.Op() { case ir.OSTRUCTLIT, ir.OARRAYLIT, ir.OSLICELIT: // All literals with nonzero fields have already been // rewritten during walk. Any that remain are just T{} // or equivalents. Use the zero value. if !ir.IsZero(rhs) { s.Fatalf("literal with nonzero value in SSA: %v", rhs) } rhs = nil case ir.OAPPEND: rhs := rhs.(*ir.CallExpr) // Check whether we're writing the result of an append back to the same slice. // If so, we handle it specially to avoid write barriers on the fast // (non-growth) path. if !ir.SameSafeExpr(n.X, rhs.Args[0]) || base.Flag.N != 0 { break } // If the slice can be SSA'd, it'll be on the stack, // so there will be no write barriers, // so there's no need to attempt to prevent them. if s.canSSA(n.X) { if base.Debug.Append > 0 { // replicating old diagnostic message base.WarnfAt(n.Pos(), "append: len-only update (in local slice)") } break } if base.Debug.Append > 0 { base.WarnfAt(n.Pos(), "append: len-only update") } s.append(rhs, true) return } } if ir.IsBlank(n.X) { // _ = rhs // Just evaluate rhs for side-effects. if rhs != nil { s.expr(rhs) } return } var t *types.Type if n.Y != nil { t = n.Y.Type() } else { t = n.X.Type() } var r *ssa.Value deref := !TypeOK(t) if deref { if rhs == nil { r = nil // Signal assign to use OpZero. } else { r = s.addr(rhs) } } else { if rhs == nil { r = s.zeroVal(t) } else { r = s.expr(rhs) } } var skip skipMask if rhs != nil && (rhs.Op() == ir.OSLICE || rhs.Op() == ir.OSLICE3 || rhs.Op() == ir.OSLICESTR) && ir.SameSafeExpr(rhs.(*ir.SliceExpr).X, n.X) { // We're assigning a slicing operation back to its source. // Don't write back fields we aren't changing. See issue #14855. rhs := rhs.(*ir.SliceExpr) i, j, k := rhs.Low, rhs.High, rhs.Max if i != nil && (i.Op() == ir.OLITERAL && i.Val().Kind() == constant.Int && ir.Int64Val(i) == 0) { // [0:...] is the same as [:...] i = nil } // TODO: detect defaults for len/cap also. // Currently doesn't really work because (*p)[:len(*p)] appears here as: // tmp = len(*p) // (*p)[:tmp] // if j != nil && (j.Op == OLEN && SameSafeExpr(j.Left, n.Left)) { // j = nil // } // if k != nil && (k.Op == OCAP && SameSafeExpr(k.Left, n.Left)) { // k = nil // } if i == nil { skip |= skipPtr if j == nil { skip |= skipLen } if k == nil { skip |= skipCap } } } s.assignWhichMayOverlap(n.X, r, deref, skip, mayOverlap) case ir.OIF: n := n.(*ir.IfStmt) if ir.IsConst(n.Cond, constant.Bool) { s.stmtList(n.Cond.Init()) if ir.BoolVal(n.Cond) { s.stmtList(n.Body) } else { s.stmtList(n.Else) } break } bEnd := s.f.NewBlock(ssa.BlockPlain) var likely int8 if n.Likely { likely = 1 } var bThen *ssa.Block if len(n.Body) != 0 { bThen = s.f.NewBlock(ssa.BlockPlain) } else { bThen = bEnd } var bElse *ssa.Block if len(n.Else) != 0 { bElse = s.f.NewBlock(ssa.BlockPlain) } else { bElse = bEnd } s.condBranch(n.Cond, bThen, bElse, likely) if len(n.Body) != 0 { s.startBlock(bThen) s.stmtList(n.Body) if b := s.endBlock(); b != nil { b.AddEdgeTo(bEnd) } } if len(n.Else) != 0 { s.startBlock(bElse) s.stmtList(n.Else) if b := s.endBlock(); b != nil { b.AddEdgeTo(bEnd) } } s.startBlock(bEnd) case ir.ORETURN: n := n.(*ir.ReturnStmt) s.stmtList(n.Results) b := s.exit() b.Pos = s.lastPos.WithIsStmt() case ir.OTAILCALL: n := n.(*ir.TailCallStmt) s.callResult(n.Call, callTail) call := s.mem() b := s.endBlock() b.Kind = ssa.BlockRetJmp // could use BlockExit. BlockRetJmp is mostly for clarity. b.SetControl(call) case ir.OCONTINUE, ir.OBREAK: n := n.(*ir.BranchStmt) var to *ssa.Block if n.Label == nil { // plain break/continue switch n.Op() { case ir.OCONTINUE: to = s.continueTo case ir.OBREAK: to = s.breakTo } } else { // labeled break/continue; look up the target sym := n.Label lab := s.label(sym) switch n.Op() { case ir.OCONTINUE: to = lab.continueTarget case ir.OBREAK: to = lab.breakTarget } } b := s.endBlock() b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block. b.AddEdgeTo(to) case ir.OFOR: // OFOR: for Ninit; Left; Right { Nbody } // cond (Left); body (Nbody); incr (Right) n := n.(*ir.ForStmt) base.Assert(!n.DistinctVars) // Should all be rewritten before escape analysis bCond := s.f.NewBlock(ssa.BlockPlain) bBody := s.f.NewBlock(ssa.BlockPlain) bIncr := s.f.NewBlock(ssa.BlockPlain) bEnd := s.f.NewBlock(ssa.BlockPlain) // ensure empty for loops have correct position; issue #30167 bBody.Pos = n.Pos() // first, jump to condition test b := s.endBlock() b.AddEdgeTo(bCond) // generate code to test condition s.startBlock(bCond) if n.Cond != nil { s.condBranch(n.Cond, bBody, bEnd, 1) } else { b := s.endBlock() b.Kind = ssa.BlockPlain b.AddEdgeTo(bBody) } // set up for continue/break in body prevContinue := s.continueTo prevBreak := s.breakTo s.continueTo = bIncr s.breakTo = bEnd var lab *ssaLabel if sym := n.Label; sym != nil { // labeled for loop lab = s.label(sym) lab.continueTarget = bIncr lab.breakTarget = bEnd } // generate body s.startBlock(bBody) s.stmtList(n.Body) // tear down continue/break s.continueTo = prevContinue s.breakTo = prevBreak if lab != nil { lab.continueTarget = nil lab.breakTarget = nil } // done with body, goto incr if b := s.endBlock(); b != nil { b.AddEdgeTo(bIncr) } // generate incr s.startBlock(bIncr) if n.Post != nil { s.stmt(n.Post) } if b := s.endBlock(); b != nil { b.AddEdgeTo(bCond) // It can happen that bIncr ends in a block containing only VARKILL, // and that muddles the debugging experience. if b.Pos == src.NoXPos { b.Pos = bCond.Pos } } s.startBlock(bEnd) case ir.OSWITCH, ir.OSELECT: // These have been mostly rewritten by the front end into their Nbody fields. // Our main task is to correctly hook up any break statements. bEnd := s.f.NewBlock(ssa.BlockPlain) prevBreak := s.breakTo s.breakTo = bEnd var sym *types.Sym var body ir.Nodes if n.Op() == ir.OSWITCH { n := n.(*ir.SwitchStmt) sym = n.Label body = n.Compiled } else { n := n.(*ir.SelectStmt) sym = n.Label body = n.Compiled } var lab *ssaLabel if sym != nil { // labeled lab = s.label(sym) lab.breakTarget = bEnd } // generate body code s.stmtList(body) s.breakTo = prevBreak if lab != nil { lab.breakTarget = nil } // walk adds explicit OBREAK nodes to the end of all reachable code paths. // If we still have a current block here, then mark it unreachable. if s.curBlock != nil { m := s.mem() b := s.endBlock() b.Kind = ssa.BlockExit b.SetControl(m) } s.startBlock(bEnd) case ir.OJUMPTABLE: n := n.(*ir.JumpTableStmt) // Make blocks we'll need. jt := s.f.NewBlock(ssa.BlockJumpTable) bEnd := s.f.NewBlock(ssa.BlockPlain) // The only thing that needs evaluating is the index we're looking up. idx := s.expr(n.Idx) unsigned := idx.Type.IsUnsigned() // Extend so we can do everything in uintptr arithmetic. t := types.Types[types.TUINTPTR] idx = s.conv(nil, idx, idx.Type, t) // The ending condition for the current block decides whether we'll use // the jump table at all. // We check that min <= idx <= max and jump around the jump table // if that test fails. // We implement min <= idx <= max with 0 <= idx-min <= max-min, because // we'll need idx-min anyway as the control value for the jump table. var min, max uint64 if unsigned { min, _ = constant.Uint64Val(n.Cases[0]) max, _ = constant.Uint64Val(n.Cases[len(n.Cases)-1]) } else { mn, _ := constant.Int64Val(n.Cases[0]) mx, _ := constant.Int64Val(n.Cases[len(n.Cases)-1]) min = uint64(mn) max = uint64(mx) } // Compare idx-min with max-min, to see if we can use the jump table. idx = s.newValue2(s.ssaOp(ir.OSUB, t), t, idx, s.uintptrConstant(min)) width := s.uintptrConstant(max - min) cmp := s.newValue2(s.ssaOp(ir.OLE, t), types.Types[types.TBOOL], idx, width) b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(cmp) b.AddEdgeTo(jt) // in range - use jump table b.AddEdgeTo(bEnd) // out of range - no case in the jump table will trigger b.Likely = ssa.BranchLikely // TODO: assumes missing the table entirely is unlikely. True? // Build jump table block. s.startBlock(jt) jt.Pos = n.Pos() if base.Flag.Cfg.SpectreIndex { idx = s.newValue2(ssa.OpSpectreSliceIndex, t, idx, width) } jt.SetControl(idx) // Figure out where we should go for each index in the table. table := make([]*ssa.Block, max-min+1) for i := range table { table[i] = bEnd // default target } for i := range n.Targets { c := n.Cases[i] lab := s.label(n.Targets[i]) if lab.target == nil { lab.target = s.f.NewBlock(ssa.BlockPlain) } var val uint64 if unsigned { val, _ = constant.Uint64Val(c) } else { vl, _ := constant.Int64Val(c) val = uint64(vl) } // Overwrite the default target. table[val-min] = lab.target } for _, t := range table { jt.AddEdgeTo(t) } s.endBlock() s.startBlock(bEnd) case ir.OCHECKNIL: n := n.(*ir.UnaryExpr) p := s.expr(n.X) _ = s.nilCheck(p) // TODO: check that throwing away the nilcheck result is ok. case ir.OINLMARK: n := n.(*ir.InlineMarkStmt) s.newValue1I(ssa.OpInlMark, types.TypeVoid, n.Index, s.mem()) default: s.Fatalf("unhandled stmt %v", n.Op()) } } // If true, share as many open-coded defer exits as possible (with the downside of // worse line-number information) const shareDeferExits = false // exit processes any code that needs to be generated just before returning. // It returns a BlockRet block that ends the control flow. Its control value // will be set to the final memory state. func (s *state) exit() *ssa.Block { if s.hasdefer { if s.hasOpenDefers { if shareDeferExits && s.lastDeferExit != nil && len(s.openDefers) == s.lastDeferCount { if s.curBlock.Kind != ssa.BlockPlain { panic("Block for an exit should be BlockPlain") } s.curBlock.AddEdgeTo(s.lastDeferExit) s.endBlock() return s.lastDeferFinalBlock } s.openDeferExit() } else { s.rtcall(ir.Syms.Deferreturn, true, nil) } } var b *ssa.Block var m *ssa.Value // Do actual return. // These currently turn into self-copies (in many cases). resultFields := s.curfn.Type().Results().FieldSlice() results := make([]*ssa.Value, len(resultFields)+1, len(resultFields)+1) m = s.newValue0(ssa.OpMakeResult, s.f.OwnAux.LateExpansionResultType()) // Store SSAable and heap-escaped PPARAMOUT variables back to stack locations. for i, f := range resultFields { n := f.Nname.(*ir.Name) if s.canSSA(n) { // result is in some SSA variable if !n.IsOutputParamInRegisters() && n.Type().HasPointers() { // We are about to store to the result slot. s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem()) } results[i] = s.variable(n, n.Type()) } else if !n.OnStack() { // result is actually heap allocated // We are about to copy the in-heap result to the result slot. if n.Type().HasPointers() { s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem()) } ha := s.expr(n.Heapaddr) s.instrumentFields(n.Type(), ha, instrumentRead) results[i] = s.newValue2(ssa.OpDereference, n.Type(), ha, s.mem()) } else { // result is not SSA-able; not escaped, so not on heap, but too large for SSA. // Before register ABI this ought to be a self-move, home=dest, // With register ABI, it's still a self-move if parameter is on stack (i.e., too big or overflowed) // No VarDef, as the result slot is already holding live value. results[i] = s.newValue2(ssa.OpDereference, n.Type(), s.addr(n), s.mem()) } } // Run exit code. Today, this is just racefuncexit, in -race mode. // TODO(register args) this seems risky here with a register-ABI, but not clear it is right to do it earlier either. // Spills in register allocation might just fix it. s.stmtList(s.curfn.Exit) results[len(results)-1] = s.mem() m.AddArgs(results...) b = s.endBlock() b.Kind = ssa.BlockRet b.SetControl(m) if s.hasdefer && s.hasOpenDefers { s.lastDeferFinalBlock = b } return b } type opAndType struct { op ir.Op etype types.Kind } var opToSSA = map[opAndType]ssa.Op{ {ir.OADD, types.TINT8}: ssa.OpAdd8, {ir.OADD, types.TUINT8}: ssa.OpAdd8, {ir.OADD, types.TINT16}: ssa.OpAdd16, {ir.OADD, types.TUINT16}: ssa.OpAdd16, {ir.OADD, types.TINT32}: ssa.OpAdd32, {ir.OADD, types.TUINT32}: ssa.OpAdd32, {ir.OADD, types.TINT64}: ssa.OpAdd64, {ir.OADD, types.TUINT64}: ssa.OpAdd64, {ir.OADD, types.TFLOAT32}: ssa.OpAdd32F, {ir.OADD, types.TFLOAT64}: ssa.OpAdd64F, {ir.OSUB, types.TINT8}: ssa.OpSub8, {ir.OSUB, types.TUINT8}: ssa.OpSub8, {ir.OSUB, types.TINT16}: ssa.OpSub16, {ir.OSUB, types.TUINT16}: ssa.OpSub16, {ir.OSUB, types.TINT32}: ssa.OpSub32, {ir.OSUB, types.TUINT32}: ssa.OpSub32, {ir.OSUB, types.TINT64}: ssa.OpSub64, {ir.OSUB, types.TUINT64}: ssa.OpSub64, {ir.OSUB, types.TFLOAT32}: ssa.OpSub32F, {ir.OSUB, types.TFLOAT64}: ssa.OpSub64F, {ir.ONOT, types.TBOOL}: ssa.OpNot, {ir.ONEG, types.TINT8}: ssa.OpNeg8, {ir.ONEG, types.TUINT8}: ssa.OpNeg8, {ir.ONEG, types.TINT16}: ssa.OpNeg16, {ir.ONEG, types.TUINT16}: ssa.OpNeg16, {ir.ONEG, types.TINT32}: ssa.OpNeg32, {ir.ONEG, types.TUINT32}: ssa.OpNeg32, {ir.ONEG, types.TINT64}: ssa.OpNeg64, {ir.ONEG, types.TUINT64}: ssa.OpNeg64, {ir.ONEG, types.TFLOAT32}: ssa.OpNeg32F, {ir.ONEG, types.TFLOAT64}: ssa.OpNeg64F, {ir.OBITNOT, types.TINT8}: ssa.OpCom8, {ir.OBITNOT, types.TUINT8}: ssa.OpCom8, {ir.OBITNOT, types.TINT16}: ssa.OpCom16, {ir.OBITNOT, types.TUINT16}: ssa.OpCom16, {ir.OBITNOT, types.TINT32}: ssa.OpCom32, {ir.OBITNOT, types.TUINT32}: ssa.OpCom32, {ir.OBITNOT, types.TINT64}: ssa.OpCom64, {ir.OBITNOT, types.TUINT64}: ssa.OpCom64, {ir.OIMAG, types.TCOMPLEX64}: ssa.OpComplexImag, {ir.OIMAG, types.TCOMPLEX128}: ssa.OpComplexImag, {ir.OREAL, types.TCOMPLEX64}: ssa.OpComplexReal, {ir.OREAL, types.TCOMPLEX128}: ssa.OpComplexReal, {ir.OMUL, types.TINT8}: ssa.OpMul8, {ir.OMUL, types.TUINT8}: ssa.OpMul8, {ir.OMUL, types.TINT16}: ssa.OpMul16, {ir.OMUL, types.TUINT16}: ssa.OpMul16, {ir.OMUL, types.TINT32}: ssa.OpMul32, {ir.OMUL, types.TUINT32}: ssa.OpMul32, {ir.OMUL, types.TINT64}: ssa.OpMul64, {ir.OMUL, types.TUINT64}: ssa.OpMul64, {ir.OMUL, types.TFLOAT32}: ssa.OpMul32F, {ir.OMUL, types.TFLOAT64}: ssa.OpMul64F, {ir.ODIV, types.TFLOAT32}: ssa.OpDiv32F, {ir.ODIV, types.TFLOAT64}: ssa.OpDiv64F, {ir.ODIV, types.TINT8}: ssa.OpDiv8, {ir.ODIV, types.TUINT8}: ssa.OpDiv8u, {ir.ODIV, types.TINT16}: ssa.OpDiv16, {ir.ODIV, types.TUINT16}: ssa.OpDiv16u, {ir.ODIV, types.TINT32}: ssa.OpDiv32, {ir.ODIV, types.TUINT32}: ssa.OpDiv32u, {ir.ODIV, types.TINT64}: ssa.OpDiv64, {ir.ODIV, types.TUINT64}: ssa.OpDiv64u, {ir.OMOD, types.TINT8}: ssa.OpMod8, {ir.OMOD, types.TUINT8}: ssa.OpMod8u, {ir.OMOD, types.TINT16}: ssa.OpMod16, {ir.OMOD, types.TUINT16}: ssa.OpMod16u, {ir.OMOD, types.TINT32}: ssa.OpMod32, {ir.OMOD, types.TUINT32}: ssa.OpMod32u, {ir.OMOD, types.TINT64}: ssa.OpMod64, {ir.OMOD, types.TUINT64}: ssa.OpMod64u, {ir.OAND, types.TINT8}: ssa.OpAnd8, {ir.OAND, types.TUINT8}: ssa.OpAnd8, {ir.OAND, types.TINT16}: ssa.OpAnd16, {ir.OAND, types.TUINT16}: ssa.OpAnd16, {ir.OAND, types.TINT32}: ssa.OpAnd32, {ir.OAND, types.TUINT32}: ssa.OpAnd32, {ir.OAND, types.TINT64}: ssa.OpAnd64, {ir.OAND, types.TUINT64}: ssa.OpAnd64, {ir.OOR, types.TINT8}: ssa.OpOr8, {ir.OOR, types.TUINT8}: ssa.OpOr8, {ir.OOR, types.TINT16}: ssa.OpOr16, {ir.OOR, types.TUINT16}: ssa.OpOr16, {ir.OOR, types.TINT32}: ssa.OpOr32, {ir.OOR, types.TUINT32}: ssa.OpOr32, {ir.OOR, types.TINT64}: ssa.OpOr64, {ir.OOR, types.TUINT64}: ssa.OpOr64, {ir.OXOR, types.TINT8}: ssa.OpXor8, {ir.OXOR, types.TUINT8}: ssa.OpXor8, {ir.OXOR, types.TINT16}: ssa.OpXor16, {ir.OXOR, types.TUINT16}: ssa.OpXor16, {ir.OXOR, types.TINT32}: ssa.OpXor32, {ir.OXOR, types.TUINT32}: ssa.OpXor32, {ir.OXOR, types.TINT64}: ssa.OpXor64, {ir.OXOR, types.TUINT64}: ssa.OpXor64, {ir.OEQ, types.TBOOL}: ssa.OpEqB, {ir.OEQ, types.TINT8}: ssa.OpEq8, {ir.OEQ, types.TUINT8}: ssa.OpEq8, {ir.OEQ, types.TINT16}: ssa.OpEq16, {ir.OEQ, types.TUINT16}: ssa.OpEq16, {ir.OEQ, types.TINT32}: ssa.OpEq32, {ir.OEQ, types.TUINT32}: ssa.OpEq32, {ir.OEQ, types.TINT64}: ssa.OpEq64, {ir.OEQ, types.TUINT64}: ssa.OpEq64, {ir.OEQ, types.TINTER}: ssa.OpEqInter, {ir.OEQ, types.TSLICE}: ssa.OpEqSlice, {ir.OEQ, types.TFUNC}: ssa.OpEqPtr, {ir.OEQ, types.TMAP}: ssa.OpEqPtr, {ir.OEQ, types.TCHAN}: ssa.OpEqPtr, {ir.OEQ, types.TPTR}: ssa.OpEqPtr, {ir.OEQ, types.TUINTPTR}: ssa.OpEqPtr, {ir.OEQ, types.TUNSAFEPTR}: ssa.OpEqPtr, {ir.OEQ, types.TFLOAT64}: ssa.OpEq64F, {ir.OEQ, types.TFLOAT32}: ssa.OpEq32F, {ir.ONE, types.TBOOL}: ssa.OpNeqB, {ir.ONE, types.TINT8}: ssa.OpNeq8, {ir.ONE, types.TUINT8}: ssa.OpNeq8, {ir.ONE, types.TINT16}: ssa.OpNeq16, {ir.ONE, types.TUINT16}: ssa.OpNeq16, {ir.ONE, types.TINT32}: ssa.OpNeq32, {ir.ONE, types.TUINT32}: ssa.OpNeq32, {ir.ONE, types.TINT64}: ssa.OpNeq64, {ir.ONE, types.TUINT64}: ssa.OpNeq64, {ir.ONE, types.TINTER}: ssa.OpNeqInter, {ir.ONE, types.TSLICE}: ssa.OpNeqSlice, {ir.ONE, types.TFUNC}: ssa.OpNeqPtr, {ir.ONE, types.TMAP}: ssa.OpNeqPtr, {ir.ONE, types.TCHAN}: ssa.OpNeqPtr, {ir.ONE, types.TPTR}: ssa.OpNeqPtr, {ir.ONE, types.TUINTPTR}: ssa.OpNeqPtr, {ir.ONE, types.TUNSAFEPTR}: ssa.OpNeqPtr, {ir.ONE, types.TFLOAT64}: ssa.OpNeq64F, {ir.ONE, types.TFLOAT32}: ssa.OpNeq32F, {ir.OLT, types.TINT8}: ssa.OpLess8, {ir.OLT, types.TUINT8}: ssa.OpLess8U, {ir.OLT, types.TINT16}: ssa.OpLess16, {ir.OLT, types.TUINT16}: ssa.OpLess16U, {ir.OLT, types.TINT32}: ssa.OpLess32, {ir.OLT, types.TUINT32}: ssa.OpLess32U, {ir.OLT, types.TINT64}: ssa.OpLess64, {ir.OLT, types.TUINT64}: ssa.OpLess64U, {ir.OLT, types.TFLOAT64}: ssa.OpLess64F, {ir.OLT, types.TFLOAT32}: ssa.OpLess32F, {ir.OLE, types.TINT8}: ssa.OpLeq8, {ir.OLE, types.TUINT8}: ssa.OpLeq8U, {ir.OLE, types.TINT16}: ssa.OpLeq16, {ir.OLE, types.TUINT16}: ssa.OpLeq16U, {ir.OLE, types.TINT32}: ssa.OpLeq32, {ir.OLE, types.TUINT32}: ssa.OpLeq32U, {ir.OLE, types.TINT64}: ssa.OpLeq64, {ir.OLE, types.TUINT64}: ssa.OpLeq64U, {ir.OLE, types.TFLOAT64}: ssa.OpLeq64F, {ir.OLE, types.TFLOAT32}: ssa.OpLeq32F, } func (s *state) concreteEtype(t *types.Type) types.Kind { e := t.Kind() switch e { default: return e case types.TINT: if s.config.PtrSize == 8 { return types.TINT64 } return types.TINT32 case types.TUINT: if s.config.PtrSize == 8 { return types.TUINT64 } return types.TUINT32 case types.TUINTPTR: if s.config.PtrSize == 8 { return types.TUINT64 } return types.TUINT32 } } func (s *state) ssaOp(op ir.Op, t *types.Type) ssa.Op { etype := s.concreteEtype(t) x, ok := opToSSA[opAndType{op, etype}] if !ok { s.Fatalf("unhandled binary op %v %s", op, etype) } return x } type opAndTwoTypes struct { op ir.Op etype1 types.Kind etype2 types.Kind } type twoTypes struct { etype1 types.Kind etype2 types.Kind } type twoOpsAndType struct { op1 ssa.Op op2 ssa.Op intermediateType types.Kind } var fpConvOpToSSA = map[twoTypes]twoOpsAndType{ {types.TINT8, types.TFLOAT32}: {ssa.OpSignExt8to32, ssa.OpCvt32to32F, types.TINT32}, {types.TINT16, types.TFLOAT32}: {ssa.OpSignExt16to32, ssa.OpCvt32to32F, types.TINT32}, {types.TINT32, types.TFLOAT32}: {ssa.OpCopy, ssa.OpCvt32to32F, types.TINT32}, {types.TINT64, types.TFLOAT32}: {ssa.OpCopy, ssa.OpCvt64to32F, types.TINT64}, {types.TINT8, types.TFLOAT64}: {ssa.OpSignExt8to32, ssa.OpCvt32to64F, types.TINT32}, {types.TINT16, types.TFLOAT64}: {ssa.OpSignExt16to32, ssa.OpCvt32to64F, types.TINT32}, {types.TINT32, types.TFLOAT64}: {ssa.OpCopy, ssa.OpCvt32to64F, types.TINT32}, {types.TINT64, types.TFLOAT64}: {ssa.OpCopy, ssa.OpCvt64to64F, types.TINT64}, {types.TFLOAT32, types.TINT8}: {ssa.OpCvt32Fto32, ssa.OpTrunc32to8, types.TINT32}, {types.TFLOAT32, types.TINT16}: {ssa.OpCvt32Fto32, ssa.OpTrunc32to16, types.TINT32}, {types.TFLOAT32, types.TINT32}: {ssa.OpCvt32Fto32, ssa.OpCopy, types.TINT32}, {types.TFLOAT32, types.TINT64}: {ssa.OpCvt32Fto64, ssa.OpCopy, types.TINT64}, {types.TFLOAT64, types.TINT8}: {ssa.OpCvt64Fto32, ssa.OpTrunc32to8, types.TINT32}, {types.TFLOAT64, types.TINT16}: {ssa.OpCvt64Fto32, ssa.OpTrunc32to16, types.TINT32}, {types.TFLOAT64, types.TINT32}: {ssa.OpCvt64Fto32, ssa.OpCopy, types.TINT32}, {types.TFLOAT64, types.TINT64}: {ssa.OpCvt64Fto64, ssa.OpCopy, types.TINT64}, // unsigned {types.TUINT8, types.TFLOAT32}: {ssa.OpZeroExt8to32, ssa.OpCvt32to32F, types.TINT32}, {types.TUINT16, types.TFLOAT32}: {ssa.OpZeroExt16to32, ssa.OpCvt32to32F, types.TINT32}, {types.TUINT32, types.TFLOAT32}: {ssa.OpZeroExt32to64, ssa.OpCvt64to32F, types.TINT64}, // go wide to dodge unsigned {types.TUINT64, types.TFLOAT32}: {ssa.OpCopy, ssa.OpInvalid, types.TUINT64}, // Cvt64Uto32F, branchy code expansion instead {types.TUINT8, types.TFLOAT64}: {ssa.OpZeroExt8to32, ssa.OpCvt32to64F, types.TINT32}, {types.TUINT16, types.TFLOAT64}: {ssa.OpZeroExt16to32, ssa.OpCvt32to64F, types.TINT32}, {types.TUINT32, types.TFLOAT64}: {ssa.OpZeroExt32to64, ssa.OpCvt64to64F, types.TINT64}, // go wide to dodge unsigned {types.TUINT64, types.TFLOAT64}: {ssa.OpCopy, ssa.OpInvalid, types.TUINT64}, // Cvt64Uto64F, branchy code expansion instead {types.TFLOAT32, types.TUINT8}: {ssa.OpCvt32Fto32, ssa.OpTrunc32to8, types.TINT32}, {types.TFLOAT32, types.TUINT16}: {ssa.OpCvt32Fto32, ssa.OpTrunc32to16, types.TINT32}, {types.TFLOAT32, types.TUINT32}: {ssa.OpCvt32Fto64, ssa.OpTrunc64to32, types.TINT64}, // go wide to dodge unsigned {types.TFLOAT32, types.TUINT64}: {ssa.OpInvalid, ssa.OpCopy, types.TUINT64}, // Cvt32Fto64U, branchy code expansion instead {types.TFLOAT64, types.TUINT8}: {ssa.OpCvt64Fto32, ssa.OpTrunc32to8, types.TINT32}, {types.TFLOAT64, types.TUINT16}: {ssa.OpCvt64Fto32, ssa.OpTrunc32to16, types.TINT32}, {types.TFLOAT64, types.TUINT32}: {ssa.OpCvt64Fto64, ssa.OpTrunc64to32, types.TINT64}, // go wide to dodge unsigned {types.TFLOAT64, types.TUINT64}: {ssa.OpInvalid, ssa.OpCopy, types.TUINT64}, // Cvt64Fto64U, branchy code expansion instead // float {types.TFLOAT64, types.TFLOAT32}: {ssa.OpCvt64Fto32F, ssa.OpCopy, types.TFLOAT32}, {types.TFLOAT64, types.TFLOAT64}: {ssa.OpRound64F, ssa.OpCopy, types.TFLOAT64}, {types.TFLOAT32, types.TFLOAT32}: {ssa.OpRound32F, ssa.OpCopy, types.TFLOAT32}, {types.TFLOAT32, types.TFLOAT64}: {ssa.OpCvt32Fto64F, ssa.OpCopy, types.TFLOAT64}, } // this map is used only for 32-bit arch, and only includes the difference // on 32-bit arch, don't use int64<->float conversion for uint32 var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{ {types.TUINT32, types.TFLOAT32}: {ssa.OpCopy, ssa.OpCvt32Uto32F, types.TUINT32}, {types.TUINT32, types.TFLOAT64}: {ssa.OpCopy, ssa.OpCvt32Uto64F, types.TUINT32}, {types.TFLOAT32, types.TUINT32}: {ssa.OpCvt32Fto32U, ssa.OpCopy, types.TUINT32}, {types.TFLOAT64, types.TUINT32}: {ssa.OpCvt64Fto32U, ssa.OpCopy, types.TUINT32}, } // uint64<->float conversions, only on machines that have instructions for that var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{ {types.TUINT64, types.TFLOAT32}: {ssa.OpCopy, ssa.OpCvt64Uto32F, types.TUINT64}, {types.TUINT64, types.TFLOAT64}: {ssa.OpCopy, ssa.OpCvt64Uto64F, types.TUINT64}, {types.TFLOAT32, types.TUINT64}: {ssa.OpCvt32Fto64U, ssa.OpCopy, types.TUINT64}, {types.TFLOAT64, types.TUINT64}: {ssa.OpCvt64Fto64U, ssa.OpCopy, types.TUINT64}, } var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{ {ir.OLSH, types.TINT8, types.TUINT8}: ssa.OpLsh8x8, {ir.OLSH, types.TUINT8, types.TUINT8}: ssa.OpLsh8x8, {ir.OLSH, types.TINT8, types.TUINT16}: ssa.OpLsh8x16, {ir.OLSH, types.TUINT8, types.TUINT16}: ssa.OpLsh8x16, {ir.OLSH, types.TINT8, types.TUINT32}: ssa.OpLsh8x32, {ir.OLSH, types.TUINT8, types.TUINT32}: ssa.OpLsh8x32, {ir.OLSH, types.TINT8, types.TUINT64}: ssa.OpLsh8x64, {ir.OLSH, types.TUINT8, types.TUINT64}: ssa.OpLsh8x64, {ir.OLSH, types.TINT16, types.TUINT8}: ssa.OpLsh16x8, {ir.OLSH, types.TUINT16, types.TUINT8}: ssa.OpLsh16x8, {ir.OLSH, types.TINT16, types.TUINT16}: ssa.OpLsh16x16, {ir.OLSH, types.TUINT16, types.TUINT16}: ssa.OpLsh16x16, {ir.OLSH, types.TINT16, types.TUINT32}: ssa.OpLsh16x32, {ir.OLSH, types.TUINT16, types.TUINT32}: ssa.OpLsh16x32, {ir.OLSH, types.TINT16, types.TUINT64}: ssa.OpLsh16x64, {ir.OLSH, types.TUINT16, types.TUINT64}: ssa.OpLsh16x64, {ir.OLSH, types.TINT32, types.TUINT8}: ssa.OpLsh32x8, {ir.OLSH, types.TUINT32, types.TUINT8}: ssa.OpLsh32x8, {ir.OLSH, types.TINT32, types.TUINT16}: ssa.OpLsh32x16, {ir.OLSH, types.TUINT32, types.TUINT16}: ssa.OpLsh32x16, {ir.OLSH, types.TINT32, types.TUINT32}: ssa.OpLsh32x32, {ir.OLSH, types.TUINT32, types.TUINT32}: ssa.OpLsh32x32, {ir.OLSH, types.TINT32, types.TUINT64}: ssa.OpLsh32x64, {ir.OLSH, types.TUINT32, types.TUINT64}: ssa.OpLsh32x64, {ir.OLSH, types.TINT64, types.TUINT8}: ssa.OpLsh64x8, {ir.OLSH, types.TUINT64, types.TUINT8}: ssa.OpLsh64x8, {ir.OLSH, types.TINT64, types.TUINT16}: ssa.OpLsh64x16, {ir.OLSH, types.TUINT64, types.TUINT16}: ssa.OpLsh64x16, {ir.OLSH, types.TINT64, types.TUINT32}: ssa.OpLsh64x32, {ir.OLSH, types.TUINT64, types.TUINT32}: ssa.OpLsh64x32, {ir.OLSH, types.TINT64, types.TUINT64}: ssa.OpLsh64x64, {ir.OLSH, types.TUINT64, types.TUINT64}: ssa.OpLsh64x64, {ir.ORSH, types.TINT8, types.TUINT8}: ssa.OpRsh8x8, {ir.ORSH, types.TUINT8, types.TUINT8}: ssa.OpRsh8Ux8, {ir.ORSH, types.TINT8, types.TUINT16}: ssa.OpRsh8x16, {ir.ORSH, types.TUINT8, types.TUINT16}: ssa.OpRsh8Ux16, {ir.ORSH, types.TINT8, types.TUINT32}: ssa.OpRsh8x32, {ir.ORSH, types.TUINT8, types.TUINT32}: ssa.OpRsh8Ux32, {ir.ORSH, types.TINT8, types.TUINT64}: ssa.OpRsh8x64, {ir.ORSH, types.TUINT8, types.TUINT64}: ssa.OpRsh8Ux64, {ir.ORSH, types.TINT16, types.TUINT8}: ssa.OpRsh16x8, {ir.ORSH, types.TUINT16, types.TUINT8}: ssa.OpRsh16Ux8, {ir.ORSH, types.TINT16, types.TUINT16}: ssa.OpRsh16x16, {ir.ORSH, types.TUINT16, types.TUINT16}: ssa.OpRsh16Ux16, {ir.ORSH, types.TINT16, types.TUINT32}: ssa.OpRsh16x32, {ir.ORSH, types.TUINT16, types.TUINT32}: ssa.OpRsh16Ux32, {ir.ORSH, types.TINT16, types.TUINT64}: ssa.OpRsh16x64, {ir.ORSH, types.TUINT16, types.TUINT64}: ssa.OpRsh16Ux64, {ir.ORSH, types.TINT32, types.TUINT8}: ssa.OpRsh32x8, {ir.ORSH, types.TUINT32, types.TUINT8}: ssa.OpRsh32Ux8, {ir.ORSH, types.TINT32, types.TUINT16}: ssa.OpRsh32x16, {ir.ORSH, types.TUINT32, types.TUINT16}: ssa.OpRsh32Ux16, {ir.ORSH, types.TINT32, types.TUINT32}: ssa.OpRsh32x32, {ir.ORSH, types.TUINT32, types.TUINT32}: ssa.OpRsh32Ux32, {ir.ORSH, types.TINT32, types.TUINT64}: ssa.OpRsh32x64, {ir.ORSH, types.TUINT32, types.TUINT64}: ssa.OpRsh32Ux64, {ir.ORSH, types.TINT64, types.TUINT8}: ssa.OpRsh64x8, {ir.ORSH, types.TUINT64, types.TUINT8}: ssa.OpRsh64Ux8, {ir.ORSH, types.TINT64, types.TUINT16}: ssa.OpRsh64x16, {ir.ORSH, types.TUINT64, types.TUINT16}: ssa.OpRsh64Ux16, {ir.ORSH, types.TINT64, types.TUINT32}: ssa.OpRsh64x32, {ir.ORSH, types.TUINT64, types.TUINT32}: ssa.OpRsh64Ux32, {ir.ORSH, types.TINT64, types.TUINT64}: ssa.OpRsh64x64, {ir.ORSH, types.TUINT64, types.TUINT64}: ssa.OpRsh64Ux64, } func (s *state) ssaShiftOp(op ir.Op, t *types.Type, u *types.Type) ssa.Op { etype1 := s.concreteEtype(t) etype2 := s.concreteEtype(u) x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}] if !ok { s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2) } return x } func (s *state) uintptrConstant(v uint64) *ssa.Value { if s.config.PtrSize == 4 { return s.newValue0I(ssa.OpConst32, types.Types[types.TUINTPTR], int64(v)) } return s.newValue0I(ssa.OpConst64, types.Types[types.TUINTPTR], int64(v)) } func (s *state) conv(n ir.Node, v *ssa.Value, ft, tt *types.Type) *ssa.Value { if ft.IsBoolean() && tt.IsKind(types.TUINT8) { // Bool -> uint8 is generated internally when indexing into runtime.staticbyte. return s.newValue1(ssa.OpCvtBoolToUint8, tt, v) } if ft.IsInteger() && tt.IsInteger() { var op ssa.Op if tt.Size() == ft.Size() { op = ssa.OpCopy } else if tt.Size() < ft.Size() { // truncation switch 10*ft.Size() + tt.Size() { case 21: op = ssa.OpTrunc16to8 case 41: op = ssa.OpTrunc32to8 case 42: op = ssa.OpTrunc32to16 case 81: op = ssa.OpTrunc64to8 case 82: op = ssa.OpTrunc64to16 case 84: op = ssa.OpTrunc64to32 default: s.Fatalf("weird integer truncation %v -> %v", ft, tt) } } else if ft.IsSigned() { // sign extension switch 10*ft.Size() + tt.Size() { case 12: op = ssa.OpSignExt8to16 case 14: op = ssa.OpSignExt8to32 case 18: op = ssa.OpSignExt8to64 case 24: op = ssa.OpSignExt16to32 case 28: op = ssa.OpSignExt16to64 case 48: op = ssa.OpSignExt32to64 default: s.Fatalf("bad integer sign extension %v -> %v", ft, tt) } } else { // zero extension switch 10*ft.Size() + tt.Size() { case 12: op = ssa.OpZeroExt8to16 case 14: op = ssa.OpZeroExt8to32 case 18: op = ssa.OpZeroExt8to64 case 24: op = ssa.OpZeroExt16to32 case 28: op = ssa.OpZeroExt16to64 case 48: op = ssa.OpZeroExt32to64 default: s.Fatalf("weird integer sign extension %v -> %v", ft, tt) } } return s.newValue1(op, tt, v) } if ft.IsComplex() && tt.IsComplex() { var op ssa.Op if ft.Size() == tt.Size() { switch ft.Size() { case 8: op = ssa.OpRound32F case 16: op = ssa.OpRound64F default: s.Fatalf("weird complex conversion %v -> %v", ft, tt) } } else if ft.Size() == 8 && tt.Size() == 16 { op = ssa.OpCvt32Fto64F } else if ft.Size() == 16 && tt.Size() == 8 { op = ssa.OpCvt64Fto32F } else { s.Fatalf("weird complex conversion %v -> %v", ft, tt) } ftp := types.FloatForComplex(ft) ttp := types.FloatForComplex(tt) return s.newValue2(ssa.OpComplexMake, tt, s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, v)), s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, v))) } if tt.IsComplex() { // and ft is not complex // Needed for generics support - can't happen in normal Go code. et := types.FloatForComplex(tt) v = s.conv(n, v, ft, et) return s.newValue2(ssa.OpComplexMake, tt, v, s.zeroVal(et)) } if ft.IsFloat() || tt.IsFloat() { conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}] if s.config.RegSize == 4 && Arch.LinkArch.Family != sys.MIPS && !s.softFloat { if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { conv = conv1 } } if Arch.LinkArch.Family == sys.ARM64 || Arch.LinkArch.Family == sys.Wasm || Arch.LinkArch.Family == sys.S390X || s.softFloat { if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { conv = conv1 } } if Arch.LinkArch.Family == sys.MIPS && !s.softFloat { if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() { // tt is float32 or float64, and ft is also unsigned if tt.Size() == 4 { return s.uint32Tofloat32(n, v, ft, tt) } if tt.Size() == 8 { return s.uint32Tofloat64(n, v, ft, tt) } } else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() { // ft is float32 or float64, and tt is unsigned integer if ft.Size() == 4 { return s.float32ToUint32(n, v, ft, tt) } if ft.Size() == 8 { return s.float64ToUint32(n, v, ft, tt) } } } if !ok { s.Fatalf("weird float conversion %v -> %v", ft, tt) } op1, op2, it := conv.op1, conv.op2, conv.intermediateType if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid { // normal case, not tripping over unsigned 64 if op1 == ssa.OpCopy { if op2 == ssa.OpCopy { return v } return s.newValueOrSfCall1(op2, tt, v) } if op2 == ssa.OpCopy { return s.newValueOrSfCall1(op1, tt, v) } return s.newValueOrSfCall1(op2, tt, s.newValueOrSfCall1(op1, types.Types[it], v)) } // Tricky 64-bit unsigned cases. if ft.IsInteger() { // tt is float32 or float64, and ft is also unsigned if tt.Size() == 4 { return s.uint64Tofloat32(n, v, ft, tt) } if tt.Size() == 8 { return s.uint64Tofloat64(n, v, ft, tt) } s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt) } // ft is float32 or float64, and tt is unsigned integer if ft.Size() == 4 { return s.float32ToUint64(n, v, ft, tt) } if ft.Size() == 8 { return s.float64ToUint64(n, v, ft, tt) } s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt) return nil } s.Fatalf("unhandled OCONV %s -> %s", ft.Kind(), tt.Kind()) return nil } // expr converts the expression n to ssa, adds it to s and returns the ssa result. func (s *state) expr(n ir.Node) *ssa.Value { return s.exprCheckPtr(n, true) } func (s *state) exprCheckPtr(n ir.Node, checkPtrOK bool) *ssa.Value { if ir.HasUniquePos(n) { // ONAMEs and named OLITERALs have the line number // of the decl, not the use. See issue 14742. s.pushLine(n.Pos()) defer s.popLine() } s.stmtList(n.Init()) switch n.Op() { case ir.OBYTES2STRTMP: n := n.(*ir.ConvExpr) slice := s.expr(n.X) ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice) len := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], slice) return s.newValue2(ssa.OpStringMake, n.Type(), ptr, len) case ir.OSTR2BYTESTMP: n := n.(*ir.ConvExpr) str := s.expr(n.X) ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str) len := s.newValue1(ssa.OpStringLen, types.Types[types.TINT], str) return s.newValue3(ssa.OpSliceMake, n.Type(), ptr, len, len) case ir.OCFUNC: n := n.(*ir.UnaryExpr) aux := n.X.(*ir.Name).Linksym() // OCFUNC is used to build function values, which must // always reference ABIInternal entry points. if aux.ABI() != obj.ABIInternal { s.Fatalf("expected ABIInternal: %v", aux.ABI()) } return s.entryNewValue1A(ssa.OpAddr, n.Type(), aux, s.sb) case ir.ONAME: n := n.(*ir.Name) if n.Class == ir.PFUNC { // "value" of a function is the address of the function's closure sym := staticdata.FuncLinksym(n) return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type()), sym, s.sb) } if s.canSSA(n) { return s.variable(n, n.Type()) } return s.load(n.Type(), s.addr(n)) case ir.OLINKSYMOFFSET: n := n.(*ir.LinksymOffsetExpr) return s.load(n.Type(), s.addr(n)) case ir.ONIL: n := n.(*ir.NilExpr) t := n.Type() switch { case t.IsSlice(): return s.constSlice(t) case t.IsInterface(): return s.constInterface(t) default: return s.constNil(t) } case ir.OLITERAL: switch u := n.Val(); u.Kind() { case constant.Int: i := ir.IntVal(n.Type(), u) switch n.Type().Size() { case 1: return s.constInt8(n.Type(), int8(i)) case 2: return s.constInt16(n.Type(), int16(i)) case 4: return s.constInt32(n.Type(), int32(i)) case 8: return s.constInt64(n.Type(), i) default: s.Fatalf("bad integer size %d", n.Type().Size()) return nil } case constant.String: i := constant.StringVal(u) if i == "" { return s.constEmptyString(n.Type()) } return s.entryNewValue0A(ssa.OpConstString, n.Type(), ssa.StringToAux(i)) case constant.Bool: return s.constBool(constant.BoolVal(u)) case constant.Float: f, _ := constant.Float64Val(u) switch n.Type().Size() { case 4: return s.constFloat32(n.Type(), f) case 8: return s.constFloat64(n.Type(), f) default: s.Fatalf("bad float size %d", n.Type().Size()) return nil } case constant.Complex: re, _ := constant.Float64Val(constant.Real(u)) im, _ := constant.Float64Val(constant.Imag(u)) switch n.Type().Size() { case 8: pt := types.Types[types.TFLOAT32] return s.newValue2(ssa.OpComplexMake, n.Type(), s.constFloat32(pt, re), s.constFloat32(pt, im)) case 16: pt := types.Types[types.TFLOAT64] return s.newValue2(ssa.OpComplexMake, n.Type(), s.constFloat64(pt, re), s.constFloat64(pt, im)) default: s.Fatalf("bad complex size %d", n.Type().Size()) return nil } default: s.Fatalf("unhandled OLITERAL %v", u.Kind()) return nil } case ir.OCONVNOP: n := n.(*ir.ConvExpr) to := n.Type() from := n.X.Type() // Assume everything will work out, so set up our return value. // Anything interesting that happens from here is a fatal. x := s.expr(n.X) if to == from { return x } // Special case for not confusing GC and liveness. // We don't want pointers accidentally classified // as not-pointers or vice-versa because of copy // elision. if to.IsPtrShaped() != from.IsPtrShaped() { return s.newValue2(ssa.OpConvert, to, x, s.mem()) } v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type // CONVNOP closure if to.Kind() == types.TFUNC && from.IsPtrShaped() { return v } // named <--> unnamed type or typed <--> untyped const if from.Kind() == to.Kind() { return v } // unsafe.Pointer <--> *T if to.IsUnsafePtr() && from.IsPtrShaped() || from.IsUnsafePtr() && to.IsPtrShaped() { if s.checkPtrEnabled && checkPtrOK && to.IsPtr() && from.IsUnsafePtr() { s.checkPtrAlignment(n, v, nil) } return v } // map <--> *hmap if to.Kind() == types.TMAP && from.IsPtr() && to.MapType().Hmap == from.Elem() { return v } types.CalcSize(from) types.CalcSize(to) if from.Size() != to.Size() { s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Size(), to, to.Size()) return nil } if etypesign(from.Kind()) != etypesign(to.Kind()) { s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Kind(), to, to.Kind()) return nil } if base.Flag.Cfg.Instrumenting { // These appear to be fine, but they fail the // integer constraint below, so okay them here. // Sample non-integer conversion: map[string]string -> *uint8 return v } if etypesign(from.Kind()) == 0 { s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to) return nil } // integer, same width, same sign return v case ir.OCONV: n := n.(*ir.ConvExpr) x := s.expr(n.X) return s.conv(n, x, n.X.Type(), n.Type()) case ir.ODOTTYPE: n := n.(*ir.TypeAssertExpr) res, _ := s.dottype(n, false) return res case ir.ODYNAMICDOTTYPE: n := n.(*ir.DynamicTypeAssertExpr) res, _ := s.dynamicDottype(n, false) return res // binary ops case ir.OLT, ir.OEQ, ir.ONE, ir.OLE, ir.OGE, ir.OGT: n := n.(*ir.BinaryExpr) a := s.expr(n.X) b := s.expr(n.Y) if n.X.Type().IsComplex() { pt := types.FloatForComplex(n.X.Type()) op := s.ssaOp(ir.OEQ, pt) r := s.newValueOrSfCall2(op, types.Types[types.TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)) i := s.newValueOrSfCall2(op, types.Types[types.TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)) c := s.newValue2(ssa.OpAndB, types.Types[types.TBOOL], r, i) switch n.Op() { case ir.OEQ: return c case ir.ONE: return s.newValue1(ssa.OpNot, types.Types[types.TBOOL], c) default: s.Fatalf("ordered complex compare %v", n.Op()) } } // Convert OGE and OGT into OLE and OLT. op := n.Op() switch op { case ir.OGE: op, a, b = ir.OLE, b, a case ir.OGT: op, a, b = ir.OLT, b, a } if n.X.Type().IsFloat() { // float comparison return s.newValueOrSfCall2(s.ssaOp(op, n.X.Type()), types.Types[types.TBOOL], a, b) } // integer comparison return s.newValue2(s.ssaOp(op, n.X.Type()), types.Types[types.TBOOL], a, b) case ir.OMUL: n := n.(*ir.BinaryExpr) a := s.expr(n.X) b := s.expr(n.Y) if n.Type().IsComplex() { mulop := ssa.OpMul64F addop := ssa.OpAdd64F subop := ssa.OpSub64F pt := types.FloatForComplex(n.Type()) // Could be Float32 or Float64 wt := types.Types[types.TFLOAT64] // Compute in Float64 to minimize cancellation error areal := s.newValue1(ssa.OpComplexReal, pt, a) breal := s.newValue1(ssa.OpComplexReal, pt, b) aimag := s.newValue1(ssa.OpComplexImag, pt, a) bimag := s.newValue1(ssa.OpComplexImag, pt, b) if pt != wt { // Widen for calculation areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal) breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal) aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag) bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag) } xreal := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag)) ximag := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, bimag), s.newValueOrSfCall2(mulop, wt, aimag, breal)) if pt != wt { // Narrow to store back xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal) ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag) } return s.newValue2(ssa.OpComplexMake, n.Type(), xreal, ximag) } if n.Type().IsFloat() { return s.newValueOrSfCall2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b) } return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b) case ir.ODIV: n := n.(*ir.BinaryExpr) a := s.expr(n.X) b := s.expr(n.Y) if n.Type().IsComplex() { // TODO this is not executed because the front-end substitutes a runtime call. // That probably ought to change; with modest optimization the widen/narrow // conversions could all be elided in larger expression trees. mulop := ssa.OpMul64F addop := ssa.OpAdd64F subop := ssa.OpSub64F divop := ssa.OpDiv64F pt := types.FloatForComplex(n.Type()) // Could be Float32 or Float64 wt := types.Types[types.TFLOAT64] // Compute in Float64 to minimize cancellation error areal := s.newValue1(ssa.OpComplexReal, pt, a) breal := s.newValue1(ssa.OpComplexReal, pt, b) aimag := s.newValue1(ssa.OpComplexImag, pt, a) bimag := s.newValue1(ssa.OpComplexImag, pt, b) if pt != wt { // Widen for calculation areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal) breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal) aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag) bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag) } denom := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, breal, breal), s.newValueOrSfCall2(mulop, wt, bimag, bimag)) xreal := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag)) ximag := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, aimag, breal), s.newValueOrSfCall2(mulop, wt, areal, bimag)) // TODO not sure if this is best done in wide precision or narrow // Double-rounding might be an issue. // Note that the pre-SSA implementation does the entire calculation // in wide format, so wide is compatible. xreal = s.newValueOrSfCall2(divop, wt, xreal, denom) ximag = s.newValueOrSfCall2(divop, wt, ximag, denom) if pt != wt { // Narrow to store back xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal) ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag) } return s.newValue2(ssa.OpComplexMake, n.Type(), xreal, ximag) } if n.Type().IsFloat() { return s.newValueOrSfCall2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b) } return s.intDivide(n, a, b) case ir.OMOD: n := n.(*ir.BinaryExpr) a := s.expr(n.X) b := s.expr(n.Y) return s.intDivide(n, a, b) case ir.OADD, ir.OSUB: n := n.(*ir.BinaryExpr) a := s.expr(n.X) b := s.expr(n.Y) if n.Type().IsComplex() { pt := types.FloatForComplex(n.Type()) op := s.ssaOp(n.Op(), pt) return s.newValue2(ssa.OpComplexMake, n.Type(), s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)), s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))) } if n.Type().IsFloat() { return s.newValueOrSfCall2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b) } return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b) case ir.OAND, ir.OOR, ir.OXOR: n := n.(*ir.BinaryExpr) a := s.expr(n.X) b := s.expr(n.Y) return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b) case ir.OANDNOT: n := n.(*ir.BinaryExpr) a := s.expr(n.X) b := s.expr(n.Y) b = s.newValue1(s.ssaOp(ir.OBITNOT, b.Type), b.Type, b) return s.newValue2(s.ssaOp(ir.OAND, n.Type()), a.Type, a, b) case ir.OLSH, ir.ORSH: n := n.(*ir.BinaryExpr) a := s.expr(n.X) b := s.expr(n.Y) bt := b.Type if bt.IsSigned() { cmp := s.newValue2(s.ssaOp(ir.OLE, bt), types.Types[types.TBOOL], s.zeroVal(bt), b) s.check(cmp, ir.Syms.Panicshift) bt = bt.ToUnsigned() } return s.newValue2(s.ssaShiftOp(n.Op(), n.Type(), bt), a.Type, a, b) case ir.OANDAND, ir.OOROR: // To implement OANDAND (and OOROR), we introduce a // new temporary variable to hold the result. The // variable is associated with the OANDAND node in the // s.vars table (normally variables are only // associated with ONAME nodes). We convert // A && B // to // var = A // if var { // var = B // } // Using var in the subsequent block introduces the // necessary phi variable. n := n.(*ir.LogicalExpr) el := s.expr(n.X) s.vars[n] = el b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(el) // In theory, we should set b.Likely here based on context. // However, gc only gives us likeliness hints // in a single place, for plain OIF statements, // and passing around context is finnicky, so don't bother for now. bRight := s.f.NewBlock(ssa.BlockPlain) bResult := s.f.NewBlock(ssa.BlockPlain) if n.Op() == ir.OANDAND { b.AddEdgeTo(bRight) b.AddEdgeTo(bResult) } else if n.Op() == ir.OOROR { b.AddEdgeTo(bResult) b.AddEdgeTo(bRight) } s.startBlock(bRight) er := s.expr(n.Y) s.vars[n] = er b = s.endBlock() b.AddEdgeTo(bResult) s.startBlock(bResult) return s.variable(n, types.Types[types.TBOOL]) case ir.OCOMPLEX: n := n.(*ir.BinaryExpr) r := s.expr(n.X) i := s.expr(n.Y) return s.newValue2(ssa.OpComplexMake, n.Type(), r, i) // unary ops case ir.ONEG: n := n.(*ir.UnaryExpr) a := s.expr(n.X) if n.Type().IsComplex() { tp := types.FloatForComplex(n.Type()) negop := s.ssaOp(n.Op(), tp) return s.newValue2(ssa.OpComplexMake, n.Type(), s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)), s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a))) } return s.newValue1(s.ssaOp(n.Op(), n.Type()), a.Type, a) case ir.ONOT, ir.OBITNOT: n := n.(*ir.UnaryExpr) a := s.expr(n.X) return s.newValue1(s.ssaOp(n.Op(), n.Type()), a.Type, a) case ir.OIMAG, ir.OREAL: n := n.(*ir.UnaryExpr) a := s.expr(n.X) return s.newValue1(s.ssaOp(n.Op(), n.X.Type()), n.Type(), a) case ir.OPLUS: n := n.(*ir.UnaryExpr) return s.expr(n.X) case ir.OADDR: n := n.(*ir.AddrExpr) return s.addr(n.X) case ir.ORESULT: n := n.(*ir.ResultExpr) if s.prevCall == nil || s.prevCall.Op != ssa.OpStaticLECall && s.prevCall.Op != ssa.OpInterLECall && s.prevCall.Op != ssa.OpClosureLECall { panic("Expected to see a previous call") } which := n.Index if which == -1 { panic(fmt.Errorf("ORESULT %v does not match call %s", n, s.prevCall)) } return s.resultOfCall(s.prevCall, which, n.Type()) case ir.ODEREF: n := n.(*ir.StarExpr) p := s.exprPtr(n.X, n.Bounded(), n.Pos()) return s.load(n.Type(), p) case ir.ODOT: n := n.(*ir.SelectorExpr) if n.X.Op() == ir.OSTRUCTLIT { // All literals with nonzero fields have already been // rewritten during walk. Any that remain are just T{} // or equivalents. Use the zero value. if !ir.IsZero(n.X) { s.Fatalf("literal with nonzero value in SSA: %v", n.X) } return s.zeroVal(n.Type()) } // If n is addressable and can't be represented in // SSA, then load just the selected field. This // prevents false memory dependencies in race/msan/asan // instrumentation. if ir.IsAddressable(n) && !s.canSSA(n) { p := s.addr(n) return s.load(n.Type(), p) } v := s.expr(n.X) return s.newValue1I(ssa.OpStructSelect, n.Type(), int64(fieldIdx(n)), v) case ir.ODOTPTR: n := n.(*ir.SelectorExpr) p := s.exprPtr(n.X, n.Bounded(), n.Pos()) p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type()), n.Offset(), p) return s.load(n.Type(), p) case ir.OINDEX: n := n.(*ir.IndexExpr) switch { case n.X.Type().IsString(): if n.Bounded() && ir.IsConst(n.X, constant.String) && ir.IsConst(n.Index, constant.Int) { // Replace "abc"[1] with 'b'. // Delayed until now because "abc"[1] is not an ideal constant. // See test/fixedbugs/issue11370.go. return s.newValue0I(ssa.OpConst8, types.Types[types.TUINT8], int64(int8(ir.StringVal(n.X)[ir.Int64Val(n.Index)]))) } a := s.expr(n.X) i := s.expr(n.Index) len := s.newValue1(ssa.OpStringLen, types.Types[types.TINT], a) i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded()) ptrtyp := s.f.Config.Types.BytePtr ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a) if ir.IsConst(n.Index, constant.Int) { ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, ir.Int64Val(n.Index), ptr) } else { ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i) } return s.load(types.Types[types.TUINT8], ptr) case n.X.Type().IsSlice(): p := s.addr(n) return s.load(n.X.Type().Elem(), p) case n.X.Type().IsArray(): if TypeOK(n.X.Type()) { // SSA can handle arrays of length at most 1. bound := n.X.Type().NumElem() a := s.expr(n.X) i := s.expr(n.Index) if bound == 0 { // Bounds check will never succeed. Might as well // use constants for the bounds check. z := s.constInt(types.Types[types.TINT], 0) s.boundsCheck(z, z, ssa.BoundsIndex, false) // The return value won't be live, return junk. // But not quite junk, in case bounds checks are turned off. See issue 48092. return s.zeroVal(n.Type()) } len := s.constInt(types.Types[types.TINT], bound) s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded()) // checks i == 0 return s.newValue1I(ssa.OpArraySelect, n.Type(), 0, a) } p := s.addr(n) return s.load(n.X.Type().Elem(), p) default: s.Fatalf("bad type for index %v", n.X.Type()) return nil } case ir.OLEN, ir.OCAP: n := n.(*ir.UnaryExpr) switch { case n.X.Type().IsSlice(): op := ssa.OpSliceLen if n.Op() == ir.OCAP { op = ssa.OpSliceCap } return s.newValue1(op, types.Types[types.TINT], s.expr(n.X)) case n.X.Type().IsString(): // string; not reachable for OCAP return s.newValue1(ssa.OpStringLen, types.Types[types.TINT], s.expr(n.X)) case n.X.Type().IsMap(), n.X.Type().IsChan(): return s.referenceTypeBuiltin(n, s.expr(n.X)) default: // array return s.constInt(types.Types[types.TINT], n.X.Type().NumElem()) } case ir.OSPTR: n := n.(*ir.UnaryExpr) a := s.expr(n.X) if n.X.Type().IsSlice() { if n.Bounded() { return s.newValue1(ssa.OpSlicePtr, n.Type(), a) } return s.newValue1(ssa.OpSlicePtrUnchecked, n.Type(), a) } else { return s.newValue1(ssa.OpStringPtr, n.Type(), a) } case ir.OITAB: n := n.(*ir.UnaryExpr) a := s.expr(n.X) return s.newValue1(ssa.OpITab, n.Type(), a) case ir.OIDATA: n := n.(*ir.UnaryExpr) a := s.expr(n.X) return s.newValue1(ssa.OpIData, n.Type(), a) case ir.OEFACE: n := n.(*ir.BinaryExpr) tab := s.expr(n.X) data := s.expr(n.Y) return s.newValue2(ssa.OpIMake, n.Type(), tab, data) case ir.OSLICEHEADER: n := n.(*ir.SliceHeaderExpr) p := s.expr(n.Ptr) l := s.expr(n.Len) c := s.expr(n.Cap) return s.newValue3(ssa.OpSliceMake, n.Type(), p, l, c) case ir.OSTRINGHEADER: n := n.(*ir.StringHeaderExpr) p := s.expr(n.Ptr) l := s.expr(n.Len) return s.newValue2(ssa.OpStringMake, n.Type(), p, l) case ir.OSLICE, ir.OSLICEARR, ir.OSLICE3, ir.OSLICE3ARR: n := n.(*ir.SliceExpr) check := s.checkPtrEnabled && n.Op() == ir.OSLICE3ARR && n.X.Op() == ir.OCONVNOP && n.X.(*ir.ConvExpr).X.Type().IsUnsafePtr() v := s.exprCheckPtr(n.X, !check) var i, j, k *ssa.Value if n.Low != nil { i = s.expr(n.Low) } if n.High != nil { j = s.expr(n.High) } if n.Max != nil { k = s.expr(n.Max) } p, l, c := s.slice(v, i, j, k, n.Bounded()) if check { // Emit checkptr instrumentation after bound check to prevent false positive, see #46938. s.checkPtrAlignment(n.X.(*ir.ConvExpr), v, s.conv(n.Max, k, k.Type, types.Types[types.TUINTPTR])) } return s.newValue3(ssa.OpSliceMake, n.Type(), p, l, c) case ir.OSLICESTR: n := n.(*ir.SliceExpr) v := s.expr(n.X) var i, j *ssa.Value if n.Low != nil { i = s.expr(n.Low) } if n.High != nil { j = s.expr(n.High) } p, l, _ := s.slice(v, i, j, nil, n.Bounded()) return s.newValue2(ssa.OpStringMake, n.Type(), p, l) case ir.OSLICE2ARRPTR: // if arrlen > slice.len { // panic(...) // } // slice.ptr n := n.(*ir.ConvExpr) v := s.expr(n.X) nelem := n.Type().Elem().NumElem() arrlen := s.constInt(types.Types[types.TINT], nelem) cap := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], v) s.boundsCheck(arrlen, cap, ssa.BoundsConvert, false) op := ssa.OpSlicePtr if nelem == 0 { op = ssa.OpSlicePtrUnchecked } return s.newValue1(op, n.Type(), v) case ir.OCALLFUNC: n := n.(*ir.CallExpr) if ir.IsIntrinsicCall(n) { return s.intrinsicCall(n) } fallthrough case ir.OCALLINTER: n := n.(*ir.CallExpr) return s.callResult(n, callNormal) case ir.OGETG: n := n.(*ir.CallExpr) return s.newValue1(ssa.OpGetG, n.Type(), s.mem()) case ir.OGETCALLERPC: n := n.(*ir.CallExpr) return s.newValue0(ssa.OpGetCallerPC, n.Type()) case ir.OGETCALLERSP: n := n.(*ir.CallExpr) return s.newValue1(ssa.OpGetCallerSP, n.Type(), s.mem()) case ir.OAPPEND: return s.append(n.(*ir.CallExpr), false) case ir.OMIN, ir.OMAX: return s.minMax(n.(*ir.CallExpr)) case ir.OSTRUCTLIT, ir.OARRAYLIT: // All literals with nonzero fields have already been // rewritten during walk. Any that remain are just T{} // or equivalents. Use the zero value. n := n.(*ir.CompLitExpr) if !ir.IsZero(n) { s.Fatalf("literal with nonzero value in SSA: %v", n) } return s.zeroVal(n.Type()) case ir.ONEW: n := n.(*ir.UnaryExpr) var rtype *ssa.Value if x, ok := n.X.(*ir.DynamicType); ok && x.Op() == ir.ODYNAMICTYPE { rtype = s.expr(x.RType) } return s.newObject(n.Type().Elem(), rtype) case ir.OUNSAFEADD: n := n.(*ir.BinaryExpr) ptr := s.expr(n.X) len := s.expr(n.Y) // Force len to uintptr to prevent misuse of garbage bits in the // upper part of the register (#48536). len = s.conv(n, len, len.Type, types.Types[types.TUINTPTR]) return s.newValue2(ssa.OpAddPtr, n.Type(), ptr, len) default: s.Fatalf("unhandled expr %v", n.Op()) return nil } } func (s *state) resultOfCall(c *ssa.Value, which int64, t *types.Type) *ssa.Value { aux := c.Aux.(*ssa.AuxCall) pa := aux.ParamAssignmentForResult(which) // TODO(register args) determine if in-memory TypeOK is better loaded early from SelectNAddr or later when SelectN is expanded. // SelectN is better for pattern-matching and possible call-aware analysis we might want to do in the future. if len(pa.Registers) == 0 && !TypeOK(t) { addr := s.newValue1I(ssa.OpSelectNAddr, types.NewPtr(t), which, c) return s.rawLoad(t, addr) } return s.newValue1I(ssa.OpSelectN, t, which, c) } func (s *state) resultAddrOfCall(c *ssa.Value, which int64, t *types.Type) *ssa.Value { aux := c.Aux.(*ssa.AuxCall) pa := aux.ParamAssignmentForResult(which) if len(pa.Registers) == 0 { return s.newValue1I(ssa.OpSelectNAddr, types.NewPtr(t), which, c) } _, addr := s.temp(c.Pos, t) rval := s.newValue1I(ssa.OpSelectN, t, which, c) s.vars[memVar] = s.newValue3Apos(ssa.OpStore, types.TypeMem, t, addr, rval, s.mem(), false) return addr } // append converts an OAPPEND node to SSA. // If inplace is false, it converts the OAPPEND expression n to an ssa.Value, // adds it to s, and returns the Value. // If inplace is true, it writes the result of the OAPPEND expression n // back to the slice being appended to, and returns nil. // inplace MUST be set to false if the slice can be SSA'd. // Note: this code only handles fixed-count appends. Dotdotdot appends // have already been rewritten at this point (by walk). func (s *state) append(n *ir.CallExpr, inplace bool) *ssa.Value { // If inplace is false, process as expression "append(s, e1, e2, e3)": // // ptr, len, cap := s // len += 3 // if uint(len) > uint(cap) { // ptr, len, cap = growslice(ptr, len, cap, 3, typ) // Note that len is unmodified by growslice. // } // // with write barriers, if needed: // *(ptr+(len-3)) = e1 // *(ptr+(len-2)) = e2 // *(ptr+(len-1)) = e3 // return makeslice(ptr, len, cap) // // // If inplace is true, process as statement "s = append(s, e1, e2, e3)": // // a := &s // ptr, len, cap := s // len += 3 // if uint(len) > uint(cap) { // ptr, len, cap = growslice(ptr, len, cap, 3, typ) // vardef(a) // if necessary, advise liveness we are writing a new a // *a.cap = cap // write before ptr to avoid a spill // *a.ptr = ptr // with write barrier // } // *a.len = len // // with write barriers, if needed: // *(ptr+(len-3)) = e1 // *(ptr+(len-2)) = e2 // *(ptr+(len-1)) = e3 et := n.Type().Elem() pt := types.NewPtr(et) // Evaluate slice sn := n.Args[0] // the slice node is the first in the list var slice, addr *ssa.Value if inplace { addr = s.addr(sn) slice = s.load(n.Type(), addr) } else { slice = s.expr(sn) } // Allocate new blocks grow := s.f.NewBlock(ssa.BlockPlain) assign := s.f.NewBlock(ssa.BlockPlain) // Decomposse input slice. p := s.newValue1(ssa.OpSlicePtr, pt, slice) l := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], slice) c := s.newValue1(ssa.OpSliceCap, types.Types[types.TINT], slice) // Add number of new elements to length. nargs := s.constInt(types.Types[types.TINT], int64(len(n.Args)-1)) l = s.newValue2(s.ssaOp(ir.OADD, types.Types[types.TINT]), types.Types[types.TINT], l, nargs) // Decide if we need to grow cmp := s.newValue2(s.ssaOp(ir.OLT, types.Types[types.TUINT]), types.Types[types.TBOOL], c, l) // Record values of ptr/len/cap before branch. s.vars[ptrVar] = p s.vars[lenVar] = l if !inplace { s.vars[capVar] = c } b := s.endBlock() b.Kind = ssa.BlockIf b.Likely = ssa.BranchUnlikely b.SetControl(cmp) b.AddEdgeTo(grow) b.AddEdgeTo(assign) // Call growslice s.startBlock(grow) taddr := s.expr(n.X) r := s.rtcall(ir.Syms.Growslice, true, []*types.Type{n.Type()}, p, l, c, nargs, taddr) // Decompose output slice p = s.newValue1(ssa.OpSlicePtr, pt, r[0]) l = s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], r[0]) c = s.newValue1(ssa.OpSliceCap, types.Types[types.TINT], r[0]) s.vars[ptrVar] = p s.vars[lenVar] = l s.vars[capVar] = c if inplace { if sn.Op() == ir.ONAME { sn := sn.(*ir.Name) if sn.Class != ir.PEXTERN { // Tell liveness we're about to build a new slice s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, sn, s.mem()) } } capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, types.SliceCapOffset, addr) s.store(types.Types[types.TINT], capaddr, c) s.store(pt, addr, p) } b = s.endBlock() b.AddEdgeTo(assign) // assign new elements to slots s.startBlock(assign) p = s.variable(ptrVar, pt) // generates phi for ptr l = s.variable(lenVar, types.Types[types.TINT]) // generates phi for len if !inplace { c = s.variable(capVar, types.Types[types.TINT]) // generates phi for cap } if inplace { // Update length in place. // We have to wait until here to make sure growslice succeeded. lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, types.SliceLenOffset, addr) s.store(types.Types[types.TINT], lenaddr, l) } // Evaluate args type argRec struct { // if store is true, we're appending the value v. If false, we're appending the // value at *v. v *ssa.Value store bool } args := make([]argRec, 0, len(n.Args[1:])) for _, n := range n.Args[1:] { if TypeOK(n.Type()) { args = append(args, argRec{v: s.expr(n), store: true}) } else { v := s.addr(n) args = append(args, argRec{v: v}) } } // Write args into slice. oldLen := s.newValue2(s.ssaOp(ir.OSUB, types.Types[types.TINT]), types.Types[types.TINT], l, nargs) p2 := s.newValue2(ssa.OpPtrIndex, pt, p, oldLen) for i, arg := range args { addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[types.TINT], int64(i))) if arg.store { s.storeType(et, addr, arg.v, 0, true) } else { s.move(et, addr, arg.v) } } // The following deletions have no practical effect at this time // because state.vars has been reset by the preceding state.startBlock. // They only enforce the fact that these variables are no longer need in // the current scope. delete(s.vars, ptrVar) delete(s.vars, lenVar) if !inplace { delete(s.vars, capVar) } // make result if inplace { return nil } return s.newValue3(ssa.OpSliceMake, n.Type(), p, l, c) } // minMax converts an OMIN/OMAX builtin call into SSA. func (s *state) minMax(n *ir.CallExpr) *ssa.Value { // The OMIN/OMAX builtin is variadic, but its semantics are // equivalent to left-folding a binary min/max operation across the // arguments list. fold := func(op func(x, a *ssa.Value) *ssa.Value) *ssa.Value { x := s.expr(n.Args[0]) for _, arg := range n.Args[1:] { x = op(x, s.expr(arg)) } return x } typ := n.Type() if typ.IsFloat() || typ.IsString() { // min/max semantics for floats are tricky because of NaNs and // negative zero, so we let the runtime handle this instead. // // Strings are conceptually simpler, but we currently desugar // string comparisons during walk, not ssagen. var name string switch typ.Kind() { case types.TFLOAT32: switch n.Op() { case ir.OMIN: name = "fmin32" case ir.OMAX: name = "fmax32" } case types.TFLOAT64: switch n.Op() { case ir.OMIN: name = "fmin64" case ir.OMAX: name = "fmax64" } case types.TSTRING: switch n.Op() { case ir.OMIN: name = "strmin" case ir.OMAX: name = "strmax" } } fn := typecheck.LookupRuntimeFunc(name) return fold(func(x, a *ssa.Value) *ssa.Value { return s.rtcall(fn, true, []*types.Type{typ}, x, a)[0] }) } lt := s.ssaOp(ir.OLT, typ) return fold(func(x, a *ssa.Value) *ssa.Value { switch n.Op() { case ir.OMIN: // a < x ? a : x return s.ternary(s.newValue2(lt, types.Types[types.TBOOL], a, x), a, x) case ir.OMAX: // x < a ? a : x return s.ternary(s.newValue2(lt, types.Types[types.TBOOL], x, a), a, x) } panic("unreachable") }) } // ternary emits code to evaluate cond ? x : y. func (s *state) ternary(cond, x, y *ssa.Value) *ssa.Value { // Note that we need a new ternaryVar each time (unlike okVar where we can // reuse the variable) because it might have a different type every time. ternaryVar := ssaMarker("ternary") bThen := s.f.NewBlock(ssa.BlockPlain) bElse := s.f.NewBlock(ssa.BlockPlain) bEnd := s.f.NewBlock(ssa.BlockPlain) b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(cond) b.AddEdgeTo(bThen) b.AddEdgeTo(bElse) s.startBlock(bThen) s.vars[ternaryVar] = x s.endBlock().AddEdgeTo(bEnd) s.startBlock(bElse) s.vars[ternaryVar] = y s.endBlock().AddEdgeTo(bEnd) s.startBlock(bEnd) r := s.variable(ternaryVar, x.Type) delete(s.vars, ternaryVar) return r } // condBranch evaluates the boolean expression cond and branches to yes // if cond is true and no if cond is false. // This function is intended to handle && and || better than just calling // s.expr(cond) and branching on the result. func (s *state) condBranch(cond ir.Node, yes, no *ssa.Block, likely int8) { switch cond.Op() { case ir.OANDAND: cond := cond.(*ir.LogicalExpr) mid := s.f.NewBlock(ssa.BlockPlain) s.stmtList(cond.Init()) s.condBranch(cond.X, mid, no, max8(likely, 0)) s.startBlock(mid) s.condBranch(cond.Y, yes, no, likely) return // Note: if likely==1, then both recursive calls pass 1. // If likely==-1, then we don't have enough information to decide // whether the first branch is likely or not. So we pass 0 for // the likeliness of the first branch. // TODO: have the frontend give us branch prediction hints for // OANDAND and OOROR nodes (if it ever has such info). case ir.OOROR: cond := cond.(*ir.LogicalExpr) mid := s.f.NewBlock(ssa.BlockPlain) s.stmtList(cond.Init()) s.condBranch(cond.X, yes, mid, min8(likely, 0)) s.startBlock(mid) s.condBranch(cond.Y, yes, no, likely) return // Note: if likely==-1, then both recursive calls pass -1. // If likely==1, then we don't have enough info to decide // the likelihood of the first branch. case ir.ONOT: cond := cond.(*ir.UnaryExpr) s.stmtList(cond.Init()) s.condBranch(cond.X, no, yes, -likely) return case ir.OCONVNOP: cond := cond.(*ir.ConvExpr) s.stmtList(cond.Init()) s.condBranch(cond.X, yes, no, likely) return } c := s.expr(cond) b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(c) b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness b.AddEdgeTo(yes) b.AddEdgeTo(no) } type skipMask uint8 const ( skipPtr skipMask = 1 << iota skipLen skipCap ) // assign does left = right. // Right has already been evaluated to ssa, left has not. // If deref is true, then we do left = *right instead (and right has already been nil-checked). // If deref is true and right == nil, just do left = 0. // skip indicates assignments (at the top level) that can be avoided. // mayOverlap indicates whether left&right might partially overlap in memory. Default is false. func (s *state) assign(left ir.Node, right *ssa.Value, deref bool, skip skipMask) { s.assignWhichMayOverlap(left, right, deref, skip, false) } func (s *state) assignWhichMayOverlap(left ir.Node, right *ssa.Value, deref bool, skip skipMask, mayOverlap bool) { if left.Op() == ir.ONAME && ir.IsBlank(left) { return } t := left.Type() types.CalcSize(t) if s.canSSA(left) { if deref { s.Fatalf("can SSA LHS %v but not RHS %s", left, right) } if left.Op() == ir.ODOT { // We're assigning to a field of an ssa-able value. // We need to build a new structure with the new value for the // field we're assigning and the old values for the other fields. // For instance: // type T struct {a, b, c int} // var T x // x.b = 5 // For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c} // Grab information about the structure type. left := left.(*ir.SelectorExpr) t := left.X.Type() nf := t.NumFields() idx := fieldIdx(left) // Grab old value of structure. old := s.expr(left.X) // Make new structure. new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t) // Add fields as args. for i := 0; i < nf; i++ { if i == idx { new.AddArg(right) } else { new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old)) } } // Recursively assign the new value we've made to the base of the dot op. s.assign(left.X, new, false, 0) // TODO: do we need to update named values here? return } if left.Op() == ir.OINDEX && left.(*ir.IndexExpr).X.Type().IsArray() { left := left.(*ir.IndexExpr) s.pushLine(left.Pos()) defer s.popLine() // We're assigning to an element of an ssa-able array. // a[i] = v t := left.X.Type() n := t.NumElem() i := s.expr(left.Index) // index if n == 0 { // The bounds check must fail. Might as well // ignore the actual index and just use zeros. z := s.constInt(types.Types[types.TINT], 0) s.boundsCheck(z, z, ssa.BoundsIndex, false) return } if n != 1 { s.Fatalf("assigning to non-1-length array") } // Rewrite to a = [1]{v} len := s.constInt(types.Types[types.TINT], 1) s.boundsCheck(i, len, ssa.BoundsIndex, false) // checks i == 0 v := s.newValue1(ssa.OpArrayMake1, t, right) s.assign(left.X, v, false, 0) return } left := left.(*ir.Name) // Update variable assignment. s.vars[left] = right s.addNamedValue(left, right) return } // If this assignment clobbers an entire local variable, then emit // OpVarDef so liveness analysis knows the variable is redefined. if base, ok := clobberBase(left).(*ir.Name); ok && base.OnStack() && skip == 0 && t.HasPointers() { s.vars[memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, base, s.mem(), !ir.IsAutoTmp(base)) } // Left is not ssa-able. Compute its address. addr := s.addr(left) if ir.IsReflectHeaderDataField(left) { // Package unsafe's documentation says storing pointers into // reflect.SliceHeader and reflect.StringHeader's Data fields // is valid, even though they have type uintptr (#19168). // Mark it pointer type to signal the writebarrier pass to // insert a write barrier. t = types.Types[types.TUNSAFEPTR] } if deref { // Treat as a mem->mem move. if right == nil { s.zero(t, addr) } else { s.moveWhichMayOverlap(t, addr, right, mayOverlap) } return } // Treat as a store. s.storeType(t, addr, right, skip, !ir.IsAutoTmp(left)) } // zeroVal returns the zero value for type t. func (s *state) zeroVal(t *types.Type) *ssa.Value { switch { case t.IsInteger(): switch t.Size() { case 1: return s.constInt8(t, 0) case 2: return s.constInt16(t, 0) case 4: return s.constInt32(t, 0) case 8: return s.constInt64(t, 0) default: s.Fatalf("bad sized integer type %v", t) } case t.IsFloat(): switch t.Size() { case 4: return s.constFloat32(t, 0) case 8: return s.constFloat64(t, 0) default: s.Fatalf("bad sized float type %v", t) } case t.IsComplex(): switch t.Size() { case 8: z := s.constFloat32(types.Types[types.TFLOAT32], 0) return s.entryNewValue2(ssa.OpComplexMake, t, z, z) case 16: z := s.constFloat64(types.Types[types.TFLOAT64], 0) return s.entryNewValue2(ssa.OpComplexMake, t, z, z) default: s.Fatalf("bad sized complex type %v", t) } case t.IsString(): return s.constEmptyString(t) case t.IsPtrShaped(): return s.constNil(t) case t.IsBoolean(): return s.constBool(false) case t.IsInterface(): return s.constInterface(t) case t.IsSlice(): return s.constSlice(t) case t.IsStruct(): n := t.NumFields() v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t) for i := 0; i < n; i++ { v.AddArg(s.zeroVal(t.FieldType(i))) } return v case t.IsArray(): switch t.NumElem() { case 0: return s.entryNewValue0(ssa.OpArrayMake0, t) case 1: return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem())) } } s.Fatalf("zero for type %v not implemented", t) return nil } type callKind int8 const ( callNormal callKind = iota callDefer callDeferStack callGo callTail ) type sfRtCallDef struct { rtfn *obj.LSym rtype types.Kind } var softFloatOps map[ssa.Op]sfRtCallDef func softfloatInit() { // Some of these operations get transformed by sfcall. softFloatOps = map[ssa.Op]sfRtCallDef{ ssa.OpAdd32F: {typecheck.LookupRuntimeFunc("fadd32"), types.TFLOAT32}, ssa.OpAdd64F: {typecheck.LookupRuntimeFunc("fadd64"), types.TFLOAT64}, ssa.OpSub32F: {typecheck.LookupRuntimeFunc("fadd32"), types.TFLOAT32}, ssa.OpSub64F: {typecheck.LookupRuntimeFunc("fadd64"), types.TFLOAT64}, ssa.OpMul32F: {typecheck.LookupRuntimeFunc("fmul32"), types.TFLOAT32}, ssa.OpMul64F: {typecheck.LookupRuntimeFunc("fmul64"), types.TFLOAT64}, ssa.OpDiv32F: {typecheck.LookupRuntimeFunc("fdiv32"), types.TFLOAT32}, ssa.OpDiv64F: {typecheck.LookupRuntimeFunc("fdiv64"), types.TFLOAT64}, ssa.OpEq64F: {typecheck.LookupRuntimeFunc("feq64"), types.TBOOL}, ssa.OpEq32F: {typecheck.LookupRuntimeFunc("feq32"), types.TBOOL}, ssa.OpNeq64F: {typecheck.LookupRuntimeFunc("feq64"), types.TBOOL}, ssa.OpNeq32F: {typecheck.LookupRuntimeFunc("feq32"), types.TBOOL}, ssa.OpLess64F: {typecheck.LookupRuntimeFunc("fgt64"), types.TBOOL}, ssa.OpLess32F: {typecheck.LookupRuntimeFunc("fgt32"), types.TBOOL}, ssa.OpLeq64F: {typecheck.LookupRuntimeFunc("fge64"), types.TBOOL}, ssa.OpLeq32F: {typecheck.LookupRuntimeFunc("fge32"), types.TBOOL}, ssa.OpCvt32to32F: {typecheck.LookupRuntimeFunc("fint32to32"), types.TFLOAT32}, ssa.OpCvt32Fto32: {typecheck.LookupRuntimeFunc("f32toint32"), types.TINT32}, ssa.OpCvt64to32F: {typecheck.LookupRuntimeFunc("fint64to32"), types.TFLOAT32}, ssa.OpCvt32Fto64: {typecheck.LookupRuntimeFunc("f32toint64"), types.TINT64}, ssa.OpCvt64Uto32F: {typecheck.LookupRuntimeFunc("fuint64to32"), types.TFLOAT32}, ssa.OpCvt32Fto64U: {typecheck.LookupRuntimeFunc("f32touint64"), types.TUINT64}, ssa.OpCvt32to64F: {typecheck.LookupRuntimeFunc("fint32to64"), types.TFLOAT64}, ssa.OpCvt64Fto32: {typecheck.LookupRuntimeFunc("f64toint32"), types.TINT32}, ssa.OpCvt64to64F: {typecheck.LookupRuntimeFunc("fint64to64"), types.TFLOAT64}, ssa.OpCvt64Fto64: {typecheck.LookupRuntimeFunc("f64toint64"), types.TINT64}, ssa.OpCvt64Uto64F: {typecheck.LookupRuntimeFunc("fuint64to64"), types.TFLOAT64}, ssa.OpCvt64Fto64U: {typecheck.LookupRuntimeFunc("f64touint64"), types.TUINT64}, ssa.OpCvt32Fto64F: {typecheck.LookupRuntimeFunc("f32to64"), types.TFLOAT64}, ssa.OpCvt64Fto32F: {typecheck.LookupRuntimeFunc("f64to32"), types.TFLOAT32}, } } // TODO: do not emit sfcall if operation can be optimized to constant in later // opt phase func (s *state) sfcall(op ssa.Op, args ...*ssa.Value) (*ssa.Value, bool) { f2i := func(t *types.Type) *types.Type { switch t.Kind() { case types.TFLOAT32: return types.Types[types.TUINT32] case types.TFLOAT64: return types.Types[types.TUINT64] } return t } if callDef, ok := softFloatOps[op]; ok { switch op { case ssa.OpLess32F, ssa.OpLess64F, ssa.OpLeq32F, ssa.OpLeq64F: args[0], args[1] = args[1], args[0] case ssa.OpSub32F, ssa.OpSub64F: args[1] = s.newValue1(s.ssaOp(ir.ONEG, types.Types[callDef.rtype]), args[1].Type, args[1]) } // runtime functions take uints for floats and returns uints. // Convert to uints so we use the right calling convention. for i, a := range args { if a.Type.IsFloat() { args[i] = s.newValue1(ssa.OpCopy, f2i(a.Type), a) } } rt := types.Types[callDef.rtype] result := s.rtcall(callDef.rtfn, true, []*types.Type{f2i(rt)}, args...)[0] if rt.IsFloat() { result = s.newValue1(ssa.OpCopy, rt, result) } if op == ssa.OpNeq32F || op == ssa.OpNeq64F { result = s.newValue1(ssa.OpNot, result.Type, result) } return result, true } return nil, false } var intrinsics map[intrinsicKey]intrinsicBuilder // An intrinsicBuilder converts a call node n into an ssa value that // implements that call as an intrinsic. args is a list of arguments to the func. type intrinsicBuilder func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value type intrinsicKey struct { arch *sys.Arch pkg string fn string } func InitTables() { intrinsics = map[intrinsicKey]intrinsicBuilder{} var all []*sys.Arch var p4 []*sys.Arch var p8 []*sys.Arch var lwatomics []*sys.Arch for _, a := range &sys.Archs { all = append(all, a) if a.PtrSize == 4 { p4 = append(p4, a) } else { p8 = append(p8, a) } if a.Family != sys.PPC64 { lwatomics = append(lwatomics, a) } } // add adds the intrinsic b for pkg.fn for the given list of architectures. add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) { for _, a := range archs { intrinsics[intrinsicKey{a, pkg, fn}] = b } } // addF does the same as add but operates on architecture families. addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) { m := 0 for _, f := range archFamilies { if f >= 32 { panic("too many architecture families") } m |= 1 << uint(f) } for _, a := range all { if m>>uint(a.Family)&1 != 0 { intrinsics[intrinsicKey{a, pkg, fn}] = b } } } // alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists. alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) { aliased := false for _, a := range archs { if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok { intrinsics[intrinsicKey{a, pkg, fn}] = b aliased = true } } if !aliased { panic(fmt.Sprintf("attempted to alias undefined intrinsic: %s.%s", pkg, fn)) } } /******** runtime ********/ if !base.Flag.Cfg.Instrumenting { add("runtime", "slicebytetostringtmp", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { // Compiler frontend optimizations emit OBYTES2STRTMP nodes // for the backend instead of slicebytetostringtmp calls // when not instrumenting. return s.newValue2(ssa.OpStringMake, n.Type(), args[0], args[1]) }, all...) } addF("runtime/internal/math", "MulUintptr", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { if s.config.PtrSize == 4 { return s.newValue2(ssa.OpMul32uover, types.NewTuple(types.Types[types.TUINT], types.Types[types.TUINT]), args[0], args[1]) } return s.newValue2(ssa.OpMul64uover, types.NewTuple(types.Types[types.TUINT], types.Types[types.TUINT]), args[0], args[1]) }, sys.AMD64, sys.I386, sys.Loong64, sys.MIPS64, sys.RISCV64, sys.ARM64) alias("runtime", "mulUintptr", "runtime/internal/math", "MulUintptr", all...) add("runtime", "KeepAlive", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0]) s.vars[memVar] = s.newValue2(ssa.OpKeepAlive, types.TypeMem, data, s.mem()) return nil }, all...) add("runtime", "getclosureptr", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue0(ssa.OpGetClosurePtr, s.f.Config.Types.Uintptr) }, all...) add("runtime", "getcallerpc", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue0(ssa.OpGetCallerPC, s.f.Config.Types.Uintptr) }, all...) add("runtime", "getcallersp", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpGetCallerSP, s.f.Config.Types.Uintptr, s.mem()) }, all...) addF("runtime", "publicationBarrier", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { s.vars[memVar] = s.newValue1(ssa.OpPubBarrier, types.TypeMem, s.mem()) return nil }, sys.ARM64, sys.PPC64) brev_arch := []sys.ArchFamily{sys.AMD64, sys.I386, sys.ARM64, sys.ARM, sys.S390X} if buildcfg.GOPPC64 >= 10 { // Use only on Power10 as the new byte reverse instructions that Power10 provide // make it worthwhile as an intrinsic brev_arch = append(brev_arch, sys.PPC64) } /******** runtime/internal/sys ********/ addF("runtime/internal/sys", "Bswap32", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpBswap32, types.Types[types.TUINT32], args[0]) }, brev_arch...) addF("runtime/internal/sys", "Bswap64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpBswap64, types.Types[types.TUINT64], args[0]) }, brev_arch...) /****** Prefetch ******/ makePrefetchFunc := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { s.vars[memVar] = s.newValue2(op, types.TypeMem, args[0], s.mem()) return nil } } // Make Prefetch intrinsics for supported platforms // On the unsupported platforms stub function will be eliminated addF("runtime/internal/sys", "Prefetch", makePrefetchFunc(ssa.OpPrefetchCache), sys.AMD64, sys.ARM64, sys.PPC64) addF("runtime/internal/sys", "PrefetchStreamed", makePrefetchFunc(ssa.OpPrefetchCacheStreamed), sys.AMD64, sys.ARM64, sys.PPC64) /******** runtime/internal/atomic ********/ addF("runtime/internal/atomic", "Load", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { v := s.newValue2(ssa.OpAtomicLoad32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v) }, sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "Load8", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { v := s.newValue2(ssa.OpAtomicLoad8, types.NewTuple(types.Types[types.TUINT8], types.TypeMem), args[0], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT8], v) }, sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "Load64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { v := s.newValue2(ssa.OpAtomicLoad64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v) }, sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "LoadAcq", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { v := s.newValue2(ssa.OpAtomicLoadAcq32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v) }, sys.PPC64, sys.S390X) addF("runtime/internal/atomic", "LoadAcq64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { v := s.newValue2(ssa.OpAtomicLoadAcq64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v) }, sys.PPC64) addF("runtime/internal/atomic", "Loadp", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { v := s.newValue2(ssa.OpAtomicLoadPtr, types.NewTuple(s.f.Config.Types.BytePtr, types.TypeMem), args[0], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v) }, sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "Store", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { s.vars[memVar] = s.newValue3(ssa.OpAtomicStore32, types.TypeMem, args[0], args[1], s.mem()) return nil }, sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "Store8", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { s.vars[memVar] = s.newValue3(ssa.OpAtomicStore8, types.TypeMem, args[0], args[1], s.mem()) return nil }, sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "Store64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { s.vars[memVar] = s.newValue3(ssa.OpAtomicStore64, types.TypeMem, args[0], args[1], s.mem()) return nil }, sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "StorepNoWB", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { s.vars[memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, types.TypeMem, args[0], args[1], s.mem()) return nil }, sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "StoreRel", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { s.vars[memVar] = s.newValue3(ssa.OpAtomicStoreRel32, types.TypeMem, args[0], args[1], s.mem()) return nil }, sys.PPC64, sys.S390X) addF("runtime/internal/atomic", "StoreRel64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { s.vars[memVar] = s.newValue3(ssa.OpAtomicStoreRel64, types.TypeMem, args[0], args[1], s.mem()) return nil }, sys.PPC64) addF("runtime/internal/atomic", "Xchg", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { v := s.newValue3(ssa.OpAtomicExchange32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], args[1], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v) }, sys.AMD64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "Xchg64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { v := s.newValue3(ssa.OpAtomicExchange64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], args[1], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v) }, sys.AMD64, sys.Loong64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) type atomicOpEmitter func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind) makeAtomicGuardedIntrinsicARM64 := func(op0, op1 ssa.Op, typ, rtyp types.Kind, emit atomicOpEmitter) intrinsicBuilder { return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { // Target Atomic feature is identified by dynamic detection addr := s.entryNewValue1A(ssa.OpAddr, types.Types[types.TBOOL].PtrTo(), ir.Syms.ARM64HasATOMICS, s.sb) v := s.load(types.Types[types.TBOOL], addr) b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(v) bTrue := s.f.NewBlock(ssa.BlockPlain) bFalse := s.f.NewBlock(ssa.BlockPlain) bEnd := s.f.NewBlock(ssa.BlockPlain) b.AddEdgeTo(bTrue) b.AddEdgeTo(bFalse) b.Likely = ssa.BranchLikely // We have atomic instructions - use it directly. s.startBlock(bTrue) emit(s, n, args, op1, typ) s.endBlock().AddEdgeTo(bEnd) // Use original instruction sequence. s.startBlock(bFalse) emit(s, n, args, op0, typ) s.endBlock().AddEdgeTo(bEnd) // Merge results. s.startBlock(bEnd) if rtyp == types.TNIL { return nil } else { return s.variable(n, types.Types[rtyp]) } } } atomicXchgXaddEmitterARM64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind) { v := s.newValue3(op, types.NewTuple(types.Types[typ], types.TypeMem), args[0], args[1], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[typ], v) } addF("runtime/internal/atomic", "Xchg", makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicExchange32, ssa.OpAtomicExchange32Variant, types.TUINT32, types.TUINT32, atomicXchgXaddEmitterARM64), sys.ARM64) addF("runtime/internal/atomic", "Xchg64", makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicExchange64, ssa.OpAtomicExchange64Variant, types.TUINT64, types.TUINT64, atomicXchgXaddEmitterARM64), sys.ARM64) addF("runtime/internal/atomic", "Xadd", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { v := s.newValue3(ssa.OpAtomicAdd32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], args[1], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v) }, sys.AMD64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "Xadd64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { v := s.newValue3(ssa.OpAtomicAdd64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], args[1], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v) }, sys.AMD64, sys.Loong64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "Xadd", makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAdd32, ssa.OpAtomicAdd32Variant, types.TUINT32, types.TUINT32, atomicXchgXaddEmitterARM64), sys.ARM64) addF("runtime/internal/atomic", "Xadd64", makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAdd64, ssa.OpAtomicAdd64Variant, types.TUINT64, types.TUINT64, atomicXchgXaddEmitterARM64), sys.ARM64) addF("runtime/internal/atomic", "Cas", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v) }, sys.AMD64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "Cas64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { v := s.newValue4(ssa.OpAtomicCompareAndSwap64, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v) }, sys.AMD64, sys.Loong64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "CasRel", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v) }, sys.PPC64) atomicCasEmitterARM64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind) { v := s.newValue4(op, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[typ], v) } addF("runtime/internal/atomic", "Cas", makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicCompareAndSwap32, ssa.OpAtomicCompareAndSwap32Variant, types.TUINT32, types.TBOOL, atomicCasEmitterARM64), sys.ARM64) addF("runtime/internal/atomic", "Cas64", makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicCompareAndSwap64, ssa.OpAtomicCompareAndSwap64Variant, types.TUINT64, types.TBOOL, atomicCasEmitterARM64), sys.ARM64) addF("runtime/internal/atomic", "And8", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { s.vars[memVar] = s.newValue3(ssa.OpAtomicAnd8, types.TypeMem, args[0], args[1], s.mem()) return nil }, sys.AMD64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "And", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { s.vars[memVar] = s.newValue3(ssa.OpAtomicAnd32, types.TypeMem, args[0], args[1], s.mem()) return nil }, sys.AMD64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "Or8", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { s.vars[memVar] = s.newValue3(ssa.OpAtomicOr8, types.TypeMem, args[0], args[1], s.mem()) return nil }, sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) addF("runtime/internal/atomic", "Or", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { s.vars[memVar] = s.newValue3(ssa.OpAtomicOr32, types.TypeMem, args[0], args[1], s.mem()) return nil }, sys.AMD64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X) atomicAndOrEmitterARM64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind) { s.vars[memVar] = s.newValue3(op, types.TypeMem, args[0], args[1], s.mem()) } addF("runtime/internal/atomic", "And8", makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAnd8, ssa.OpAtomicAnd8Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64), sys.ARM64) addF("runtime/internal/atomic", "And", makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAnd32, ssa.OpAtomicAnd32Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64), sys.ARM64) addF("runtime/internal/atomic", "Or8", makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicOr8, ssa.OpAtomicOr8Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64), sys.ARM64) addF("runtime/internal/atomic", "Or", makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicOr32, ssa.OpAtomicOr32Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64), sys.ARM64) // Aliases for atomic load operations alias("runtime/internal/atomic", "Loadint32", "runtime/internal/atomic", "Load", all...) alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...) alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...) alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...) alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", p4...) alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", p8...) alias("runtime/internal/atomic", "LoadAcq", "runtime/internal/atomic", "Load", lwatomics...) alias("runtime/internal/atomic", "LoadAcq64", "runtime/internal/atomic", "Load64", lwatomics...) alias("runtime/internal/atomic", "LoadAcquintptr", "runtime/internal/atomic", "LoadAcq", p4...) alias("sync", "runtime_LoadAcquintptr", "runtime/internal/atomic", "LoadAcq", p4...) // linknamed alias("runtime/internal/atomic", "LoadAcquintptr", "runtime/internal/atomic", "LoadAcq64", p8...) alias("sync", "runtime_LoadAcquintptr", "runtime/internal/atomic", "LoadAcq64", p8...) // linknamed // Aliases for atomic store operations alias("runtime/internal/atomic", "Storeint32", "runtime/internal/atomic", "Store", all...) alias("runtime/internal/atomic", "Storeint64", "runtime/internal/atomic", "Store64", all...) alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...) alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...) alias("runtime/internal/atomic", "StoreRel", "runtime/internal/atomic", "Store", lwatomics...) alias("runtime/internal/atomic", "StoreRel64", "runtime/internal/atomic", "Store64", lwatomics...) alias("runtime/internal/atomic", "StoreReluintptr", "runtime/internal/atomic", "StoreRel", p4...) alias("sync", "runtime_StoreReluintptr", "runtime/internal/atomic", "StoreRel", p4...) // linknamed alias("runtime/internal/atomic", "StoreReluintptr", "runtime/internal/atomic", "StoreRel64", p8...) alias("sync", "runtime_StoreReluintptr", "runtime/internal/atomic", "StoreRel64", p8...) // linknamed // Aliases for atomic swap operations alias("runtime/internal/atomic", "Xchgint32", "runtime/internal/atomic", "Xchg", all...) alias("runtime/internal/atomic", "Xchgint64", "runtime/internal/atomic", "Xchg64", all...) alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...) alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...) // Aliases for atomic add operations alias("runtime/internal/atomic", "Xaddint32", "runtime/internal/atomic", "Xadd", all...) alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...) alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...) alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...) // Aliases for atomic CAS operations alias("runtime/internal/atomic", "Casint32", "runtime/internal/atomic", "Cas", all...) alias("runtime/internal/atomic", "Casint64", "runtime/internal/atomic", "Cas64", all...) alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...) alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...) alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...) alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...) alias("runtime/internal/atomic", "CasRel", "runtime/internal/atomic", "Cas", lwatomics...) /******** math ********/ addF("math", "sqrt", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpSqrt, types.Types[types.TFLOAT64], args[0]) }, sys.I386, sys.AMD64, sys.ARM, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm) addF("math", "Trunc", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpTrunc, types.Types[types.TFLOAT64], args[0]) }, sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm) addF("math", "Ceil", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpCeil, types.Types[types.TFLOAT64], args[0]) }, sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm) addF("math", "Floor", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpFloor, types.Types[types.TFLOAT64], args[0]) }, sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm) addF("math", "Round", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpRound, types.Types[types.TFLOAT64], args[0]) }, sys.ARM64, sys.PPC64, sys.S390X) addF("math", "RoundToEven", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpRoundToEven, types.Types[types.TFLOAT64], args[0]) }, sys.ARM64, sys.S390X, sys.Wasm) addF("math", "Abs", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpAbs, types.Types[types.TFLOAT64], args[0]) }, sys.ARM64, sys.ARM, sys.PPC64, sys.RISCV64, sys.Wasm, sys.MIPS, sys.MIPS64) addF("math", "Copysign", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue2(ssa.OpCopysign, types.Types[types.TFLOAT64], args[0], args[1]) }, sys.PPC64, sys.RISCV64, sys.Wasm) addF("math", "FMA", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2]) }, sys.ARM64, sys.PPC64, sys.RISCV64, sys.S390X) addF("math", "FMA", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { if !s.config.UseFMA { s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64] return s.variable(n, types.Types[types.TFLOAT64]) } if buildcfg.GOAMD64 >= 3 { return s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2]) } v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasFMA) b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(v) bTrue := s.f.NewBlock(ssa.BlockPlain) bFalse := s.f.NewBlock(ssa.BlockPlain) bEnd := s.f.NewBlock(ssa.BlockPlain) b.AddEdgeTo(bTrue) b.AddEdgeTo(bFalse) b.Likely = ssa.BranchLikely // >= haswell cpus are common // We have the intrinsic - use it directly. s.startBlock(bTrue) s.vars[n] = s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2]) s.endBlock().AddEdgeTo(bEnd) // Call the pure Go version. s.startBlock(bFalse) s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64] s.endBlock().AddEdgeTo(bEnd) // Merge results. s.startBlock(bEnd) return s.variable(n, types.Types[types.TFLOAT64]) }, sys.AMD64) addF("math", "FMA", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { if !s.config.UseFMA { s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64] return s.variable(n, types.Types[types.TFLOAT64]) } addr := s.entryNewValue1A(ssa.OpAddr, types.Types[types.TBOOL].PtrTo(), ir.Syms.ARMHasVFPv4, s.sb) v := s.load(types.Types[types.TBOOL], addr) b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(v) bTrue := s.f.NewBlock(ssa.BlockPlain) bFalse := s.f.NewBlock(ssa.BlockPlain) bEnd := s.f.NewBlock(ssa.BlockPlain) b.AddEdgeTo(bTrue) b.AddEdgeTo(bFalse) b.Likely = ssa.BranchLikely // We have the intrinsic - use it directly. s.startBlock(bTrue) s.vars[n] = s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2]) s.endBlock().AddEdgeTo(bEnd) // Call the pure Go version. s.startBlock(bFalse) s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64] s.endBlock().AddEdgeTo(bEnd) // Merge results. s.startBlock(bEnd) return s.variable(n, types.Types[types.TFLOAT64]) }, sys.ARM) makeRoundAMD64 := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { if buildcfg.GOAMD64 >= 2 { return s.newValue1(op, types.Types[types.TFLOAT64], args[0]) } v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasSSE41) b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(v) bTrue := s.f.NewBlock(ssa.BlockPlain) bFalse := s.f.NewBlock(ssa.BlockPlain) bEnd := s.f.NewBlock(ssa.BlockPlain) b.AddEdgeTo(bTrue) b.AddEdgeTo(bFalse) b.Likely = ssa.BranchLikely // most machines have sse4.1 nowadays // We have the intrinsic - use it directly. s.startBlock(bTrue) s.vars[n] = s.newValue1(op, types.Types[types.TFLOAT64], args[0]) s.endBlock().AddEdgeTo(bEnd) // Call the pure Go version. s.startBlock(bFalse) s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64] s.endBlock().AddEdgeTo(bEnd) // Merge results. s.startBlock(bEnd) return s.variable(n, types.Types[types.TFLOAT64]) } } addF("math", "RoundToEven", makeRoundAMD64(ssa.OpRoundToEven), sys.AMD64) addF("math", "Floor", makeRoundAMD64(ssa.OpFloor), sys.AMD64) addF("math", "Ceil", makeRoundAMD64(ssa.OpCeil), sys.AMD64) addF("math", "Trunc", makeRoundAMD64(ssa.OpTrunc), sys.AMD64) /******** math/bits ********/ addF("math/bits", "TrailingZeros64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], args[0]) }, sys.AMD64, sys.I386, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) addF("math/bits", "TrailingZeros32", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], args[0]) }, sys.AMD64, sys.I386, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) addF("math/bits", "TrailingZeros16", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { x := s.newValue1(ssa.OpZeroExt16to32, types.Types[types.TUINT32], args[0]) c := s.constInt32(types.Types[types.TUINT32], 1<<16) y := s.newValue2(ssa.OpOr32, types.Types[types.TUINT32], x, c) return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], y) }, sys.MIPS) addF("math/bits", "TrailingZeros16", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpCtz16, types.Types[types.TINT], args[0]) }, sys.AMD64, sys.I386, sys.ARM, sys.ARM64, sys.Wasm) addF("math/bits", "TrailingZeros16", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { x := s.newValue1(ssa.OpZeroExt16to64, types.Types[types.TUINT64], args[0]) c := s.constInt64(types.Types[types.TUINT64], 1<<16) y := s.newValue2(ssa.OpOr64, types.Types[types.TUINT64], x, c) return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], y) }, sys.S390X, sys.PPC64) addF("math/bits", "TrailingZeros8", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { x := s.newValue1(ssa.OpZeroExt8to32, types.Types[types.TUINT32], args[0]) c := s.constInt32(types.Types[types.TUINT32], 1<<8) y := s.newValue2(ssa.OpOr32, types.Types[types.TUINT32], x, c) return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], y) }, sys.MIPS) addF("math/bits", "TrailingZeros8", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpCtz8, types.Types[types.TINT], args[0]) }, sys.AMD64, sys.I386, sys.ARM, sys.ARM64, sys.Wasm) addF("math/bits", "TrailingZeros8", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { x := s.newValue1(ssa.OpZeroExt8to64, types.Types[types.TUINT64], args[0]) c := s.constInt64(types.Types[types.TUINT64], 1<<8) y := s.newValue2(ssa.OpOr64, types.Types[types.TUINT64], x, c) return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], y) }, sys.S390X) alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...) alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...) // ReverseBytes inlines correctly, no need to intrinsify it. // Nothing special is needed for targets where ReverseBytes16 lowers to a rotate // On Power10, 16-bit rotate is not available so use BRH instruction if buildcfg.GOPPC64 >= 10 { addF("math/bits", "ReverseBytes16", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpBswap16, types.Types[types.TUINT], args[0]) }, sys.PPC64) } addF("math/bits", "Len64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], args[0]) }, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) addF("math/bits", "Len32", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0]) }, sys.AMD64, sys.ARM64, sys.PPC64) addF("math/bits", "Len32", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { if s.config.PtrSize == 4 { return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0]) } x := s.newValue1(ssa.OpZeroExt32to64, types.Types[types.TUINT64], args[0]) return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x) }, sys.ARM, sys.S390X, sys.MIPS, sys.Wasm) addF("math/bits", "Len16", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { if s.config.PtrSize == 4 { x := s.newValue1(ssa.OpZeroExt16to32, types.Types[types.TUINT32], args[0]) return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], x) } x := s.newValue1(ssa.OpZeroExt16to64, types.Types[types.TUINT64], args[0]) return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x) }, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) addF("math/bits", "Len16", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpBitLen16, types.Types[types.TINT], args[0]) }, sys.AMD64) addF("math/bits", "Len8", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { if s.config.PtrSize == 4 { x := s.newValue1(ssa.OpZeroExt8to32, types.Types[types.TUINT32], args[0]) return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], x) } x := s.newValue1(ssa.OpZeroExt8to64, types.Types[types.TUINT64], args[0]) return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x) }, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) addF("math/bits", "Len8", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpBitLen8, types.Types[types.TINT], args[0]) }, sys.AMD64) addF("math/bits", "Len", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { if s.config.PtrSize == 4 { return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0]) } return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], args[0]) }, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) // LeadingZeros is handled because it trivially calls Len. addF("math/bits", "Reverse64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpBitRev64, types.Types[types.TINT], args[0]) }, sys.ARM64) addF("math/bits", "Reverse32", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpBitRev32, types.Types[types.TINT], args[0]) }, sys.ARM64) addF("math/bits", "Reverse16", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpBitRev16, types.Types[types.TINT], args[0]) }, sys.ARM64) addF("math/bits", "Reverse8", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpBitRev8, types.Types[types.TINT], args[0]) }, sys.ARM64) addF("math/bits", "Reverse", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpBitRev64, types.Types[types.TINT], args[0]) }, sys.ARM64) addF("math/bits", "RotateLeft8", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue2(ssa.OpRotateLeft8, types.Types[types.TUINT8], args[0], args[1]) }, sys.AMD64) addF("math/bits", "RotateLeft16", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue2(ssa.OpRotateLeft16, types.Types[types.TUINT16], args[0], args[1]) }, sys.AMD64) addF("math/bits", "RotateLeft32", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue2(ssa.OpRotateLeft32, types.Types[types.TUINT32], args[0], args[1]) }, sys.AMD64, sys.ARM, sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm, sys.Loong64) addF("math/bits", "RotateLeft64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue2(ssa.OpRotateLeft64, types.Types[types.TUINT64], args[0], args[1]) }, sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm, sys.Loong64) alias("math/bits", "RotateLeft", "math/bits", "RotateLeft64", p8...) makeOnesCountAMD64 := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { if buildcfg.GOAMD64 >= 2 { return s.newValue1(op, types.Types[types.TINT], args[0]) } v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasPOPCNT) b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(v) bTrue := s.f.NewBlock(ssa.BlockPlain) bFalse := s.f.NewBlock(ssa.BlockPlain) bEnd := s.f.NewBlock(ssa.BlockPlain) b.AddEdgeTo(bTrue) b.AddEdgeTo(bFalse) b.Likely = ssa.BranchLikely // most machines have popcnt nowadays // We have the intrinsic - use it directly. s.startBlock(bTrue) s.vars[n] = s.newValue1(op, types.Types[types.TINT], args[0]) s.endBlock().AddEdgeTo(bEnd) // Call the pure Go version. s.startBlock(bFalse) s.vars[n] = s.callResult(n, callNormal) // types.Types[TINT] s.endBlock().AddEdgeTo(bEnd) // Merge results. s.startBlock(bEnd) return s.variable(n, types.Types[types.TINT]) } } addF("math/bits", "OnesCount64", makeOnesCountAMD64(ssa.OpPopCount64), sys.AMD64) addF("math/bits", "OnesCount64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpPopCount64, types.Types[types.TINT], args[0]) }, sys.PPC64, sys.ARM64, sys.S390X, sys.Wasm) addF("math/bits", "OnesCount32", makeOnesCountAMD64(ssa.OpPopCount32), sys.AMD64) addF("math/bits", "OnesCount32", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpPopCount32, types.Types[types.TINT], args[0]) }, sys.PPC64, sys.ARM64, sys.S390X, sys.Wasm) addF("math/bits", "OnesCount16", makeOnesCountAMD64(ssa.OpPopCount16), sys.AMD64) addF("math/bits", "OnesCount16", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpPopCount16, types.Types[types.TINT], args[0]) }, sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm) addF("math/bits", "OnesCount8", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue1(ssa.OpPopCount8, types.Types[types.TINT], args[0]) }, sys.S390X, sys.PPC64, sys.Wasm) addF("math/bits", "OnesCount", makeOnesCountAMD64(ssa.OpPopCount64), sys.AMD64) addF("math/bits", "Mul64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1]) }, sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X, sys.MIPS64, sys.RISCV64, sys.Loong64) alias("math/bits", "Mul", "math/bits", "Mul64", p8...) alias("runtime/internal/math", "Mul64", "math/bits", "Mul64", p8...) addF("math/bits", "Add64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue3(ssa.OpAdd64carry, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2]) }, sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X, sys.RISCV64, sys.Loong64) alias("math/bits", "Add", "math/bits", "Add64", p8...) addF("math/bits", "Sub64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { return s.newValue3(ssa.OpSub64borrow, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2]) }, sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X, sys.RISCV64, sys.Loong64) alias("math/bits", "Sub", "math/bits", "Sub64", p8...) addF("math/bits", "Div64", func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value { // check for divide-by-zero/overflow and panic with appropriate message cmpZero := s.newValue2(s.ssaOp(ir.ONE, types.Types[types.TUINT64]), types.Types[types.TBOOL], args[2], s.zeroVal(types.Types[types.TUINT64])) s.check(cmpZero, ir.Syms.Panicdivide) cmpOverflow := s.newValue2(s.ssaOp(ir.OLT, types.Types[types.TUINT64]), types.Types[types.TBOOL], args[0], args[2]) s.check(cmpOverflow, ir.Syms.Panicoverflow) return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2]) }, sys.AMD64) alias("math/bits", "Div", "math/bits", "Div64", sys.ArchAMD64) alias("runtime/internal/sys", "TrailingZeros8", "math/bits", "TrailingZeros8", all...) alias("runtime/internal/sys", "TrailingZeros32", "math/bits", "TrailingZeros32", all...) alias("runtime/internal/sys", "TrailingZeros64", "math/bits", "TrailingZeros64", all...) alias("runtime/internal/sys", "Len8", "math/bits", "Len8", all...) alias("runtime/internal/sys", "Len64", "math/bits", "Len64", all...) alias("runtime/internal/sys", "OnesCount64", "math/bits", "OnesCount64", all...) /******** sync/atomic ********/ // Note: these are disabled by flag_race in findIntrinsic below. alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...) alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...) alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...) alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...) alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...) alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...) alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...) alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...) alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...) // Note: not StorePointer, that needs a write barrier. Same below for {CompareAnd}Swap. alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...) alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...) alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...) alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...) alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...) alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...) alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...) alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...) alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...) alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...) alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...) alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...) alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...) alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...) alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...) alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...) alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...) alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...) alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...) alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...) alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...) alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...) /******** math/big ********/ alias("math/big", "mulWW", "math/bits", "Mul64", p8...) } // findIntrinsic returns a function which builds the SSA equivalent of the // function identified by the symbol sym. If sym is not an intrinsic call, returns nil. func findIntrinsic(sym *types.Sym) intrinsicBuilder { if sym == nil || sym.Pkg == nil { return nil } pkg := sym.Pkg.Path if sym.Pkg == ir.Pkgs.Runtime { pkg = "runtime" } if base.Flag.Race && pkg == "sync/atomic" { // The race detector needs to be able to intercept these calls. // We can't intrinsify them. return nil } // Skip intrinsifying math functions (which may contain hard-float // instructions) when soft-float if Arch.SoftFloat && pkg == "math" { return nil } fn := sym.Name if ssa.IntrinsicsDisable { if pkg == "runtime" && (fn == "getcallerpc" || fn == "getcallersp" || fn == "getclosureptr") { // These runtime functions don't have definitions, must be intrinsics. } else { return nil } } return intrinsics[intrinsicKey{Arch.LinkArch.Arch, pkg, fn}] } func IsIntrinsicCall(n *ir.CallExpr) bool { if n == nil { return false } name, ok := n.X.(*ir.Name) if !ok { return false } return findIntrinsic(name.Sym()) != nil } // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation. func (s *state) intrinsicCall(n *ir.CallExpr) *ssa.Value { v := findIntrinsic(n.X.Sym())(s, n, s.intrinsicArgs(n)) if ssa.IntrinsicsDebug > 0 { x := v if x == nil { x = s.mem() } if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 { x = x.Args[0] } base.WarnfAt(n.Pos(), "intrinsic substitution for %v with %s", n.X.Sym().Name, x.LongString()) } return v } // intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them. func (s *state) intrinsicArgs(n *ir.CallExpr) []*ssa.Value { args := make([]*ssa.Value, len(n.Args)) for i, n := range n.Args { args[i] = s.expr(n) } return args } // openDeferRecord adds code to evaluate and store the function for an open-code defer // call, and records info about the defer, so we can generate proper code on the // exit paths. n is the sub-node of the defer node that is the actual function // call. We will also record funcdata information on where the function is stored // (as well as the deferBits variable), and this will enable us to run the proper // defer calls during panics. func (s *state) openDeferRecord(n *ir.CallExpr) { if len(n.Args) != 0 || n.Op() != ir.OCALLFUNC || n.X.Type().NumResults() != 0 { s.Fatalf("defer call with arguments or results: %v", n) } opendefer := &openDeferInfo{ n: n, } fn := n.X // We must always store the function value in a stack slot for the // runtime panic code to use. But in the defer exit code, we will // call the function directly if it is a static function. closureVal := s.expr(fn) closure := s.openDeferSave(fn.Type(), closureVal) opendefer.closureNode = closure.Aux.(*ir.Name) if !(fn.Op() == ir.ONAME && fn.(*ir.Name).Class == ir.PFUNC) { opendefer.closure = closure } index := len(s.openDefers) s.openDefers = append(s.openDefers, opendefer) // Update deferBits only after evaluation and storage to stack of // the function is successful. bitvalue := s.constInt8(types.Types[types.TUINT8], 1<= 0; i-- { r := s.openDefers[i] bCond := s.f.NewBlock(ssa.BlockPlain) bEnd := s.f.NewBlock(ssa.BlockPlain) deferBits := s.variable(deferBitsVar, types.Types[types.TUINT8]) // Generate code to check if the bit associated with the current // defer is set. bitval := s.constInt8(types.Types[types.TUINT8], 1< int64(4*types.PtrSize) { // 4*Widthptr is an arbitrary constant. We want it // to be at least 3*Widthptr so slices can be registerized. // Too big and we'll introduce too much register pressure. return false } switch t.Kind() { case types.TARRAY: // We can't do larger arrays because dynamic indexing is // not supported on SSA variables. // TODO: allow if all indexes are constant. if t.NumElem() <= 1 { return TypeOK(t.Elem()) } return false case types.TSTRUCT: if t.NumFields() > ssa.MaxStruct { return false } for _, t1 := range t.Fields().Slice() { if !TypeOK(t1.Type) { return false } } return true default: return true } } // exprPtr evaluates n to a pointer and nil-checks it. func (s *state) exprPtr(n ir.Node, bounded bool, lineno src.XPos) *ssa.Value { p := s.expr(n) if bounded || n.NonNil() { if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 { s.f.Warnl(lineno, "removed nil check") } return p } p = s.nilCheck(p) return p } // nilCheck generates nil pointer checking code. // Used only for automatically inserted nil checks, // not for user code like 'x != nil'. // Returns a "definitely not nil" copy of x to ensure proper ordering // of the uses of the post-nilcheck pointer. func (s *state) nilCheck(ptr *ssa.Value) *ssa.Value { if base.Debug.DisableNil != 0 || s.curfn.NilCheckDisabled() { return ptr } return s.newValue2(ssa.OpNilCheck, ptr.Type, ptr, s.mem()) } // boundsCheck generates bounds checking code. Checks if 0 <= idx <[=] len, branches to exit if not. // Starts a new block on return. // On input, len must be converted to full int width and be nonnegative. // Returns idx converted to full int width. // If bounded is true then caller guarantees the index is not out of bounds // (but boundsCheck will still extend the index to full int width). func (s *state) boundsCheck(idx, len *ssa.Value, kind ssa.BoundsKind, bounded bool) *ssa.Value { idx = s.extendIndex(idx, len, kind, bounded) if bounded || base.Flag.B != 0 { // If bounded or bounds checking is flag-disabled, then no check necessary, // just return the extended index. // // Here, bounded == true if the compiler generated the index itself, // such as in the expansion of a slice initializer. These indexes are // compiler-generated, not Go program variables, so they cannot be // attacker-controlled, so we can omit Spectre masking as well. // // Note that we do not want to omit Spectre masking in code like: // // if 0 <= i && i < len(x) { // use(x[i]) // } // // Lucky for us, bounded==false for that code. // In that case (handled below), we emit a bound check (and Spectre mask) // and then the prove pass will remove the bounds check. // In theory the prove pass could potentially remove certain // Spectre masks, but it's very delicate and probably better // to be conservative and leave them all in. return idx } bNext := s.f.NewBlock(ssa.BlockPlain) bPanic := s.f.NewBlock(ssa.BlockExit) if !idx.Type.IsSigned() { switch kind { case ssa.BoundsIndex: kind = ssa.BoundsIndexU case ssa.BoundsSliceAlen: kind = ssa.BoundsSliceAlenU case ssa.BoundsSliceAcap: kind = ssa.BoundsSliceAcapU case ssa.BoundsSliceB: kind = ssa.BoundsSliceBU case ssa.BoundsSlice3Alen: kind = ssa.BoundsSlice3AlenU case ssa.BoundsSlice3Acap: kind = ssa.BoundsSlice3AcapU case ssa.BoundsSlice3B: kind = ssa.BoundsSlice3BU case ssa.BoundsSlice3C: kind = ssa.BoundsSlice3CU } } var cmp *ssa.Value if kind == ssa.BoundsIndex || kind == ssa.BoundsIndexU { cmp = s.newValue2(ssa.OpIsInBounds, types.Types[types.TBOOL], idx, len) } else { cmp = s.newValue2(ssa.OpIsSliceInBounds, types.Types[types.TBOOL], idx, len) } b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(cmp) b.Likely = ssa.BranchLikely b.AddEdgeTo(bNext) b.AddEdgeTo(bPanic) s.startBlock(bPanic) if Arch.LinkArch.Family == sys.Wasm { // TODO(khr): figure out how to do "register" based calling convention for bounds checks. // Should be similar to gcWriteBarrier, but I can't make it work. s.rtcall(BoundsCheckFunc[kind], false, nil, idx, len) } else { mem := s.newValue3I(ssa.OpPanicBounds, types.TypeMem, int64(kind), idx, len, s.mem()) s.endBlock().SetControl(mem) } s.startBlock(bNext) // In Spectre index mode, apply an appropriate mask to avoid speculative out-of-bounds accesses. if base.Flag.Cfg.SpectreIndex { op := ssa.OpSpectreIndex if kind != ssa.BoundsIndex && kind != ssa.BoundsIndexU { op = ssa.OpSpectreSliceIndex } idx = s.newValue2(op, types.Types[types.TINT], idx, len) } return idx } // If cmp (a bool) is false, panic using the given function. func (s *state) check(cmp *ssa.Value, fn *obj.LSym) { b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(cmp) b.Likely = ssa.BranchLikely bNext := s.f.NewBlock(ssa.BlockPlain) line := s.peekPos() pos := base.Ctxt.PosTable.Pos(line) fl := funcLine{f: fn, base: pos.Base(), line: pos.Line()} bPanic := s.panics[fl] if bPanic == nil { bPanic = s.f.NewBlock(ssa.BlockPlain) s.panics[fl] = bPanic s.startBlock(bPanic) // The panic call takes/returns memory to ensure that the right // memory state is observed if the panic happens. s.rtcall(fn, false, nil) } b.AddEdgeTo(bNext) b.AddEdgeTo(bPanic) s.startBlock(bNext) } func (s *state) intDivide(n ir.Node, a, b *ssa.Value) *ssa.Value { needcheck := true switch b.Op { case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64: if b.AuxInt != 0 { needcheck = false } } if needcheck { // do a size-appropriate check for zero cmp := s.newValue2(s.ssaOp(ir.ONE, n.Type()), types.Types[types.TBOOL], b, s.zeroVal(n.Type())) s.check(cmp, ir.Syms.Panicdivide) } return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b) } // rtcall issues a call to the given runtime function fn with the listed args. // Returns a slice of results of the given result types. // The call is added to the end of the current block. // If returns is false, the block is marked as an exit block. func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value { s.prevCall = nil // Write args to the stack off := base.Ctxt.Arch.FixedFrameSize var callArgs []*ssa.Value var callArgTypes []*types.Type for _, arg := range args { t := arg.Type off = types.RoundUp(off, t.Alignment()) size := t.Size() callArgs = append(callArgs, arg) callArgTypes = append(callArgTypes, t) off += size } off = types.RoundUp(off, int64(types.RegSize)) // Issue call var call *ssa.Value aux := ssa.StaticAuxCall(fn, s.f.ABIDefault.ABIAnalyzeTypes(nil, callArgTypes, results)) callArgs = append(callArgs, s.mem()) call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux) call.AddArgs(callArgs...) s.vars[memVar] = s.newValue1I(ssa.OpSelectN, types.TypeMem, int64(len(results)), call) if !returns { // Finish block b := s.endBlock() b.Kind = ssa.BlockExit b.SetControl(call) call.AuxInt = off - base.Ctxt.Arch.FixedFrameSize if len(results) > 0 { s.Fatalf("panic call can't have results") } return nil } // Load results res := make([]*ssa.Value, len(results)) for i, t := range results { off = types.RoundUp(off, t.Alignment()) res[i] = s.resultOfCall(call, int64(i), t) off += t.Size() } off = types.RoundUp(off, int64(types.PtrSize)) // Remember how much callee stack space we needed. call.AuxInt = off return res } // do *left = right for type t. func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask, leftIsStmt bool) { s.instrument(t, left, instrumentWrite) if skip == 0 && (!t.HasPointers() || ssa.IsStackAddr(left)) { // Known to not have write barrier. Store the whole type. s.vars[memVar] = s.newValue3Apos(ssa.OpStore, types.TypeMem, t, left, right, s.mem(), leftIsStmt) return } // store scalar fields first, so write barrier stores for // pointer fields can be grouped together, and scalar values // don't need to be live across the write barrier call. // TODO: if the writebarrier pass knows how to reorder stores, // we can do a single store here as long as skip==0. s.storeTypeScalars(t, left, right, skip) if skip&skipPtr == 0 && t.HasPointers() { s.storeTypePtrs(t, left, right) } } // do *left = right for all scalar (non-pointer) parts of t. func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) { switch { case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex(): s.store(t, left, right) case t.IsPtrShaped(): if t.IsPtr() && t.Elem().NotInHeap() { s.store(t, left, right) // see issue 42032 } // otherwise, no scalar fields. case t.IsString(): if skip&skipLen != 0 { return } len := s.newValue1(ssa.OpStringLen, types.Types[types.TINT], right) lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left) s.store(types.Types[types.TINT], lenAddr, len) case t.IsSlice(): if skip&skipLen == 0 { len := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], right) lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left) s.store(types.Types[types.TINT], lenAddr, len) } if skip&skipCap == 0 { cap := s.newValue1(ssa.OpSliceCap, types.Types[types.TINT], right) capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.PtrSize, left) s.store(types.Types[types.TINT], capAddr, cap) } case t.IsInterface(): // itab field doesn't need a write barrier (even though it is a pointer). itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right) s.store(types.Types[types.TUINTPTR], left, itab) case t.IsStruct(): n := t.NumFields() for i := 0; i < n; i++ { ft := t.FieldType(i) addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) s.storeTypeScalars(ft, addr, val, 0) } case t.IsArray() && t.NumElem() == 0: // nothing case t.IsArray() && t.NumElem() == 1: s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0) default: s.Fatalf("bad write barrier type %v", t) } } // do *left = right for all pointer parts of t. func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) { switch { case t.IsPtrShaped(): if t.IsPtr() && t.Elem().NotInHeap() { break // see issue 42032 } s.store(t, left, right) case t.IsString(): ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right) s.store(s.f.Config.Types.BytePtr, left, ptr) case t.IsSlice(): elType := types.NewPtr(t.Elem()) ptr := s.newValue1(ssa.OpSlicePtr, elType, right) s.store(elType, left, ptr) case t.IsInterface(): // itab field is treated as a scalar. idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right) idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left) s.store(s.f.Config.Types.BytePtr, idataAddr, idata) case t.IsStruct(): n := t.NumFields() for i := 0; i < n; i++ { ft := t.FieldType(i) if !ft.HasPointers() { continue } addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) s.storeTypePtrs(ft, addr, val) } case t.IsArray() && t.NumElem() == 0: // nothing case t.IsArray() && t.NumElem() == 1: s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right)) default: s.Fatalf("bad write barrier type %v", t) } } // putArg evaluates n for the purpose of passing it as an argument to a function and returns the value for the call. func (s *state) putArg(n ir.Node, t *types.Type) *ssa.Value { var a *ssa.Value if !TypeOK(t) { a = s.newValue2(ssa.OpDereference, t, s.addr(n), s.mem()) } else { a = s.expr(n) } return a } func (s *state) storeArgWithBase(n ir.Node, t *types.Type, base *ssa.Value, off int64) { pt := types.NewPtr(t) var addr *ssa.Value if base == s.sp { // Use special routine that avoids allocation on duplicate offsets. addr = s.constOffPtrSP(pt, off) } else { addr = s.newValue1I(ssa.OpOffPtr, pt, off, base) } if !TypeOK(t) { a := s.addr(n) s.move(t, addr, a) return } a := s.expr(n) s.storeType(t, addr, a, 0, false) } // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result. // i,j,k may be nil, in which case they are set to their default value. // v may be a slice, string or pointer to an array. func (s *state) slice(v, i, j, k *ssa.Value, bounded bool) (p, l, c *ssa.Value) { t := v.Type var ptr, len, cap *ssa.Value switch { case t.IsSlice(): ptr = s.newValue1(ssa.OpSlicePtr, types.NewPtr(t.Elem()), v) len = s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], v) cap = s.newValue1(ssa.OpSliceCap, types.Types[types.TINT], v) case t.IsString(): ptr = s.newValue1(ssa.OpStringPtr, types.NewPtr(types.Types[types.TUINT8]), v) len = s.newValue1(ssa.OpStringLen, types.Types[types.TINT], v) cap = len case t.IsPtr(): if !t.Elem().IsArray() { s.Fatalf("bad ptr to array in slice %v\n", t) } nv := s.nilCheck(v) ptr = s.newValue1(ssa.OpCopy, types.NewPtr(t.Elem().Elem()), nv) len = s.constInt(types.Types[types.TINT], t.Elem().NumElem()) cap = len default: s.Fatalf("bad type in slice %v\n", t) } // Set default values if i == nil { i = s.constInt(types.Types[types.TINT], 0) } if j == nil { j = len } three := true if k == nil { three = false k = cap } // Panic if slice indices are not in bounds. // Make sure we check these in reverse order so that we're always // comparing against a value known to be nonnegative. See issue 28797. if three { if k != cap { kind := ssa.BoundsSlice3Alen if t.IsSlice() { kind = ssa.BoundsSlice3Acap } k = s.boundsCheck(k, cap, kind, bounded) } if j != k { j = s.boundsCheck(j, k, ssa.BoundsSlice3B, bounded) } i = s.boundsCheck(i, j, ssa.BoundsSlice3C, bounded) } else { if j != k { kind := ssa.BoundsSliceAlen if t.IsSlice() { kind = ssa.BoundsSliceAcap } j = s.boundsCheck(j, k, kind, bounded) } i = s.boundsCheck(i, j, ssa.BoundsSliceB, bounded) } // Word-sized integer operations. subOp := s.ssaOp(ir.OSUB, types.Types[types.TINT]) mulOp := s.ssaOp(ir.OMUL, types.Types[types.TINT]) andOp := s.ssaOp(ir.OAND, types.Types[types.TINT]) // Calculate the length (rlen) and capacity (rcap) of the new slice. // For strings the capacity of the result is unimportant. However, // we use rcap to test if we've generated a zero-length slice. // Use length of strings for that. rlen := s.newValue2(subOp, types.Types[types.TINT], j, i) rcap := rlen if j != k && !t.IsString() { rcap = s.newValue2(subOp, types.Types[types.TINT], k, i) } if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 { // No pointer arithmetic necessary. return ptr, rlen, rcap } // Calculate the base pointer (rptr) for the new slice. // // Generate the following code assuming that indexes are in bounds. // The masking is to make sure that we don't generate a slice // that points to the next object in memory. We cannot just set // the pointer to nil because then we would create a nil slice or // string. // // rcap = k - i // rlen = j - i // rptr = ptr + (mask(rcap) & (i * stride)) // // Where mask(x) is 0 if x==0 and -1 if x>0 and stride is the width // of the element type. stride := s.constInt(types.Types[types.TINT], ptr.Type.Elem().Size()) // The delta is the number of bytes to offset ptr by. delta := s.newValue2(mulOp, types.Types[types.TINT], i, stride) // If we're slicing to the point where the capacity is zero, // zero out the delta. mask := s.newValue1(ssa.OpSlicemask, types.Types[types.TINT], rcap) delta = s.newValue2(andOp, types.Types[types.TINT], delta, mask) // Compute rptr = ptr + delta. rptr := s.newValue2(ssa.OpAddPtr, ptr.Type, ptr, delta) return rptr, rlen, rcap } type u642fcvtTab struct { leq, cvt2F, and, rsh, or, add ssa.Op one func(*state, *types.Type, int64) *ssa.Value } var u64_f64 = u642fcvtTab{ leq: ssa.OpLeq64, cvt2F: ssa.OpCvt64to64F, and: ssa.OpAnd64, rsh: ssa.OpRsh64Ux64, or: ssa.OpOr64, add: ssa.OpAdd64F, one: (*state).constInt64, } var u64_f32 = u642fcvtTab{ leq: ssa.OpLeq64, cvt2F: ssa.OpCvt64to32F, and: ssa.OpAnd64, rsh: ssa.OpRsh64Ux64, or: ssa.OpOr64, add: ssa.OpAdd32F, one: (*state).constInt64, } func (s *state) uint64Tofloat64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { return s.uint64Tofloat(&u64_f64, n, x, ft, tt) } func (s *state) uint64Tofloat32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { return s.uint64Tofloat(&u64_f32, n, x, ft, tt) } func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { // if x >= 0 { // result = (floatY) x // } else { // y = uintX(x) ; y = x & 1 // z = uintX(x) ; z = z >> 1 // z = z | y // result = floatY(z) // result = result + result // } // // Code borrowed from old code generator. // What's going on: large 64-bit "unsigned" looks like // negative number to hardware's integer-to-float // conversion. However, because the mantissa is only // 63 bits, we don't need the LSB, so instead we do an // unsigned right shift (divide by two), convert, and // double. However, before we do that, we need to be // sure that we do not lose a "1" if that made the // difference in the resulting rounding. Therefore, we // preserve it, and OR (not ADD) it back in. The case // that matters is when the eleven discarded bits are // equal to 10000000001; that rounds up, and the 1 cannot // be lost else it would round down if the LSB of the // candidate mantissa is 0. cmp := s.newValue2(cvttab.leq, types.Types[types.TBOOL], s.zeroVal(ft), x) b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(cmp) b.Likely = ssa.BranchLikely bThen := s.f.NewBlock(ssa.BlockPlain) bElse := s.f.NewBlock(ssa.BlockPlain) bAfter := s.f.NewBlock(ssa.BlockPlain) b.AddEdgeTo(bThen) s.startBlock(bThen) a0 := s.newValue1(cvttab.cvt2F, tt, x) s.vars[n] = a0 s.endBlock() bThen.AddEdgeTo(bAfter) b.AddEdgeTo(bElse) s.startBlock(bElse) one := cvttab.one(s, ft, 1) y := s.newValue2(cvttab.and, ft, x, one) z := s.newValue2(cvttab.rsh, ft, x, one) z = s.newValue2(cvttab.or, ft, z, y) a := s.newValue1(cvttab.cvt2F, tt, z) a1 := s.newValue2(cvttab.add, tt, a, a) s.vars[n] = a1 s.endBlock() bElse.AddEdgeTo(bAfter) s.startBlock(bAfter) return s.variable(n, n.Type()) } type u322fcvtTab struct { cvtI2F, cvtF2F ssa.Op } var u32_f64 = u322fcvtTab{ cvtI2F: ssa.OpCvt32to64F, cvtF2F: ssa.OpCopy, } var u32_f32 = u322fcvtTab{ cvtI2F: ssa.OpCvt32to32F, cvtF2F: ssa.OpCvt64Fto32F, } func (s *state) uint32Tofloat64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { return s.uint32Tofloat(&u32_f64, n, x, ft, tt) } func (s *state) uint32Tofloat32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { return s.uint32Tofloat(&u32_f32, n, x, ft, tt) } func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { // if x >= 0 { // result = floatY(x) // } else { // result = floatY(float64(x) + (1<<32)) // } cmp := s.newValue2(ssa.OpLeq32, types.Types[types.TBOOL], s.zeroVal(ft), x) b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(cmp) b.Likely = ssa.BranchLikely bThen := s.f.NewBlock(ssa.BlockPlain) bElse := s.f.NewBlock(ssa.BlockPlain) bAfter := s.f.NewBlock(ssa.BlockPlain) b.AddEdgeTo(bThen) s.startBlock(bThen) a0 := s.newValue1(cvttab.cvtI2F, tt, x) s.vars[n] = a0 s.endBlock() bThen.AddEdgeTo(bAfter) b.AddEdgeTo(bElse) s.startBlock(bElse) a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[types.TFLOAT64], x) twoToThe32 := s.constFloat64(types.Types[types.TFLOAT64], float64(1<<32)) a2 := s.newValue2(ssa.OpAdd64F, types.Types[types.TFLOAT64], a1, twoToThe32) a3 := s.newValue1(cvttab.cvtF2F, tt, a2) s.vars[n] = a3 s.endBlock() bElse.AddEdgeTo(bAfter) s.startBlock(bAfter) return s.variable(n, n.Type()) } // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels. func (s *state) referenceTypeBuiltin(n *ir.UnaryExpr, x *ssa.Value) *ssa.Value { if !n.X.Type().IsMap() && !n.X.Type().IsChan() { s.Fatalf("node must be a map or a channel") } // if n == nil { // return 0 // } else { // // len // return *((*int)n) // // cap // return *(((*int)n)+1) // } lenType := n.Type() nilValue := s.constNil(types.Types[types.TUINTPTR]) cmp := s.newValue2(ssa.OpEqPtr, types.Types[types.TBOOL], x, nilValue) b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(cmp) b.Likely = ssa.BranchUnlikely bThen := s.f.NewBlock(ssa.BlockPlain) bElse := s.f.NewBlock(ssa.BlockPlain) bAfter := s.f.NewBlock(ssa.BlockPlain) // length/capacity of a nil map/chan is zero b.AddEdgeTo(bThen) s.startBlock(bThen) s.vars[n] = s.zeroVal(lenType) s.endBlock() bThen.AddEdgeTo(bAfter) b.AddEdgeTo(bElse) s.startBlock(bElse) switch n.Op() { case ir.OLEN: // length is stored in the first word for map/chan s.vars[n] = s.load(lenType, x) case ir.OCAP: // capacity is stored in the second word for chan sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Size(), x) s.vars[n] = s.load(lenType, sw) default: s.Fatalf("op must be OLEN or OCAP") } s.endBlock() bElse.AddEdgeTo(bAfter) s.startBlock(bAfter) return s.variable(n, lenType) } type f2uCvtTab struct { ltf, cvt2U, subf, or ssa.Op floatValue func(*state, *types.Type, float64) *ssa.Value intValue func(*state, *types.Type, int64) *ssa.Value cutoff uint64 } var f32_u64 = f2uCvtTab{ ltf: ssa.OpLess32F, cvt2U: ssa.OpCvt32Fto64, subf: ssa.OpSub32F, or: ssa.OpOr64, floatValue: (*state).constFloat32, intValue: (*state).constInt64, cutoff: 1 << 63, } var f64_u64 = f2uCvtTab{ ltf: ssa.OpLess64F, cvt2U: ssa.OpCvt64Fto64, subf: ssa.OpSub64F, or: ssa.OpOr64, floatValue: (*state).constFloat64, intValue: (*state).constInt64, cutoff: 1 << 63, } var f32_u32 = f2uCvtTab{ ltf: ssa.OpLess32F, cvt2U: ssa.OpCvt32Fto32, subf: ssa.OpSub32F, or: ssa.OpOr32, floatValue: (*state).constFloat32, intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) }, cutoff: 1 << 31, } var f64_u32 = f2uCvtTab{ ltf: ssa.OpLess64F, cvt2U: ssa.OpCvt64Fto32, subf: ssa.OpSub64F, or: ssa.OpOr32, floatValue: (*state).constFloat64, intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) }, cutoff: 1 << 31, } func (s *state) float32ToUint64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { return s.floatToUint(&f32_u64, n, x, ft, tt) } func (s *state) float64ToUint64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { return s.floatToUint(&f64_u64, n, x, ft, tt) } func (s *state) float32ToUint32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { return s.floatToUint(&f32_u32, n, x, ft, tt) } func (s *state) float64ToUint32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { return s.floatToUint(&f64_u32, n, x, ft, tt) } func (s *state) floatToUint(cvttab *f2uCvtTab, n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { // cutoff:=1<<(intY_Size-1) // if x < floatX(cutoff) { // result = uintY(x) // } else { // y = x - floatX(cutoff) // z = uintY(y) // result = z | -(cutoff) // } cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff)) cmp := s.newValue2(cvttab.ltf, types.Types[types.TBOOL], x, cutoff) b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(cmp) b.Likely = ssa.BranchLikely bThen := s.f.NewBlock(ssa.BlockPlain) bElse := s.f.NewBlock(ssa.BlockPlain) bAfter := s.f.NewBlock(ssa.BlockPlain) b.AddEdgeTo(bThen) s.startBlock(bThen) a0 := s.newValue1(cvttab.cvt2U, tt, x) s.vars[n] = a0 s.endBlock() bThen.AddEdgeTo(bAfter) b.AddEdgeTo(bElse) s.startBlock(bElse) y := s.newValue2(cvttab.subf, ft, x, cutoff) y = s.newValue1(cvttab.cvt2U, tt, y) z := cvttab.intValue(s, tt, int64(-cvttab.cutoff)) a1 := s.newValue2(cvttab.or, tt, y, z) s.vars[n] = a1 s.endBlock() bElse.AddEdgeTo(bAfter) s.startBlock(bAfter) return s.variable(n, n.Type()) } // dottype generates SSA for a type assertion node. // commaok indicates whether to panic or return a bool. // If commaok is false, resok will be nil. func (s *state) dottype(n *ir.TypeAssertExpr, commaok bool) (res, resok *ssa.Value) { iface := s.expr(n.X) // input interface target := s.reflectType(n.Type()) // target type var targetItab *ssa.Value if n.ITab != nil { targetItab = s.expr(n.ITab) } return s.dottype1(n.Pos(), n.X.Type(), n.Type(), iface, nil, target, targetItab, commaok) } func (s *state) dynamicDottype(n *ir.DynamicTypeAssertExpr, commaok bool) (res, resok *ssa.Value) { iface := s.expr(n.X) var source, target, targetItab *ssa.Value if n.SrcRType != nil { source = s.expr(n.SrcRType) } if !n.X.Type().IsEmptyInterface() && !n.Type().IsInterface() { byteptr := s.f.Config.Types.BytePtr targetItab = s.expr(n.ITab) // TODO(mdempsky): Investigate whether compiling n.RType could be // better than loading itab.typ. target = s.load(byteptr, s.newValue1I(ssa.OpOffPtr, byteptr, int64(types.PtrSize), targetItab)) // itab.typ } else { target = s.expr(n.RType) } return s.dottype1(n.Pos(), n.X.Type(), n.Type(), iface, source, target, targetItab, commaok) } // dottype1 implements a x.(T) operation. iface is the argument (x), dst is the type we're asserting to (T) // and src is the type we're asserting from. // source is the *runtime._type of src // target is the *runtime._type of dst. // If src is a nonempty interface and dst is not an interface, targetItab is an itab representing (dst, src). Otherwise it is nil. // commaok is true if the caller wants a boolean success value. Otherwise, the generated code panics if the conversion fails. func (s *state) dottype1(pos src.XPos, src, dst *types.Type, iface, source, target, targetItab *ssa.Value, commaok bool) (res, resok *ssa.Value) { byteptr := s.f.Config.Types.BytePtr if dst.IsInterface() { if dst.IsEmptyInterface() { // Converting to an empty interface. // Input could be an empty or nonempty interface. if base.Debug.TypeAssert > 0 { base.WarnfAt(pos, "type assertion inlined") } // Get itab/type field from input. itab := s.newValue1(ssa.OpITab, byteptr, iface) // Conversion succeeds iff that field is not nil. cond := s.newValue2(ssa.OpNeqPtr, types.Types[types.TBOOL], itab, s.constNil(byteptr)) if src.IsEmptyInterface() && commaok { // Converting empty interface to empty interface with ,ok is just a nil check. return iface, cond } // Branch on nilness. b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(cond) b.Likely = ssa.BranchLikely bOk := s.f.NewBlock(ssa.BlockPlain) bFail := s.f.NewBlock(ssa.BlockPlain) b.AddEdgeTo(bOk) b.AddEdgeTo(bFail) if !commaok { // On failure, panic by calling panicnildottype. s.startBlock(bFail) s.rtcall(ir.Syms.Panicnildottype, false, nil, target) // On success, return (perhaps modified) input interface. s.startBlock(bOk) if src.IsEmptyInterface() { res = iface // Use input interface unchanged. return } // Load type out of itab, build interface with existing idata. off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(types.PtrSize), itab) typ := s.load(byteptr, off) idata := s.newValue1(ssa.OpIData, byteptr, iface) res = s.newValue2(ssa.OpIMake, dst, typ, idata) return } s.startBlock(bOk) // nonempty -> empty // Need to load type from itab off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(types.PtrSize), itab) s.vars[typVar] = s.load(byteptr, off) s.endBlock() // itab is nil, might as well use that as the nil result. s.startBlock(bFail) s.vars[typVar] = itab s.endBlock() // Merge point. bEnd := s.f.NewBlock(ssa.BlockPlain) bOk.AddEdgeTo(bEnd) bFail.AddEdgeTo(bEnd) s.startBlock(bEnd) idata := s.newValue1(ssa.OpIData, byteptr, iface) res = s.newValue2(ssa.OpIMake, dst, s.variable(typVar, byteptr), idata) resok = cond delete(s.vars, typVar) // no practical effect, just to indicate typVar is no longer live. return } // converting to a nonempty interface needs a runtime call. if base.Debug.TypeAssert > 0 { base.WarnfAt(pos, "type assertion not inlined") } if !commaok { fn := ir.Syms.AssertI2I if src.IsEmptyInterface() { fn = ir.Syms.AssertE2I } data := s.newValue1(ssa.OpIData, types.Types[types.TUNSAFEPTR], iface) tab := s.newValue1(ssa.OpITab, byteptr, iface) tab = s.rtcall(fn, true, []*types.Type{byteptr}, target, tab)[0] return s.newValue2(ssa.OpIMake, dst, tab, data), nil } fn := ir.Syms.AssertI2I2 if src.IsEmptyInterface() { fn = ir.Syms.AssertE2I2 } res = s.rtcall(fn, true, []*types.Type{dst}, target, iface)[0] resok = s.newValue2(ssa.OpNeqInter, types.Types[types.TBOOL], res, s.constInterface(dst)) return } if base.Debug.TypeAssert > 0 { base.WarnfAt(pos, "type assertion inlined") } // Converting to a concrete type. direct := types.IsDirectIface(dst) itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface if base.Debug.TypeAssert > 0 { base.WarnfAt(pos, "type assertion inlined") } var wantedFirstWord *ssa.Value if src.IsEmptyInterface() { // Looking for pointer to target type. wantedFirstWord = target } else { // Looking for pointer to itab for target type and source interface. wantedFirstWord = targetItab } var tmp ir.Node // temporary for use with large types var addr *ssa.Value // address of tmp if commaok && !TypeOK(dst) { // unSSAable type, use temporary. // TODO: get rid of some of these temporaries. tmp, addr = s.temp(pos, dst) } cond := s.newValue2(ssa.OpEqPtr, types.Types[types.TBOOL], itab, wantedFirstWord) b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(cond) b.Likely = ssa.BranchLikely bOk := s.f.NewBlock(ssa.BlockPlain) bFail := s.f.NewBlock(ssa.BlockPlain) b.AddEdgeTo(bOk) b.AddEdgeTo(bFail) if !commaok { // on failure, panic by calling panicdottype s.startBlock(bFail) taddr := source if taddr == nil { taddr = s.reflectType(src) } if src.IsEmptyInterface() { s.rtcall(ir.Syms.PanicdottypeE, false, nil, itab, target, taddr) } else { s.rtcall(ir.Syms.PanicdottypeI, false, nil, itab, target, taddr) } // on success, return data from interface s.startBlock(bOk) if direct { return s.newValue1(ssa.OpIData, dst, iface), nil } p := s.newValue1(ssa.OpIData, types.NewPtr(dst), iface) return s.load(dst, p), nil } // commaok is the more complicated case because we have // a control flow merge point. bEnd := s.f.NewBlock(ssa.BlockPlain) // Note that we need a new valVar each time (unlike okVar where we can // reuse the variable) because it might have a different type every time. valVar := ssaMarker("val") // type assertion succeeded s.startBlock(bOk) if tmp == nil { if direct { s.vars[valVar] = s.newValue1(ssa.OpIData, dst, iface) } else { p := s.newValue1(ssa.OpIData, types.NewPtr(dst), iface) s.vars[valVar] = s.load(dst, p) } } else { p := s.newValue1(ssa.OpIData, types.NewPtr(dst), iface) s.move(dst, addr, p) } s.vars[okVar] = s.constBool(true) s.endBlock() bOk.AddEdgeTo(bEnd) // type assertion failed s.startBlock(bFail) if tmp == nil { s.vars[valVar] = s.zeroVal(dst) } else { s.zero(dst, addr) } s.vars[okVar] = s.constBool(false) s.endBlock() bFail.AddEdgeTo(bEnd) // merge point s.startBlock(bEnd) if tmp == nil { res = s.variable(valVar, dst) delete(s.vars, valVar) // no practical effect, just to indicate typVar is no longer live. } else { res = s.load(dst, addr) } resok = s.variable(okVar, types.Types[types.TBOOL]) delete(s.vars, okVar) // ditto return res, resok } // temp allocates a temp of type t at position pos func (s *state) temp(pos src.XPos, t *types.Type) (*ir.Name, *ssa.Value) { tmp := typecheck.TempAt(pos, s.curfn, t) if t.HasPointers() { s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, tmp, s.mem()) } addr := s.addr(tmp) return tmp, addr } // variable returns the value of a variable at the current location. func (s *state) variable(n ir.Node, t *types.Type) *ssa.Value { v := s.vars[n] if v != nil { return v } v = s.fwdVars[n] if v != nil { return v } if s.curBlock == s.f.Entry { // No variable should be live at entry. s.f.Fatalf("value %v (%v) incorrectly live at entry", n, v) } // Make a FwdRef, which records a value that's live on block input. // We'll find the matching definition as part of insertPhis. v = s.newValue0A(ssa.OpFwdRef, t, fwdRefAux{N: n}) s.fwdVars[n] = v if n.Op() == ir.ONAME { s.addNamedValue(n.(*ir.Name), v) } return v } func (s *state) mem() *ssa.Value { return s.variable(memVar, types.TypeMem) } func (s *state) addNamedValue(n *ir.Name, v *ssa.Value) { if n.Class == ir.Pxxx { // Don't track our marker nodes (memVar etc.). return } if ir.IsAutoTmp(n) { // Don't track temporary variables. return } if n.Class == ir.PPARAMOUT { // Don't track named output values. This prevents return values // from being assigned too early. See #14591 and #14762. TODO: allow this. return } loc := ssa.LocalSlot{N: n, Type: n.Type(), Off: 0} values, ok := s.f.NamedValues[loc] if !ok { s.f.Names = append(s.f.Names, &loc) s.f.CanonicalLocalSlots[loc] = &loc } s.f.NamedValues[loc] = append(values, v) } // Branch is an unresolved branch. type Branch struct { P *obj.Prog // branch instruction B *ssa.Block // target } // State contains state needed during Prog generation. type State struct { ABI obj.ABI pp *objw.Progs // Branches remembers all the branch instructions we've seen // and where they would like to go. Branches []Branch // JumpTables remembers all the jump tables we've seen. JumpTables []*ssa.Block // bstart remembers where each block starts (indexed by block ID) bstart []*obj.Prog maxarg int64 // largest frame size for arguments to calls made by the function // Map from GC safe points to liveness index, generated by // liveness analysis. livenessMap liveness.Map // partLiveArgs includes arguments that may be partially live, for which we // need to generate instructions that spill the argument registers. partLiveArgs map[*ir.Name]bool // lineRunStart records the beginning of the current run of instructions // within a single block sharing the same line number // Used to move statement marks to the beginning of such runs. lineRunStart *obj.Prog // wasm: The number of values on the WebAssembly stack. This is only used as a safeguard. OnWasmStackSkipped int } func (s *State) FuncInfo() *obj.FuncInfo { return s.pp.CurFunc.LSym.Func() } // Prog appends a new Prog. func (s *State) Prog(as obj.As) *obj.Prog { p := s.pp.Prog(as) if objw.LosesStmtMark(as) { return p } // Float a statement start to the beginning of any same-line run. // lineRunStart is reset at block boundaries, which appears to work well. if s.lineRunStart == nil || s.lineRunStart.Pos.Line() != p.Pos.Line() { s.lineRunStart = p } else if p.Pos.IsStmt() == src.PosIsStmt { s.lineRunStart.Pos = s.lineRunStart.Pos.WithIsStmt() p.Pos = p.Pos.WithNotStmt() } return p } // Pc returns the current Prog. func (s *State) Pc() *obj.Prog { return s.pp.Next } // SetPos sets the current source position. func (s *State) SetPos(pos src.XPos) { s.pp.Pos = pos } // Br emits a single branch instruction and returns the instruction. // Not all architectures need the returned instruction, but otherwise // the boilerplate is common to all. func (s *State) Br(op obj.As, target *ssa.Block) *obj.Prog { p := s.Prog(op) p.To.Type = obj.TYPE_BRANCH s.Branches = append(s.Branches, Branch{P: p, B: target}) return p } // DebugFriendlySetPosFrom adjusts Pos.IsStmt subject to heuristics // that reduce "jumpy" line number churn when debugging. // Spill/fill/copy instructions from the register allocator, // phi functions, and instructions with a no-pos position // are examples of instructions that can cause churn. func (s *State) DebugFriendlySetPosFrom(v *ssa.Value) { switch v.Op { case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg: // These are not statements s.SetPos(v.Pos.WithNotStmt()) default: p := v.Pos if p != src.NoXPos { // If the position is defined, update the position. // Also convert default IsStmt to NotStmt; only // explicit statement boundaries should appear // in the generated code. if p.IsStmt() != src.PosIsStmt { if s.pp.Pos.IsStmt() == src.PosIsStmt && s.pp.Pos.SameFileAndLine(p) { // If s.pp.Pos already has a statement mark, then it was set here (below) for // the previous value. If an actual instruction had been emitted for that // value, then the statement mark would have been reset. Since the statement // mark of s.pp.Pos was not reset, this position (file/line) still needs a // statement mark on an instruction. If file and line for this value are // the same as the previous value, then the first instruction for this // value will work to take the statement mark. Return early to avoid // resetting the statement mark. // // The reset of s.pp.Pos occurs in (*Progs).Prog() -- if it emits // an instruction, and the instruction's statement mark was set, // and it is not one of the LosesStmtMark instructions, // then Prog() resets the statement mark on the (*Progs).Pos. return } p = p.WithNotStmt() // Calls use the pos attached to v, but copy the statement mark from State } s.SetPos(p) } else { s.SetPos(s.pp.Pos.WithNotStmt()) } } } // emit argument info (locations on stack) for traceback. func emitArgInfo(e *ssafn, f *ssa.Func, pp *objw.Progs) { ft := e.curfn.Type() if ft.NumRecvs() == 0 && ft.NumParams() == 0 { return } x := EmitArgInfo(e.curfn, f.OwnAux.ABIInfo()) x.Set(obj.AttrContentAddressable, true) e.curfn.LSym.Func().ArgInfo = x // Emit a funcdata pointing at the arg info data. p := pp.Prog(obj.AFUNCDATA) p.From.SetConst(rtabi.FUNCDATA_ArgInfo) p.To.Type = obj.TYPE_MEM p.To.Name = obj.NAME_EXTERN p.To.Sym = x } // emit argument info (locations on stack) of f for traceback. func EmitArgInfo(f *ir.Func, abiInfo *abi.ABIParamResultInfo) *obj.LSym { x := base.Ctxt.Lookup(fmt.Sprintf("%s.arginfo%d", f.LSym.Name, f.ABI)) // NOTE: do not set ContentAddressable here. This may be referenced from // assembly code by name (in this case f is a declaration). // Instead, set it in emitArgInfo above. PtrSize := int64(types.PtrSize) uintptrTyp := types.Types[types.TUINTPTR] isAggregate := func(t *types.Type) bool { return t.IsStruct() || t.IsArray() || t.IsComplex() || t.IsInterface() || t.IsString() || t.IsSlice() } // Populate the data. // The data is a stream of bytes, which contains the offsets and sizes of the // non-aggregate arguments or non-aggregate fields/elements of aggregate-typed // arguments, along with special "operators". Specifically, // - for each non-aggrgate arg/field/element, its offset from FP (1 byte) and // size (1 byte) // - special operators: // - 0xff - end of sequence // - 0xfe - print { (at the start of an aggregate-typed argument) // - 0xfd - print } (at the end of an aggregate-typed argument) // - 0xfc - print ... (more args/fields/elements) // - 0xfb - print _ (offset too large) // These constants need to be in sync with runtime.traceback.go:printArgs. const ( _endSeq = 0xff _startAgg = 0xfe _endAgg = 0xfd _dotdotdot = 0xfc _offsetTooLarge = 0xfb _special = 0xf0 // above this are operators, below this are ordinary offsets ) const ( limit = 10 // print no more than 10 args/components maxDepth = 5 // no more than 5 layers of nesting // maxLen is a (conservative) upper bound of the byte stream length. For // each arg/component, it has no more than 2 bytes of data (size, offset), // and no more than one {, }, ... at each level (it cannot have both the // data and ... unless it is the last one, just be conservative). Plus 1 // for _endSeq. maxLen = (maxDepth*3+2)*limit + 1 ) wOff := 0 n := 0 writebyte := func(o uint8) { wOff = objw.Uint8(x, wOff, o) } // Write one non-aggrgate arg/field/element. write1 := func(sz, offset int64) { if offset >= _special { writebyte(_offsetTooLarge) } else { writebyte(uint8(offset)) writebyte(uint8(sz)) } n++ } // Visit t recursively and write it out. // Returns whether to continue visiting. var visitType func(baseOffset int64, t *types.Type, depth int) bool visitType = func(baseOffset int64, t *types.Type, depth int) bool { if n >= limit { writebyte(_dotdotdot) return false } if !isAggregate(t) { write1(t.Size(), baseOffset) return true } writebyte(_startAgg) depth++ if depth >= maxDepth { writebyte(_dotdotdot) writebyte(_endAgg) n++ return true } switch { case t.IsInterface(), t.IsString(): _ = visitType(baseOffset, uintptrTyp, depth) && visitType(baseOffset+PtrSize, uintptrTyp, depth) case t.IsSlice(): _ = visitType(baseOffset, uintptrTyp, depth) && visitType(baseOffset+PtrSize, uintptrTyp, depth) && visitType(baseOffset+PtrSize*2, uintptrTyp, depth) case t.IsComplex(): _ = visitType(baseOffset, types.FloatForComplex(t), depth) && visitType(baseOffset+t.Size()/2, types.FloatForComplex(t), depth) case t.IsArray(): if t.NumElem() == 0 { n++ // {} counts as a component break } for i := int64(0); i < t.NumElem(); i++ { if !visitType(baseOffset, t.Elem(), depth) { break } baseOffset += t.Elem().Size() } case t.IsStruct(): if t.NumFields() == 0 { n++ // {} counts as a component break } for _, field := range t.Fields().Slice() { if !visitType(baseOffset+field.Offset, field.Type, depth) { break } } } writebyte(_endAgg) return true } start := 0 if strings.Contains(f.LSym.Name, "[") { // Skip the dictionary argument - it is implicit and the user doesn't need to see it. start = 1 } for _, a := range abiInfo.InParams()[start:] { if !visitType(a.FrameOffset(abiInfo), a.Type, 0) { break } } writebyte(_endSeq) if wOff > maxLen { base.Fatalf("ArgInfo too large") } return x } // for wrapper, emit info of wrapped function. func emitWrappedFuncInfo(e *ssafn, pp *objw.Progs) { if base.Ctxt.Flag_linkshared { // Relative reference (SymPtrOff) to another shared object doesn't work. // Unfortunate. return } wfn := e.curfn.WrappedFunc if wfn == nil { return } wsym := wfn.Linksym() x := base.Ctxt.LookupInit(fmt.Sprintf("%s.wrapinfo", wsym.Name), func(x *obj.LSym) { objw.SymPtrOff(x, 0, wsym) x.Set(obj.AttrContentAddressable, true) }) e.curfn.LSym.Func().WrapInfo = x // Emit a funcdata pointing at the wrap info data. p := pp.Prog(obj.AFUNCDATA) p.From.SetConst(rtabi.FUNCDATA_WrapInfo) p.To.Type = obj.TYPE_MEM p.To.Name = obj.NAME_EXTERN p.To.Sym = x } // genssa appends entries to pp for each instruction in f. func genssa(f *ssa.Func, pp *objw.Progs) { var s State s.ABI = f.OwnAux.Fn.ABI() e := f.Frontend().(*ssafn) s.livenessMap, s.partLiveArgs = liveness.Compute(e.curfn, f, e.stkptrsize, pp) emitArgInfo(e, f, pp) argLiveBlockMap, argLiveValueMap := liveness.ArgLiveness(e.curfn, f, pp) openDeferInfo := e.curfn.LSym.Func().OpenCodedDeferInfo if openDeferInfo != nil { // This function uses open-coded defers -- write out the funcdata // info that we computed at the end of genssa. p := pp.Prog(obj.AFUNCDATA) p.From.SetConst(rtabi.FUNCDATA_OpenCodedDeferInfo) p.To.Type = obj.TYPE_MEM p.To.Name = obj.NAME_EXTERN p.To.Sym = openDeferInfo } emitWrappedFuncInfo(e, pp) // Remember where each block starts. s.bstart = make([]*obj.Prog, f.NumBlocks()) s.pp = pp var progToValue map[*obj.Prog]*ssa.Value var progToBlock map[*obj.Prog]*ssa.Block var valueToProgAfter []*obj.Prog // The first Prog following computation of a value v; v is visible at this point. gatherPrintInfo := f.PrintOrHtmlSSA || ssa.GenssaDump[f.Name] if gatherPrintInfo { progToValue = make(map[*obj.Prog]*ssa.Value, f.NumValues()) progToBlock = make(map[*obj.Prog]*ssa.Block, f.NumBlocks()) f.Logf("genssa %s\n", f.Name) progToBlock[s.pp.Next] = f.Blocks[0] } if base.Ctxt.Flag_locationlists { if cap(f.Cache.ValueToProgAfter) < f.NumValues() { f.Cache.ValueToProgAfter = make([]*obj.Prog, f.NumValues()) } valueToProgAfter = f.Cache.ValueToProgAfter[:f.NumValues()] for i := range valueToProgAfter { valueToProgAfter[i] = nil } } // If the very first instruction is not tagged as a statement, // debuggers may attribute it to previous function in program. firstPos := src.NoXPos for _, v := range f.Entry.Values { if v.Pos.IsStmt() == src.PosIsStmt && v.Op != ssa.OpArg && v.Op != ssa.OpArgIntReg && v.Op != ssa.OpArgFloatReg && v.Op != ssa.OpLoadReg && v.Op != ssa.OpStoreReg { firstPos = v.Pos v.Pos = firstPos.WithDefaultStmt() break } } // inlMarks has an entry for each Prog that implements an inline mark. // It maps from that Prog to the global inlining id of the inlined body // which should unwind to this Prog's location. var inlMarks map[*obj.Prog]int32 var inlMarkList []*obj.Prog // inlMarksByPos maps from a (column 1) source position to the set of // Progs that are in the set above and have that source position. var inlMarksByPos map[src.XPos][]*obj.Prog var argLiveIdx int = -1 // argument liveness info index // Emit basic blocks for i, b := range f.Blocks { s.bstart[b.ID] = s.pp.Next s.lineRunStart = nil s.SetPos(s.pp.Pos.WithNotStmt()) // It needs a non-empty Pos, but cannot be a statement boundary (yet). // Attach a "default" liveness info. Normally this will be // overwritten in the Values loop below for each Value. But // for an empty block this will be used for its control // instruction. We won't use the actual liveness map on a // control instruction. Just mark it something that is // preemptible, unless this function is "all unsafe", or // the empty block is in a write barrier. unsafe := liveness.IsUnsafe(f) if b.Kind == ssa.BlockPlain { // Empty blocks that are part of write barriers need // to have their control instructions marked unsafe. c := b.Succs[0].Block() for _, v := range c.Values { if v.Op == ssa.OpWBend { unsafe = true break } } } s.pp.NextLive = objw.LivenessIndex{StackMapIndex: -1, IsUnsafePoint: unsafe} if idx, ok := argLiveBlockMap[b.ID]; ok && idx != argLiveIdx { argLiveIdx = idx p := s.pp.Prog(obj.APCDATA) p.From.SetConst(rtabi.PCDATA_ArgLiveIndex) p.To.SetConst(int64(idx)) } // Emit values in block Arch.SSAMarkMoves(&s, b) for _, v := range b.Values { x := s.pp.Next s.DebugFriendlySetPosFrom(v) if v.Op.ResultInArg0() && v.ResultReg() != v.Args[0].Reg() { v.Fatalf("input[0] and output not in same register %s", v.LongString()) } switch v.Op { case ssa.OpInitMem: // memory arg needs no code case ssa.OpArg: // input args need no code case ssa.OpSP, ssa.OpSB: // nothing to do case ssa.OpSelect0, ssa.OpSelect1, ssa.OpSelectN, ssa.OpMakeResult: // nothing to do case ssa.OpGetG: // nothing to do when there's a g register, // and checkLower complains if there's not case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive, ssa.OpWBend: // nothing to do; already used by liveness case ssa.OpPhi: CheckLoweredPhi(v) case ssa.OpConvert: // nothing to do; no-op conversion for liveness if v.Args[0].Reg() != v.Reg() { v.Fatalf("OpConvert should be a no-op: %s; %s", v.Args[0].LongString(), v.LongString()) } case ssa.OpInlMark: p := Arch.Ginsnop(s.pp) if inlMarks == nil { inlMarks = map[*obj.Prog]int32{} inlMarksByPos = map[src.XPos][]*obj.Prog{} } inlMarks[p] = v.AuxInt32() inlMarkList = append(inlMarkList, p) pos := v.Pos.AtColumn1() inlMarksByPos[pos] = append(inlMarksByPos[pos], p) firstPos = src.NoXPos default: // Special case for first line in function; move it to the start (which cannot be a register-valued instruction) if firstPos != src.NoXPos && v.Op != ssa.OpArgIntReg && v.Op != ssa.OpArgFloatReg && v.Op != ssa.OpLoadReg && v.Op != ssa.OpStoreReg { s.SetPos(firstPos) firstPos = src.NoXPos } // Attach this safe point to the next // instruction. s.pp.NextLive = s.livenessMap.Get(v) // let the backend handle it Arch.SSAGenValue(&s, v) } if idx, ok := argLiveValueMap[v.ID]; ok && idx != argLiveIdx { argLiveIdx = idx p := s.pp.Prog(obj.APCDATA) p.From.SetConst(rtabi.PCDATA_ArgLiveIndex) p.To.SetConst(int64(idx)) } if base.Ctxt.Flag_locationlists { valueToProgAfter[v.ID] = s.pp.Next } if gatherPrintInfo { for ; x != s.pp.Next; x = x.Link { progToValue[x] = v } } } // If this is an empty infinite loop, stick a hardware NOP in there so that debuggers are less confused. if s.bstart[b.ID] == s.pp.Next && len(b.Succs) == 1 && b.Succs[0].Block() == b { p := Arch.Ginsnop(s.pp) p.Pos = p.Pos.WithIsStmt() if b.Pos == src.NoXPos { b.Pos = p.Pos // It needs a file, otherwise a no-file non-zero line causes confusion. See #35652. if b.Pos == src.NoXPos { b.Pos = pp.Text.Pos // Sometimes p.Pos is empty. See #35695. } } b.Pos = b.Pos.WithBogusLine() // Debuggers are not good about infinite loops, force a change in line number } // Emit control flow instructions for block var next *ssa.Block if i < len(f.Blocks)-1 && base.Flag.N == 0 { // If -N, leave next==nil so every block with successors // ends in a JMP (except call blocks - plive doesn't like // select{send,recv} followed by a JMP call). Helps keep // line numbers for otherwise empty blocks. next = f.Blocks[i+1] } x := s.pp.Next s.SetPos(b.Pos) Arch.SSAGenBlock(&s, b, next) if gatherPrintInfo { for ; x != s.pp.Next; x = x.Link { progToBlock[x] = b } } } if f.Blocks[len(f.Blocks)-1].Kind == ssa.BlockExit { // We need the return address of a panic call to // still be inside the function in question. So if // it ends in a call which doesn't return, add a // nop (which will never execute) after the call. Arch.Ginsnop(pp) } if openDeferInfo != nil { // When doing open-coded defers, generate a disconnected call to // deferreturn and a return. This will be used to during panic // recovery to unwind the stack and return back to the runtime. s.pp.NextLive = s.livenessMap.DeferReturn p := pp.Prog(obj.ACALL) p.To.Type = obj.TYPE_MEM p.To.Name = obj.NAME_EXTERN p.To.Sym = ir.Syms.Deferreturn // Load results into registers. So when a deferred function // recovers a panic, it will return to caller with right results. // The results are already in memory, because they are not SSA'd // when the function has defers (see canSSAName). for _, o := range f.OwnAux.ABIInfo().OutParams() { n := o.Name.(*ir.Name) rts, offs := o.RegisterTypesAndOffsets() for i := range o.Registers { Arch.LoadRegResult(&s, f, rts[i], ssa.ObjRegForAbiReg(o.Registers[i], f.Config), n, offs[i]) } } pp.Prog(obj.ARET) } if inlMarks != nil { hasCall := false // We have some inline marks. Try to find other instructions we're // going to emit anyway, and use those instructions instead of the // inline marks. for p := pp.Text; p != nil; p = p.Link { if p.As == obj.ANOP || p.As == obj.AFUNCDATA || p.As == obj.APCDATA || p.As == obj.ATEXT || p.As == obj.APCALIGN || Arch.LinkArch.Family == sys.Wasm { // Don't use 0-sized instructions as inline marks, because we need // to identify inline mark instructions by pc offset. // (Some of these instructions are sometimes zero-sized, sometimes not. // We must not use anything that even might be zero-sized.) // TODO: are there others? continue } if _, ok := inlMarks[p]; ok { // Don't use inline marks themselves. We don't know // whether they will be zero-sized or not yet. continue } if p.As == obj.ACALL || p.As == obj.ADUFFCOPY || p.As == obj.ADUFFZERO { hasCall = true } pos := p.Pos.AtColumn1() s := inlMarksByPos[pos] if len(s) == 0 { continue } for _, m := range s { // We found an instruction with the same source position as // some of the inline marks. // Use this instruction instead. p.Pos = p.Pos.WithIsStmt() // promote position to a statement pp.CurFunc.LSym.Func().AddInlMark(p, inlMarks[m]) // Make the inline mark a real nop, so it doesn't generate any code. m.As = obj.ANOP m.Pos = src.NoXPos m.From = obj.Addr{} m.To = obj.Addr{} } delete(inlMarksByPos, pos) } // Any unmatched inline marks now need to be added to the inlining tree (and will generate a nop instruction). for _, p := range inlMarkList { if p.As != obj.ANOP { pp.CurFunc.LSym.Func().AddInlMark(p, inlMarks[p]) } } if e.stksize == 0 && !hasCall { // Frameless leaf function. It doesn't need any preamble, // so make sure its first instruction isn't from an inlined callee. // If it is, add a nop at the start of the function with a position // equal to the start of the function. // This ensures that runtime.FuncForPC(uintptr(reflect.ValueOf(fn).Pointer())).Name() // returns the right answer. See issue 58300. for p := pp.Text; p != nil; p = p.Link { if p.As == obj.AFUNCDATA || p.As == obj.APCDATA || p.As == obj.ATEXT || p.As == obj.ANOP { continue } if base.Ctxt.PosTable.Pos(p.Pos).Base().InliningIndex() >= 0 { // Make a real (not 0-sized) nop. nop := Arch.Ginsnop(pp) nop.Pos = e.curfn.Pos().WithIsStmt() // Unfortunately, Ginsnop puts the instruction at the // end of the list. Move it up to just before p. // Unlink from the current list. for x := pp.Text; x != nil; x = x.Link { if x.Link == nop { x.Link = nop.Link break } } // Splice in right before p. for x := pp.Text; x != nil; x = x.Link { if x.Link == p { nop.Link = p x.Link = nop break } } } break } } } if base.Ctxt.Flag_locationlists { var debugInfo *ssa.FuncDebug debugInfo = e.curfn.DebugInfo.(*ssa.FuncDebug) if e.curfn.ABI == obj.ABIInternal && base.Flag.N != 0 { ssa.BuildFuncDebugNoOptimized(base.Ctxt, f, base.Debug.LocationLists > 1, StackOffset, debugInfo) } else { ssa.BuildFuncDebug(base.Ctxt, f, base.Debug.LocationLists, StackOffset, debugInfo) } bstart := s.bstart idToIdx := make([]int, f.NumBlocks()) for i, b := range f.Blocks { idToIdx[b.ID] = i } // Note that at this moment, Prog.Pc is a sequence number; it's // not a real PC until after assembly, so this mapping has to // be done later. debugInfo.GetPC = func(b, v ssa.ID) int64 { switch v { case ssa.BlockStart.ID: if b == f.Entry.ID { return 0 // Start at the very beginning, at the assembler-generated prologue. // this should only happen for function args (ssa.OpArg) } return bstart[b].Pc case ssa.BlockEnd.ID: blk := f.Blocks[idToIdx[b]] nv := len(blk.Values) return valueToProgAfter[blk.Values[nv-1].ID].Pc case ssa.FuncEnd.ID: return e.curfn.LSym.Size default: return valueToProgAfter[v].Pc } } } // Resolve branches, and relax DefaultStmt into NotStmt for _, br := range s.Branches { br.P.To.SetTarget(s.bstart[br.B.ID]) if br.P.Pos.IsStmt() != src.PosIsStmt { br.P.Pos = br.P.Pos.WithNotStmt() } else if v0 := br.B.FirstPossibleStmtValue(); v0 != nil && v0.Pos.Line() == br.P.Pos.Line() && v0.Pos.IsStmt() == src.PosIsStmt { br.P.Pos = br.P.Pos.WithNotStmt() } } // Resolve jump table destinations. for _, jt := range s.JumpTables { // Convert from *Block targets to *Prog targets. targets := make([]*obj.Prog, len(jt.Succs)) for i, e := range jt.Succs { targets[i] = s.bstart[e.Block().ID] } // Add to list of jump tables to be resolved at assembly time. // The assembler converts from *Prog entries to absolute addresses // once it knows instruction byte offsets. fi := pp.CurFunc.LSym.Func() fi.JumpTables = append(fi.JumpTables, obj.JumpTable{Sym: jt.Aux.(*obj.LSym), Targets: targets}) } if e.log { // spew to stdout filename := "" for p := pp.Text; p != nil; p = p.Link { if p.Pos.IsKnown() && p.InnermostFilename() != filename { filename = p.InnermostFilename() f.Logf("# %s\n", filename) } var s string if v, ok := progToValue[p]; ok { s = v.String() } else if b, ok := progToBlock[p]; ok { s = b.String() } else { s = " " // most value and branch strings are 2-3 characters long } f.Logf(" %-6s\t%.5d (%s)\t%s\n", s, p.Pc, p.InnermostLineNumber(), p.InstructionString()) } } if f.HTMLWriter != nil { // spew to ssa.html var buf strings.Builder buf.WriteString("") buf.WriteString("
") filename := "" for p := pp.Text; p != nil; p = p.Link { // Don't spam every line with the file name, which is often huge. // Only print changes, and "unknown" is not a change. if p.Pos.IsKnown() && p.InnermostFilename() != filename { filename = p.InnermostFilename() buf.WriteString("
") buf.WriteString(html.EscapeString("# " + filename)) buf.WriteString("
") } buf.WriteString("
") if v, ok := progToValue[p]; ok { buf.WriteString(v.HTML()) } else if b, ok := progToBlock[p]; ok { buf.WriteString("" + b.HTML() + "") } buf.WriteString("
") buf.WriteString("
") fmt.Fprintf(&buf, "%.5d (%s) %s", p.Pc, p.InnermostLineNumber(), p.InnermostLineNumberHTML(), html.EscapeString(p.InstructionString())) buf.WriteString("
") } buf.WriteString("
") buf.WriteString("
") f.HTMLWriter.WriteColumn("genssa", "genssa", "ssa-prog", buf.String()) } if ssa.GenssaDump[f.Name] { fi := f.DumpFileForPhase("genssa") if fi != nil { // inliningDiffers if any filename changes or if any line number except the innermost (last index) changes. inliningDiffers := func(a, b []src.Pos) bool { if len(a) != len(b) { return true } for i := range a { if a[i].Filename() != b[i].Filename() { return true } if i != len(a)-1 && a[i].Line() != b[i].Line() { return true } } return false } var allPosOld []src.Pos var allPos []src.Pos for p := pp.Text; p != nil; p = p.Link { if p.Pos.IsKnown() { allPos = allPos[:0] p.Ctxt.AllPos(p.Pos, func(pos src.Pos) { allPos = append(allPos, pos) }) if inliningDiffers(allPos, allPosOld) { for _, pos := range allPos { fmt.Fprintf(fi, "# %s:%d\n", pos.Filename(), pos.Line()) } allPos, allPosOld = allPosOld, allPos // swap, not copy, so that they do not share slice storage. } } var s string if v, ok := progToValue[p]; ok { s = v.String() } else if b, ok := progToBlock[p]; ok { s = b.String() } else { s = " " // most value and branch strings are 2-3 characters long } fmt.Fprintf(fi, " %-6s\t%.5d %s\t%s\n", s, p.Pc, ssa.StmtString(p.Pos), p.InstructionString()) } fi.Close() } } defframe(&s, e, f) f.HTMLWriter.Close() f.HTMLWriter = nil } func defframe(s *State, e *ssafn, f *ssa.Func) { pp := s.pp s.maxarg = types.RoundUp(s.maxarg, e.stkalign) frame := s.maxarg + e.stksize if Arch.PadFrame != nil { frame = Arch.PadFrame(frame) } // Fill in argument and frame size. pp.Text.To.Type = obj.TYPE_TEXTSIZE pp.Text.To.Val = int32(types.RoundUp(f.OwnAux.ArgWidth(), int64(types.RegSize))) pp.Text.To.Offset = frame p := pp.Text // Insert code to spill argument registers if the named slot may be partially // live. That is, the named slot is considered live by liveness analysis, // (because a part of it is live), but we may not spill all parts into the // slot. This can only happen with aggregate-typed arguments that are SSA-able // and not address-taken (for non-SSA-able or address-taken arguments we always // spill upfront). // Note: spilling is unnecessary in the -N/no-optimize case, since all values // will be considered non-SSAable and spilled up front. // TODO(register args) Make liveness more fine-grained to that partial spilling is okay. if f.OwnAux.ABIInfo().InRegistersUsed() != 0 && base.Flag.N == 0 { // First, see if it is already spilled before it may be live. Look for a spill // in the entry block up to the first safepoint. type nameOff struct { n *ir.Name off int64 } partLiveArgsSpilled := make(map[nameOff]bool) for _, v := range f.Entry.Values { if v.Op.IsCall() { break } if v.Op != ssa.OpStoreReg || v.Args[0].Op != ssa.OpArgIntReg { continue } n, off := ssa.AutoVar(v) if n.Class != ir.PPARAM || n.Addrtaken() || !TypeOK(n.Type()) || !s.partLiveArgs[n] { continue } partLiveArgsSpilled[nameOff{n, off}] = true } // Then, insert code to spill registers if not already. for _, a := range f.OwnAux.ABIInfo().InParams() { n, ok := a.Name.(*ir.Name) if !ok || n.Addrtaken() || !TypeOK(n.Type()) || !s.partLiveArgs[n] || len(a.Registers) <= 1 { continue } rts, offs := a.RegisterTypesAndOffsets() for i := range a.Registers { if !rts[i].HasPointers() { continue } if partLiveArgsSpilled[nameOff{n, offs[i]}] { continue // already spilled } reg := ssa.ObjRegForAbiReg(a.Registers[i], f.Config) p = Arch.SpillArgReg(pp, p, f, rts[i], reg, n, offs[i]) } } } // Insert code to zero ambiguously live variables so that the // garbage collector only sees initialized values when it // looks for pointers. var lo, hi int64 // Opaque state for backend to use. Current backends use it to // keep track of which helper registers have been zeroed. var state uint32 // Iterate through declarations. Autos are sorted in decreasing // frame offset order. for _, n := range e.curfn.Dcl { if !n.Needzero() { continue } if n.Class != ir.PAUTO { e.Fatalf(n.Pos(), "needzero class %d", n.Class) } if n.Type().Size()%int64(types.PtrSize) != 0 || n.FrameOffset()%int64(types.PtrSize) != 0 || n.Type().Size() == 0 { e.Fatalf(n.Pos(), "var %L has size %d offset %d", n, n.Type().Size(), n.Offset_) } if lo != hi && n.FrameOffset()+n.Type().Size() >= lo-int64(2*types.RegSize) { // Merge with range we already have. lo = n.FrameOffset() continue } // Zero old range p = Arch.ZeroRange(pp, p, frame+lo, hi-lo, &state) // Set new range. lo = n.FrameOffset() hi = lo + n.Type().Size() } // Zero final range. Arch.ZeroRange(pp, p, frame+lo, hi-lo, &state) } // For generating consecutive jump instructions to model a specific branching type IndexJump struct { Jump obj.As Index int } func (s *State) oneJump(b *ssa.Block, jump *IndexJump) { p := s.Br(jump.Jump, b.Succs[jump.Index].Block()) p.Pos = b.Pos } // CombJump generates combinational instructions (2 at present) for a block jump, // thereby the behaviour of non-standard condition codes could be simulated func (s *State) CombJump(b, next *ssa.Block, jumps *[2][2]IndexJump) { switch next { case b.Succs[0].Block(): s.oneJump(b, &jumps[0][0]) s.oneJump(b, &jumps[0][1]) case b.Succs[1].Block(): s.oneJump(b, &jumps[1][0]) s.oneJump(b, &jumps[1][1]) default: var q *obj.Prog if b.Likely != ssa.BranchUnlikely { s.oneJump(b, &jumps[1][0]) s.oneJump(b, &jumps[1][1]) q = s.Br(obj.AJMP, b.Succs[1].Block()) } else { s.oneJump(b, &jumps[0][0]) s.oneJump(b, &jumps[0][1]) q = s.Br(obj.AJMP, b.Succs[0].Block()) } q.Pos = b.Pos } } // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a. func AddAux(a *obj.Addr, v *ssa.Value) { AddAux2(a, v, v.AuxInt) } func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) { if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR { v.Fatalf("bad AddAux addr %v", a) } // add integer offset a.Offset += offset // If no additional symbol offset, we're done. if v.Aux == nil { return } // Add symbol's offset from its base register. switch n := v.Aux.(type) { case *ssa.AuxCall: a.Name = obj.NAME_EXTERN a.Sym = n.Fn case *obj.LSym: a.Name = obj.NAME_EXTERN a.Sym = n case *ir.Name: if n.Class == ir.PPARAM || (n.Class == ir.PPARAMOUT && !n.IsOutputParamInRegisters()) { a.Name = obj.NAME_PARAM a.Sym = ir.Orig(n).(*ir.Name).Linksym() a.Offset += n.FrameOffset() break } a.Name = obj.NAME_AUTO if n.Class == ir.PPARAMOUT { a.Sym = ir.Orig(n).(*ir.Name).Linksym() } else { a.Sym = n.Linksym() } a.Offset += n.FrameOffset() default: v.Fatalf("aux in %s not implemented %#v", v, v.Aux) } } // extendIndex extends v to a full int width. // panic with the given kind if v does not fit in an int (only on 32-bit archs). func (s *state) extendIndex(idx, len *ssa.Value, kind ssa.BoundsKind, bounded bool) *ssa.Value { size := idx.Type.Size() if size == s.config.PtrSize { return idx } if size > s.config.PtrSize { // truncate 64-bit indexes on 32-bit pointer archs. Test the // high word and branch to out-of-bounds failure if it is not 0. var lo *ssa.Value if idx.Type.IsSigned() { lo = s.newValue1(ssa.OpInt64Lo, types.Types[types.TINT], idx) } else { lo = s.newValue1(ssa.OpInt64Lo, types.Types[types.TUINT], idx) } if bounded || base.Flag.B != 0 { return lo } bNext := s.f.NewBlock(ssa.BlockPlain) bPanic := s.f.NewBlock(ssa.BlockExit) hi := s.newValue1(ssa.OpInt64Hi, types.Types[types.TUINT32], idx) cmp := s.newValue2(ssa.OpEq32, types.Types[types.TBOOL], hi, s.constInt32(types.Types[types.TUINT32], 0)) if !idx.Type.IsSigned() { switch kind { case ssa.BoundsIndex: kind = ssa.BoundsIndexU case ssa.BoundsSliceAlen: kind = ssa.BoundsSliceAlenU case ssa.BoundsSliceAcap: kind = ssa.BoundsSliceAcapU case ssa.BoundsSliceB: kind = ssa.BoundsSliceBU case ssa.BoundsSlice3Alen: kind = ssa.BoundsSlice3AlenU case ssa.BoundsSlice3Acap: kind = ssa.BoundsSlice3AcapU case ssa.BoundsSlice3B: kind = ssa.BoundsSlice3BU case ssa.BoundsSlice3C: kind = ssa.BoundsSlice3CU } } b := s.endBlock() b.Kind = ssa.BlockIf b.SetControl(cmp) b.Likely = ssa.BranchLikely b.AddEdgeTo(bNext) b.AddEdgeTo(bPanic) s.startBlock(bPanic) mem := s.newValue4I(ssa.OpPanicExtend, types.TypeMem, int64(kind), hi, lo, len, s.mem()) s.endBlock().SetControl(mem) s.startBlock(bNext) return lo } // Extend value to the required size var op ssa.Op if idx.Type.IsSigned() { switch 10*size + s.config.PtrSize { case 14: op = ssa.OpSignExt8to32 case 18: op = ssa.OpSignExt8to64 case 24: op = ssa.OpSignExt16to32 case 28: op = ssa.OpSignExt16to64 case 48: op = ssa.OpSignExt32to64 default: s.Fatalf("bad signed index extension %s", idx.Type) } } else { switch 10*size + s.config.PtrSize { case 14: op = ssa.OpZeroExt8to32 case 18: op = ssa.OpZeroExt8to64 case 24: op = ssa.OpZeroExt16to32 case 28: op = ssa.OpZeroExt16to64 case 48: op = ssa.OpZeroExt32to64 default: s.Fatalf("bad unsigned index extension %s", idx.Type) } } return s.newValue1(op, types.Types[types.TINT], idx) } // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values. // Called during ssaGenValue. func CheckLoweredPhi(v *ssa.Value) { if v.Op != ssa.OpPhi { v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString()) } if v.Type.IsMemory() { return } f := v.Block.Func loc := f.RegAlloc[v.ID] for _, a := range v.Args { if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead? v.Fatalf("phi arg at different location than phi: %v @ %s, but arg %v @ %s\n%s\n", v, loc, a, aloc, v.Block.Func) } } } // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block, // except for incoming in-register arguments. // The output of LoweredGetClosurePtr is generally hardwired to the correct register. // That register contains the closure pointer on closure entry. func CheckLoweredGetClosurePtr(v *ssa.Value) { entry := v.Block.Func.Entry if entry != v.Block { base.Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v) } for _, w := range entry.Values { if w == v { break } switch w.Op { case ssa.OpArgIntReg, ssa.OpArgFloatReg: // okay default: base.Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v) } } } // CheckArgReg ensures that v is in the function's entry block. func CheckArgReg(v *ssa.Value) { entry := v.Block.Func.Entry if entry != v.Block { base.Fatalf("in %s, badly placed ArgIReg or ArgFReg: %v %v", v.Block.Func.Name, v.Block, v) } } func AddrAuto(a *obj.Addr, v *ssa.Value) { n, off := ssa.AutoVar(v) a.Type = obj.TYPE_MEM a.Sym = n.Linksym() a.Reg = int16(Arch.REGSP) a.Offset = n.FrameOffset() + off if n.Class == ir.PPARAM || (n.Class == ir.PPARAMOUT && !n.IsOutputParamInRegisters()) { a.Name = obj.NAME_PARAM } else { a.Name = obj.NAME_AUTO } } // Call returns a new CALL instruction for the SSA value v. // It uses PrepareCall to prepare the call. func (s *State) Call(v *ssa.Value) *obj.Prog { pPosIsStmt := s.pp.Pos.IsStmt() // The statement-ness fo the call comes from ssaGenState s.PrepareCall(v) p := s.Prog(obj.ACALL) if pPosIsStmt == src.PosIsStmt { p.Pos = v.Pos.WithIsStmt() } else { p.Pos = v.Pos.WithNotStmt() } if sym, ok := v.Aux.(*ssa.AuxCall); ok && sym.Fn != nil { p.To.Type = obj.TYPE_MEM p.To.Name = obj.NAME_EXTERN p.To.Sym = sym.Fn } else { // TODO(mdempsky): Can these differences be eliminated? switch Arch.LinkArch.Family { case sys.AMD64, sys.I386, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm: p.To.Type = obj.TYPE_REG case sys.ARM, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64: p.To.Type = obj.TYPE_MEM default: base.Fatalf("unknown indirect call family") } p.To.Reg = v.Args[0].Reg() } return p } // TailCall returns a new tail call instruction for the SSA value v. // It is like Call, but for a tail call. func (s *State) TailCall(v *ssa.Value) *obj.Prog { p := s.Call(v) p.As = obj.ARET return p } // PrepareCall prepares to emit a CALL instruction for v and does call-related bookkeeping. // It must be called immediately before emitting the actual CALL instruction, // since it emits PCDATA for the stack map at the call (calls are safe points). func (s *State) PrepareCall(v *ssa.Value) { idx := s.livenessMap.Get(v) if !idx.StackMapValid() { // See Liveness.hasStackMap. if sym, ok := v.Aux.(*ssa.AuxCall); !ok || !(sym.Fn == ir.Syms.WBZero || sym.Fn == ir.Syms.WBMove) { base.Fatalf("missing stack map index for %v", v.LongString()) } } call, ok := v.Aux.(*ssa.AuxCall) if ok { // Record call graph information for nowritebarrierrec // analysis. if nowritebarrierrecCheck != nil { nowritebarrierrecCheck.recordCall(s.pp.CurFunc, call.Fn, v.Pos) } } if s.maxarg < v.AuxInt { s.maxarg = v.AuxInt } } // UseArgs records the fact that an instruction needs a certain amount of // callee args space for its use. func (s *State) UseArgs(n int64) { if s.maxarg < n { s.maxarg = n } } // fieldIdx finds the index of the field referred to by the ODOT node n. func fieldIdx(n *ir.SelectorExpr) int { t := n.X.Type() if !t.IsStruct() { panic("ODOT's LHS is not a struct") } for i, f := range t.Fields().Slice() { if f.Sym == n.Sel { if f.Offset != n.Offset() { panic("field offset doesn't match") } return i } } panic(fmt.Sprintf("can't find field in expr %v\n", n)) // TODO: keep the result of this function somewhere in the ODOT Node // so we don't have to recompute it each time we need it. } // ssafn holds frontend information about a function that the backend is processing. // It also exports a bunch of compiler services for the ssa backend. type ssafn struct { curfn *ir.Func strings map[string]*obj.LSym // map from constant string to data symbols stksize int64 // stack size for current frame stkptrsize int64 // prefix of stack containing pointers // alignment for current frame. // NOTE: when stkalign > PtrSize, currently this only ensures the offsets of // objects in the stack frame are aligned. The stack pointer is still aligned // only PtrSize. stkalign int64 log bool // print ssa debug to the stdout } // StringData returns a symbol which // is the data component of a global string constant containing s. func (e *ssafn) StringData(s string) *obj.LSym { if aux, ok := e.strings[s]; ok { return aux } if e.strings == nil { e.strings = make(map[string]*obj.LSym) } data := staticdata.StringSym(e.curfn.Pos(), s) e.strings[s] = data return data } func (e *ssafn) Auto(pos src.XPos, t *types.Type) *ir.Name { return typecheck.TempAt(pos, e.curfn, t) // Note: adds new auto to e.curfn.Func.Dcl list } // SplitSlot returns a slot representing the data of parent starting at offset. func (e *ssafn) SplitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t *types.Type) ssa.LocalSlot { node := parent.N if node.Class != ir.PAUTO || node.Addrtaken() { // addressed things and non-autos retain their parents (i.e., cannot truly be split) return ssa.LocalSlot{N: node, Type: t, Off: parent.Off + offset} } s := &types.Sym{Name: node.Sym().Name + suffix, Pkg: types.LocalPkg} n := ir.NewNameAt(parent.N.Pos(), s) s.Def = n ir.AsNode(s.Def).Name().SetUsed(true) n.SetType(t) n.Class = ir.PAUTO n.SetEsc(ir.EscNever) n.Curfn = e.curfn e.curfn.Dcl = append(e.curfn.Dcl, n) types.CalcSize(t) return ssa.LocalSlot{N: n, Type: t, Off: 0, SplitOf: parent, SplitOffset: offset} } func (e *ssafn) CanSSA(t *types.Type) bool { return TypeOK(t) } // Logf logs a message from the compiler. func (e *ssafn) Logf(msg string, args ...interface{}) { if e.log { fmt.Printf(msg, args...) } } func (e *ssafn) Log() bool { return e.log } // Fatalf reports a compiler error and exits. func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) { base.Pos = pos nargs := append([]interface{}{ir.FuncName(e.curfn)}, args...) base.Fatalf("'%s': "+msg, nargs...) } // Warnl reports a "warning", which is usually flag-triggered // logging output for the benefit of tests. func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) { base.WarnfAt(pos, fmt_, args...) } func (e *ssafn) Debug_checknil() bool { return base.Debug.Nil != 0 } func (e *ssafn) UseWriteBarrier() bool { return base.Flag.WB } func (e *ssafn) Syslook(name string) *obj.LSym { switch name { case "goschedguarded": return ir.Syms.Goschedguarded case "writeBarrier": return ir.Syms.WriteBarrier case "wbZero": return ir.Syms.WBZero case "wbMove": return ir.Syms.WBMove case "cgoCheckMemmove": return ir.Syms.CgoCheckMemmove case "cgoCheckPtrWrite": return ir.Syms.CgoCheckPtrWrite } e.Fatalf(src.NoXPos, "unknown Syslook func %v", name) return nil } func (e *ssafn) MyImportPath() string { return base.Ctxt.Pkgpath } func (e *ssafn) Func() *ir.Func { return e.curfn } func clobberBase(n ir.Node) ir.Node { if n.Op() == ir.ODOT { n := n.(*ir.SelectorExpr) if n.X.Type().NumFields() == 1 { return clobberBase(n.X) } } if n.Op() == ir.OINDEX { n := n.(*ir.IndexExpr) if n.X.Type().IsArray() && n.X.Type().NumElem() == 1 { return clobberBase(n.X) } } return n } // callTargetLSym returns the correct LSym to call 'callee' using its ABI. func callTargetLSym(callee *ir.Name) *obj.LSym { if callee.Func == nil { // TODO(austin): This happens in case of interface method I.M from imported package. // It's ABIInternal, and would be better if callee.Func was never nil and we didn't // need this case. return callee.Linksym() } return callee.LinksymABI(callee.Func.ABI) } func min8(a, b int8) int8 { if a < b { return a } return b } func max8(a, b int8) int8 { if a > b { return a } return b } // deferstruct makes a runtime._defer structure. func deferstruct() *types.Type { makefield := func(name string, typ *types.Type) *types.Field { // Unlike the global makefield function, this one needs to set Pkg // because these types might be compared (in SSA CSE sorting). // TODO: unify this makefield and the global one above. sym := &types.Sym{Name: name, Pkg: types.LocalPkg} return types.NewField(src.NoXPos, sym, typ) } // These fields must match the ones in runtime/runtime2.go:_defer and // (*state).call above. fields := []*types.Field{ makefield("started", types.Types[types.TBOOL]), makefield("heap", types.Types[types.TBOOL]), makefield("openDefer", types.Types[types.TBOOL]), makefield("sp", types.Types[types.TUINTPTR]), makefield("pc", types.Types[types.TUINTPTR]), // Note: the types here don't really matter. Defer structures // are always scanned explicitly during stack copying and GC, // so we make them uintptr type even though they are real pointers. makefield("fn", types.Types[types.TUINTPTR]), makefield("_panic", types.Types[types.TUINTPTR]), makefield("link", types.Types[types.TUINTPTR]), makefield("fd", types.Types[types.TUINTPTR]), makefield("varp", types.Types[types.TUINTPTR]), makefield("framepc", types.Types[types.TUINTPTR]), } // build struct holding the above fields s := types.NewStruct(fields) s.SetNoalg(true) types.CalcStructSize(s) return s } // SpillSlotAddr uses LocalSlot information to initialize an obj.Addr // The resulting addr is used in a non-standard context -- in the prologue // of a function, before the frame has been constructed, so the standard // addressing for the parameters will be wrong. func SpillSlotAddr(spill ssa.Spill, baseReg int16, extraOffset int64) obj.Addr { return obj.Addr{ Name: obj.NAME_NONE, Type: obj.TYPE_MEM, Reg: baseReg, Offset: spill.Offset + extraOffset, } } var ( BoundsCheckFunc [ssa.BoundsKindCount]*obj.LSym ExtendCheckFunc [ssa.BoundsKindCount]*obj.LSym )