// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build !math_big_pure_go && (ppc64 || ppc64le) // +build !math_big_pure_go // +build ppc64 ppc64le #include "textflag.h" // This file provides fast assembly versions for the elementary // arithmetic operations on vectors implemented in arith.go. // func addVV(z, y, y []Word) (c Word) // z[i] = x[i] + y[i] for all i, carrying TEXT ·addVV(SB), NOSPLIT, $0 MOVD z_len+8(FP), R7 // R7 = z_len MOVD x+24(FP), R8 // R8 = x[] MOVD y+48(FP), R9 // R9 = y[] MOVD z+0(FP), R10 // R10 = z[] // If z_len = 0, we are done CMP R0, R7 MOVD R0, R4 BEQ done // Process the first iteration out of the loop so we can // use MOVDU and avoid 3 index registers updates. MOVD 0(R8), R11 // R11 = x[i] MOVD 0(R9), R12 // R12 = y[i] ADD $-1, R7 // R7 = z_len - 1 ADDC R12, R11, R15 // R15 = x[i] + y[i], set CA CMP R0, R7 MOVD R15, 0(R10) // z[i] BEQ final // If z_len was 1, we are done SRD $2, R7, R5 // R5 = z_len/4 CMP R0, R5 MOVD R5, CTR // Set up loop counter BEQ tail // If R5 = 0, we can't use the loop // Process 4 elements per iteration. Unrolling this loop // means a performance trade-off: we will lose performance // for small values of z_len (0.90x in the worst case), but // gain significant performance as z_len increases (up to // 1.45x). PCALIGN $16 loop: MOVD 8(R8), R11 // R11 = x[i] MOVD 16(R8), R12 // R12 = x[i+1] MOVD 24(R8), R14 // R14 = x[i+2] MOVDU 32(R8), R15 // R15 = x[i+3] MOVD 8(R9), R16 // R16 = y[i] MOVD 16(R9), R17 // R17 = y[i+1] MOVD 24(R9), R18 // R18 = y[i+2] MOVDU 32(R9), R19 // R19 = y[i+3] ADDE R11, R16, R20 // R20 = x[i] + y[i] + CA ADDE R12, R17, R21 // R21 = x[i+1] + y[i+1] + CA ADDE R14, R18, R22 // R22 = x[i+2] + y[i+2] + CA ADDE R15, R19, R23 // R23 = x[i+3] + y[i+3] + CA MOVD R20, 8(R10) // z[i] MOVD R21, 16(R10) // z[i+1] MOVD R22, 24(R10) // z[i+2] MOVDU R23, 32(R10) // z[i+3] ADD $-4, R7 // R7 = z_len - 4 BC 16, 0, loop // bdnz // We may have more elements to read CMP R0, R7 BEQ final // Process the remaining elements, one at a time tail: MOVDU 8(R8), R11 // R11 = x[i] MOVDU 8(R9), R16 // R16 = y[i] ADD $-1, R7 // R7 = z_len - 1 ADDE R11, R16, R20 // R20 = x[i] + y[i] + CA CMP R0, R7 MOVDU R20, 8(R10) // z[i] BEQ final // If R7 = 0, we are done MOVDU 8(R8), R11 MOVDU 8(R9), R16 ADD $-1, R7 ADDE R11, R16, R20 CMP R0, R7 MOVDU R20, 8(R10) BEQ final MOVD 8(R8), R11 MOVD 8(R9), R16 ADDE R11, R16, R20 MOVD R20, 8(R10) final: ADDZE R4 // Capture CA done: MOVD R4, c+72(FP) RET // func subVV(z, x, y []Word) (c Word) // z[i] = x[i] - y[i] for all i, carrying TEXT ·subVV(SB), NOSPLIT, $0 MOVD z_len+8(FP), R7 // R7 = z_len MOVD x+24(FP), R8 // R8 = x[] MOVD y+48(FP), R9 // R9 = y[] MOVD z+0(FP), R10 // R10 = z[] // If z_len = 0, we are done CMP R0, R7 MOVD R0, R4 BEQ done // Process the first iteration out of the loop so we can // use MOVDU and avoid 3 index registers updates. MOVD 0(R8), R11 // R11 = x[i] MOVD 0(R9), R12 // R12 = y[i] ADD $-1, R7 // R7 = z_len - 1 SUBC R12, R11, R15 // R15 = x[i] - y[i], set CA CMP R0, R7 MOVD R15, 0(R10) // z[i] BEQ final // If z_len was 1, we are done SRD $2, R7, R5 // R5 = z_len/4 CMP R0, R5 MOVD R5, CTR // Set up loop counter BEQ tail // If R5 = 0, we can't use the loop // Process 4 elements per iteration. Unrolling this loop // means a performance trade-off: we will lose performance // for small values of z_len (0.92x in the worst case), but // gain significant performance as z_len increases (up to // 1.45x). PCALIGN $16 loop: MOVD 8(R8), R11 // R11 = x[i] MOVD 16(R8), R12 // R12 = x[i+1] MOVD 24(R8), R14 // R14 = x[i+2] MOVDU 32(R8), R15 // R15 = x[i+3] MOVD 8(R9), R16 // R16 = y[i] MOVD 16(R9), R17 // R17 = y[i+1] MOVD 24(R9), R18 // R18 = y[i+2] MOVDU 32(R9), R19 // R19 = y[i+3] SUBE R16, R11, R20 // R20 = x[i] - y[i] + CA SUBE R17, R12, R21 // R21 = x[i+1] - y[i+1] + CA SUBE R18, R14, R22 // R22 = x[i+2] - y[i+2] + CA SUBE R19, R15, R23 // R23 = x[i+3] - y[i+3] + CA MOVD R20, 8(R10) // z[i] MOVD R21, 16(R10) // z[i+1] MOVD R22, 24(R10) // z[i+2] MOVDU R23, 32(R10) // z[i+3] ADD $-4, R7 // R7 = z_len - 4 BC 16, 0, loop // bdnz // We may have more elements to read CMP R0, R7 BEQ final // Process the remaining elements, one at a time tail: MOVDU 8(R8), R11 // R11 = x[i] MOVDU 8(R9), R16 // R16 = y[i] ADD $-1, R7 // R7 = z_len - 1 SUBE R16, R11, R20 // R20 = x[i] - y[i] + CA CMP R0, R7 MOVDU R20, 8(R10) // z[i] BEQ final // If R7 = 0, we are done MOVDU 8(R8), R11 MOVDU 8(R9), R16 ADD $-1, R7 SUBE R16, R11, R20 CMP R0, R7 MOVDU R20, 8(R10) BEQ final MOVD 8(R8), R11 MOVD 8(R9), R16 SUBE R16, R11, R20 MOVD R20, 8(R10) final: ADDZE R4 XOR $1, R4 done: MOVD R4, c+72(FP) RET // func addVW(z, x []Word, y Word) (c Word) TEXT ·addVW(SB), NOSPLIT, $0 MOVD z+0(FP), R10 // R10 = z[] MOVD x+24(FP), R8 // R8 = x[] MOVD y+48(FP), R4 // R4 = y = c MOVD z_len+8(FP), R11 // R11 = z_len CMP R0, R11 // If z_len is zero, return BEQ done // We will process the first iteration out of the loop so we capture // the value of c. In the subsequent iterations, we will rely on the // value of CA set here. MOVD 0(R8), R20 // R20 = x[i] ADD $-1, R11 // R11 = z_len - 1 ADDC R20, R4, R6 // R6 = x[i] + c CMP R0, R11 // If z_len was 1, we are done MOVD R6, 0(R10) // z[i] BEQ final // We will read 4 elements per iteration SRD $2, R11, R9 // R9 = z_len/4 DCBT (R8) CMP R0, R9 MOVD R9, CTR // Set up the loop counter BEQ tail // If R9 = 0, we can't use the loop PCALIGN $16 loop: MOVD 8(R8), R20 // R20 = x[i] MOVD 16(R8), R21 // R21 = x[i+1] MOVD 24(R8), R22 // R22 = x[i+2] MOVDU 32(R8), R23 // R23 = x[i+3] ADDZE R20, R24 // R24 = x[i] + CA ADDZE R21, R25 // R25 = x[i+1] + CA ADDZE R22, R26 // R26 = x[i+2] + CA ADDZE R23, R27 // R27 = x[i+3] + CA MOVD R24, 8(R10) // z[i] MOVD R25, 16(R10) // z[i+1] MOVD R26, 24(R10) // z[i+2] MOVDU R27, 32(R10) // z[i+3] ADD $-4, R11 // R11 = z_len - 4 BC 16, 0, loop // bdnz // We may have some elements to read CMP R0, R11 BEQ final tail: MOVDU 8(R8), R20 ADDZE R20, R24 ADD $-1, R11 MOVDU R24, 8(R10) CMP R0, R11 BEQ final MOVDU 8(R8), R20 ADDZE R20, R24 ADD $-1, R11 MOVDU R24, 8(R10) CMP R0, R11 BEQ final MOVD 8(R8), R20 ADDZE R20, R24 MOVD R24, 8(R10) final: ADDZE R0, R4 // c = CA done: MOVD R4, c+56(FP) RET // func subVW(z, x []Word, y Word) (c Word) TEXT ·subVW(SB), NOSPLIT, $0 MOVD z+0(FP), R10 // R10 = z[] MOVD x+24(FP), R8 // R8 = x[] MOVD y+48(FP), R4 // R4 = y = c MOVD z_len+8(FP), R11 // R11 = z_len CMP R0, R11 // If z_len is zero, return BEQ done // We will process the first iteration out of the loop so we capture // the value of c. In the subsequent iterations, we will rely on the // value of CA set here. MOVD 0(R8), R20 // R20 = x[i] ADD $-1, R11 // R11 = z_len - 1 SUBC R4, R20, R6 // R6 = x[i] - c CMP R0, R11 // If z_len was 1, we are done MOVD R6, 0(R10) // z[i] BEQ final // We will read 4 elements per iteration SRD $2, R11, R9 // R9 = z_len/4 DCBT (R8) CMP R0, R9 MOVD R9, CTR // Set up the loop counter BEQ tail // If R9 = 0, we can't use the loop // The loop here is almost the same as the one used in s390x, but // we don't need to capture CA every iteration because we've already // done that above. PCALIGN $16 loop: MOVD 8(R8), R20 MOVD 16(R8), R21 MOVD 24(R8), R22 MOVDU 32(R8), R23 SUBE R0, R20 SUBE R0, R21 SUBE R0, R22 SUBE R0, R23 MOVD R20, 8(R10) MOVD R21, 16(R10) MOVD R22, 24(R10) MOVDU R23, 32(R10) ADD $-4, R11 BC 16, 0, loop // bdnz // We may have some elements to read CMP R0, R11 BEQ final tail: MOVDU 8(R8), R20 SUBE R0, R20 ADD $-1, R11 MOVDU R20, 8(R10) CMP R0, R11 BEQ final MOVDU 8(R8), R20 SUBE R0, R20 ADD $-1, R11 MOVDU R20, 8(R10) CMP R0, R11 BEQ final MOVD 8(R8), R20 SUBE R0, R20 MOVD R20, 8(R10) final: // Capture CA SUBE R4, R4 NEG R4, R4 done: MOVD R4, c+56(FP) RET //func shlVU(z, x []Word, s uint) (c Word) TEXT ·shlVU(SB), NOSPLIT, $0 MOVD z+0(FP), R3 MOVD x+24(FP), R6 MOVD s+48(FP), R9 MOVD z_len+8(FP), R4 MOVD x_len+32(FP), R7 CMP R9, R0 // s==0 copy(z,x) BEQ zeroshift CMP R4, R0 // len(z)==0 return BEQ done ADD $-1, R4, R5 // len(z)-1 SUBC R9, $64, R4 // ŝ=_W-s, we skip & by _W-1 as the caller ensures s < _W(64) SLD $3, R5, R7 ADD R6, R7, R15 // save starting address &x[len(z)-1] ADD R3, R7, R16 // save starting address &z[len(z)-1] MOVD (R6)(R7), R14 SRD R4, R14, R7 // compute x[len(z)-1]>>ŝ into R7 CMP R5, R0 // iterate from i=len(z)-1 to 0 BEQ loopexit // Already at end? MOVD 0(R15),R10 // x[i] PCALIGN $16 shloop: SLD R9, R10, R10 // x[i]<>ŝ OR R11, R10, R10 MOVD R10, 0(R16) // z[i-1]=x[i]<>ŝ MOVD R14, R10 // reuse x[i-1] for next iteration ADD $-8, R16 // i-- CMP R15, R6 // &x[i-1]>&x[0]? BGT shloop loopexit: MOVD 0(R6), R4 SLD R9, R4, R4 MOVD R4, 0(R3) // z[0]=x[0]<>ŝ into c RET zeroshift: CMP R6, R0 // x is null, nothing to copy BEQ done CMP R6, R3 // if x is same as z, nothing to copy BEQ done CMP R7, R4 ISEL $0, R7, R4, R7 // Take the lower bound of lengths of x,z SLD $3, R7, R7 SUB R6, R3, R11 // dest - src CMPU R11, R7, CR2 // < len? BLT CR2, backward // there is overlap, copy backwards MOVD $0, R14 // shlVU processes backwards, but added a forward copy option // since its faster on POWER repeat: MOVD (R6)(R14), R15 // Copy 8 bytes at a time MOVD R15, (R3)(R14) ADD $8, R14 CMP R14, R7 // More 8 bytes left? BLT repeat BR done backward: ADD $-8,R7, R14 repeatback: MOVD (R6)(R14), R15 // copy x into z backwards MOVD R15, (R3)(R14) // copy 8 bytes at a time SUB $8, R14 CMP R14, $-8 // More 8 bytes left? BGT repeatback done: MOVD R0, c+56(FP) // c=0 RET //func shrVU(z, x []Word, s uint) (c Word) TEXT ·shrVU(SB), NOSPLIT, $0 MOVD z+0(FP), R3 MOVD x+24(FP), R6 MOVD s+48(FP), R9 MOVD z_len+8(FP), R4 MOVD x_len+32(FP), R7 CMP R9, R0 // s==0, copy(z,x) BEQ zeroshift CMP R4, R0 // len(z)==0 return BEQ done SUBC R9, $64, R5 // ŝ=_W-s, we skip & by _W-1 as the caller ensures s < _W(64) MOVD 0(R6), R7 SLD R5, R7, R7 // compute x[0]<<ŝ MOVD $1, R8 // iterate from i=1 to i=3, else jump to scalar loop CMP R4, $3 BLT scalar MTVSRD R9, VS38 // s VSPLTB $7, V6, V4 MTVSRD R5, VS39 // ŝ VSPLTB $7, V7, V2 ADD $-2, R4, R16 PCALIGN $16 loopback: ADD $-1, R8, R10 SLD $3, R10 LXVD2X (R6)(R10), VS32 // load x[i-1], x[i] SLD $3, R8, R12 LXVD2X (R6)(R12), VS33 // load x[i], x[i+1] VSRD V0, V4, V3 // x[i-1]>>s, x[i]>>s VSLD V1, V2, V5 // x[i]<<ŝ, x[i+1]<<ŝ VOR V3, V5, V5 // Or(|) the two registers together STXVD2X VS37, (R3)(R10) // store into z[i-1] and z[i] ADD $2, R8 // Done processing 2 entries, i and i+1 CMP R8, R16 // Are there at least a couple of more entries left? BLE loopback CMP R8, R4 // Are we at the last element? BEQ loopexit scalar: ADD $-1, R8, R10 SLD $3, R10 MOVD (R6)(R10),R11 SRD R9, R11, R11 // x[len(z)-2] >> s SLD $3, R8, R12 MOVD (R6)(R12), R12 SLD R5, R12, R12 // x[len(z)-1]<<ŝ OR R12, R11, R11 // x[len(z)-2]>>s | x[len(z)-1]<<ŝ MOVD R11, (R3)(R10) // z[len(z)-2]=x[len(z)-2]>>s | x[len(z)-1]<<ŝ loopexit: ADD $-1, R4 SLD $3, R4 MOVD (R6)(R4), R5 SRD R9, R5, R5 // x[len(z)-1]>>s MOVD R5, (R3)(R4) // z[len(z)-1]=x[len(z)-1]>>s MOVD R7, c+56(FP) // store pre-computed x[0]<<ŝ into c RET zeroshift: CMP R6, R0 // x is null, nothing to copy BEQ done CMP R6, R3 // if x is same as z, nothing to copy BEQ done CMP R7, R4 ISEL $0, R7, R4, R7 // Take the lower bounds of lengths of x, z SLD $3, R7, R7 MOVD $0, R14 repeat: MOVD (R6)(R14), R15 // copy 8 bytes at a time MOVD R15, (R3)(R14) // shrVU processes bytes only forwards ADD $8, R14 CMP R14, R7 // More 8 bytes left? BLT repeat done: MOVD R0, c+56(FP) RET // func mulAddVWW(z, x []Word, y, r Word) (c Word) TEXT ·mulAddVWW(SB), NOSPLIT, $0 MOVD z+0(FP), R10 // R10 = z[] MOVD x+24(FP), R8 // R8 = x[] MOVD y+48(FP), R9 // R9 = y MOVD r+56(FP), R4 // R4 = r = c MOVD z_len+8(FP), R11 // R11 = z_len CMP R0, R11 BEQ done MOVD 0(R8), R20 ADD $-1, R11 MULLD R9, R20, R6 // R6 = z0 = Low-order(x[i]*y) MULHDU R9, R20, R7 // R7 = z1 = High-order(x[i]*y) ADDC R4, R6 // R6 = z0 + r ADDZE R7 // R7 = z1 + CA CMP R0, R11 MOVD R7, R4 // R4 = c MOVD R6, 0(R10) // z[i] BEQ done // We will read 4 elements per iteration SRD $2, R11, R14 // R14 = z_len/4 DCBT (R8) CMP R0, R14 MOVD R14, CTR // Set up the loop counter BEQ tail // If R9 = 0, we can't use the loop PCALIGN $16 loop: MOVD 8(R8), R20 // R20 = x[i] MOVD 16(R8), R21 // R21 = x[i+1] MOVD 24(R8), R22 // R22 = x[i+2] MOVDU 32(R8), R23 // R23 = x[i+3] MULLD R9, R20, R24 // R24 = z0[i] MULHDU R9, R20, R20 // R20 = z1[i] ADDC R4, R24 // R24 = z0[i] + c ADDZE R20 // R7 = z1[i] + CA MULLD R9, R21, R25 MULHDU R9, R21, R21 ADDC R20, R25 ADDZE R21 MULLD R9, R22, R26 MULHDU R9, R22, R22 MULLD R9, R23, R27 MULHDU R9, R23, R23 ADDC R21, R26 ADDZE R22 MOVD R24, 8(R10) // z[i] MOVD R25, 16(R10) // z[i+1] ADDC R22, R27 ADDZE R23,R4 // update carry MOVD R26, 24(R10) // z[i+2] MOVDU R27, 32(R10) // z[i+3] ADD $-4, R11 // R11 = z_len - 4 BC 16, 0, loop // bdnz // We may have some elements to read CMP R0, R11 BEQ done // Process the remaining elements, one at a time tail: MOVDU 8(R8), R20 // R20 = x[i] MULLD R9, R20, R24 // R24 = z0[i] MULHDU R9, R20, R25 // R25 = z1[i] ADD $-1, R11 // R11 = z_len - 1 ADDC R4, R24 ADDZE R25 MOVDU R24, 8(R10) // z[i] CMP R0, R11 MOVD R25, R4 // R4 = c BEQ done // If R11 = 0, we are done MOVDU 8(R8), R20 MULLD R9, R20, R24 MULHDU R9, R20, R25 ADD $-1, R11 ADDC R4, R24 ADDZE R25 MOVDU R24, 8(R10) CMP R0, R11 MOVD R25, R4 BEQ done MOVD 8(R8), R20 MULLD R9, R20, R24 MULHDU R9, R20, R25 ADD $-1, R11 ADDC R4, R24 ADDZE R25 MOVD R24, 8(R10) MOVD R25, R4 done: MOVD R4, c+64(FP) RET // func addMulVVW(z, x []Word, y Word) (c Word) TEXT ·addMulVVW(SB), NOSPLIT, $0 MOVD z+0(FP), R10 // R10 = z[] MOVD x+24(FP), R8 // R8 = x[] MOVD y+48(FP), R9 // R9 = y MOVD z_len+8(FP), R22 // R22 = z_len MOVD R0, R3 // R3 will be the index register CMP R0, R22 MOVD R0, R4 // R4 = c = 0 MOVD R22, CTR // Initialize loop counter BEQ done PCALIGN $16 loop: MOVD (R8)(R3), R20 // Load x[i] MOVD (R10)(R3), R21 // Load z[i] MULLD R9, R20, R6 // R6 = Low-order(x[i]*y) MULHDU R9, R20, R7 // R7 = High-order(x[i]*y) ADDC R21, R6 // R6 = z0 ADDZE R7 // R7 = z1 ADDC R4, R6 // R6 = z0 + c + 0 ADDZE R7, R4 // c += z1 MOVD R6, (R10)(R3) // Store z[i] ADD $8, R3 BC 16, 0, loop // bdnz done: MOVD R4, c+56(FP) RET