// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package rand_test import ( "bytes" "errors" "fmt" "internal/testenv" "io" "math" . "math/rand" "os" "runtime" "sync" "testing" "testing/iotest" ) const ( numTestSamples = 10000 ) var rn, kn, wn, fn = GetNormalDistributionParameters() var re, ke, we, fe = GetExponentialDistributionParameters() type statsResults struct { mean float64 stddev float64 closeEnough float64 maxError float64 } func max(a, b float64) float64 { if a > b { return a } return b } func nearEqual(a, b, closeEnough, maxError float64) bool { absDiff := math.Abs(a - b) if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero. return true } return absDiff/max(math.Abs(a), math.Abs(b)) < maxError } var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961} // checkSimilarDistribution returns success if the mean and stddev of the // two statsResults are similar. func (this *statsResults) checkSimilarDistribution(expected *statsResults) error { if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) { s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError) fmt.Println(s) return errors.New(s) } if !nearEqual(this.stddev, expected.stddev, expected.closeEnough, expected.maxError) { s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError) fmt.Println(s) return errors.New(s) } return nil } func getStatsResults(samples []float64) *statsResults { res := new(statsResults) var sum, squaresum float64 for _, s := range samples { sum += s squaresum += s * s } res.mean = sum / float64(len(samples)) res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean) return res } func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) { t.Helper() actual := getStatsResults(samples) err := actual.checkSimilarDistribution(expected) if err != nil { t.Errorf(err.Error()) } } func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) { t.Helper() chunk := len(samples) / nslices for i := 0; i < nslices; i++ { low := i * chunk var high int if i == nslices-1 { high = len(samples) - 1 } else { high = (i + 1) * chunk } checkSampleDistribution(t, samples[low:high], expected) } } // // Normal distribution tests // func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 { r := New(NewSource(seed)) samples := make([]float64, nsamples) for i := range samples { samples[i] = r.NormFloat64()*stddev + mean } return samples } func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) { //fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed); samples := generateNormalSamples(nsamples, mean, stddev, seed) errorScale := max(1.0, stddev) // Error scales with stddev expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale} // Make sure that the entire set matches the expected distribution. checkSampleDistribution(t, samples, expected) // Make sure that each half of the set matches the expected distribution. checkSampleSliceDistributions(t, samples, 2, expected) // Make sure that each 7th of the set matches the expected distribution. checkSampleSliceDistributions(t, samples, 7, expected) } // Actual tests func TestStandardNormalValues(t *testing.T) { for _, seed := range testSeeds { testNormalDistribution(t, numTestSamples, 0, 1, seed) } } func TestNonStandardNormalValues(t *testing.T) { sdmax := 1000.0 mmax := 1000.0 if testing.Short() { sdmax = 5 mmax = 5 } for sd := 0.5; sd < sdmax; sd *= 2 { for m := 0.5; m < mmax; m *= 2 { for _, seed := range testSeeds { testNormalDistribution(t, numTestSamples, m, sd, seed) if testing.Short() { break } } } } } // // Exponential distribution tests // func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 { r := New(NewSource(seed)) samples := make([]float64, nsamples) for i := range samples { samples[i] = r.ExpFloat64() / rate } return samples } func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) { //fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed); mean := 1 / rate stddev := mean samples := generateExponentialSamples(nsamples, rate, seed) errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale} // Make sure that the entire set matches the expected distribution. checkSampleDistribution(t, samples, expected) // Make sure that each half of the set matches the expected distribution. checkSampleSliceDistributions(t, samples, 2, expected) // Make sure that each 7th of the set matches the expected distribution. checkSampleSliceDistributions(t, samples, 7, expected) } // Actual tests func TestStandardExponentialValues(t *testing.T) { for _, seed := range testSeeds { testExponentialDistribution(t, numTestSamples, 1, seed) } } func TestNonStandardExponentialValues(t *testing.T) { for rate := 0.05; rate < 10; rate *= 2 { for _, seed := range testSeeds { testExponentialDistribution(t, numTestSamples, rate, seed) if testing.Short() { break } } } } // // Table generation tests // func initNorm() (testKn []uint32, testWn, testFn []float32) { const m1 = 1 << 31 var ( dn float64 = rn tn = dn vn float64 = 9.91256303526217e-3 ) testKn = make([]uint32, 128) testWn = make([]float32, 128) testFn = make([]float32, 128) q := vn / math.Exp(-0.5*dn*dn) testKn[0] = uint32((dn / q) * m1) testKn[1] = 0 testWn[0] = float32(q / m1) testWn[127] = float32(dn / m1) testFn[0] = 1.0 testFn[127] = float32(math.Exp(-0.5 * dn * dn)) for i := 126; i >= 1; i-- { dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn))) testKn[i+1] = uint32((dn / tn) * m1) tn = dn testFn[i] = float32(math.Exp(-0.5 * dn * dn)) testWn[i] = float32(dn / m1) } return } func initExp() (testKe []uint32, testWe, testFe []float32) { const m2 = 1 << 32 var ( de float64 = re te = de ve float64 = 3.9496598225815571993e-3 ) testKe = make([]uint32, 256) testWe = make([]float32, 256) testFe = make([]float32, 256) q := ve / math.Exp(-de) testKe[0] = uint32((de / q) * m2) testKe[1] = 0 testWe[0] = float32(q / m2) testWe[255] = float32(de / m2) testFe[0] = 1.0 testFe[255] = float32(math.Exp(-de)) for i := 254; i >= 1; i-- { de = -math.Log(ve/de + math.Exp(-de)) testKe[i+1] = uint32((de / te) * m2) te = de testFe[i] = float32(math.Exp(-de)) testWe[i] = float32(de / m2) } return } // compareUint32Slices returns the first index where the two slices // disagree, or <0 if the lengths are the same and all elements // are identical. func compareUint32Slices(s1, s2 []uint32) int { if len(s1) != len(s2) { if len(s1) > len(s2) { return len(s2) + 1 } return len(s1) + 1 } for i := range s1 { if s1[i] != s2[i] { return i } } return -1 } // compareFloat32Slices returns the first index where the two slices // disagree, or <0 if the lengths are the same and all elements // are identical. func compareFloat32Slices(s1, s2 []float32) int { if len(s1) != len(s2) { if len(s1) > len(s2) { return len(s2) + 1 } return len(s1) + 1 } for i := range s1 { if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) { return i } } return -1 } func TestNormTables(t *testing.T) { testKn, testWn, testFn := initNorm() if i := compareUint32Slices(kn[0:], testKn); i >= 0 { t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i]) } if i := compareFloat32Slices(wn[0:], testWn); i >= 0 { t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i]) } if i := compareFloat32Slices(fn[0:], testFn); i >= 0 { t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i]) } } func TestExpTables(t *testing.T) { testKe, testWe, testFe := initExp() if i := compareUint32Slices(ke[0:], testKe); i >= 0 { t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i]) } if i := compareFloat32Slices(we[0:], testWe); i >= 0 { t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i]) } if i := compareFloat32Slices(fe[0:], testFe); i >= 0 { t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i]) } } func hasSlowFloatingPoint() bool { switch runtime.GOARCH { case "arm": return os.Getenv("GOARM") == "5" case "mips", "mipsle", "mips64", "mips64le": // Be conservative and assume that all mips boards // have emulated floating point. // TODO: detect what it actually has. return true } return false } func TestFloat32(t *testing.T) { // For issue 6721, the problem came after 7533753 calls, so check 10e6. num := int(10e6) // But do the full amount only on builders (not locally). // But ARM5 floating point emulation is slow (Issue 10749), so // do less for that builder: if testing.Short() && (testenv.Builder() == "" || hasSlowFloatingPoint()) { num /= 100 // 1.72 seconds instead of 172 seconds } r := New(NewSource(1)) for ct := 0; ct < num; ct++ { f := r.Float32() if f >= 1 { t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f) } } } func testReadUniformity(t *testing.T, n int, seed int64) { r := New(NewSource(seed)) buf := make([]byte, n) nRead, err := r.Read(buf) if err != nil { t.Errorf("Read err %v", err) } if nRead != n { t.Errorf("Read returned unexpected n; %d != %d", nRead, n) } // Expect a uniform distribution of byte values, which lie in [0, 255]. var ( mean = 255.0 / 2 stddev = 256.0 / math.Sqrt(12.0) errorScale = stddev / math.Sqrt(float64(n)) ) expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale} // Cast bytes as floats to use the common distribution-validity checks. samples := make([]float64, n) for i, val := range buf { samples[i] = float64(val) } // Make sure that the entire set matches the expected distribution. checkSampleDistribution(t, samples, expected) } func TestReadUniformity(t *testing.T) { testBufferSizes := []int{ 2, 4, 7, 64, 1024, 1 << 16, 1 << 20, } for _, seed := range testSeeds { for _, n := range testBufferSizes { testReadUniformity(t, n, seed) } } } func TestReadEmpty(t *testing.T) { r := New(NewSource(1)) buf := make([]byte, 0) n, err := r.Read(buf) if err != nil { t.Errorf("Read err into empty buffer; %v", err) } if n != 0 { t.Errorf("Read into empty buffer returned unexpected n of %d", n) } } func TestReadByOneByte(t *testing.T) { r := New(NewSource(1)) b1 := make([]byte, 100) _, err := io.ReadFull(iotest.OneByteReader(r), b1) if err != nil { t.Errorf("read by one byte: %v", err) } r = New(NewSource(1)) b2 := make([]byte, 100) _, err = r.Read(b2) if err != nil { t.Errorf("read: %v", err) } if !bytes.Equal(b1, b2) { t.Errorf("read by one byte vs single read:\n%x\n%x", b1, b2) } } func TestReadSeedReset(t *testing.T) { r := New(NewSource(42)) b1 := make([]byte, 128) _, err := r.Read(b1) if err != nil { t.Errorf("read: %v", err) } r.Seed(42) b2 := make([]byte, 128) _, err = r.Read(b2) if err != nil { t.Errorf("read: %v", err) } if !bytes.Equal(b1, b2) { t.Errorf("mismatch after re-seed:\n%x\n%x", b1, b2) } } func TestShuffleSmall(t *testing.T) { // Check that Shuffle allows n=0 and n=1, but that swap is never called for them. r := New(NewSource(1)) for n := 0; n <= 1; n++ { r.Shuffle(n, func(i, j int) { t.Fatalf("swap called, n=%d i=%d j=%d", n, i, j) }) } } // encodePerm converts from a permuted slice of length n, such as Perm generates, to an int in [0, n!). // See https://en.wikipedia.org/wiki/Lehmer_code. // encodePerm modifies the input slice. func encodePerm(s []int) int { // Convert to Lehmer code. for i, x := range s { r := s[i+1:] for j, y := range r { if y > x { r[j]-- } } } // Convert to int in [0, n!). m := 0 fact := 1 for i := len(s) - 1; i >= 0; i-- { m += s[i] * fact fact *= len(s) - i } return m } // TestUniformFactorial tests several ways of generating a uniform value in [0, n!). func TestUniformFactorial(t *testing.T) { r := New(NewSource(testSeeds[0])) top := 6 if testing.Short() { top = 3 } for n := 3; n <= top; n++ { t.Run(fmt.Sprintf("n=%d", n), func(t *testing.T) { // Calculate n!. nfact := 1 for i := 2; i <= n; i++ { nfact *= i } // Test a few different ways to generate a uniform distribution. p := make([]int, n) // re-usable slice for Shuffle generator tests := [...]struct { name string fn func() int }{ {name: "Int31n", fn: func() int { return int(r.Int31n(int32(nfact))) }}, {name: "int31n", fn: func() int { return int(Int31nForTest(r, int32(nfact))) }}, {name: "Perm", fn: func() int { return encodePerm(r.Perm(n)) }}, {name: "Shuffle", fn: func() int { // Generate permutation using Shuffle. for i := range p { p[i] = i } r.Shuffle(n, func(i, j int) { p[i], p[j] = p[j], p[i] }) return encodePerm(p) }}, } for _, test := range tests { t.Run(test.name, func(t *testing.T) { // Gather chi-squared values and check that they follow // the expected normal distribution given n!-1 degrees of freedom. // See https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test and // https://www.johndcook.com/Beautiful_Testing_ch10.pdf. nsamples := 10 * nfact if nsamples < 200 { nsamples = 200 } samples := make([]float64, nsamples) for i := range samples { // Generate some uniformly distributed values and count their occurrences. const iters = 1000 counts := make([]int, nfact) for i := 0; i < iters; i++ { counts[test.fn()]++ } // Calculate chi-squared and add to samples. want := iters / float64(nfact) var χ2 float64 for _, have := range counts { err := float64(have) - want χ2 += err * err } χ2 /= want samples[i] = χ2 } // Check that our samples approximate the appropriate normal distribution. dof := float64(nfact - 1) expected := &statsResults{mean: dof, stddev: math.Sqrt(2 * dof)} errorScale := max(1.0, expected.stddev) expected.closeEnough = 0.10 * errorScale expected.maxError = 0.08 // TODO: What is the right value here? See issue 21211. checkSampleDistribution(t, samples, expected) }) } }) } } // Benchmarks func BenchmarkInt63Threadsafe(b *testing.B) { for n := b.N; n > 0; n-- { Int63() } } func BenchmarkInt63ThreadsafeParallel(b *testing.B) { b.RunParallel(func(pb *testing.PB) { for pb.Next() { Int63() } }) } func BenchmarkInt63Unthreadsafe(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Int63() } } func BenchmarkIntn1000(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Intn(1000) } } func BenchmarkInt63n1000(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Int63n(1000) } } func BenchmarkInt31n1000(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Int31n(1000) } } func BenchmarkFloat32(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Float32() } } func BenchmarkFloat64(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Float64() } } func BenchmarkPerm3(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Perm(3) } } func BenchmarkPerm30(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Perm(30) } } func BenchmarkPerm30ViaShuffle(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { p := make([]int, 30) for i := range p { p[i] = i } r.Shuffle(30, func(i, j int) { p[i], p[j] = p[j], p[i] }) } } // BenchmarkShuffleOverhead uses a minimal swap function // to measure just the shuffling overhead. func BenchmarkShuffleOverhead(b *testing.B) { r := New(NewSource(1)) for n := b.N; n > 0; n-- { r.Shuffle(52, func(i, j int) { if i < 0 || i >= 52 || j < 0 || j >= 52 { b.Fatalf("bad swap(%d, %d)", i, j) } }) } } func BenchmarkRead3(b *testing.B) { r := New(NewSource(1)) buf := make([]byte, 3) b.ResetTimer() for n := b.N; n > 0; n-- { r.Read(buf) } } func BenchmarkRead64(b *testing.B) { r := New(NewSource(1)) buf := make([]byte, 64) b.ResetTimer() for n := b.N; n > 0; n-- { r.Read(buf) } } func BenchmarkRead1000(b *testing.B) { r := New(NewSource(1)) buf := make([]byte, 1000) b.ResetTimer() for n := b.N; n > 0; n-- { r.Read(buf) } } func BenchmarkConcurrent(b *testing.B) { const goroutines = 4 var wg sync.WaitGroup wg.Add(goroutines) for i := 0; i < goroutines; i++ { go func() { defer wg.Done() for n := b.N; n > 0; n-- { Int63() } }() } wg.Wait() }