summaryrefslogtreecommitdiffstats
path: root/src/runtime/mbitmap.go
blob: a24287288472282d388274b3ba110cb31c380e4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Garbage collector: type and heap bitmaps.
//
// Stack, data, and bss bitmaps
//
// Stack frames and global variables in the data and bss sections are
// described by bitmaps with 1 bit per pointer-sized word. A "1" bit
// means the word is a live pointer to be visited by the GC (referred to
// as "pointer"). A "0" bit means the word should be ignored by GC
// (referred to as "scalar", though it could be a dead pointer value).
//
// Heap bitmap
//
// The heap bitmap comprises 1 bit for each pointer-sized word in the heap,
// recording whether a pointer is stored in that word or not. This bitmap
// is stored in the heapArena metadata backing each heap arena.
// That is, if ha is the heapArena for the arena starting at "start",
// then ha.bitmap[0] holds the 64 bits for the 64 words "start"
// through start+63*ptrSize, ha.bitmap[1] holds the entries for
// start+64*ptrSize through start+127*ptrSize, and so on.
// Bits correspond to words in little-endian order. ha.bitmap[0]&1 represents
// the word at "start", ha.bitmap[0]>>1&1 represents the word at start+8, etc.
// (For 32-bit platforms, s/64/32/.)
//
// We also keep a noMorePtrs bitmap which allows us to stop scanning
// the heap bitmap early in certain situations. If ha.noMorePtrs[i]>>j&1
// is 1, then the object containing the last word described by ha.bitmap[8*i+j]
// has no more pointers beyond those described by ha.bitmap[8*i+j].
// If ha.noMorePtrs[i]>>j&1 is set, the entries in ha.bitmap[8*i+j+1] and
// beyond must all be zero until the start of the next object.
//
// The bitmap for noscan spans is set to all zero at span allocation time.
//
// The bitmap for unallocated objects in scannable spans is not maintained
// (can be junk).

package runtime

import (
	"internal/goarch"
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

// addb returns the byte pointer p+n.
//
//go:nowritebarrier
//go:nosplit
func addb(p *byte, n uintptr) *byte {
	// Note: wrote out full expression instead of calling add(p, n)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n))
}

// subtractb returns the byte pointer p-n.
//
//go:nowritebarrier
//go:nosplit
func subtractb(p *byte, n uintptr) *byte {
	// Note: wrote out full expression instead of calling add(p, -n)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n))
}

// add1 returns the byte pointer p+1.
//
//go:nowritebarrier
//go:nosplit
func add1(p *byte) *byte {
	// Note: wrote out full expression instead of calling addb(p, 1)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1))
}

// subtract1 returns the byte pointer p-1.
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nowritebarrier
//go:nosplit
func subtract1(p *byte) *byte {
	// Note: wrote out full expression instead of calling subtractb(p, 1)
	// to reduce the number of temporaries generated by the
	// compiler for this trivial expression during inlining.
	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1))
}

// markBits provides access to the mark bit for an object in the heap.
// bytep points to the byte holding the mark bit.
// mask is a byte with a single bit set that can be &ed with *bytep
// to see if the bit has been set.
// *m.byte&m.mask != 0 indicates the mark bit is set.
// index can be used along with span information to generate
// the address of the object in the heap.
// We maintain one set of mark bits for allocation and one for
// marking purposes.
type markBits struct {
	bytep *uint8
	mask  uint8
	index uintptr
}

//go:nosplit
func (s *mspan) allocBitsForIndex(allocBitIndex uintptr) markBits {
	bytep, mask := s.allocBits.bitp(allocBitIndex)
	return markBits{bytep, mask, allocBitIndex}
}

// refillAllocCache takes 8 bytes s.allocBits starting at whichByte
// and negates them so that ctz (count trailing zeros) instructions
// can be used. It then places these 8 bytes into the cached 64 bit
// s.allocCache.
func (s *mspan) refillAllocCache(whichByte uintptr) {
	bytes := (*[8]uint8)(unsafe.Pointer(s.allocBits.bytep(whichByte)))
	aCache := uint64(0)
	aCache |= uint64(bytes[0])
	aCache |= uint64(bytes[1]) << (1 * 8)
	aCache |= uint64(bytes[2]) << (2 * 8)
	aCache |= uint64(bytes[3]) << (3 * 8)
	aCache |= uint64(bytes[4]) << (4 * 8)
	aCache |= uint64(bytes[5]) << (5 * 8)
	aCache |= uint64(bytes[6]) << (6 * 8)
	aCache |= uint64(bytes[7]) << (7 * 8)
	s.allocCache = ^aCache
}

// nextFreeIndex returns the index of the next free object in s at
// or after s.freeindex.
// There are hardware instructions that can be used to make this
// faster if profiling warrants it.
func (s *mspan) nextFreeIndex() uintptr {
	sfreeindex := s.freeindex
	snelems := s.nelems
	if sfreeindex == snelems {
		return sfreeindex
	}
	if sfreeindex > snelems {
		throw("s.freeindex > s.nelems")
	}

	aCache := s.allocCache

	bitIndex := sys.TrailingZeros64(aCache)
	for bitIndex == 64 {
		// Move index to start of next cached bits.
		sfreeindex = (sfreeindex + 64) &^ (64 - 1)
		if sfreeindex >= snelems {
			s.freeindex = snelems
			return snelems
		}
		whichByte := sfreeindex / 8
		// Refill s.allocCache with the next 64 alloc bits.
		s.refillAllocCache(whichByte)
		aCache = s.allocCache
		bitIndex = sys.TrailingZeros64(aCache)
		// nothing available in cached bits
		// grab the next 8 bytes and try again.
	}
	result := sfreeindex + uintptr(bitIndex)
	if result >= snelems {
		s.freeindex = snelems
		return snelems
	}

	s.allocCache >>= uint(bitIndex + 1)
	sfreeindex = result + 1

	if sfreeindex%64 == 0 && sfreeindex != snelems {
		// We just incremented s.freeindex so it isn't 0.
		// As each 1 in s.allocCache was encountered and used for allocation
		// it was shifted away. At this point s.allocCache contains all 0s.
		// Refill s.allocCache so that it corresponds
		// to the bits at s.allocBits starting at s.freeindex.
		whichByte := sfreeindex / 8
		s.refillAllocCache(whichByte)
	}
	s.freeindex = sfreeindex
	return result
}

// isFree reports whether the index'th object in s is unallocated.
//
// The caller must ensure s.state is mSpanInUse, and there must have
// been no preemption points since ensuring this (which could allow a
// GC transition, which would allow the state to change).
func (s *mspan) isFree(index uintptr) bool {
	if index < s.freeIndexForScan {
		return false
	}
	bytep, mask := s.allocBits.bitp(index)
	return *bytep&mask == 0
}

// divideByElemSize returns n/s.elemsize.
// n must be within [0, s.npages*_PageSize),
// or may be exactly s.npages*_PageSize
// if s.elemsize is from sizeclasses.go.
//
// nosplit, because it is called by objIndex, which is nosplit
//
//go:nosplit
func (s *mspan) divideByElemSize(n uintptr) uintptr {
	const doubleCheck = false

	// See explanation in mksizeclasses.go's computeDivMagic.
	q := uintptr((uint64(n) * uint64(s.divMul)) >> 32)

	if doubleCheck && q != n/s.elemsize {
		println(n, "/", s.elemsize, "should be", n/s.elemsize, "but got", q)
		throw("bad magic division")
	}
	return q
}

// nosplit, because it is called by other nosplit code like findObject
//
//go:nosplit
func (s *mspan) objIndex(p uintptr) uintptr {
	return s.divideByElemSize(p - s.base())
}

func markBitsForAddr(p uintptr) markBits {
	s := spanOf(p)
	objIndex := s.objIndex(p)
	return s.markBitsForIndex(objIndex)
}

func (s *mspan) markBitsForIndex(objIndex uintptr) markBits {
	bytep, mask := s.gcmarkBits.bitp(objIndex)
	return markBits{bytep, mask, objIndex}
}

func (s *mspan) markBitsForBase() markBits {
	return markBits{&s.gcmarkBits.x, uint8(1), 0}
}

// isMarked reports whether mark bit m is set.
func (m markBits) isMarked() bool {
	return *m.bytep&m.mask != 0
}

// setMarked sets the marked bit in the markbits, atomically.
func (m markBits) setMarked() {
	// Might be racing with other updates, so use atomic update always.
	// We used to be clever here and use a non-atomic update in certain
	// cases, but it's not worth the risk.
	atomic.Or8(m.bytep, m.mask)
}

// setMarkedNonAtomic sets the marked bit in the markbits, non-atomically.
func (m markBits) setMarkedNonAtomic() {
	*m.bytep |= m.mask
}

// clearMarked clears the marked bit in the markbits, atomically.
func (m markBits) clearMarked() {
	// Might be racing with other updates, so use atomic update always.
	// We used to be clever here and use a non-atomic update in certain
	// cases, but it's not worth the risk.
	atomic.And8(m.bytep, ^m.mask)
}

// markBitsForSpan returns the markBits for the span base address base.
func markBitsForSpan(base uintptr) (mbits markBits) {
	mbits = markBitsForAddr(base)
	if mbits.mask != 1 {
		throw("markBitsForSpan: unaligned start")
	}
	return mbits
}

// advance advances the markBits to the next object in the span.
func (m *markBits) advance() {
	if m.mask == 1<<7 {
		m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1))
		m.mask = 1
	} else {
		m.mask = m.mask << 1
	}
	m.index++
}

// clobberdeadPtr is a special value that is used by the compiler to
// clobber dead stack slots, when -clobberdead flag is set.
const clobberdeadPtr = uintptr(0xdeaddead | 0xdeaddead<<((^uintptr(0)>>63)*32))

// badPointer throws bad pointer in heap panic.
func badPointer(s *mspan, p, refBase, refOff uintptr) {
	// Typically this indicates an incorrect use
	// of unsafe or cgo to store a bad pointer in
	// the Go heap. It may also indicate a runtime
	// bug.
	//
	// TODO(austin): We could be more aggressive
	// and detect pointers to unallocated objects
	// in allocated spans.
	printlock()
	print("runtime: pointer ", hex(p))
	if s != nil {
		state := s.state.get()
		if state != mSpanInUse {
			print(" to unallocated span")
		} else {
			print(" to unused region of span")
		}
		print(" span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", state)
	}
	print("\n")
	if refBase != 0 {
		print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n")
		gcDumpObject("object", refBase, refOff)
	}
	getg().m.traceback = 2
	throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)")
}

// findObject returns the base address for the heap object containing
// the address p, the object's span, and the index of the object in s.
// If p does not point into a heap object, it returns base == 0.
//
// If p points is an invalid heap pointer and debug.invalidptr != 0,
// findObject panics.
//
// refBase and refOff optionally give the base address of the object
// in which the pointer p was found and the byte offset at which it
// was found. These are used for error reporting.
//
// It is nosplit so it is safe for p to be a pointer to the current goroutine's stack.
// Since p is a uintptr, it would not be adjusted if the stack were to move.
//
//go:nosplit
func findObject(p, refBase, refOff uintptr) (base uintptr, s *mspan, objIndex uintptr) {
	s = spanOf(p)
	// If s is nil, the virtual address has never been part of the heap.
	// This pointer may be to some mmap'd region, so we allow it.
	if s == nil {
		if (GOARCH == "amd64" || GOARCH == "arm64") && p == clobberdeadPtr && debug.invalidptr != 0 {
			// Crash if clobberdeadPtr is seen. Only on AMD64 and ARM64 for now,
			// as they are the only platform where compiler's clobberdead mode is
			// implemented. On these platforms clobberdeadPtr cannot be a valid address.
			badPointer(s, p, refBase, refOff)
		}
		return
	}
	// If p is a bad pointer, it may not be in s's bounds.
	//
	// Check s.state to synchronize with span initialization
	// before checking other fields. See also spanOfHeap.
	if state := s.state.get(); state != mSpanInUse || p < s.base() || p >= s.limit {
		// Pointers into stacks are also ok, the runtime manages these explicitly.
		if state == mSpanManual {
			return
		}
		// The following ensures that we are rigorous about what data
		// structures hold valid pointers.
		if debug.invalidptr != 0 {
			badPointer(s, p, refBase, refOff)
		}
		return
	}

	objIndex = s.objIndex(p)
	base = s.base() + objIndex*s.elemsize
	return
}

// reflect_verifyNotInHeapPtr reports whether converting the not-in-heap pointer into a unsafe.Pointer is ok.
//
//go:linkname reflect_verifyNotInHeapPtr reflect.verifyNotInHeapPtr
func reflect_verifyNotInHeapPtr(p uintptr) bool {
	// Conversion to a pointer is ok as long as findObject above does not call badPointer.
	// Since we're already promised that p doesn't point into the heap, just disallow heap
	// pointers and the special clobbered pointer.
	return spanOf(p) == nil && p != clobberdeadPtr
}

const ptrBits = 8 * goarch.PtrSize

// heapBits provides access to the bitmap bits for a single heap word.
// The methods on heapBits take value receivers so that the compiler
// can more easily inline calls to those methods and registerize the
// struct fields independently.
type heapBits struct {
	// heapBits will report on pointers in the range [addr,addr+size).
	// The low bit of mask contains the pointerness of the word at addr
	// (assuming valid>0).
	addr, size uintptr

	// The next few pointer bits representing words starting at addr.
	// Those bits already returned by next() are zeroed.
	mask uintptr
	// Number of bits in mask that are valid. mask is always less than 1<<valid.
	valid uintptr
}

// heapBitsForAddr returns the heapBits for the address addr.
// The caller must ensure [addr,addr+size) is in an allocated span.
// In particular, be careful not to point past the end of an object.
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nosplit
func heapBitsForAddr(addr, size uintptr) heapBits {
	// Find arena
	ai := arenaIndex(addr)
	ha := mheap_.arenas[ai.l1()][ai.l2()]

	// Word index in arena.
	word := addr / goarch.PtrSize % heapArenaWords

	// Word index and bit offset in bitmap array.
	idx := word / ptrBits
	off := word % ptrBits

	// Grab relevant bits of bitmap.
	mask := ha.bitmap[idx] >> off
	valid := ptrBits - off

	// Process depending on where the object ends.
	nptr := size / goarch.PtrSize
	if nptr < valid {
		// Bits for this object end before the end of this bitmap word.
		// Squash bits for the following objects.
		mask &= 1<<(nptr&(ptrBits-1)) - 1
		valid = nptr
	} else if nptr == valid {
		// Bits for this object end at exactly the end of this bitmap word.
		// All good.
	} else {
		// Bits for this object extend into the next bitmap word. See if there
		// may be any pointers recorded there.
		if uintptr(ha.noMorePtrs[idx/8])>>(idx%8)&1 != 0 {
			// No more pointers in this object after this bitmap word.
			// Update size so we know not to look there.
			size = valid * goarch.PtrSize
		}
	}

	return heapBits{addr: addr, size: size, mask: mask, valid: valid}
}

// Returns the (absolute) address of the next known pointer and
// a heapBits iterator representing any remaining pointers.
// If there are no more pointers, returns address 0.
// Note that next does not modify h. The caller must record the result.
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nosplit
func (h heapBits) next() (heapBits, uintptr) {
	for {
		if h.mask != 0 {
			var i int
			if goarch.PtrSize == 8 {
				i = sys.TrailingZeros64(uint64(h.mask))
			} else {
				i = sys.TrailingZeros32(uint32(h.mask))
			}
			h.mask ^= uintptr(1) << (i & (ptrBits - 1))
			return h, h.addr + uintptr(i)*goarch.PtrSize
		}

		// Skip words that we've already processed.
		h.addr += h.valid * goarch.PtrSize
		h.size -= h.valid * goarch.PtrSize
		if h.size == 0 {
			return h, 0 // no more pointers
		}

		// Grab more bits and try again.
		h = heapBitsForAddr(h.addr, h.size)
	}
}

// nextFast is like next, but can return 0 even when there are more pointers
// to be found. Callers should call next if nextFast returns 0 as its second
// return value.
//
//	if addr, h = h.nextFast(); addr == 0 {
//	    if addr, h = h.next(); addr == 0 {
//	        ... no more pointers ...
//	    }
//	}
//	... process pointer at addr ...
//
// nextFast is designed to be inlineable.
//
//go:nosplit
func (h heapBits) nextFast() (heapBits, uintptr) {
	// TESTQ/JEQ
	if h.mask == 0 {
		return h, 0
	}
	// BSFQ
	var i int
	if goarch.PtrSize == 8 {
		i = sys.TrailingZeros64(uint64(h.mask))
	} else {
		i = sys.TrailingZeros32(uint32(h.mask))
	}
	// BTCQ
	h.mask ^= uintptr(1) << (i & (ptrBits - 1))
	// LEAQ (XX)(XX*8)
	return h, h.addr + uintptr(i)*goarch.PtrSize
}

// bulkBarrierPreWrite executes a write barrier
// for every pointer slot in the memory range [src, src+size),
// using pointer/scalar information from [dst, dst+size).
// This executes the write barriers necessary before a memmove.
// src, dst, and size must be pointer-aligned.
// The range [dst, dst+size) must lie within a single object.
// It does not perform the actual writes.
//
// As a special case, src == 0 indicates that this is being used for a
// memclr. bulkBarrierPreWrite will pass 0 for the src of each write
// barrier.
//
// Callers should call bulkBarrierPreWrite immediately before
// calling memmove(dst, src, size). This function is marked nosplit
// to avoid being preempted; the GC must not stop the goroutine
// between the memmove and the execution of the barriers.
// The caller is also responsible for cgo pointer checks if this
// may be writing Go pointers into non-Go memory.
//
// The pointer bitmap is not maintained for allocations containing
// no pointers at all; any caller of bulkBarrierPreWrite must first
// make sure the underlying allocation contains pointers, usually
// by checking typ.PtrBytes.
//
// Callers must perform cgo checks if goexperiment.CgoCheck2.
//
//go:nosplit
func bulkBarrierPreWrite(dst, src, size uintptr) {
	if (dst|src|size)&(goarch.PtrSize-1) != 0 {
		throw("bulkBarrierPreWrite: unaligned arguments")
	}
	if !writeBarrier.needed {
		return
	}
	if s := spanOf(dst); s == nil {
		// If dst is a global, use the data or BSS bitmaps to
		// execute write barriers.
		for _, datap := range activeModules() {
			if datap.data <= dst && dst < datap.edata {
				bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata)
				return
			}
		}
		for _, datap := range activeModules() {
			if datap.bss <= dst && dst < datap.ebss {
				bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata)
				return
			}
		}
		return
	} else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst {
		// dst was heap memory at some point, but isn't now.
		// It can't be a global. It must be either our stack,
		// or in the case of direct channel sends, it could be
		// another stack. Either way, no need for barriers.
		// This will also catch if dst is in a freed span,
		// though that should never have.
		return
	}

	buf := &getg().m.p.ptr().wbBuf
	h := heapBitsForAddr(dst, size)
	if src == 0 {
		for {
			var addr uintptr
			if h, addr = h.next(); addr == 0 {
				break
			}
			dstx := (*uintptr)(unsafe.Pointer(addr))
			p := buf.get1()
			p[0] = *dstx
		}
	} else {
		for {
			var addr uintptr
			if h, addr = h.next(); addr == 0 {
				break
			}
			dstx := (*uintptr)(unsafe.Pointer(addr))
			srcx := (*uintptr)(unsafe.Pointer(src + (addr - dst)))
			p := buf.get2()
			p[0] = *dstx
			p[1] = *srcx
		}
	}
}

// bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but
// does not execute write barriers for [dst, dst+size).
//
// In addition to the requirements of bulkBarrierPreWrite
// callers need to ensure [dst, dst+size) is zeroed.
//
// This is used for special cases where e.g. dst was just
// created and zeroed with malloc.
//
//go:nosplit
func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr) {
	if (dst|src|size)&(goarch.PtrSize-1) != 0 {
		throw("bulkBarrierPreWrite: unaligned arguments")
	}
	if !writeBarrier.needed {
		return
	}
	buf := &getg().m.p.ptr().wbBuf
	h := heapBitsForAddr(dst, size)
	for {
		var addr uintptr
		if h, addr = h.next(); addr == 0 {
			break
		}
		srcx := (*uintptr)(unsafe.Pointer(addr - dst + src))
		p := buf.get1()
		p[0] = *srcx
	}
}

// bulkBarrierBitmap executes write barriers for copying from [src,
// src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is
// assumed to start maskOffset bytes into the data covered by the
// bitmap in bits (which may not be a multiple of 8).
//
// This is used by bulkBarrierPreWrite for writes to data and BSS.
//
//go:nosplit
func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) {
	word := maskOffset / goarch.PtrSize
	bits = addb(bits, word/8)
	mask := uint8(1) << (word % 8)

	buf := &getg().m.p.ptr().wbBuf
	for i := uintptr(0); i < size; i += goarch.PtrSize {
		if mask == 0 {
			bits = addb(bits, 1)
			if *bits == 0 {
				// Skip 8 words.
				i += 7 * goarch.PtrSize
				continue
			}
			mask = 1
		}
		if *bits&mask != 0 {
			dstx := (*uintptr)(unsafe.Pointer(dst + i))
			if src == 0 {
				p := buf.get1()
				p[0] = *dstx
			} else {
				srcx := (*uintptr)(unsafe.Pointer(src + i))
				p := buf.get2()
				p[0] = *dstx
				p[1] = *srcx
			}
		}
		mask <<= 1
	}
}

// typeBitsBulkBarrier executes a write barrier for every
// pointer that would be copied from [src, src+size) to [dst,
// dst+size) by a memmove using the type bitmap to locate those
// pointer slots.
//
// The type typ must correspond exactly to [src, src+size) and [dst, dst+size).
// dst, src, and size must be pointer-aligned.
// The type typ must have a plain bitmap, not a GC program.
// The only use of this function is in channel sends, and the
// 64 kB channel element limit takes care of this for us.
//
// Must not be preempted because it typically runs right before memmove,
// and the GC must observe them as an atomic action.
//
// Callers must perform cgo checks if goexperiment.CgoCheck2.
//
//go:nosplit
func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) {
	if typ == nil {
		throw("runtime: typeBitsBulkBarrier without type")
	}
	if typ.Size_ != size {
		println("runtime: typeBitsBulkBarrier with type ", toRType(typ).string(), " of size ", typ.Size_, " but memory size", size)
		throw("runtime: invalid typeBitsBulkBarrier")
	}
	if typ.Kind_&kindGCProg != 0 {
		println("runtime: typeBitsBulkBarrier with type ", toRType(typ).string(), " with GC prog")
		throw("runtime: invalid typeBitsBulkBarrier")
	}
	if !writeBarrier.needed {
		return
	}
	ptrmask := typ.GCData
	buf := &getg().m.p.ptr().wbBuf
	var bits uint32
	for i := uintptr(0); i < typ.PtrBytes; i += goarch.PtrSize {
		if i&(goarch.PtrSize*8-1) == 0 {
			bits = uint32(*ptrmask)
			ptrmask = addb(ptrmask, 1)
		} else {
			bits = bits >> 1
		}
		if bits&1 != 0 {
			dstx := (*uintptr)(unsafe.Pointer(dst + i))
			srcx := (*uintptr)(unsafe.Pointer(src + i))
			p := buf.get2()
			p[0] = *dstx
			p[1] = *srcx
		}
	}
}

// initHeapBits initializes the heap bitmap for a span.
// If this is a span of single pointer allocations, it initializes all
// words to pointer. If force is true, clears all bits.
func (s *mspan) initHeapBits(forceClear bool) {
	if forceClear || s.spanclass.noscan() {
		// Set all the pointer bits to zero. We do this once
		// when the span is allocated so we don't have to do it
		// for each object allocation.
		base := s.base()
		size := s.npages * pageSize
		h := writeHeapBitsForAddr(base)
		h.flush(base, size)
		return
	}
	isPtrs := goarch.PtrSize == 8 && s.elemsize == goarch.PtrSize
	if !isPtrs {
		return // nothing to do
	}
	h := writeHeapBitsForAddr(s.base())
	size := s.npages * pageSize
	nptrs := size / goarch.PtrSize
	for i := uintptr(0); i < nptrs; i += ptrBits {
		h = h.write(^uintptr(0), ptrBits)
	}
	h.flush(s.base(), size)
}

// countAlloc returns the number of objects allocated in span s by
// scanning the allocation bitmap.
func (s *mspan) countAlloc() int {
	count := 0
	bytes := divRoundUp(s.nelems, 8)
	// Iterate over each 8-byte chunk and count allocations
	// with an intrinsic. Note that newMarkBits guarantees that
	// gcmarkBits will be 8-byte aligned, so we don't have to
	// worry about edge cases, irrelevant bits will simply be zero.
	for i := uintptr(0); i < bytes; i += 8 {
		// Extract 64 bits from the byte pointer and get a OnesCount.
		// Note that the unsafe cast here doesn't preserve endianness,
		// but that's OK. We only care about how many bits are 1, not
		// about the order we discover them in.
		mrkBits := *(*uint64)(unsafe.Pointer(s.gcmarkBits.bytep(i)))
		count += sys.OnesCount64(mrkBits)
	}
	return count
}

type writeHeapBits struct {
	addr  uintptr // address that the low bit of mask represents the pointer state of.
	mask  uintptr // some pointer bits starting at the address addr.
	valid uintptr // number of bits in buf that are valid (including low)
	low   uintptr // number of low-order bits to not overwrite
}

func writeHeapBitsForAddr(addr uintptr) (h writeHeapBits) {
	// We start writing bits maybe in the middle of a heap bitmap word.
	// Remember how many bits into the word we started, so we can be sure
	// not to overwrite the previous bits.
	h.low = addr / goarch.PtrSize % ptrBits

	// round down to heap word that starts the bitmap word.
	h.addr = addr - h.low*goarch.PtrSize

	// We don't have any bits yet.
	h.mask = 0
	h.valid = h.low

	return
}

// write appends the pointerness of the next valid pointer slots
// using the low valid bits of bits. 1=pointer, 0=scalar.
func (h writeHeapBits) write(bits, valid uintptr) writeHeapBits {
	if h.valid+valid <= ptrBits {
		// Fast path - just accumulate the bits.
		h.mask |= bits << h.valid
		h.valid += valid
		return h
	}
	// Too many bits to fit in this word. Write the current word
	// out and move on to the next word.

	data := h.mask | bits<<h.valid       // mask for this word
	h.mask = bits >> (ptrBits - h.valid) // leftover for next word
	h.valid += valid - ptrBits           // have h.valid+valid bits, writing ptrBits of them

	// Flush mask to the memory bitmap.
	// TODO: figure out how to cache arena lookup.
	ai := arenaIndex(h.addr)
	ha := mheap_.arenas[ai.l1()][ai.l2()]
	idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords
	m := uintptr(1)<<h.low - 1
	ha.bitmap[idx] = ha.bitmap[idx]&m | data
	// Note: no synchronization required for this write because
	// the allocator has exclusive access to the page, and the bitmap
	// entries are all for a single page. Also, visibility of these
	// writes is guaranteed by the publication barrier in mallocgc.

	// Clear noMorePtrs bit, since we're going to be writing bits
	// into the following word.
	ha.noMorePtrs[idx/8] &^= uint8(1) << (idx % 8)
	// Note: same as above

	// Move to next word of bitmap.
	h.addr += ptrBits * goarch.PtrSize
	h.low = 0
	return h
}

// Add padding of size bytes.
func (h writeHeapBits) pad(size uintptr) writeHeapBits {
	if size == 0 {
		return h
	}
	words := size / goarch.PtrSize
	for words > ptrBits {
		h = h.write(0, ptrBits)
		words -= ptrBits
	}
	return h.write(0, words)
}

// Flush the bits that have been written, and add zeros as needed
// to cover the full object [addr, addr+size).
func (h writeHeapBits) flush(addr, size uintptr) {
	// zeros counts the number of bits needed to represent the object minus the
	// number of bits we've already written. This is the number of 0 bits
	// that need to be added.
	zeros := (addr+size-h.addr)/goarch.PtrSize - h.valid

	// Add zero bits up to the bitmap word boundary
	if zeros > 0 {
		z := ptrBits - h.valid
		if z > zeros {
			z = zeros
		}
		h.valid += z
		zeros -= z
	}

	// Find word in bitmap that we're going to write.
	ai := arenaIndex(h.addr)
	ha := mheap_.arenas[ai.l1()][ai.l2()]
	idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords

	// Write remaining bits.
	if h.valid != h.low {
		m := uintptr(1)<<h.low - 1      // don't clear existing bits below "low"
		m |= ^(uintptr(1)<<h.valid - 1) // don't clear existing bits above "valid"
		ha.bitmap[idx] = ha.bitmap[idx]&m | h.mask
	}
	if zeros == 0 {
		return
	}

	// Record in the noMorePtrs map that there won't be any more 1 bits,
	// so readers can stop early.
	ha.noMorePtrs[idx/8] |= uint8(1) << (idx % 8)

	// Advance to next bitmap word.
	h.addr += ptrBits * goarch.PtrSize

	// Continue on writing zeros for the rest of the object.
	// For standard use of the ptr bits this is not required, as
	// the bits are read from the beginning of the object. Some uses,
	// like noscan spans, oblets, bulk write barriers, and cgocheck, might
	// start mid-object, so these writes are still required.
	for {
		// Write zero bits.
		ai := arenaIndex(h.addr)
		ha := mheap_.arenas[ai.l1()][ai.l2()]
		idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords
		if zeros < ptrBits {
			ha.bitmap[idx] &^= uintptr(1)<<zeros - 1
			break
		} else if zeros == ptrBits {
			ha.bitmap[idx] = 0
			break
		} else {
			ha.bitmap[idx] = 0
			zeros -= ptrBits
		}
		ha.noMorePtrs[idx/8] |= uint8(1) << (idx % 8)
		h.addr += ptrBits * goarch.PtrSize
	}
}

// Read the bytes starting at the aligned pointer p into a uintptr.
// Read is little-endian.
func readUintptr(p *byte) uintptr {
	x := *(*uintptr)(unsafe.Pointer(p))
	if goarch.BigEndian {
		if goarch.PtrSize == 8 {
			return uintptr(sys.Bswap64(uint64(x)))
		}
		return uintptr(sys.Bswap32(uint32(x)))
	}
	return x
}

// heapBitsSetType records that the new allocation [x, x+size)
// holds in [x, x+dataSize) one or more values of type typ.
// (The number of values is given by dataSize / typ.Size.)
// If dataSize < size, the fragment [x+dataSize, x+size) is
// recorded as non-pointer data.
// It is known that the type has pointers somewhere;
// malloc does not call heapBitsSetType when there are no pointers,
// because all free objects are marked as noscan during
// heapBitsSweepSpan.
//
// There can only be one allocation from a given span active at a time,
// and the bitmap for a span always falls on word boundaries,
// so there are no write-write races for access to the heap bitmap.
// Hence, heapBitsSetType can access the bitmap without atomics.
//
// There can be read-write races between heapBitsSetType and things
// that read the heap bitmap like scanobject. However, since
// heapBitsSetType is only used for objects that have not yet been
// made reachable, readers will ignore bits being modified by this
// function. This does mean this function cannot transiently modify
// bits that belong to neighboring objects. Also, on weakly-ordered
// machines, callers must execute a store/store (publication) barrier
// between calling this function and making the object reachable.
func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
	const doubleCheck = false // slow but helpful; enable to test modifications to this code

	if doubleCheck && dataSize%typ.Size_ != 0 {
		throw("heapBitsSetType: dataSize not a multiple of typ.Size")
	}

	if goarch.PtrSize == 8 && size == goarch.PtrSize {
		// It's one word and it has pointers, it must be a pointer.
		// Since all allocated one-word objects are pointers
		// (non-pointers are aggregated into tinySize allocations),
		// (*mspan).initHeapBits sets the pointer bits for us.
		// Nothing to do here.
		if doubleCheck {
			h, addr := heapBitsForAddr(x, size).next()
			if addr != x {
				throw("heapBitsSetType: pointer bit missing")
			}
			_, addr = h.next()
			if addr != 0 {
				throw("heapBitsSetType: second pointer bit found")
			}
		}
		return
	}

	h := writeHeapBitsForAddr(x)

	// Handle GC program.
	if typ.Kind_&kindGCProg != 0 {
		// Expand the gc program into the storage we're going to use for the actual object.
		obj := (*uint8)(unsafe.Pointer(x))
		n := runGCProg(addb(typ.GCData, 4), obj)
		// Use the expanded program to set the heap bits.
		for i := uintptr(0); true; i += typ.Size_ {
			// Copy expanded program to heap bitmap.
			p := obj
			j := n
			for j > 8 {
				h = h.write(uintptr(*p), 8)
				p = add1(p)
				j -= 8
			}
			h = h.write(uintptr(*p), j)

			if i+typ.Size_ == dataSize {
				break // no padding after last element
			}

			// Pad with zeros to the start of the next element.
			h = h.pad(typ.Size_ - n*goarch.PtrSize)
		}

		h.flush(x, size)

		// Erase the expanded GC program.
		memclrNoHeapPointers(unsafe.Pointer(obj), (n+7)/8)
		return
	}

	// Note about sizes:
	//
	// typ.Size is the number of words in the object,
	// and typ.PtrBytes is the number of words in the prefix
	// of the object that contains pointers. That is, the final
	// typ.Size - typ.PtrBytes words contain no pointers.
	// This allows optimization of a common pattern where
	// an object has a small header followed by a large scalar
	// buffer. If we know the pointers are over, we don't have
	// to scan the buffer's heap bitmap at all.
	// The 1-bit ptrmasks are sized to contain only bits for
	// the typ.PtrBytes prefix, zero padded out to a full byte
	// of bitmap. If there is more room in the allocated object,
	// that space is pointerless. The noMorePtrs bitmap will prevent
	// scanning large pointerless tails of an object.
	//
	// Replicated copies are not as nice: if there is an array of
	// objects with scalar tails, all but the last tail does have to
	// be initialized, because there is no way to say "skip forward".

	ptrs := typ.PtrBytes / goarch.PtrSize
	if typ.Size_ == dataSize { // Single element
		if ptrs <= ptrBits { // Single small element
			m := readUintptr(typ.GCData)
			h = h.write(m, ptrs)
		} else { // Single large element
			p := typ.GCData
			for {
				h = h.write(readUintptr(p), ptrBits)
				p = addb(p, ptrBits/8)
				ptrs -= ptrBits
				if ptrs <= ptrBits {
					break
				}
			}
			m := readUintptr(p)
			h = h.write(m, ptrs)
		}
	} else { // Repeated element
		words := typ.Size_ / goarch.PtrSize // total words, including scalar tail
		if words <= ptrBits {               // Repeated small element
			n := dataSize / typ.Size_
			m := readUintptr(typ.GCData)
			// Make larger unit to repeat
			for words <= ptrBits/2 {
				if n&1 != 0 {
					h = h.write(m, words)
				}
				n /= 2
				m |= m << words
				ptrs += words
				words *= 2
				if n == 1 {
					break
				}
			}
			for n > 1 {
				h = h.write(m, words)
				n--
			}
			h = h.write(m, ptrs)
		} else { // Repeated large element
			for i := uintptr(0); true; i += typ.Size_ {
				p := typ.GCData
				j := ptrs
				for j > ptrBits {
					h = h.write(readUintptr(p), ptrBits)
					p = addb(p, ptrBits/8)
					j -= ptrBits
				}
				m := readUintptr(p)
				h = h.write(m, j)
				if i+typ.Size_ == dataSize {
					break // don't need the trailing nonptr bits on the last element.
				}
				// Pad with zeros to the start of the next element.
				h = h.pad(typ.Size_ - typ.PtrBytes)
			}
		}
	}
	h.flush(x, size)

	if doubleCheck {
		h := heapBitsForAddr(x, size)
		for i := uintptr(0); i < size; i += goarch.PtrSize {
			// Compute the pointer bit we want at offset i.
			want := false
			if i < dataSize {
				off := i % typ.Size_
				if off < typ.PtrBytes {
					j := off / goarch.PtrSize
					want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0
				}
			}
			if want {
				var addr uintptr
				h, addr = h.next()
				if addr != x+i {
					throw("heapBitsSetType: pointer entry not correct")
				}
			}
		}
		if _, addr := h.next(); addr != 0 {
			throw("heapBitsSetType: extra pointer")
		}
	}
}

var debugPtrmask struct {
	lock mutex
	data *byte
}

// progToPointerMask returns the 1-bit pointer mask output by the GC program prog.
// size the size of the region described by prog, in bytes.
// The resulting bitvector will have no more than size/goarch.PtrSize bits.
func progToPointerMask(prog *byte, size uintptr) bitvector {
	n := (size/goarch.PtrSize + 7) / 8
	x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1]
	x[len(x)-1] = 0xa1 // overflow check sentinel
	n = runGCProg(prog, &x[0])
	if x[len(x)-1] != 0xa1 {
		throw("progToPointerMask: overflow")
	}
	return bitvector{int32(n), &x[0]}
}

// Packed GC pointer bitmaps, aka GC programs.
//
// For large types containing arrays, the type information has a
// natural repetition that can be encoded to save space in the
// binary and in the memory representation of the type information.
//
// The encoding is a simple Lempel-Ziv style bytecode machine
// with the following instructions:
//
//	00000000: stop
//	0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes
//	10000000 n c: repeat the previous n bits c times; n, c are varints
//	1nnnnnnn c: repeat the previous n bits c times; c is a varint

// runGCProg returns the number of 1-bit entries written to memory.
func runGCProg(prog, dst *byte) uintptr {
	dstStart := dst

	// Bits waiting to be written to memory.
	var bits uintptr
	var nbits uintptr

	p := prog
Run:
	for {
		// Flush accumulated full bytes.
		// The rest of the loop assumes that nbits <= 7.
		for ; nbits >= 8; nbits -= 8 {
			*dst = uint8(bits)
			dst = add1(dst)
			bits >>= 8
		}

		// Process one instruction.
		inst := uintptr(*p)
		p = add1(p)
		n := inst & 0x7F
		if inst&0x80 == 0 {
			// Literal bits; n == 0 means end of program.
			if n == 0 {
				// Program is over.
				break Run
			}
			nbyte := n / 8
			for i := uintptr(0); i < nbyte; i++ {
				bits |= uintptr(*p) << nbits
				p = add1(p)
				*dst = uint8(bits)
				dst = add1(dst)
				bits >>= 8
			}
			if n %= 8; n > 0 {
				bits |= uintptr(*p) << nbits
				p = add1(p)
				nbits += n
			}
			continue Run
		}

		// Repeat. If n == 0, it is encoded in a varint in the next bytes.
		if n == 0 {
			for off := uint(0); ; off += 7 {
				x := uintptr(*p)
				p = add1(p)
				n |= (x & 0x7F) << off
				if x&0x80 == 0 {
					break
				}
			}
		}

		// Count is encoded in a varint in the next bytes.
		c := uintptr(0)
		for off := uint(0); ; off += 7 {
			x := uintptr(*p)
			p = add1(p)
			c |= (x & 0x7F) << off
			if x&0x80 == 0 {
				break
			}
		}
		c *= n // now total number of bits to copy

		// If the number of bits being repeated is small, load them
		// into a register and use that register for the entire loop
		// instead of repeatedly reading from memory.
		// Handling fewer than 8 bits here makes the general loop simpler.
		// The cutoff is goarch.PtrSize*8 - 7 to guarantee that when we add
		// the pattern to a bit buffer holding at most 7 bits (a partial byte)
		// it will not overflow.
		src := dst
		const maxBits = goarch.PtrSize*8 - 7
		if n <= maxBits {
			// Start with bits in output buffer.
			pattern := bits
			npattern := nbits

			// If we need more bits, fetch them from memory.
			src = subtract1(src)
			for npattern < n {
				pattern <<= 8
				pattern |= uintptr(*src)
				src = subtract1(src)
				npattern += 8
			}

			// We started with the whole bit output buffer,
			// and then we loaded bits from whole bytes.
			// Either way, we might now have too many instead of too few.
			// Discard the extra.
			if npattern > n {
				pattern >>= npattern - n
				npattern = n
			}

			// Replicate pattern to at most maxBits.
			if npattern == 1 {
				// One bit being repeated.
				// If the bit is 1, make the pattern all 1s.
				// If the bit is 0, the pattern is already all 0s,
				// but we can claim that the number of bits
				// in the word is equal to the number we need (c),
				// because right shift of bits will zero fill.
				if pattern == 1 {
					pattern = 1<<maxBits - 1
					npattern = maxBits
				} else {
					npattern = c
				}
			} else {
				b := pattern
				nb := npattern
				if nb+nb <= maxBits {
					// Double pattern until the whole uintptr is filled.
					for nb <= goarch.PtrSize*8 {
						b |= b << nb
						nb += nb
					}
					// Trim away incomplete copy of original pattern in high bits.
					// TODO(rsc): Replace with table lookup or loop on systems without divide?
					nb = maxBits / npattern * npattern
					b &= 1<<nb - 1
					pattern = b
					npattern = nb
				}
			}

			// Add pattern to bit buffer and flush bit buffer, c/npattern times.
			// Since pattern contains >8 bits, there will be full bytes to flush
			// on each iteration.
			for ; c >= npattern; c -= npattern {
				bits |= pattern << nbits
				nbits += npattern
				for nbits >= 8 {
					*dst = uint8(bits)
					dst = add1(dst)
					bits >>= 8
					nbits -= 8
				}
			}

			// Add final fragment to bit buffer.
			if c > 0 {
				pattern &= 1<<c - 1
				bits |= pattern << nbits
				nbits += c
			}
			continue Run
		}

		// Repeat; n too large to fit in a register.
		// Since nbits <= 7, we know the first few bytes of repeated data
		// are already written to memory.
		off := n - nbits // n > nbits because n > maxBits and nbits <= 7
		// Leading src fragment.
		src = subtractb(src, (off+7)/8)
		if frag := off & 7; frag != 0 {
			bits |= uintptr(*src) >> (8 - frag) << nbits
			src = add1(src)
			nbits += frag
			c -= frag
		}
		// Main loop: load one byte, write another.
		// The bits are rotating through the bit buffer.
		for i := c / 8; i > 0; i-- {
			bits |= uintptr(*src) << nbits
			src = add1(src)
			*dst = uint8(bits)
			dst = add1(dst)
			bits >>= 8
		}
		// Final src fragment.
		if c %= 8; c > 0 {
			bits |= (uintptr(*src) & (1<<c - 1)) << nbits
			nbits += c
		}
	}

	// Write any final bits out, using full-byte writes, even for the final byte.
	totalBits := (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits
	nbits += -nbits & 7
	for ; nbits > 0; nbits -= 8 {
		*dst = uint8(bits)
		dst = add1(dst)
		bits >>= 8
	}
	return totalBits
}

// materializeGCProg allocates space for the (1-bit) pointer bitmask
// for an object of size ptrdata.  Then it fills that space with the
// pointer bitmask specified by the program prog.
// The bitmask starts at s.startAddr.
// The result must be deallocated with dematerializeGCProg.
func materializeGCProg(ptrdata uintptr, prog *byte) *mspan {
	// Each word of ptrdata needs one bit in the bitmap.
	bitmapBytes := divRoundUp(ptrdata, 8*goarch.PtrSize)
	// Compute the number of pages needed for bitmapBytes.
	pages := divRoundUp(bitmapBytes, pageSize)
	s := mheap_.allocManual(pages, spanAllocPtrScalarBits)
	runGCProg(addb(prog, 4), (*byte)(unsafe.Pointer(s.startAddr)))
	return s
}
func dematerializeGCProg(s *mspan) {
	mheap_.freeManual(s, spanAllocPtrScalarBits)
}

func dumpGCProg(p *byte) {
	nptr := 0
	for {
		x := *p
		p = add1(p)
		if x == 0 {
			print("\t", nptr, " end\n")
			break
		}
		if x&0x80 == 0 {
			print("\t", nptr, " lit ", x, ":")
			n := int(x+7) / 8
			for i := 0; i < n; i++ {
				print(" ", hex(*p))
				p = add1(p)
			}
			print("\n")
			nptr += int(x)
		} else {
			nbit := int(x &^ 0x80)
			if nbit == 0 {
				for nb := uint(0); ; nb += 7 {
					x := *p
					p = add1(p)
					nbit |= int(x&0x7f) << nb
					if x&0x80 == 0 {
						break
					}
				}
			}
			count := 0
			for nb := uint(0); ; nb += 7 {
				x := *p
				p = add1(p)
				count |= int(x&0x7f) << nb
				if x&0x80 == 0 {
					break
				}
			}
			print("\t", nptr, " repeat ", nbit, " × ", count, "\n")
			nptr += nbit * count
		}
	}
}

// Testing.

// reflect_gcbits returns the GC type info for x, for testing.
// The result is the bitmap entries (0 or 1), one entry per byte.
//
//go:linkname reflect_gcbits reflect.gcbits
func reflect_gcbits(x any) []byte {
	return getgcmask(x)
}

// Returns GC type info for the pointer stored in ep for testing.
// If ep points to the stack, only static live information will be returned
// (i.e. not for objects which are only dynamically live stack objects).
func getgcmask(ep any) (mask []byte) {
	e := *efaceOf(&ep)
	p := e.data
	t := e._type
	// data or bss
	for _, datap := range activeModules() {
		// data
		if datap.data <= uintptr(p) && uintptr(p) < datap.edata {
			bitmap := datap.gcdatamask.bytedata
			n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_
			mask = make([]byte, n/goarch.PtrSize)
			for i := uintptr(0); i < n; i += goarch.PtrSize {
				off := (uintptr(p) + i - datap.data) / goarch.PtrSize
				mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
			}
			return
		}

		// bss
		if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss {
			bitmap := datap.gcbssmask.bytedata
			n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_
			mask = make([]byte, n/goarch.PtrSize)
			for i := uintptr(0); i < n; i += goarch.PtrSize {
				off := (uintptr(p) + i - datap.bss) / goarch.PtrSize
				mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
			}
			return
		}
	}

	// heap
	if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 {
		if s.spanclass.noscan() {
			return nil
		}
		n := s.elemsize
		hbits := heapBitsForAddr(base, n)
		mask = make([]byte, n/goarch.PtrSize)
		for {
			var addr uintptr
			if hbits, addr = hbits.next(); addr == 0 {
				break
			}
			mask[(addr-base)/goarch.PtrSize] = 1
		}
		// Callers expect this mask to end at the last pointer.
		for len(mask) > 0 && mask[len(mask)-1] == 0 {
			mask = mask[:len(mask)-1]
		}
		return
	}

	// stack
	if gp := getg(); gp.m.curg.stack.lo <= uintptr(p) && uintptr(p) < gp.m.curg.stack.hi {
		found := false
		var u unwinder
		for u.initAt(gp.m.curg.sched.pc, gp.m.curg.sched.sp, 0, gp.m.curg, 0); u.valid(); u.next() {
			if u.frame.sp <= uintptr(p) && uintptr(p) < u.frame.varp {
				found = true
				break
			}
		}
		if found {
			locals, _, _ := u.frame.getStackMap(nil, false)
			if locals.n == 0 {
				return
			}
			size := uintptr(locals.n) * goarch.PtrSize
			n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_
			mask = make([]byte, n/goarch.PtrSize)
			for i := uintptr(0); i < n; i += goarch.PtrSize {
				off := (uintptr(p) + i - u.frame.varp + size) / goarch.PtrSize
				mask[i/goarch.PtrSize] = locals.ptrbit(off)
			}
		}
		return
	}

	// otherwise, not something the GC knows about.
	// possibly read-only data, like malloc(0).
	// must not have pointers
	return
}