summaryrefslogtreecommitdiffstats
path: root/src/math/big/example_test.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:25:22 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:25:22 +0000
commitf6ad4dcef54c5ce997a4bad5a6d86de229015700 (patch)
tree7cfa4e31ace5c2bd95c72b154d15af494b2bcbef /src/math/big/example_test.go
parentInitial commit. (diff)
downloadgolang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.tar.xz
golang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.zip
Adding upstream version 1.22.1.upstream/1.22.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/math/big/example_test.go')
-rw-r--r--src/math/big/example_test.go148
1 files changed, 148 insertions, 0 deletions
diff --git a/src/math/big/example_test.go b/src/math/big/example_test.go
new file mode 100644
index 0000000..31ca784
--- /dev/null
+++ b/src/math/big/example_test.go
@@ -0,0 +1,148 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big_test
+
+import (
+ "fmt"
+ "log"
+ "math"
+ "math/big"
+)
+
+func ExampleRat_SetString() {
+ r := new(big.Rat)
+ r.SetString("355/113")
+ fmt.Println(r.FloatString(3))
+ // Output: 3.142
+}
+
+func ExampleInt_SetString() {
+ i := new(big.Int)
+ i.SetString("644", 8) // octal
+ fmt.Println(i)
+ // Output: 420
+}
+
+func ExampleFloat_SetString() {
+ f := new(big.Float)
+ f.SetString("3.14159")
+ fmt.Println(f)
+ // Output: 3.14159
+}
+
+func ExampleRat_Scan() {
+ // The Scan function is rarely used directly;
+ // the fmt package recognizes it as an implementation of fmt.Scanner.
+ r := new(big.Rat)
+ _, err := fmt.Sscan("1.5000", r)
+ if err != nil {
+ log.Println("error scanning value:", err)
+ } else {
+ fmt.Println(r)
+ }
+ // Output: 3/2
+}
+
+func ExampleInt_Scan() {
+ // The Scan function is rarely used directly;
+ // the fmt package recognizes it as an implementation of fmt.Scanner.
+ i := new(big.Int)
+ _, err := fmt.Sscan("18446744073709551617", i)
+ if err != nil {
+ log.Println("error scanning value:", err)
+ } else {
+ fmt.Println(i)
+ }
+ // Output: 18446744073709551617
+}
+
+func ExampleFloat_Scan() {
+ // The Scan function is rarely used directly;
+ // the fmt package recognizes it as an implementation of fmt.Scanner.
+ f := new(big.Float)
+ _, err := fmt.Sscan("1.19282e99", f)
+ if err != nil {
+ log.Println("error scanning value:", err)
+ } else {
+ fmt.Println(f)
+ }
+ // Output: 1.19282e+99
+}
+
+// This example demonstrates how to use big.Int to compute the smallest
+// Fibonacci number with 100 decimal digits and to test whether it is prime.
+func Example_fibonacci() {
+ // Initialize two big ints with the first two numbers in the sequence.
+ a := big.NewInt(0)
+ b := big.NewInt(1)
+
+ // Initialize limit as 10^99, the smallest integer with 100 digits.
+ var limit big.Int
+ limit.Exp(big.NewInt(10), big.NewInt(99), nil)
+
+ // Loop while a is smaller than 1e100.
+ for a.Cmp(&limit) < 0 {
+ // Compute the next Fibonacci number, storing it in a.
+ a.Add(a, b)
+ // Swap a and b so that b is the next number in the sequence.
+ a, b = b, a
+ }
+ fmt.Println(a) // 100-digit Fibonacci number
+
+ // Test a for primality.
+ // (ProbablyPrimes' argument sets the number of Miller-Rabin
+ // rounds to be performed. 20 is a good value.)
+ fmt.Println(a.ProbablyPrime(20))
+
+ // Output:
+ // 1344719667586153181419716641724567886890850696275767987106294472017884974410332069524504824747437757
+ // false
+}
+
+// This example shows how to use big.Float to compute the square root of 2 with
+// a precision of 200 bits, and how to print the result as a decimal number.
+func Example_sqrt2() {
+ // We'll do computations with 200 bits of precision in the mantissa.
+ const prec = 200
+
+ // Compute the square root of 2 using Newton's Method. We start with
+ // an initial estimate for sqrt(2), and then iterate:
+ // x_{n+1} = 1/2 * ( x_n + (2.0 / x_n) )
+
+ // Since Newton's Method doubles the number of correct digits at each
+ // iteration, we need at least log_2(prec) steps.
+ steps := int(math.Log2(prec))
+
+ // Initialize values we need for the computation.
+ two := new(big.Float).SetPrec(prec).SetInt64(2)
+ half := new(big.Float).SetPrec(prec).SetFloat64(0.5)
+
+ // Use 1 as the initial estimate.
+ x := new(big.Float).SetPrec(prec).SetInt64(1)
+
+ // We use t as a temporary variable. There's no need to set its precision
+ // since big.Float values with unset (== 0) precision automatically assume
+ // the largest precision of the arguments when used as the result (receiver)
+ // of a big.Float operation.
+ t := new(big.Float)
+
+ // Iterate.
+ for i := 0; i <= steps; i++ {
+ t.Quo(two, x) // t = 2.0 / x_n
+ t.Add(x, t) // t = x_n + (2.0 / x_n)
+ x.Mul(half, t) // x_{n+1} = 0.5 * t
+ }
+
+ // We can use the usual fmt.Printf verbs since big.Float implements fmt.Formatter
+ fmt.Printf("sqrt(2) = %.50f\n", x)
+
+ // Print the error between 2 and x*x.
+ t.Mul(x, x) // t = x*x
+ fmt.Printf("error = %e\n", t.Sub(two, t))
+
+ // Output:
+ // sqrt(2) = 1.41421356237309504880168872420969807856967187537695
+ // error = 0.000000e+00
+}