summaryrefslogtreecommitdiffstats
path: root/src/math/big/ftoa.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:25:22 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:25:22 +0000
commitf6ad4dcef54c5ce997a4bad5a6d86de229015700 (patch)
tree7cfa4e31ace5c2bd95c72b154d15af494b2bcbef /src/math/big/ftoa.go
parentInitial commit. (diff)
downloadgolang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.tar.xz
golang-1.22-f6ad4dcef54c5ce997a4bad5a6d86de229015700.zip
Adding upstream version 1.22.1.upstream/1.22.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/math/big/ftoa.go')
-rw-r--r--src/math/big/ftoa.go529
1 files changed, 529 insertions, 0 deletions
diff --git a/src/math/big/ftoa.go b/src/math/big/ftoa.go
new file mode 100644
index 0000000..f7a4345
--- /dev/null
+++ b/src/math/big/ftoa.go
@@ -0,0 +1,529 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements Float-to-string conversion functions.
+// It is closely following the corresponding implementation
+// in strconv/ftoa.go, but modified and simplified for Float.
+
+package big
+
+import (
+ "bytes"
+ "fmt"
+ "strconv"
+)
+
+// Text converts the floating-point number x to a string according
+// to the given format and precision prec. The format is one of:
+//
+// 'e' -d.dddde±dd, decimal exponent, at least two (possibly 0) exponent digits
+// 'E' -d.ddddE±dd, decimal exponent, at least two (possibly 0) exponent digits
+// 'f' -ddddd.dddd, no exponent
+// 'g' like 'e' for large exponents, like 'f' otherwise
+// 'G' like 'E' for large exponents, like 'f' otherwise
+// 'x' -0xd.dddddp±dd, hexadecimal mantissa, decimal power of two exponent
+// 'p' -0x.dddp±dd, hexadecimal mantissa, decimal power of two exponent (non-standard)
+// 'b' -ddddddp±dd, decimal mantissa, decimal power of two exponent (non-standard)
+//
+// For the power-of-two exponent formats, the mantissa is printed in normalized form:
+//
+// 'x' hexadecimal mantissa in [1, 2), or 0
+// 'p' hexadecimal mantissa in [½, 1), or 0
+// 'b' decimal integer mantissa using x.Prec() bits, or 0
+//
+// Note that the 'x' form is the one used by most other languages and libraries.
+//
+// If format is a different character, Text returns a "%" followed by the
+// unrecognized format character.
+//
+// The precision prec controls the number of digits (excluding the exponent)
+// printed by the 'e', 'E', 'f', 'g', 'G', and 'x' formats.
+// For 'e', 'E', 'f', and 'x', it is the number of digits after the decimal point.
+// For 'g' and 'G' it is the total number of digits. A negative precision selects
+// the smallest number of decimal digits necessary to identify the value x uniquely
+// using x.Prec() mantissa bits.
+// The prec value is ignored for the 'b' and 'p' formats.
+func (x *Float) Text(format byte, prec int) string {
+ cap := 10 // TODO(gri) determine a good/better value here
+ if prec > 0 {
+ cap += prec
+ }
+ return string(x.Append(make([]byte, 0, cap), format, prec))
+}
+
+// String formats x like x.Text('g', 10).
+// (String must be called explicitly, [Float.Format] does not support %s verb.)
+func (x *Float) String() string {
+ return x.Text('g', 10)
+}
+
+// Append appends to buf the string form of the floating-point number x,
+// as generated by x.Text, and returns the extended buffer.
+func (x *Float) Append(buf []byte, fmt byte, prec int) []byte {
+ // sign
+ if x.neg {
+ buf = append(buf, '-')
+ }
+
+ // Inf
+ if x.form == inf {
+ if !x.neg {
+ buf = append(buf, '+')
+ }
+ return append(buf, "Inf"...)
+ }
+
+ // pick off easy formats
+ switch fmt {
+ case 'b':
+ return x.fmtB(buf)
+ case 'p':
+ return x.fmtP(buf)
+ case 'x':
+ return x.fmtX(buf, prec)
+ }
+
+ // Algorithm:
+ // 1) convert Float to multiprecision decimal
+ // 2) round to desired precision
+ // 3) read digits out and format
+
+ // 1) convert Float to multiprecision decimal
+ var d decimal // == 0.0
+ if x.form == finite {
+ // x != 0
+ d.init(x.mant, int(x.exp)-x.mant.bitLen())
+ }
+
+ // 2) round to desired precision
+ shortest := false
+ if prec < 0 {
+ shortest = true
+ roundShortest(&d, x)
+ // Precision for shortest representation mode.
+ switch fmt {
+ case 'e', 'E':
+ prec = len(d.mant) - 1
+ case 'f':
+ prec = max(len(d.mant)-d.exp, 0)
+ case 'g', 'G':
+ prec = len(d.mant)
+ }
+ } else {
+ // round appropriately
+ switch fmt {
+ case 'e', 'E':
+ // one digit before and number of digits after decimal point
+ d.round(1 + prec)
+ case 'f':
+ // number of digits before and after decimal point
+ d.round(d.exp + prec)
+ case 'g', 'G':
+ if prec == 0 {
+ prec = 1
+ }
+ d.round(prec)
+ }
+ }
+
+ // 3) read digits out and format
+ switch fmt {
+ case 'e', 'E':
+ return fmtE(buf, fmt, prec, d)
+ case 'f':
+ return fmtF(buf, prec, d)
+ case 'g', 'G':
+ // trim trailing fractional zeros in %e format
+ eprec := prec
+ if eprec > len(d.mant) && len(d.mant) >= d.exp {
+ eprec = len(d.mant)
+ }
+ // %e is used if the exponent from the conversion
+ // is less than -4 or greater than or equal to the precision.
+ // If precision was the shortest possible, use eprec = 6 for
+ // this decision.
+ if shortest {
+ eprec = 6
+ }
+ exp := d.exp - 1
+ if exp < -4 || exp >= eprec {
+ if prec > len(d.mant) {
+ prec = len(d.mant)
+ }
+ return fmtE(buf, fmt+'e'-'g', prec-1, d)
+ }
+ if prec > d.exp {
+ prec = len(d.mant)
+ }
+ return fmtF(buf, max(prec-d.exp, 0), d)
+ }
+
+ // unknown format
+ if x.neg {
+ buf = buf[:len(buf)-1] // sign was added prematurely - remove it again
+ }
+ return append(buf, '%', fmt)
+}
+
+func roundShortest(d *decimal, x *Float) {
+ // if the mantissa is zero, the number is zero - stop now
+ if len(d.mant) == 0 {
+ return
+ }
+
+ // Approach: All numbers in the interval [x - 1/2ulp, x + 1/2ulp]
+ // (possibly exclusive) round to x for the given precision of x.
+ // Compute the lower and upper bound in decimal form and find the
+ // shortest decimal number d such that lower <= d <= upper.
+
+ // TODO(gri) strconv/ftoa.do describes a shortcut in some cases.
+ // See if we can use it (in adjusted form) here as well.
+
+ // 1) Compute normalized mantissa mant and exponent exp for x such
+ // that the lsb of mant corresponds to 1/2 ulp for the precision of
+ // x (i.e., for mant we want x.prec + 1 bits).
+ mant := nat(nil).set(x.mant)
+ exp := int(x.exp) - mant.bitLen()
+ s := mant.bitLen() - int(x.prec+1)
+ switch {
+ case s < 0:
+ mant = mant.shl(mant, uint(-s))
+ case s > 0:
+ mant = mant.shr(mant, uint(+s))
+ }
+ exp += s
+ // x = mant * 2**exp with lsb(mant) == 1/2 ulp of x.prec
+
+ // 2) Compute lower bound by subtracting 1/2 ulp.
+ var lower decimal
+ var tmp nat
+ lower.init(tmp.sub(mant, natOne), exp)
+
+ // 3) Compute upper bound by adding 1/2 ulp.
+ var upper decimal
+ upper.init(tmp.add(mant, natOne), exp)
+
+ // The upper and lower bounds are possible outputs only if
+ // the original mantissa is even, so that ToNearestEven rounding
+ // would round to the original mantissa and not the neighbors.
+ inclusive := mant[0]&2 == 0 // test bit 1 since original mantissa was shifted by 1
+
+ // Now we can figure out the minimum number of digits required.
+ // Walk along until d has distinguished itself from upper and lower.
+ for i, m := range d.mant {
+ l := lower.at(i)
+ u := upper.at(i)
+
+ // Okay to round down (truncate) if lower has a different digit
+ // or if lower is inclusive and is exactly the result of rounding
+ // down (i.e., and we have reached the final digit of lower).
+ okdown := l != m || inclusive && i+1 == len(lower.mant)
+
+ // Okay to round up if upper has a different digit and either upper
+ // is inclusive or upper is bigger than the result of rounding up.
+ okup := m != u && (inclusive || m+1 < u || i+1 < len(upper.mant))
+
+ // If it's okay to do either, then round to the nearest one.
+ // If it's okay to do only one, do it.
+ switch {
+ case okdown && okup:
+ d.round(i + 1)
+ return
+ case okdown:
+ d.roundDown(i + 1)
+ return
+ case okup:
+ d.roundUp(i + 1)
+ return
+ }
+ }
+}
+
+// %e: d.ddddde±dd
+func fmtE(buf []byte, fmt byte, prec int, d decimal) []byte {
+ // first digit
+ ch := byte('0')
+ if len(d.mant) > 0 {
+ ch = d.mant[0]
+ }
+ buf = append(buf, ch)
+
+ // .moredigits
+ if prec > 0 {
+ buf = append(buf, '.')
+ i := 1
+ m := min(len(d.mant), prec+1)
+ if i < m {
+ buf = append(buf, d.mant[i:m]...)
+ i = m
+ }
+ for ; i <= prec; i++ {
+ buf = append(buf, '0')
+ }
+ }
+
+ // e±
+ buf = append(buf, fmt)
+ var exp int64
+ if len(d.mant) > 0 {
+ exp = int64(d.exp) - 1 // -1 because first digit was printed before '.'
+ }
+ if exp < 0 {
+ ch = '-'
+ exp = -exp
+ } else {
+ ch = '+'
+ }
+ buf = append(buf, ch)
+
+ // dd...d
+ if exp < 10 {
+ buf = append(buf, '0') // at least 2 exponent digits
+ }
+ return strconv.AppendInt(buf, exp, 10)
+}
+
+// %f: ddddddd.ddddd
+func fmtF(buf []byte, prec int, d decimal) []byte {
+ // integer, padded with zeros as needed
+ if d.exp > 0 {
+ m := min(len(d.mant), d.exp)
+ buf = append(buf, d.mant[:m]...)
+ for ; m < d.exp; m++ {
+ buf = append(buf, '0')
+ }
+ } else {
+ buf = append(buf, '0')
+ }
+
+ // fraction
+ if prec > 0 {
+ buf = append(buf, '.')
+ for i := 0; i < prec; i++ {
+ buf = append(buf, d.at(d.exp+i))
+ }
+ }
+
+ return buf
+}
+
+// fmtB appends the string of x in the format mantissa "p" exponent
+// with a decimal mantissa and a binary exponent, or 0" if x is zero,
+// and returns the extended buffer.
+// The mantissa is normalized such that is uses x.Prec() bits in binary
+// representation.
+// The sign of x is ignored, and x must not be an Inf.
+// (The caller handles Inf before invoking fmtB.)
+func (x *Float) fmtB(buf []byte) []byte {
+ if x.form == zero {
+ return append(buf, '0')
+ }
+
+ if debugFloat && x.form != finite {
+ panic("non-finite float")
+ }
+ // x != 0
+
+ // adjust mantissa to use exactly x.prec bits
+ m := x.mant
+ switch w := uint32(len(x.mant)) * _W; {
+ case w < x.prec:
+ m = nat(nil).shl(m, uint(x.prec-w))
+ case w > x.prec:
+ m = nat(nil).shr(m, uint(w-x.prec))
+ }
+
+ buf = append(buf, m.utoa(10)...)
+ buf = append(buf, 'p')
+ e := int64(x.exp) - int64(x.prec)
+ if e >= 0 {
+ buf = append(buf, '+')
+ }
+ return strconv.AppendInt(buf, e, 10)
+}
+
+// fmtX appends the string of x in the format "0x1." mantissa "p" exponent
+// with a hexadecimal mantissa and a binary exponent, or "0x0p0" if x is zero,
+// and returns the extended buffer.
+// A non-zero mantissa is normalized such that 1.0 <= mantissa < 2.0.
+// The sign of x is ignored, and x must not be an Inf.
+// (The caller handles Inf before invoking fmtX.)
+func (x *Float) fmtX(buf []byte, prec int) []byte {
+ if x.form == zero {
+ buf = append(buf, "0x0"...)
+ if prec > 0 {
+ buf = append(buf, '.')
+ for i := 0; i < prec; i++ {
+ buf = append(buf, '0')
+ }
+ }
+ buf = append(buf, "p+00"...)
+ return buf
+ }
+
+ if debugFloat && x.form != finite {
+ panic("non-finite float")
+ }
+
+ // round mantissa to n bits
+ var n uint
+ if prec < 0 {
+ n = 1 + (x.MinPrec()-1+3)/4*4 // round MinPrec up to 1 mod 4
+ } else {
+ n = 1 + 4*uint(prec)
+ }
+ // n%4 == 1
+ x = new(Float).SetPrec(n).SetMode(x.mode).Set(x)
+
+ // adjust mantissa to use exactly n bits
+ m := x.mant
+ switch w := uint(len(x.mant)) * _W; {
+ case w < n:
+ m = nat(nil).shl(m, n-w)
+ case w > n:
+ m = nat(nil).shr(m, w-n)
+ }
+ exp64 := int64(x.exp) - 1 // avoid wrap-around
+
+ hm := m.utoa(16)
+ if debugFloat && hm[0] != '1' {
+ panic("incorrect mantissa: " + string(hm))
+ }
+ buf = append(buf, "0x1"...)
+ if len(hm) > 1 {
+ buf = append(buf, '.')
+ buf = append(buf, hm[1:]...)
+ }
+
+ buf = append(buf, 'p')
+ if exp64 >= 0 {
+ buf = append(buf, '+')
+ } else {
+ exp64 = -exp64
+ buf = append(buf, '-')
+ }
+ // Force at least two exponent digits, to match fmt.
+ if exp64 < 10 {
+ buf = append(buf, '0')
+ }
+ return strconv.AppendInt(buf, exp64, 10)
+}
+
+// fmtP appends the string of x in the format "0x." mantissa "p" exponent
+// with a hexadecimal mantissa and a binary exponent, or "0" if x is zero,
+// and returns the extended buffer.
+// The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0.
+// The sign of x is ignored, and x must not be an Inf.
+// (The caller handles Inf before invoking fmtP.)
+func (x *Float) fmtP(buf []byte) []byte {
+ if x.form == zero {
+ return append(buf, '0')
+ }
+
+ if debugFloat && x.form != finite {
+ panic("non-finite float")
+ }
+ // x != 0
+
+ // remove trailing 0 words early
+ // (no need to convert to hex 0's and trim later)
+ m := x.mant
+ i := 0
+ for i < len(m) && m[i] == 0 {
+ i++
+ }
+ m = m[i:]
+
+ buf = append(buf, "0x."...)
+ buf = append(buf, bytes.TrimRight(m.utoa(16), "0")...)
+ buf = append(buf, 'p')
+ if x.exp >= 0 {
+ buf = append(buf, '+')
+ }
+ return strconv.AppendInt(buf, int64(x.exp), 10)
+}
+
+var _ fmt.Formatter = &floatZero // *Float must implement fmt.Formatter
+
+// Format implements [fmt.Formatter]. It accepts all the regular
+// formats for floating-point numbers ('b', 'e', 'E', 'f', 'F',
+// 'g', 'G', 'x') as well as 'p' and 'v'. See (*Float).Text for the
+// interpretation of 'p'. The 'v' format is handled like 'g'.
+// Format also supports specification of the minimum precision
+// in digits, the output field width, as well as the format flags
+// '+' and ' ' for sign control, '0' for space or zero padding,
+// and '-' for left or right justification. See the fmt package
+// for details.
+func (x *Float) Format(s fmt.State, format rune) {
+ prec, hasPrec := s.Precision()
+ if !hasPrec {
+ prec = 6 // default precision for 'e', 'f'
+ }
+
+ switch format {
+ case 'e', 'E', 'f', 'b', 'p', 'x':
+ // nothing to do
+ case 'F':
+ // (*Float).Text doesn't support 'F'; handle like 'f'
+ format = 'f'
+ case 'v':
+ // handle like 'g'
+ format = 'g'
+ fallthrough
+ case 'g', 'G':
+ if !hasPrec {
+ prec = -1 // default precision for 'g', 'G'
+ }
+ default:
+ fmt.Fprintf(s, "%%!%c(*big.Float=%s)", format, x.String())
+ return
+ }
+ var buf []byte
+ buf = x.Append(buf, byte(format), prec)
+ if len(buf) == 0 {
+ buf = []byte("?") // should never happen, but don't crash
+ }
+ // len(buf) > 0
+
+ var sign string
+ switch {
+ case buf[0] == '-':
+ sign = "-"
+ buf = buf[1:]
+ case buf[0] == '+':
+ // +Inf
+ sign = "+"
+ if s.Flag(' ') {
+ sign = " "
+ }
+ buf = buf[1:]
+ case s.Flag('+'):
+ sign = "+"
+ case s.Flag(' '):
+ sign = " "
+ }
+
+ var padding int
+ if width, hasWidth := s.Width(); hasWidth && width > len(sign)+len(buf) {
+ padding = width - len(sign) - len(buf)
+ }
+
+ switch {
+ case s.Flag('0') && !x.IsInf():
+ // 0-padding on left
+ writeMultiple(s, sign, 1)
+ writeMultiple(s, "0", padding)
+ s.Write(buf)
+ case s.Flag('-'):
+ // padding on right
+ writeMultiple(s, sign, 1)
+ s.Write(buf)
+ writeMultiple(s, " ", padding)
+ default:
+ // padding on left
+ writeMultiple(s, " ", padding)
+ writeMultiple(s, sign, 1)
+ s.Write(buf)
+ }
+}