summaryrefslogtreecommitdiffstats
path: root/src/math/big
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/math/big/accuracy_string.go26
-rw-r--r--src/math/big/alias_test.go312
-rw-r--r--src/math/big/arith.go277
-rw-r--r--src/math/big/arith_386.s235
-rw-r--r--src/math/big/arith_amd64.go11
-rw-r--r--src/math/big/arith_amd64.s515
-rw-r--r--src/math/big/arith_arm.s272
-rw-r--r--src/math/big/arith_arm64.s572
-rw-r--r--src/math/big/arith_decl.go33
-rw-r--r--src/math/big/arith_decl_pure.go49
-rw-r--r--src/math/big/arith_decl_s390x.go18
-rw-r--r--src/math/big/arith_loong64.s34
-rw-r--r--src/math/big/arith_mips64x.s35
-rw-r--r--src/math/big/arith_mipsx.s35
-rw-r--r--src/math/big/arith_ppc64x.s631
-rw-r--r--src/math/big/arith_riscv64.s35
-rw-r--r--src/math/big/arith_s390x.s786
-rw-r--r--src/math/big/arith_s390x_test.go32
-rw-r--r--src/math/big/arith_test.go697
-rw-r--r--src/math/big/arith_wasm.s32
-rw-r--r--src/math/big/bits_test.go224
-rw-r--r--src/math/big/calibrate_test.go173
-rw-r--r--src/math/big/decimal.go270
-rw-r--r--src/math/big/decimal_test.go134
-rw-r--r--src/math/big/doc.go98
-rw-r--r--src/math/big/example_rat_test.go68
-rw-r--r--src/math/big/example_test.go148
-rw-r--r--src/math/big/float.go1736
-rw-r--r--src/math/big/float_test.go1856
-rw-r--r--src/math/big/floatconv.go302
-rw-r--r--src/math/big/floatconv_test.go825
-rw-r--r--src/math/big/floatexample_test.go141
-rw-r--r--src/math/big/floatmarsh.go131
-rw-r--r--src/math/big/floatmarsh_test.go173
-rw-r--r--src/math/big/ftoa.go529
-rw-r--r--src/math/big/gcd_test.go64
-rw-r--r--src/math/big/hilbert_test.go160
-rw-r--r--src/math/big/int.go1321
-rw-r--r--src/math/big/int_test.go2012
-rw-r--r--src/math/big/intconv.go255
-rw-r--r--src/math/big/intconv_test.go431
-rw-r--r--src/math/big/intmarsh.go83
-rw-r--r--src/math/big/intmarsh_test.go134
-rw-r--r--src/math/big/link_test.go63
-rw-r--r--src/math/big/nat.go1422
-rw-r--r--src/math/big/nat_test.go891
-rw-r--r--src/math/big/natconv.go511
-rw-r--r--src/math/big/natconv_test.go463
-rw-r--r--src/math/big/natdiv.go897
-rw-r--r--src/math/big/prime.go320
-rw-r--r--src/math/big/prime_test.go222
-rw-r--r--src/math/big/rat.go542
-rw-r--r--src/math/big/rat_test.go746
-rw-r--r--src/math/big/ratconv.go459
-rw-r--r--src/math/big/ratconv_test.go765
-rw-r--r--src/math/big/ratmarsh.go86
-rw-r--r--src/math/big/ratmarsh_test.go138
-rw-r--r--src/math/big/roundingmode_string.go28
-rw-r--r--src/math/big/sqrt.go130
-rw-r--r--src/math/big/sqrt_test.go126
60 files changed, 23714 insertions, 0 deletions
diff --git a/src/math/big/accuracy_string.go b/src/math/big/accuracy_string.go
new file mode 100644
index 0000000..aae9238
--- /dev/null
+++ b/src/math/big/accuracy_string.go
@@ -0,0 +1,26 @@
+// Code generated by "stringer -type=Accuracy"; DO NOT EDIT.
+
+package big
+
+import "strconv"
+
+func _() {
+ // An "invalid array index" compiler error signifies that the constant values have changed.
+ // Re-run the stringer command to generate them again.
+ var x [1]struct{}
+ _ = x[Below - -1]
+ _ = x[Exact-0]
+ _ = x[Above-1]
+}
+
+const _Accuracy_name = "BelowExactAbove"
+
+var _Accuracy_index = [...]uint8{0, 5, 10, 15}
+
+func (i Accuracy) String() string {
+ i -= -1
+ if i < 0 || i >= Accuracy(len(_Accuracy_index)-1) {
+ return "Accuracy(" + strconv.FormatInt(int64(i+-1), 10) + ")"
+ }
+ return _Accuracy_name[_Accuracy_index[i]:_Accuracy_index[i+1]]
+}
diff --git a/src/math/big/alias_test.go b/src/math/big/alias_test.go
new file mode 100644
index 0000000..36c37fb
--- /dev/null
+++ b/src/math/big/alias_test.go
@@ -0,0 +1,312 @@
+// Copyright 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big_test
+
+import (
+ cryptorand "crypto/rand"
+ "math/big"
+ "math/rand"
+ "reflect"
+ "testing"
+ "testing/quick"
+)
+
+func equal(z, x *big.Int) bool {
+ return z.Cmp(x) == 0
+}
+
+type bigInt struct {
+ *big.Int
+}
+
+func generatePositiveInt(rand *rand.Rand, size int) *big.Int {
+ n := big.NewInt(1)
+ n.Lsh(n, uint(rand.Intn(size*8)))
+ n.Rand(rand, n)
+ return n
+}
+
+func (bigInt) Generate(rand *rand.Rand, size int) reflect.Value {
+ n := generatePositiveInt(rand, size)
+ if rand.Intn(4) == 0 {
+ n.Neg(n)
+ }
+ return reflect.ValueOf(bigInt{n})
+}
+
+type notZeroInt struct {
+ *big.Int
+}
+
+func (notZeroInt) Generate(rand *rand.Rand, size int) reflect.Value {
+ n := generatePositiveInt(rand, size)
+ if rand.Intn(4) == 0 {
+ n.Neg(n)
+ }
+ if n.Sign() == 0 {
+ n.SetInt64(1)
+ }
+ return reflect.ValueOf(notZeroInt{n})
+}
+
+type positiveInt struct {
+ *big.Int
+}
+
+func (positiveInt) Generate(rand *rand.Rand, size int) reflect.Value {
+ n := generatePositiveInt(rand, size)
+ return reflect.ValueOf(positiveInt{n})
+}
+
+type prime struct {
+ *big.Int
+}
+
+func (prime) Generate(r *rand.Rand, size int) reflect.Value {
+ n, err := cryptorand.Prime(r, r.Intn(size*8-2)+2)
+ if err != nil {
+ panic(err)
+ }
+ return reflect.ValueOf(prime{n})
+}
+
+type zeroOrOne struct {
+ uint
+}
+
+func (zeroOrOne) Generate(rand *rand.Rand, size int) reflect.Value {
+ return reflect.ValueOf(zeroOrOne{uint(rand.Intn(2))})
+}
+
+type smallUint struct {
+ uint
+}
+
+func (smallUint) Generate(rand *rand.Rand, size int) reflect.Value {
+ return reflect.ValueOf(smallUint{uint(rand.Intn(1024))})
+}
+
+// checkAliasingOneArg checks if f returns a correct result when v and x alias.
+//
+// f is a function that takes x as an argument, doesn't modify it, sets v to the
+// result, and returns v. It is the function signature of unbound methods like
+//
+// func (v *big.Int) m(x *big.Int) *big.Int
+//
+// v and x are two random Int values. v is randomized even if it will be
+// overwritten to test for improper buffer reuse.
+func checkAliasingOneArg(t *testing.T, f func(v, x *big.Int) *big.Int, v, x *big.Int) bool {
+ x1, v1 := new(big.Int).Set(x), new(big.Int).Set(x)
+
+ // Calculate a reference f(x) without aliasing.
+ if out := f(v, x); out != v {
+ return false
+ }
+
+ // Test aliasing the argument and the receiver.
+ if out := f(v1, v1); out != v1 || !equal(v1, v) {
+ t.Logf("f(v, x) != f(x, x)")
+ return false
+ }
+
+ // Ensure the arguments was not modified.
+ return equal(x, x1)
+}
+
+// checkAliasingTwoArgs checks if f returns a correct result when any
+// combination of v, x and y alias.
+//
+// f is a function that takes x and y as arguments, doesn't modify them, sets v
+// to the result, and returns v. It is the function signature of unbound methods
+// like
+//
+// func (v *big.Int) m(x, y *big.Int) *big.Int
+//
+// v, x and y are random Int values. v is randomized even if it will be
+// overwritten to test for improper buffer reuse.
+func checkAliasingTwoArgs(t *testing.T, f func(v, x, y *big.Int) *big.Int, v, x, y *big.Int) bool {
+ x1, y1, v1 := new(big.Int).Set(x), new(big.Int).Set(y), new(big.Int).Set(v)
+
+ // Calculate a reference f(x, y) without aliasing.
+ if out := f(v, x, y); out == nil {
+ // Certain functions like ModInverse return nil for certain inputs.
+ // Check that receiver and arguments were unchanged and move on.
+ return equal(x, x1) && equal(y, y1) && equal(v, v1)
+ } else if out != v {
+ return false
+ }
+
+ // Test aliasing the first argument and the receiver.
+ v1.Set(x)
+ if out := f(v1, v1, y); out != v1 || !equal(v1, v) {
+ t.Logf("f(v, x, y) != f(x, x, y)")
+ return false
+ }
+ // Test aliasing the second argument and the receiver.
+ v1.Set(y)
+ if out := f(v1, x, v1); out != v1 || !equal(v1, v) {
+ t.Logf("f(v, x, y) != f(y, x, y)")
+ return false
+ }
+
+ // Calculate a reference f(y, y) without aliasing.
+ // We use y because it's the one that commonly has restrictions
+ // like being prime or non-zero.
+ v1.Set(v)
+ y2 := new(big.Int).Set(y)
+ if out := f(v, y, y2); out == nil {
+ return equal(y, y1) && equal(y2, y1) && equal(v, v1)
+ } else if out != v {
+ return false
+ }
+
+ // Test aliasing the two arguments.
+ if out := f(v1, y, y); out != v1 || !equal(v1, v) {
+ t.Logf("f(v, y1, y2) != f(v, y, y)")
+ return false
+ }
+ // Test aliasing the two arguments and the receiver.
+ v1.Set(y)
+ if out := f(v1, v1, v1); out != v1 || !equal(v1, v) {
+ t.Logf("f(v, y1, y2) != f(y, y, y)")
+ return false
+ }
+
+ // Ensure the arguments were not modified.
+ return equal(x, x1) && equal(y, y1)
+}
+
+func TestAliasing(t *testing.T) {
+ for name, f := range map[string]interface{}{
+ "Abs": func(v, x bigInt) bool {
+ return checkAliasingOneArg(t, (*big.Int).Abs, v.Int, x.Int)
+ },
+ "Add": func(v, x, y bigInt) bool {
+ return checkAliasingTwoArgs(t, (*big.Int).Add, v.Int, x.Int, y.Int)
+ },
+ "And": func(v, x, y bigInt) bool {
+ return checkAliasingTwoArgs(t, (*big.Int).And, v.Int, x.Int, y.Int)
+ },
+ "AndNot": func(v, x, y bigInt) bool {
+ return checkAliasingTwoArgs(t, (*big.Int).AndNot, v.Int, x.Int, y.Int)
+ },
+ "Div": func(v, x bigInt, y notZeroInt) bool {
+ return checkAliasingTwoArgs(t, (*big.Int).Div, v.Int, x.Int, y.Int)
+ },
+ "Exp-XY": func(v, x, y bigInt, z notZeroInt) bool {
+ return checkAliasingTwoArgs(t, func(v, x, y *big.Int) *big.Int {
+ return v.Exp(x, y, z.Int)
+ }, v.Int, x.Int, y.Int)
+ },
+ "Exp-XZ": func(v, x, y bigInt, z notZeroInt) bool {
+ return checkAliasingTwoArgs(t, func(v, x, z *big.Int) *big.Int {
+ return v.Exp(x, y.Int, z)
+ }, v.Int, x.Int, z.Int)
+ },
+ "Exp-YZ": func(v, x, y bigInt, z notZeroInt) bool {
+ return checkAliasingTwoArgs(t, func(v, y, z *big.Int) *big.Int {
+ return v.Exp(x.Int, y, z)
+ }, v.Int, y.Int, z.Int)
+ },
+ "GCD": func(v, x, y bigInt) bool {
+ return checkAliasingTwoArgs(t, func(v, x, y *big.Int) *big.Int {
+ return v.GCD(nil, nil, x, y)
+ }, v.Int, x.Int, y.Int)
+ },
+ "GCD-X": func(v, x, y bigInt) bool {
+ a, b := new(big.Int), new(big.Int)
+ return checkAliasingTwoArgs(t, func(v, x, y *big.Int) *big.Int {
+ a.GCD(v, b, x, y)
+ return v
+ }, v.Int, x.Int, y.Int)
+ },
+ "GCD-Y": func(v, x, y bigInt) bool {
+ a, b := new(big.Int), new(big.Int)
+ return checkAliasingTwoArgs(t, func(v, x, y *big.Int) *big.Int {
+ a.GCD(b, v, x, y)
+ return v
+ }, v.Int, x.Int, y.Int)
+ },
+ "Lsh": func(v, x bigInt, n smallUint) bool {
+ return checkAliasingOneArg(t, func(v, x *big.Int) *big.Int {
+ return v.Lsh(x, n.uint)
+ }, v.Int, x.Int)
+ },
+ "Mod": func(v, x bigInt, y notZeroInt) bool {
+ return checkAliasingTwoArgs(t, (*big.Int).Mod, v.Int, x.Int, y.Int)
+ },
+ "ModInverse": func(v, x bigInt, y notZeroInt) bool {
+ return checkAliasingTwoArgs(t, (*big.Int).ModInverse, v.Int, x.Int, y.Int)
+ },
+ "ModSqrt": func(v, x bigInt, p prime) bool {
+ return checkAliasingTwoArgs(t, (*big.Int).ModSqrt, v.Int, x.Int, p.Int)
+ },
+ "Mul": func(v, x, y bigInt) bool {
+ return checkAliasingTwoArgs(t, (*big.Int).Mul, v.Int, x.Int, y.Int)
+ },
+ "Neg": func(v, x bigInt) bool {
+ return checkAliasingOneArg(t, (*big.Int).Neg, v.Int, x.Int)
+ },
+ "Not": func(v, x bigInt) bool {
+ return checkAliasingOneArg(t, (*big.Int).Not, v.Int, x.Int)
+ },
+ "Or": func(v, x, y bigInt) bool {
+ return checkAliasingTwoArgs(t, (*big.Int).Or, v.Int, x.Int, y.Int)
+ },
+ "Quo": func(v, x bigInt, y notZeroInt) bool {
+ return checkAliasingTwoArgs(t, (*big.Int).Quo, v.Int, x.Int, y.Int)
+ },
+ "Rand": func(v, x bigInt, seed int64) bool {
+ return checkAliasingOneArg(t, func(v, x *big.Int) *big.Int {
+ rnd := rand.New(rand.NewSource(seed))
+ return v.Rand(rnd, x)
+ }, v.Int, x.Int)
+ },
+ "Rem": func(v, x bigInt, y notZeroInt) bool {
+ return checkAliasingTwoArgs(t, (*big.Int).Rem, v.Int, x.Int, y.Int)
+ },
+ "Rsh": func(v, x bigInt, n smallUint) bool {
+ return checkAliasingOneArg(t, func(v, x *big.Int) *big.Int {
+ return v.Rsh(x, n.uint)
+ }, v.Int, x.Int)
+ },
+ "Set": func(v, x bigInt) bool {
+ return checkAliasingOneArg(t, (*big.Int).Set, v.Int, x.Int)
+ },
+ "SetBit": func(v, x bigInt, i smallUint, b zeroOrOne) bool {
+ return checkAliasingOneArg(t, func(v, x *big.Int) *big.Int {
+ return v.SetBit(x, int(i.uint), b.uint)
+ }, v.Int, x.Int)
+ },
+ "Sqrt": func(v bigInt, x positiveInt) bool {
+ return checkAliasingOneArg(t, (*big.Int).Sqrt, v.Int, x.Int)
+ },
+ "Sub": func(v, x, y bigInt) bool {
+ return checkAliasingTwoArgs(t, (*big.Int).Sub, v.Int, x.Int, y.Int)
+ },
+ "Xor": func(v, x, y bigInt) bool {
+ return checkAliasingTwoArgs(t, (*big.Int).Xor, v.Int, x.Int, y.Int)
+ },
+ } {
+ t.Run(name, func(t *testing.T) {
+ scale := 1.0
+ switch name {
+ case "ModInverse", "GCD-Y", "GCD-X":
+ scale /= 5
+ case "Rand":
+ scale /= 10
+ case "Exp-XZ", "Exp-XY", "Exp-YZ":
+ scale /= 50
+ case "ModSqrt":
+ scale /= 500
+ }
+ if err := quick.Check(f, &quick.Config{
+ MaxCountScale: scale,
+ }); err != nil {
+ t.Error(err)
+ }
+ })
+ }
+}
diff --git a/src/math/big/arith.go b/src/math/big/arith.go
new file mode 100644
index 0000000..06e63e2
--- /dev/null
+++ b/src/math/big/arith.go
@@ -0,0 +1,277 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file provides Go implementations of elementary multi-precision
+// arithmetic operations on word vectors. These have the suffix _g.
+// These are needed for platforms without assembly implementations of these routines.
+// This file also contains elementary operations that can be implemented
+// sufficiently efficiently in Go.
+
+package big
+
+import "math/bits"
+
+// A Word represents a single digit of a multi-precision unsigned integer.
+type Word uint
+
+const (
+ _S = _W / 8 // word size in bytes
+
+ _W = bits.UintSize // word size in bits
+ _B = 1 << _W // digit base
+ _M = _B - 1 // digit mask
+)
+
+// Many of the loops in this file are of the form
+// for i := 0; i < len(z) && i < len(x) && i < len(y); i++
+// i < len(z) is the real condition.
+// However, checking i < len(x) && i < len(y) as well is faster than
+// having the compiler do a bounds check in the body of the loop;
+// remarkably it is even faster than hoisting the bounds check
+// out of the loop, by doing something like
+// _, _ = x[len(z)-1], y[len(z)-1]
+// There are other ways to hoist the bounds check out of the loop,
+// but the compiler's BCE isn't powerful enough for them (yet?).
+// See the discussion in CL 164966.
+
+// ----------------------------------------------------------------------------
+// Elementary operations on words
+//
+// These operations are used by the vector operations below.
+
+// z1<<_W + z0 = x*y
+func mulWW(x, y Word) (z1, z0 Word) {
+ hi, lo := bits.Mul(uint(x), uint(y))
+ return Word(hi), Word(lo)
+}
+
+// z1<<_W + z0 = x*y + c
+func mulAddWWW_g(x, y, c Word) (z1, z0 Word) {
+ hi, lo := bits.Mul(uint(x), uint(y))
+ var cc uint
+ lo, cc = bits.Add(lo, uint(c), 0)
+ return Word(hi + cc), Word(lo)
+}
+
+// nlz returns the number of leading zeros in x.
+// Wraps bits.LeadingZeros call for convenience.
+func nlz(x Word) uint {
+ return uint(bits.LeadingZeros(uint(x)))
+}
+
+// The resulting carry c is either 0 or 1.
+func addVV_g(z, x, y []Word) (c Word) {
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x) && i < len(y); i++ {
+ zi, cc := bits.Add(uint(x[i]), uint(y[i]), uint(c))
+ z[i] = Word(zi)
+ c = Word(cc)
+ }
+ return
+}
+
+// The resulting carry c is either 0 or 1.
+func subVV_g(z, x, y []Word) (c Word) {
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x) && i < len(y); i++ {
+ zi, cc := bits.Sub(uint(x[i]), uint(y[i]), uint(c))
+ z[i] = Word(zi)
+ c = Word(cc)
+ }
+ return
+}
+
+// The resulting carry c is either 0 or 1.
+func addVW_g(z, x []Word, y Word) (c Word) {
+ c = y
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x); i++ {
+ zi, cc := bits.Add(uint(x[i]), uint(c), 0)
+ z[i] = Word(zi)
+ c = Word(cc)
+ }
+ return
+}
+
+// addVWlarge is addVW, but intended for large z.
+// The only difference is that we check on every iteration
+// whether we are done with carries,
+// and if so, switch to a much faster copy instead.
+// This is only a good idea for large z,
+// because the overhead of the check and the function call
+// outweigh the benefits when z is small.
+func addVWlarge(z, x []Word, y Word) (c Word) {
+ c = y
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x); i++ {
+ if c == 0 {
+ copy(z[i:], x[i:])
+ return
+ }
+ zi, cc := bits.Add(uint(x[i]), uint(c), 0)
+ z[i] = Word(zi)
+ c = Word(cc)
+ }
+ return
+}
+
+func subVW_g(z, x []Word, y Word) (c Word) {
+ c = y
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x); i++ {
+ zi, cc := bits.Sub(uint(x[i]), uint(c), 0)
+ z[i] = Word(zi)
+ c = Word(cc)
+ }
+ return
+}
+
+// subVWlarge is to subVW as addVWlarge is to addVW.
+func subVWlarge(z, x []Word, y Word) (c Word) {
+ c = y
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x); i++ {
+ if c == 0 {
+ copy(z[i:], x[i:])
+ return
+ }
+ zi, cc := bits.Sub(uint(x[i]), uint(c), 0)
+ z[i] = Word(zi)
+ c = Word(cc)
+ }
+ return
+}
+
+func shlVU_g(z, x []Word, s uint) (c Word) {
+ if s == 0 {
+ copy(z, x)
+ return
+ }
+ if len(z) == 0 {
+ return
+ }
+ s &= _W - 1 // hint to the compiler that shifts by s don't need guard code
+ ŝ := _W - s
+ ŝ &= _W - 1 // ditto
+ c = x[len(z)-1] >> ŝ
+ for i := len(z) - 1; i > 0; i-- {
+ z[i] = x[i]<<s | x[i-1]>>ŝ
+ }
+ z[0] = x[0] << s
+ return
+}
+
+func shrVU_g(z, x []Word, s uint) (c Word) {
+ if s == 0 {
+ copy(z, x)
+ return
+ }
+ if len(z) == 0 {
+ return
+ }
+ if len(x) != len(z) {
+ // This is an invariant guaranteed by the caller.
+ panic("len(x) != len(z)")
+ }
+ s &= _W - 1 // hint to the compiler that shifts by s don't need guard code
+ ŝ := _W - s
+ ŝ &= _W - 1 // ditto
+ c = x[0] << ŝ
+ for i := 1; i < len(z); i++ {
+ z[i-1] = x[i-1]>>s | x[i]<<ŝ
+ }
+ z[len(z)-1] = x[len(z)-1] >> s
+ return
+}
+
+func mulAddVWW_g(z, x []Word, y, r Word) (c Word) {
+ c = r
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x); i++ {
+ c, z[i] = mulAddWWW_g(x[i], y, c)
+ }
+ return
+}
+
+func addMulVVW_g(z, x []Word, y Word) (c Word) {
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x); i++ {
+ z1, z0 := mulAddWWW_g(x[i], y, z[i])
+ lo, cc := bits.Add(uint(z0), uint(c), 0)
+ c, z[i] = Word(cc), Word(lo)
+ c += z1
+ }
+ return
+}
+
+// q = ( x1 << _W + x0 - r)/y. m = floor(( _B^2 - 1 ) / d - _B). Requiring x1<y.
+// An approximate reciprocal with a reference to "Improved Division by Invariant Integers
+// (IEEE Transactions on Computers, 11 Jun. 2010)"
+func divWW(x1, x0, y, m Word) (q, r Word) {
+ s := nlz(y)
+ if s != 0 {
+ x1 = x1<<s | x0>>(_W-s)
+ x0 <<= s
+ y <<= s
+ }
+ d := uint(y)
+ // We know that
+ // m = ⎣(B^2-1)/d⎦-B
+ // ⎣(B^2-1)/d⎦ = m+B
+ // (B^2-1)/d = m+B+delta1 0 <= delta1 <= (d-1)/d
+ // B^2/d = m+B+delta2 0 <= delta2 <= 1
+ // The quotient we're trying to compute is
+ // quotient = ⎣(x1*B+x0)/d⎦
+ // = ⎣(x1*B*(B^2/d)+x0*(B^2/d))/B^2⎦
+ // = ⎣(x1*B*(m+B+delta2)+x0*(m+B+delta2))/B^2⎦
+ // = ⎣(x1*m+x1*B+x0)/B + x0*m/B^2 + delta2*(x1*B+x0)/B^2⎦
+ // The latter two terms of this three-term sum are between 0 and 1.
+ // So we can compute just the first term, and we will be low by at most 2.
+ t1, t0 := bits.Mul(uint(m), uint(x1))
+ _, c := bits.Add(t0, uint(x0), 0)
+ t1, _ = bits.Add(t1, uint(x1), c)
+ // The quotient is either t1, t1+1, or t1+2.
+ // We'll try t1 and adjust if needed.
+ qq := t1
+ // compute remainder r=x-d*q.
+ dq1, dq0 := bits.Mul(d, qq)
+ r0, b := bits.Sub(uint(x0), dq0, 0)
+ r1, _ := bits.Sub(uint(x1), dq1, b)
+ // The remainder we just computed is bounded above by B+d:
+ // r = x1*B + x0 - d*q.
+ // = x1*B + x0 - d*⎣(x1*m+x1*B+x0)/B⎦
+ // = x1*B + x0 - d*((x1*m+x1*B+x0)/B-alpha) 0 <= alpha < 1
+ // = x1*B + x0 - x1*d/B*m - x1*d - x0*d/B + d*alpha
+ // = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦ - x1*d - x0*d/B + d*alpha
+ // = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦ - x1*d - x0*d/B + d*alpha
+ // = x1*B + x0 - x1*d/B*((B^2-1)/d-B-beta) - x1*d - x0*d/B + d*alpha 0 <= beta < 1
+ // = x1*B + x0 - x1*B + x1/B + x1*d + x1*d/B*beta - x1*d - x0*d/B + d*alpha
+ // = x0 + x1/B + x1*d/B*beta - x0*d/B + d*alpha
+ // = x0*(1-d/B) + x1*(1+d*beta)/B + d*alpha
+ // < B*(1-d/B) + d*B/B + d because x0<B (and 1-d/B>0), x1<d, 1+d*beta<=B, alpha<1
+ // = B - d + d + d
+ // = B+d
+ // So r1 can only be 0 or 1. If r1 is 1, then we know q was too small.
+ // Add 1 to q and subtract d from r. That guarantees that r is <B, so
+ // we no longer need to keep track of r1.
+ if r1 != 0 {
+ qq++
+ r0 -= d
+ }
+ // If the remainder is still too large, increment q one more time.
+ if r0 >= d {
+ qq++
+ r0 -= d
+ }
+ return Word(qq), Word(r0 >> s)
+}
+
+// reciprocalWord return the reciprocal of the divisor. rec = floor(( _B^2 - 1 ) / u - _B). u = d1 << nlz(d1).
+func reciprocalWord(d1 Word) Word {
+ u := uint(d1 << nlz(d1))
+ x1 := ^u
+ x0 := uint(_M)
+ rec, _ := bits.Div(x1, x0, u) // (_B^2-1)/U-_B = (_B*(_M-C)+_M)/U
+ return Word(rec)
+}
diff --git a/src/math/big/arith_386.s b/src/math/big/arith_386.s
new file mode 100644
index 0000000..90f6a8c
--- /dev/null
+++ b/src/math/big/arith_386.s
@@ -0,0 +1,235 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go
+
+#include "textflag.h"
+
+// This file provides fast assembly versions for the elementary
+// arithmetic operations on vectors implemented in arith.go.
+
+// func addVV(z, x, y []Word) (c Word)
+TEXT ·addVV(SB),NOSPLIT,$0
+ MOVL z+0(FP), DI
+ MOVL x+12(FP), SI
+ MOVL y+24(FP), CX
+ MOVL z_len+4(FP), BP
+ MOVL $0, BX // i = 0
+ MOVL $0, DX // c = 0
+ JMP E1
+
+L1: MOVL (SI)(BX*4), AX
+ ADDL DX, DX // restore CF
+ ADCL (CX)(BX*4), AX
+ SBBL DX, DX // save CF
+ MOVL AX, (DI)(BX*4)
+ ADDL $1, BX // i++
+
+E1: CMPL BX, BP // i < n
+ JL L1
+
+ NEGL DX
+ MOVL DX, c+36(FP)
+ RET
+
+
+// func subVV(z, x, y []Word) (c Word)
+// (same as addVV except for SBBL instead of ADCL and label names)
+TEXT ·subVV(SB),NOSPLIT,$0
+ MOVL z+0(FP), DI
+ MOVL x+12(FP), SI
+ MOVL y+24(FP), CX
+ MOVL z_len+4(FP), BP
+ MOVL $0, BX // i = 0
+ MOVL $0, DX // c = 0
+ JMP E2
+
+L2: MOVL (SI)(BX*4), AX
+ ADDL DX, DX // restore CF
+ SBBL (CX)(BX*4), AX
+ SBBL DX, DX // save CF
+ MOVL AX, (DI)(BX*4)
+ ADDL $1, BX // i++
+
+E2: CMPL BX, BP // i < n
+ JL L2
+
+ NEGL DX
+ MOVL DX, c+36(FP)
+ RET
+
+
+// func addVW(z, x []Word, y Word) (c Word)
+TEXT ·addVW(SB),NOSPLIT,$0
+ MOVL z+0(FP), DI
+ MOVL x+12(FP), SI
+ MOVL y+24(FP), AX // c = y
+ MOVL z_len+4(FP), BP
+ MOVL $0, BX // i = 0
+ JMP E3
+
+L3: ADDL (SI)(BX*4), AX
+ MOVL AX, (DI)(BX*4)
+ SBBL AX, AX // save CF
+ NEGL AX
+ ADDL $1, BX // i++
+
+E3: CMPL BX, BP // i < n
+ JL L3
+
+ MOVL AX, c+28(FP)
+ RET
+
+
+// func subVW(z, x []Word, y Word) (c Word)
+TEXT ·subVW(SB),NOSPLIT,$0
+ MOVL z+0(FP), DI
+ MOVL x+12(FP), SI
+ MOVL y+24(FP), AX // c = y
+ MOVL z_len+4(FP), BP
+ MOVL $0, BX // i = 0
+ JMP E4
+
+L4: MOVL (SI)(BX*4), DX
+ SUBL AX, DX
+ MOVL DX, (DI)(BX*4)
+ SBBL AX, AX // save CF
+ NEGL AX
+ ADDL $1, BX // i++
+
+E4: CMPL BX, BP // i < n
+ JL L4
+
+ MOVL AX, c+28(FP)
+ RET
+
+
+// func shlVU(z, x []Word, s uint) (c Word)
+TEXT ·shlVU(SB),NOSPLIT,$0
+ MOVL z_len+4(FP), BX // i = z
+ SUBL $1, BX // i--
+ JL X8b // i < 0 (n <= 0)
+
+ // n > 0
+ MOVL z+0(FP), DI
+ MOVL x+12(FP), SI
+ MOVL s+24(FP), CX
+ MOVL (SI)(BX*4), AX // w1 = x[n-1]
+ MOVL $0, DX
+ SHLL CX, AX, DX // w1>>ŝ
+ MOVL DX, c+28(FP)
+
+ CMPL BX, $0
+ JLE X8a // i <= 0
+
+ // i > 0
+L8: MOVL AX, DX // w = w1
+ MOVL -4(SI)(BX*4), AX // w1 = x[i-1]
+ SHLL CX, AX, DX // w<<s | w1>>ŝ
+ MOVL DX, (DI)(BX*4) // z[i] = w<<s | w1>>ŝ
+ SUBL $1, BX // i--
+ JG L8 // i > 0
+
+ // i <= 0
+X8a: SHLL CX, AX // w1<<s
+ MOVL AX, (DI) // z[0] = w1<<s
+ RET
+
+X8b: MOVL $0, c+28(FP)
+ RET
+
+
+// func shrVU(z, x []Word, s uint) (c Word)
+TEXT ·shrVU(SB),NOSPLIT,$0
+ MOVL z_len+4(FP), BP
+ SUBL $1, BP // n--
+ JL X9b // n < 0 (n <= 0)
+
+ // n > 0
+ MOVL z+0(FP), DI
+ MOVL x+12(FP), SI
+ MOVL s+24(FP), CX
+ MOVL (SI), AX // w1 = x[0]
+ MOVL $0, DX
+ SHRL CX, AX, DX // w1<<ŝ
+ MOVL DX, c+28(FP)
+
+ MOVL $0, BX // i = 0
+ JMP E9
+
+ // i < n-1
+L9: MOVL AX, DX // w = w1
+ MOVL 4(SI)(BX*4), AX // w1 = x[i+1]
+ SHRL CX, AX, DX // w>>s | w1<<ŝ
+ MOVL DX, (DI)(BX*4) // z[i] = w>>s | w1<<ŝ
+ ADDL $1, BX // i++
+
+E9: CMPL BX, BP
+ JL L9 // i < n-1
+
+ // i >= n-1
+X9a: SHRL CX, AX // w1>>s
+ MOVL AX, (DI)(BP*4) // z[n-1] = w1>>s
+ RET
+
+X9b: MOVL $0, c+28(FP)
+ RET
+
+
+// func mulAddVWW(z, x []Word, y, r Word) (c Word)
+TEXT ·mulAddVWW(SB),NOSPLIT,$0
+ MOVL z+0(FP), DI
+ MOVL x+12(FP), SI
+ MOVL y+24(FP), BP
+ MOVL r+28(FP), CX // c = r
+ MOVL z_len+4(FP), BX
+ LEAL (DI)(BX*4), DI
+ LEAL (SI)(BX*4), SI
+ NEGL BX // i = -n
+ JMP E5
+
+L5: MOVL (SI)(BX*4), AX
+ MULL BP
+ ADDL CX, AX
+ ADCL $0, DX
+ MOVL AX, (DI)(BX*4)
+ MOVL DX, CX
+ ADDL $1, BX // i++
+
+E5: CMPL BX, $0 // i < 0
+ JL L5
+
+ MOVL CX, c+32(FP)
+ RET
+
+
+// func addMulVVW(z, x []Word, y Word) (c Word)
+TEXT ·addMulVVW(SB),NOSPLIT,$0
+ MOVL z+0(FP), DI
+ MOVL x+12(FP), SI
+ MOVL y+24(FP), BP
+ MOVL z_len+4(FP), BX
+ LEAL (DI)(BX*4), DI
+ LEAL (SI)(BX*4), SI
+ NEGL BX // i = -n
+ MOVL $0, CX // c = 0
+ JMP E6
+
+L6: MOVL (SI)(BX*4), AX
+ MULL BP
+ ADDL CX, AX
+ ADCL $0, DX
+ ADDL AX, (DI)(BX*4)
+ ADCL $0, DX
+ MOVL DX, CX
+ ADDL $1, BX // i++
+
+E6: CMPL BX, $0 // i < 0
+ JL L6
+
+ MOVL CX, c+28(FP)
+ RET
+
+
+
diff --git a/src/math/big/arith_amd64.go b/src/math/big/arith_amd64.go
new file mode 100644
index 0000000..3db7258
--- /dev/null
+++ b/src/math/big/arith_amd64.go
@@ -0,0 +1,11 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go
+
+package big
+
+import "internal/cpu"
+
+var support_adx = cpu.X86.HasADX && cpu.X86.HasBMI2
diff --git a/src/math/big/arith_amd64.s b/src/math/big/arith_amd64.s
new file mode 100644
index 0000000..a5b65b1
--- /dev/null
+++ b/src/math/big/arith_amd64.s
@@ -0,0 +1,515 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go
+
+#include "textflag.h"
+
+// This file provides fast assembly versions for the elementary
+// arithmetic operations on vectors implemented in arith.go.
+
+// The carry bit is saved with SBBQ Rx, Rx: if the carry was set, Rx is -1, otherwise it is 0.
+// It is restored with ADDQ Rx, Rx: if Rx was -1 the carry is set, otherwise it is cleared.
+// This is faster than using rotate instructions.
+
+// func addVV(z, x, y []Word) (c Word)
+TEXT ·addVV(SB),NOSPLIT,$0
+ MOVQ z_len+8(FP), DI
+ MOVQ x+24(FP), R8
+ MOVQ y+48(FP), R9
+ MOVQ z+0(FP), R10
+
+ MOVQ $0, CX // c = 0
+ MOVQ $0, SI // i = 0
+
+ // s/JL/JMP/ below to disable the unrolled loop
+ SUBQ $4, DI // n -= 4
+ JL V1 // if n < 0 goto V1
+
+U1: // n >= 0
+ // regular loop body unrolled 4x
+ ADDQ CX, CX // restore CF
+ MOVQ 0(R8)(SI*8), R11
+ MOVQ 8(R8)(SI*8), R12
+ MOVQ 16(R8)(SI*8), R13
+ MOVQ 24(R8)(SI*8), R14
+ ADCQ 0(R9)(SI*8), R11
+ ADCQ 8(R9)(SI*8), R12
+ ADCQ 16(R9)(SI*8), R13
+ ADCQ 24(R9)(SI*8), R14
+ MOVQ R11, 0(R10)(SI*8)
+ MOVQ R12, 8(R10)(SI*8)
+ MOVQ R13, 16(R10)(SI*8)
+ MOVQ R14, 24(R10)(SI*8)
+ SBBQ CX, CX // save CF
+
+ ADDQ $4, SI // i += 4
+ SUBQ $4, DI // n -= 4
+ JGE U1 // if n >= 0 goto U1
+
+V1: ADDQ $4, DI // n += 4
+ JLE E1 // if n <= 0 goto E1
+
+L1: // n > 0
+ ADDQ CX, CX // restore CF
+ MOVQ 0(R8)(SI*8), R11
+ ADCQ 0(R9)(SI*8), R11
+ MOVQ R11, 0(R10)(SI*8)
+ SBBQ CX, CX // save CF
+
+ ADDQ $1, SI // i++
+ SUBQ $1, DI // n--
+ JG L1 // if n > 0 goto L1
+
+E1: NEGQ CX
+ MOVQ CX, c+72(FP) // return c
+ RET
+
+
+// func subVV(z, x, y []Word) (c Word)
+// (same as addVV except for SBBQ instead of ADCQ and label names)
+TEXT ·subVV(SB),NOSPLIT,$0
+ MOVQ z_len+8(FP), DI
+ MOVQ x+24(FP), R8
+ MOVQ y+48(FP), R9
+ MOVQ z+0(FP), R10
+
+ MOVQ $0, CX // c = 0
+ MOVQ $0, SI // i = 0
+
+ // s/JL/JMP/ below to disable the unrolled loop
+ SUBQ $4, DI // n -= 4
+ JL V2 // if n < 0 goto V2
+
+U2: // n >= 0
+ // regular loop body unrolled 4x
+ ADDQ CX, CX // restore CF
+ MOVQ 0(R8)(SI*8), R11
+ MOVQ 8(R8)(SI*8), R12
+ MOVQ 16(R8)(SI*8), R13
+ MOVQ 24(R8)(SI*8), R14
+ SBBQ 0(R9)(SI*8), R11
+ SBBQ 8(R9)(SI*8), R12
+ SBBQ 16(R9)(SI*8), R13
+ SBBQ 24(R9)(SI*8), R14
+ MOVQ R11, 0(R10)(SI*8)
+ MOVQ R12, 8(R10)(SI*8)
+ MOVQ R13, 16(R10)(SI*8)
+ MOVQ R14, 24(R10)(SI*8)
+ SBBQ CX, CX // save CF
+
+ ADDQ $4, SI // i += 4
+ SUBQ $4, DI // n -= 4
+ JGE U2 // if n >= 0 goto U2
+
+V2: ADDQ $4, DI // n += 4
+ JLE E2 // if n <= 0 goto E2
+
+L2: // n > 0
+ ADDQ CX, CX // restore CF
+ MOVQ 0(R8)(SI*8), R11
+ SBBQ 0(R9)(SI*8), R11
+ MOVQ R11, 0(R10)(SI*8)
+ SBBQ CX, CX // save CF
+
+ ADDQ $1, SI // i++
+ SUBQ $1, DI // n--
+ JG L2 // if n > 0 goto L2
+
+E2: NEGQ CX
+ MOVQ CX, c+72(FP) // return c
+ RET
+
+
+// func addVW(z, x []Word, y Word) (c Word)
+TEXT ·addVW(SB),NOSPLIT,$0
+ MOVQ z_len+8(FP), DI
+ CMPQ DI, $32
+ JG large
+ MOVQ x+24(FP), R8
+ MOVQ y+48(FP), CX // c = y
+ MOVQ z+0(FP), R10
+
+ MOVQ $0, SI // i = 0
+
+ // s/JL/JMP/ below to disable the unrolled loop
+ SUBQ $4, DI // n -= 4
+ JL V3 // if n < 4 goto V3
+
+U3: // n >= 0
+ // regular loop body unrolled 4x
+ MOVQ 0(R8)(SI*8), R11
+ MOVQ 8(R8)(SI*8), R12
+ MOVQ 16(R8)(SI*8), R13
+ MOVQ 24(R8)(SI*8), R14
+ ADDQ CX, R11
+ ADCQ $0, R12
+ ADCQ $0, R13
+ ADCQ $0, R14
+ SBBQ CX, CX // save CF
+ NEGQ CX
+ MOVQ R11, 0(R10)(SI*8)
+ MOVQ R12, 8(R10)(SI*8)
+ MOVQ R13, 16(R10)(SI*8)
+ MOVQ R14, 24(R10)(SI*8)
+
+ ADDQ $4, SI // i += 4
+ SUBQ $4, DI // n -= 4
+ JGE U3 // if n >= 0 goto U3
+
+V3: ADDQ $4, DI // n += 4
+ JLE E3 // if n <= 0 goto E3
+
+L3: // n > 0
+ ADDQ 0(R8)(SI*8), CX
+ MOVQ CX, 0(R10)(SI*8)
+ SBBQ CX, CX // save CF
+ NEGQ CX
+
+ ADDQ $1, SI // i++
+ SUBQ $1, DI // n--
+ JG L3 // if n > 0 goto L3
+
+E3: MOVQ CX, c+56(FP) // return c
+ RET
+large:
+ JMP ·addVWlarge(SB)
+
+
+// func subVW(z, x []Word, y Word) (c Word)
+// (same as addVW except for SUBQ/SBBQ instead of ADDQ/ADCQ and label names)
+TEXT ·subVW(SB),NOSPLIT,$0
+ MOVQ z_len+8(FP), DI
+ CMPQ DI, $32
+ JG large
+ MOVQ x+24(FP), R8
+ MOVQ y+48(FP), CX // c = y
+ MOVQ z+0(FP), R10
+
+ MOVQ $0, SI // i = 0
+
+ // s/JL/JMP/ below to disable the unrolled loop
+ SUBQ $4, DI // n -= 4
+ JL V4 // if n < 4 goto V4
+
+U4: // n >= 0
+ // regular loop body unrolled 4x
+ MOVQ 0(R8)(SI*8), R11
+ MOVQ 8(R8)(SI*8), R12
+ MOVQ 16(R8)(SI*8), R13
+ MOVQ 24(R8)(SI*8), R14
+ SUBQ CX, R11
+ SBBQ $0, R12
+ SBBQ $0, R13
+ SBBQ $0, R14
+ SBBQ CX, CX // save CF
+ NEGQ CX
+ MOVQ R11, 0(R10)(SI*8)
+ MOVQ R12, 8(R10)(SI*8)
+ MOVQ R13, 16(R10)(SI*8)
+ MOVQ R14, 24(R10)(SI*8)
+
+ ADDQ $4, SI // i += 4
+ SUBQ $4, DI // n -= 4
+ JGE U4 // if n >= 0 goto U4
+
+V4: ADDQ $4, DI // n += 4
+ JLE E4 // if n <= 0 goto E4
+
+L4: // n > 0
+ MOVQ 0(R8)(SI*8), R11
+ SUBQ CX, R11
+ MOVQ R11, 0(R10)(SI*8)
+ SBBQ CX, CX // save CF
+ NEGQ CX
+
+ ADDQ $1, SI // i++
+ SUBQ $1, DI // n--
+ JG L4 // if n > 0 goto L4
+
+E4: MOVQ CX, c+56(FP) // return c
+ RET
+large:
+ JMP ·subVWlarge(SB)
+
+
+// func shlVU(z, x []Word, s uint) (c Word)
+TEXT ·shlVU(SB),NOSPLIT,$0
+ MOVQ z_len+8(FP), BX // i = z
+ SUBQ $1, BX // i--
+ JL X8b // i < 0 (n <= 0)
+
+ // n > 0
+ MOVQ z+0(FP), R10
+ MOVQ x+24(FP), R8
+ MOVQ s+48(FP), CX
+ MOVQ (R8)(BX*8), AX // w1 = x[n-1]
+ MOVQ $0, DX
+ SHLQ CX, AX, DX // w1>>ŝ
+ MOVQ DX, c+56(FP)
+
+ CMPQ BX, $0
+ JLE X8a // i <= 0
+
+ // i > 0
+L8: MOVQ AX, DX // w = w1
+ MOVQ -8(R8)(BX*8), AX // w1 = x[i-1]
+ SHLQ CX, AX, DX // w<<s | w1>>ŝ
+ MOVQ DX, (R10)(BX*8) // z[i] = w<<s | w1>>ŝ
+ SUBQ $1, BX // i--
+ JG L8 // i > 0
+
+ // i <= 0
+X8a: SHLQ CX, AX // w1<<s
+ MOVQ AX, (R10) // z[0] = w1<<s
+ RET
+
+X8b: MOVQ $0, c+56(FP)
+ RET
+
+
+// func shrVU(z, x []Word, s uint) (c Word)
+TEXT ·shrVU(SB),NOSPLIT,$0
+ MOVQ z_len+8(FP), R11
+ SUBQ $1, R11 // n--
+ JL X9b // n < 0 (n <= 0)
+
+ // n > 0
+ MOVQ z+0(FP), R10
+ MOVQ x+24(FP), R8
+ MOVQ s+48(FP), CX
+ MOVQ (R8), AX // w1 = x[0]
+ MOVQ $0, DX
+ SHRQ CX, AX, DX // w1<<ŝ
+ MOVQ DX, c+56(FP)
+
+ MOVQ $0, BX // i = 0
+ JMP E9
+
+ // i < n-1
+L9: MOVQ AX, DX // w = w1
+ MOVQ 8(R8)(BX*8), AX // w1 = x[i+1]
+ SHRQ CX, AX, DX // w>>s | w1<<ŝ
+ MOVQ DX, (R10)(BX*8) // z[i] = w>>s | w1<<ŝ
+ ADDQ $1, BX // i++
+
+E9: CMPQ BX, R11
+ JL L9 // i < n-1
+
+ // i >= n-1
+X9a: SHRQ CX, AX // w1>>s
+ MOVQ AX, (R10)(R11*8) // z[n-1] = w1>>s
+ RET
+
+X9b: MOVQ $0, c+56(FP)
+ RET
+
+
+// func mulAddVWW(z, x []Word, y, r Word) (c Word)
+TEXT ·mulAddVWW(SB),NOSPLIT,$0
+ MOVQ z+0(FP), R10
+ MOVQ x+24(FP), R8
+ MOVQ y+48(FP), R9
+ MOVQ r+56(FP), CX // c = r
+ MOVQ z_len+8(FP), R11
+ MOVQ $0, BX // i = 0
+
+ CMPQ R11, $4
+ JL E5
+
+U5: // i+4 <= n
+ // regular loop body unrolled 4x
+ MOVQ (0*8)(R8)(BX*8), AX
+ MULQ R9
+ ADDQ CX, AX
+ ADCQ $0, DX
+ MOVQ AX, (0*8)(R10)(BX*8)
+ MOVQ DX, CX
+ MOVQ (1*8)(R8)(BX*8), AX
+ MULQ R9
+ ADDQ CX, AX
+ ADCQ $0, DX
+ MOVQ AX, (1*8)(R10)(BX*8)
+ MOVQ DX, CX
+ MOVQ (2*8)(R8)(BX*8), AX
+ MULQ R9
+ ADDQ CX, AX
+ ADCQ $0, DX
+ MOVQ AX, (2*8)(R10)(BX*8)
+ MOVQ DX, CX
+ MOVQ (3*8)(R8)(BX*8), AX
+ MULQ R9
+ ADDQ CX, AX
+ ADCQ $0, DX
+ MOVQ AX, (3*8)(R10)(BX*8)
+ MOVQ DX, CX
+ ADDQ $4, BX // i += 4
+
+ LEAQ 4(BX), DX
+ CMPQ DX, R11
+ JLE U5
+ JMP E5
+
+L5: MOVQ (R8)(BX*8), AX
+ MULQ R9
+ ADDQ CX, AX
+ ADCQ $0, DX
+ MOVQ AX, (R10)(BX*8)
+ MOVQ DX, CX
+ ADDQ $1, BX // i++
+
+E5: CMPQ BX, R11 // i < n
+ JL L5
+
+ MOVQ CX, c+64(FP)
+ RET
+
+
+// func addMulVVW(z, x []Word, y Word) (c Word)
+TEXT ·addMulVVW(SB),NOSPLIT,$0
+ CMPB ·support_adx(SB), $1
+ JEQ adx
+ MOVQ z+0(FP), R10
+ MOVQ x+24(FP), R8
+ MOVQ y+48(FP), R9
+ MOVQ z_len+8(FP), R11
+ MOVQ $0, BX // i = 0
+ MOVQ $0, CX // c = 0
+ MOVQ R11, R12
+ ANDQ $-2, R12
+ CMPQ R11, $2
+ JAE A6
+ JMP E6
+
+A6:
+ MOVQ (R8)(BX*8), AX
+ MULQ R9
+ ADDQ (R10)(BX*8), AX
+ ADCQ $0, DX
+ ADDQ CX, AX
+ ADCQ $0, DX
+ MOVQ DX, CX
+ MOVQ AX, (R10)(BX*8)
+
+ MOVQ (8)(R8)(BX*8), AX
+ MULQ R9
+ ADDQ (8)(R10)(BX*8), AX
+ ADCQ $0, DX
+ ADDQ CX, AX
+ ADCQ $0, DX
+ MOVQ DX, CX
+ MOVQ AX, (8)(R10)(BX*8)
+
+ ADDQ $2, BX
+ CMPQ BX, R12
+ JL A6
+ JMP E6
+
+L6: MOVQ (R8)(BX*8), AX
+ MULQ R9
+ ADDQ CX, AX
+ ADCQ $0, DX
+ ADDQ AX, (R10)(BX*8)
+ ADCQ $0, DX
+ MOVQ DX, CX
+ ADDQ $1, BX // i++
+
+E6: CMPQ BX, R11 // i < n
+ JL L6
+
+ MOVQ CX, c+56(FP)
+ RET
+
+adx:
+ MOVQ z_len+8(FP), R11
+ MOVQ z+0(FP), R10
+ MOVQ x+24(FP), R8
+ MOVQ y+48(FP), DX
+ MOVQ $0, BX // i = 0
+ MOVQ $0, CX // carry
+ CMPQ R11, $8
+ JAE adx_loop_header
+ CMPQ BX, R11
+ JL adx_short
+ MOVQ CX, c+56(FP)
+ RET
+
+adx_loop_header:
+ MOVQ R11, R13
+ ANDQ $-8, R13
+adx_loop:
+ XORQ R9, R9 // unset flags
+ MULXQ (R8), SI, DI
+ ADCXQ CX,SI
+ ADOXQ (R10), SI
+ MOVQ SI,(R10)
+
+ MULXQ 8(R8), AX, CX
+ ADCXQ DI, AX
+ ADOXQ 8(R10), AX
+ MOVQ AX, 8(R10)
+
+ MULXQ 16(R8), SI, DI
+ ADCXQ CX, SI
+ ADOXQ 16(R10), SI
+ MOVQ SI, 16(R10)
+
+ MULXQ 24(R8), AX, CX
+ ADCXQ DI, AX
+ ADOXQ 24(R10), AX
+ MOVQ AX, 24(R10)
+
+ MULXQ 32(R8), SI, DI
+ ADCXQ CX, SI
+ ADOXQ 32(R10), SI
+ MOVQ SI, 32(R10)
+
+ MULXQ 40(R8), AX, CX
+ ADCXQ DI, AX
+ ADOXQ 40(R10), AX
+ MOVQ AX, 40(R10)
+
+ MULXQ 48(R8), SI, DI
+ ADCXQ CX, SI
+ ADOXQ 48(R10), SI
+ MOVQ SI, 48(R10)
+
+ MULXQ 56(R8), AX, CX
+ ADCXQ DI, AX
+ ADOXQ 56(R10), AX
+ MOVQ AX, 56(R10)
+
+ ADCXQ R9, CX
+ ADOXQ R9, CX
+
+ ADDQ $64, R8
+ ADDQ $64, R10
+ ADDQ $8, BX
+
+ CMPQ BX, R13
+ JL adx_loop
+ MOVQ z+0(FP), R10
+ MOVQ x+24(FP), R8
+ CMPQ BX, R11
+ JL adx_short
+ MOVQ CX, c+56(FP)
+ RET
+
+adx_short:
+ MULXQ (R8)(BX*8), SI, DI
+ ADDQ CX, SI
+ ADCQ $0, DI
+ ADDQ SI, (R10)(BX*8)
+ ADCQ $0, DI
+ MOVQ DI, CX
+ ADDQ $1, BX // i++
+
+ CMPQ BX, R11
+ JL adx_short
+
+ MOVQ CX, c+56(FP)
+ RET
+
+
+
diff --git a/src/math/big/arith_arm.s b/src/math/big/arith_arm.s
new file mode 100644
index 0000000..ece3a96
--- /dev/null
+++ b/src/math/big/arith_arm.s
@@ -0,0 +1,272 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go
+
+#include "textflag.h"
+
+// This file provides fast assembly versions for the elementary
+// arithmetic operations on vectors implemented in arith.go.
+
+// func addVV(z, x, y []Word) (c Word)
+TEXT ·addVV(SB),NOSPLIT,$0
+ ADD.S $0, R0 // clear carry flag
+ MOVW z+0(FP), R1
+ MOVW z_len+4(FP), R4
+ MOVW x+12(FP), R2
+ MOVW y+24(FP), R3
+ ADD R4<<2, R1, R4
+ B E1
+L1:
+ MOVW.P 4(R2), R5
+ MOVW.P 4(R3), R6
+ ADC.S R6, R5
+ MOVW.P R5, 4(R1)
+E1:
+ TEQ R1, R4
+ BNE L1
+
+ MOVW $0, R0
+ MOVW.CS $1, R0
+ MOVW R0, c+36(FP)
+ RET
+
+
+// func subVV(z, x, y []Word) (c Word)
+// (same as addVV except for SBC instead of ADC and label names)
+TEXT ·subVV(SB),NOSPLIT,$0
+ SUB.S $0, R0 // clear borrow flag
+ MOVW z+0(FP), R1
+ MOVW z_len+4(FP), R4
+ MOVW x+12(FP), R2
+ MOVW y+24(FP), R3
+ ADD R4<<2, R1, R4
+ B E2
+L2:
+ MOVW.P 4(R2), R5
+ MOVW.P 4(R3), R6
+ SBC.S R6, R5
+ MOVW.P R5, 4(R1)
+E2:
+ TEQ R1, R4
+ BNE L2
+
+ MOVW $0, R0
+ MOVW.CC $1, R0
+ MOVW R0, c+36(FP)
+ RET
+
+
+// func addVW(z, x []Word, y Word) (c Word)
+TEXT ·addVW(SB),NOSPLIT,$0
+ MOVW z+0(FP), R1
+ MOVW z_len+4(FP), R4
+ MOVW x+12(FP), R2
+ MOVW y+24(FP), R3
+ ADD R4<<2, R1, R4
+ TEQ R1, R4
+ BNE L3a
+ MOVW R3, c+28(FP)
+ RET
+L3a:
+ MOVW.P 4(R2), R5
+ ADD.S R3, R5
+ MOVW.P R5, 4(R1)
+ B E3
+L3:
+ MOVW.P 4(R2), R5
+ ADC.S $0, R5
+ MOVW.P R5, 4(R1)
+E3:
+ TEQ R1, R4
+ BNE L3
+
+ MOVW $0, R0
+ MOVW.CS $1, R0
+ MOVW R0, c+28(FP)
+ RET
+
+
+// func subVW(z, x []Word, y Word) (c Word)
+TEXT ·subVW(SB),NOSPLIT,$0
+ MOVW z+0(FP), R1
+ MOVW z_len+4(FP), R4
+ MOVW x+12(FP), R2
+ MOVW y+24(FP), R3
+ ADD R4<<2, R1, R4
+ TEQ R1, R4
+ BNE L4a
+ MOVW R3, c+28(FP)
+ RET
+L4a:
+ MOVW.P 4(R2), R5
+ SUB.S R3, R5
+ MOVW.P R5, 4(R1)
+ B E4
+L4:
+ MOVW.P 4(R2), R5
+ SBC.S $0, R5
+ MOVW.P R5, 4(R1)
+E4:
+ TEQ R1, R4
+ BNE L4
+
+ MOVW $0, R0
+ MOVW.CC $1, R0
+ MOVW R0, c+28(FP)
+ RET
+
+
+// func shlVU(z, x []Word, s uint) (c Word)
+TEXT ·shlVU(SB),NOSPLIT,$0
+ MOVW z_len+4(FP), R5
+ TEQ $0, R5
+ BEQ X7
+
+ MOVW z+0(FP), R1
+ MOVW x+12(FP), R2
+ ADD R5<<2, R2, R2
+ ADD R5<<2, R1, R5
+ MOVW s+24(FP), R3
+ TEQ $0, R3 // shift 0 is special
+ BEQ Y7
+ ADD $4, R1 // stop one word early
+ MOVW $32, R4
+ SUB R3, R4
+ MOVW $0, R7
+
+ MOVW.W -4(R2), R6
+ MOVW R6<<R3, R7
+ MOVW R6>>R4, R6
+ MOVW R6, c+28(FP)
+ B E7
+
+L7:
+ MOVW.W -4(R2), R6
+ ORR R6>>R4, R7
+ MOVW.W R7, -4(R5)
+ MOVW R6<<R3, R7
+E7:
+ TEQ R1, R5
+ BNE L7
+
+ MOVW R7, -4(R5)
+ RET
+
+Y7: // copy loop, because shift 0 == shift 32
+ MOVW.W -4(R2), R6
+ MOVW.W R6, -4(R5)
+ TEQ R1, R5
+ BNE Y7
+
+X7:
+ MOVW $0, R1
+ MOVW R1, c+28(FP)
+ RET
+
+
+// func shrVU(z, x []Word, s uint) (c Word)
+TEXT ·shrVU(SB),NOSPLIT,$0
+ MOVW z_len+4(FP), R5
+ TEQ $0, R5
+ BEQ X6
+
+ MOVW z+0(FP), R1
+ MOVW x+12(FP), R2
+ ADD R5<<2, R1, R5
+ MOVW s+24(FP), R3
+ TEQ $0, R3 // shift 0 is special
+ BEQ Y6
+ SUB $4, R5 // stop one word early
+ MOVW $32, R4
+ SUB R3, R4
+ MOVW $0, R7
+
+ // first word
+ MOVW.P 4(R2), R6
+ MOVW R6>>R3, R7
+ MOVW R6<<R4, R6
+ MOVW R6, c+28(FP)
+ B E6
+
+ // word loop
+L6:
+ MOVW.P 4(R2), R6
+ ORR R6<<R4, R7
+ MOVW.P R7, 4(R1)
+ MOVW R6>>R3, R7
+E6:
+ TEQ R1, R5
+ BNE L6
+
+ MOVW R7, 0(R1)
+ RET
+
+Y6: // copy loop, because shift 0 == shift 32
+ MOVW.P 4(R2), R6
+ MOVW.P R6, 4(R1)
+ TEQ R1, R5
+ BNE Y6
+
+X6:
+ MOVW $0, R1
+ MOVW R1, c+28(FP)
+ RET
+
+
+// func mulAddVWW(z, x []Word, y, r Word) (c Word)
+TEXT ·mulAddVWW(SB),NOSPLIT,$0
+ MOVW $0, R0
+ MOVW z+0(FP), R1
+ MOVW z_len+4(FP), R5
+ MOVW x+12(FP), R2
+ MOVW y+24(FP), R3
+ MOVW r+28(FP), R4
+ ADD R5<<2, R1, R5
+ B E8
+
+ // word loop
+L8:
+ MOVW.P 4(R2), R6
+ MULLU R6, R3, (R7, R6)
+ ADD.S R4, R6
+ ADC R0, R7
+ MOVW.P R6, 4(R1)
+ MOVW R7, R4
+E8:
+ TEQ R1, R5
+ BNE L8
+
+ MOVW R4, c+32(FP)
+ RET
+
+
+// func addMulVVW(z, x []Word, y Word) (c Word)
+TEXT ·addMulVVW(SB),NOSPLIT,$0
+ MOVW $0, R0
+ MOVW z+0(FP), R1
+ MOVW z_len+4(FP), R5
+ MOVW x+12(FP), R2
+ MOVW y+24(FP), R3
+ ADD R5<<2, R1, R5
+ MOVW $0, R4
+ B E9
+
+ // word loop
+L9:
+ MOVW.P 4(R2), R6
+ MULLU R6, R3, (R7, R6)
+ ADD.S R4, R6
+ ADC R0, R7
+ MOVW 0(R1), R4
+ ADD.S R4, R6
+ ADC R0, R7
+ MOVW.P R6, 4(R1)
+ MOVW R7, R4
+E9:
+ TEQ R1, R5
+ BNE L9
+
+ MOVW R4, c+28(FP)
+ RET
diff --git a/src/math/big/arith_arm64.s b/src/math/big/arith_arm64.s
new file mode 100644
index 0000000..204006e
--- /dev/null
+++ b/src/math/big/arith_arm64.s
@@ -0,0 +1,572 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go
+
+#include "textflag.h"
+
+// This file provides fast assembly versions for the elementary
+// arithmetic operations on vectors implemented in arith.go.
+
+// TODO: Consider re-implementing using Advanced SIMD
+// once the assembler supports those instructions.
+
+// func addVV(z, x, y []Word) (c Word)
+TEXT ·addVV(SB),NOSPLIT,$0
+ MOVD z_len+8(FP), R0
+ MOVD x+24(FP), R8
+ MOVD y+48(FP), R9
+ MOVD z+0(FP), R10
+ ADDS $0, R0 // clear carry flag
+ TBZ $0, R0, two
+ MOVD.P 8(R8), R11
+ MOVD.P 8(R9), R15
+ ADCS R15, R11
+ MOVD.P R11, 8(R10)
+ SUB $1, R0
+two:
+ TBZ $1, R0, loop
+ LDP.P 16(R8), (R11, R12)
+ LDP.P 16(R9), (R15, R16)
+ ADCS R15, R11
+ ADCS R16, R12
+ STP.P (R11, R12), 16(R10)
+ SUB $2, R0
+loop:
+ CBZ R0, done // careful not to touch the carry flag
+ LDP.P 32(R8), (R11, R12)
+ LDP -16(R8), (R13, R14)
+ LDP.P 32(R9), (R15, R16)
+ LDP -16(R9), (R17, R19)
+ ADCS R15, R11
+ ADCS R16, R12
+ ADCS R17, R13
+ ADCS R19, R14
+ STP.P (R11, R12), 32(R10)
+ STP (R13, R14), -16(R10)
+ SUB $4, R0
+ B loop
+done:
+ CSET HS, R0 // extract carry flag
+ MOVD R0, c+72(FP)
+ RET
+
+
+// func subVV(z, x, y []Word) (c Word)
+TEXT ·subVV(SB),NOSPLIT,$0
+ MOVD z_len+8(FP), R0
+ MOVD x+24(FP), R8
+ MOVD y+48(FP), R9
+ MOVD z+0(FP), R10
+ CMP R0, R0 // set carry flag
+ TBZ $0, R0, two
+ MOVD.P 8(R8), R11
+ MOVD.P 8(R9), R15
+ SBCS R15, R11
+ MOVD.P R11, 8(R10)
+ SUB $1, R0
+two:
+ TBZ $1, R0, loop
+ LDP.P 16(R8), (R11, R12)
+ LDP.P 16(R9), (R15, R16)
+ SBCS R15, R11
+ SBCS R16, R12
+ STP.P (R11, R12), 16(R10)
+ SUB $2, R0
+loop:
+ CBZ R0, done // careful not to touch the carry flag
+ LDP.P 32(R8), (R11, R12)
+ LDP -16(R8), (R13, R14)
+ LDP.P 32(R9), (R15, R16)
+ LDP -16(R9), (R17, R19)
+ SBCS R15, R11
+ SBCS R16, R12
+ SBCS R17, R13
+ SBCS R19, R14
+ STP.P (R11, R12), 32(R10)
+ STP (R13, R14), -16(R10)
+ SUB $4, R0
+ B loop
+done:
+ CSET LO, R0 // extract carry flag
+ MOVD R0, c+72(FP)
+ RET
+
+#define vwOneOp(instr, op1) \
+ MOVD.P 8(R1), R4; \
+ instr op1, R4; \
+ MOVD.P R4, 8(R3);
+
+// handle the first 1~4 elements before starting iteration in addVW/subVW
+#define vwPreIter(instr1, instr2, counter, target) \
+ vwOneOp(instr1, R2); \
+ SUB $1, counter; \
+ CBZ counter, target; \
+ vwOneOp(instr2, $0); \
+ SUB $1, counter; \
+ CBZ counter, target; \
+ vwOneOp(instr2, $0); \
+ SUB $1, counter; \
+ CBZ counter, target; \
+ vwOneOp(instr2, $0);
+
+// do one iteration of add or sub in addVW/subVW
+#define vwOneIter(instr, counter, exit) \
+ CBZ counter, exit; \ // careful not to touch the carry flag
+ LDP.P 32(R1), (R4, R5); \
+ LDP -16(R1), (R6, R7); \
+ instr $0, R4, R8; \
+ instr $0, R5, R9; \
+ instr $0, R6, R10; \
+ instr $0, R7, R11; \
+ STP.P (R8, R9), 32(R3); \
+ STP (R10, R11), -16(R3); \
+ SUB $4, counter;
+
+// do one iteration of copy in addVW/subVW
+#define vwOneIterCopy(counter, exit) \
+ CBZ counter, exit; \
+ LDP.P 32(R1), (R4, R5); \
+ LDP -16(R1), (R6, R7); \
+ STP.P (R4, R5), 32(R3); \
+ STP (R6, R7), -16(R3); \
+ SUB $4, counter;
+
+// func addVW(z, x []Word, y Word) (c Word)
+// The 'large' branch handles large 'z'. It checks the carry flag on every iteration
+// and switches to copy if we are done with carries. The copying is skipped as well
+// if 'x' and 'z' happen to share the same underlying storage.
+// The overhead of the checking and branching is visible when 'z' are small (~5%),
+// so set a threshold of 32, and remain the small-sized part entirely untouched.
+TEXT ·addVW(SB),NOSPLIT,$0
+ MOVD z+0(FP), R3
+ MOVD z_len+8(FP), R0
+ MOVD x+24(FP), R1
+ MOVD y+48(FP), R2
+ CMP $32, R0
+ BGE large // large-sized 'z' and 'x'
+ CBZ R0, len0 // the length of z is 0
+ MOVD.P 8(R1), R4
+ ADDS R2, R4 // z[0] = x[0] + y, set carry
+ MOVD.P R4, 8(R3)
+ SUB $1, R0
+ CBZ R0, len1 // the length of z is 1
+ TBZ $0, R0, two
+ MOVD.P 8(R1), R4 // do it once
+ ADCS $0, R4
+ MOVD.P R4, 8(R3)
+ SUB $1, R0
+two: // do it twice
+ TBZ $1, R0, loop
+ LDP.P 16(R1), (R4, R5)
+ ADCS $0, R4, R8 // c, z[i] = x[i] + c
+ ADCS $0, R5, R9
+ STP.P (R8, R9), 16(R3)
+ SUB $2, R0
+loop: // do four times per round
+ vwOneIter(ADCS, R0, len1)
+ B loop
+len1:
+ CSET HS, R2 // extract carry flag
+len0:
+ MOVD R2, c+56(FP)
+done:
+ RET
+large:
+ AND $0x3, R0, R10
+ AND $~0x3, R0
+ // unrolling for the first 1~4 elements to avoid saving the carry
+ // flag in each step, adjust $R0 if we unrolled 4 elements
+ vwPreIter(ADDS, ADCS, R10, add4)
+ SUB $4, R0
+add4:
+ BCC copy
+ vwOneIter(ADCS, R0, len1)
+ B add4
+copy:
+ MOVD ZR, c+56(FP)
+ CMP R1, R3
+ BEQ done
+copy_4: // no carry flag, copy the rest
+ vwOneIterCopy(R0, done)
+ B copy_4
+
+// func subVW(z, x []Word, y Word) (c Word)
+// The 'large' branch handles large 'z'. It checks the carry flag on every iteration
+// and switches to copy if we are done with carries. The copying is skipped as well
+// if 'x' and 'z' happen to share the same underlying storage.
+// The overhead of the checking and branching is visible when 'z' are small (~5%),
+// so set a threshold of 32, and remain the small-sized part entirely untouched.
+TEXT ·subVW(SB),NOSPLIT,$0
+ MOVD z+0(FP), R3
+ MOVD z_len+8(FP), R0
+ MOVD x+24(FP), R1
+ MOVD y+48(FP), R2
+ CMP $32, R0
+ BGE large // large-sized 'z' and 'x'
+ CBZ R0, len0 // the length of z is 0
+ MOVD.P 8(R1), R4
+ SUBS R2, R4 // z[0] = x[0] - y, set carry
+ MOVD.P R4, 8(R3)
+ SUB $1, R0
+ CBZ R0, len1 // the length of z is 1
+ TBZ $0, R0, two // do it once
+ MOVD.P 8(R1), R4
+ SBCS $0, R4
+ MOVD.P R4, 8(R3)
+ SUB $1, R0
+two: // do it twice
+ TBZ $1, R0, loop
+ LDP.P 16(R1), (R4, R5)
+ SBCS $0, R4, R8 // c, z[i] = x[i] + c
+ SBCS $0, R5, R9
+ STP.P (R8, R9), 16(R3)
+ SUB $2, R0
+loop: // do four times per round
+ vwOneIter(SBCS, R0, len1)
+ B loop
+len1:
+ CSET LO, R2 // extract carry flag
+len0:
+ MOVD R2, c+56(FP)
+done:
+ RET
+large:
+ AND $0x3, R0, R10
+ AND $~0x3, R0
+ // unrolling for the first 1~4 elements to avoid saving the carry
+ // flag in each step, adjust $R0 if we unrolled 4 elements
+ vwPreIter(SUBS, SBCS, R10, sub4)
+ SUB $4, R0
+sub4:
+ BCS copy
+ vwOneIter(SBCS, R0, len1)
+ B sub4
+copy:
+ MOVD ZR, c+56(FP)
+ CMP R1, R3
+ BEQ done
+copy_4: // no carry flag, copy the rest
+ vwOneIterCopy(R0, done)
+ B copy_4
+
+// func shlVU(z, x []Word, s uint) (c Word)
+// This implementation handles the shift operation from the high word to the low word,
+// which may be an error for the case where the low word of x overlaps with the high
+// word of z. When calling this function directly, you need to pay attention to this
+// situation.
+TEXT ·shlVU(SB),NOSPLIT,$0
+ LDP z+0(FP), (R0, R1) // R0 = z.ptr, R1 = len(z)
+ MOVD x+24(FP), R2
+ MOVD s+48(FP), R3
+ ADD R1<<3, R0 // R0 = &z[n]
+ ADD R1<<3, R2 // R2 = &x[n]
+ CBZ R1, len0
+ CBZ R3, copy // if the number of shift is 0, just copy x to z
+ MOVD $64, R4
+ SUB R3, R4
+ // handling the most significant element x[n-1]
+ MOVD.W -8(R2), R6
+ LSR R4, R6, R5 // return value
+ LSL R3, R6, R8 // x[i] << s
+ SUB $1, R1
+one: TBZ $0, R1, two
+ MOVD.W -8(R2), R6
+ LSR R4, R6, R7
+ ORR R8, R7
+ LSL R3, R6, R8
+ SUB $1, R1
+ MOVD.W R7, -8(R0)
+two:
+ TBZ $1, R1, loop
+ LDP.W -16(R2), (R6, R7)
+ LSR R4, R7, R10
+ ORR R8, R10
+ LSL R3, R7
+ LSR R4, R6, R9
+ ORR R7, R9
+ LSL R3, R6, R8
+ SUB $2, R1
+ STP.W (R9, R10), -16(R0)
+loop:
+ CBZ R1, done
+ LDP.W -32(R2), (R10, R11)
+ LDP 16(R2), (R12, R13)
+ LSR R4, R13, R23
+ ORR R8, R23 // z[i] = (x[i] << s) | (x[i-1] >> (64 - s))
+ LSL R3, R13
+ LSR R4, R12, R22
+ ORR R13, R22
+ LSL R3, R12
+ LSR R4, R11, R21
+ ORR R12, R21
+ LSL R3, R11
+ LSR R4, R10, R20
+ ORR R11, R20
+ LSL R3, R10, R8
+ STP.W (R20, R21), -32(R0)
+ STP (R22, R23), 16(R0)
+ SUB $4, R1
+ B loop
+done:
+ MOVD.W R8, -8(R0) // the first element x[0]
+ MOVD R5, c+56(FP) // the part moved out from x[n-1]
+ RET
+copy:
+ CMP R0, R2
+ BEQ len0
+ TBZ $0, R1, ctwo
+ MOVD.W -8(R2), R4
+ MOVD.W R4, -8(R0)
+ SUB $1, R1
+ctwo:
+ TBZ $1, R1, cloop
+ LDP.W -16(R2), (R4, R5)
+ STP.W (R4, R5), -16(R0)
+ SUB $2, R1
+cloop:
+ CBZ R1, len0
+ LDP.W -32(R2), (R4, R5)
+ LDP 16(R2), (R6, R7)
+ STP.W (R4, R5), -32(R0)
+ STP (R6, R7), 16(R0)
+ SUB $4, R1
+ B cloop
+len0:
+ MOVD $0, c+56(FP)
+ RET
+
+// func shrVU(z, x []Word, s uint) (c Word)
+// This implementation handles the shift operation from the low word to the high word,
+// which may be an error for the case where the high word of x overlaps with the low
+// word of z. When calling this function directly, you need to pay attention to this
+// situation.
+TEXT ·shrVU(SB),NOSPLIT,$0
+ MOVD z+0(FP), R0
+ MOVD z_len+8(FP), R1
+ MOVD x+24(FP), R2
+ MOVD s+48(FP), R3
+ MOVD $0, R8
+ MOVD $64, R4
+ SUB R3, R4
+ CBZ R1, len0
+ CBZ R3, copy // if the number of shift is 0, just copy x to z
+
+ MOVD.P 8(R2), R20
+ LSR R3, R20, R8
+ LSL R4, R20
+ MOVD R20, c+56(FP) // deal with the first element
+ SUB $1, R1
+
+ TBZ $0, R1, two
+ MOVD.P 8(R2), R6
+ LSL R4, R6, R20
+ ORR R8, R20
+ LSR R3, R6, R8
+ MOVD.P R20, 8(R0)
+ SUB $1, R1
+two:
+ TBZ $1, R1, loop
+ LDP.P 16(R2), (R6, R7)
+ LSL R4, R6, R20
+ LSR R3, R6
+ ORR R8, R20
+ LSL R4, R7, R21
+ LSR R3, R7, R8
+ ORR R6, R21
+ STP.P (R20, R21), 16(R0)
+ SUB $2, R1
+loop:
+ CBZ R1, done
+ LDP.P 32(R2), (R10, R11)
+ LDP -16(R2), (R12, R13)
+ LSL R4, R10, R20
+ LSR R3, R10
+ ORR R8, R20 // z[i] = (x[i] >> s) | (x[i+1] << (64 - s))
+ LSL R4, R11, R21
+ LSR R3, R11
+ ORR R10, R21
+ LSL R4, R12, R22
+ LSR R3, R12
+ ORR R11, R22
+ LSL R4, R13, R23
+ LSR R3, R13, R8
+ ORR R12, R23
+ STP.P (R20, R21), 32(R0)
+ STP (R22, R23), -16(R0)
+ SUB $4, R1
+ B loop
+done:
+ MOVD R8, (R0) // deal with the last element
+ RET
+copy:
+ CMP R0, R2
+ BEQ len0
+ TBZ $0, R1, ctwo
+ MOVD.P 8(R2), R3
+ MOVD.P R3, 8(R0)
+ SUB $1, R1
+ctwo:
+ TBZ $1, R1, cloop
+ LDP.P 16(R2), (R4, R5)
+ STP.P (R4, R5), 16(R0)
+ SUB $2, R1
+cloop:
+ CBZ R1, len0
+ LDP.P 32(R2), (R4, R5)
+ LDP -16(R2), (R6, R7)
+ STP.P (R4, R5), 32(R0)
+ STP (R6, R7), -16(R0)
+ SUB $4, R1
+ B cloop
+len0:
+ MOVD $0, c+56(FP)
+ RET
+
+
+// func mulAddVWW(z, x []Word, y, r Word) (c Word)
+TEXT ·mulAddVWW(SB),NOSPLIT,$0
+ MOVD z+0(FP), R1
+ MOVD z_len+8(FP), R0
+ MOVD x+24(FP), R2
+ MOVD y+48(FP), R3
+ MOVD r+56(FP), R4
+ // c, z = x * y + r
+ TBZ $0, R0, two
+ MOVD.P 8(R2), R5
+ MUL R3, R5, R7
+ UMULH R3, R5, R8
+ ADDS R4, R7
+ ADC $0, R8, R4 // c, z[i] = x[i] * y + r
+ MOVD.P R7, 8(R1)
+ SUB $1, R0
+two:
+ TBZ $1, R0, loop
+ LDP.P 16(R2), (R5, R6)
+ MUL R3, R5, R10
+ UMULH R3, R5, R11
+ ADDS R4, R10
+ MUL R3, R6, R12
+ UMULH R3, R6, R13
+ ADCS R12, R11
+ ADC $0, R13, R4
+
+ STP.P (R10, R11), 16(R1)
+ SUB $2, R0
+loop:
+ CBZ R0, done
+ LDP.P 32(R2), (R5, R6)
+ LDP -16(R2), (R7, R8)
+
+ MUL R3, R5, R10
+ UMULH R3, R5, R11
+ ADDS R4, R10
+ MUL R3, R6, R12
+ UMULH R3, R6, R13
+ ADCS R11, R12
+
+ MUL R3, R7, R14
+ UMULH R3, R7, R15
+ ADCS R13, R14
+ MUL R3, R8, R16
+ UMULH R3, R8, R17
+ ADCS R15, R16
+ ADC $0, R17, R4
+
+ STP.P (R10, R12), 32(R1)
+ STP (R14, R16), -16(R1)
+ SUB $4, R0
+ B loop
+done:
+ MOVD R4, c+64(FP)
+ RET
+
+
+// func addMulVVW(z, x []Word, y Word) (c Word)
+TEXT ·addMulVVW(SB),NOSPLIT,$0
+ MOVD z+0(FP), R1
+ MOVD z_len+8(FP), R0
+ MOVD x+24(FP), R2
+ MOVD y+48(FP), R3
+ MOVD $0, R4
+
+ TBZ $0, R0, two
+
+ MOVD.P 8(R2), R5
+ MOVD (R1), R6
+
+ MUL R5, R3, R7
+ UMULH R5, R3, R8
+
+ ADDS R7, R6
+ ADC $0, R8, R4
+
+ MOVD.P R6, 8(R1)
+ SUB $1, R0
+
+two:
+ TBZ $1, R0, loop
+
+ LDP.P 16(R2), (R5, R10)
+ LDP (R1), (R6, R11)
+
+ MUL R10, R3, R13
+ UMULH R10, R3, R12
+
+ MUL R5, R3, R7
+ UMULH R5, R3, R8
+
+ ADDS R4, R6
+ ADCS R13, R11
+ ADC $0, R12
+
+ ADDS R7, R6
+ ADCS R8, R11
+ ADC $0, R12, R4
+
+ STP.P (R6, R11), 16(R1)
+ SUB $2, R0
+
+// The main loop of this code operates on a block of 4 words every iteration
+// performing [R4:R12:R11:R10:R9] = R4 + R3 * [R8:R7:R6:R5] + [R12:R11:R10:R9]
+// where R4 is carried from the previous iteration, R8:R7:R6:R5 hold the next
+// 4 words of x, R3 is y and R12:R11:R10:R9 are part of the result z.
+loop:
+ CBZ R0, done
+
+ LDP.P 16(R2), (R5, R6)
+ LDP.P 16(R2), (R7, R8)
+
+ LDP (R1), (R9, R10)
+ ADDS R4, R9
+ MUL R6, R3, R14
+ ADCS R14, R10
+ MUL R7, R3, R15
+ LDP 16(R1), (R11, R12)
+ ADCS R15, R11
+ MUL R8, R3, R16
+ ADCS R16, R12
+ UMULH R8, R3, R20
+ ADC $0, R20
+
+ MUL R5, R3, R13
+ ADDS R13, R9
+ UMULH R5, R3, R17
+ ADCS R17, R10
+ UMULH R6, R3, R21
+ STP.P (R9, R10), 16(R1)
+ ADCS R21, R11
+ UMULH R7, R3, R19
+ ADCS R19, R12
+ STP.P (R11, R12), 16(R1)
+ ADC $0, R20, R4
+
+ SUB $4, R0
+ B loop
+
+done:
+ MOVD R4, c+56(FP)
+ RET
+
+
diff --git a/src/math/big/arith_decl.go b/src/math/big/arith_decl.go
new file mode 100644
index 0000000..f14f8d6
--- /dev/null
+++ b/src/math/big/arith_decl.go
@@ -0,0 +1,33 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go
+
+package big
+
+// implemented in arith_$GOARCH.s
+
+//go:noescape
+func addVV(z, x, y []Word) (c Word)
+
+//go:noescape
+func subVV(z, x, y []Word) (c Word)
+
+//go:noescape
+func addVW(z, x []Word, y Word) (c Word)
+
+//go:noescape
+func subVW(z, x []Word, y Word) (c Word)
+
+//go:noescape
+func shlVU(z, x []Word, s uint) (c Word)
+
+//go:noescape
+func shrVU(z, x []Word, s uint) (c Word)
+
+//go:noescape
+func mulAddVWW(z, x []Word, y, r Word) (c Word)
+
+//go:noescape
+func addMulVVW(z, x []Word, y Word) (c Word)
diff --git a/src/math/big/arith_decl_pure.go b/src/math/big/arith_decl_pure.go
new file mode 100644
index 0000000..4d7bbc8
--- /dev/null
+++ b/src/math/big/arith_decl_pure.go
@@ -0,0 +1,49 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build math_big_pure_go
+
+package big
+
+func addVV(z, x, y []Word) (c Word) {
+ return addVV_g(z, x, y)
+}
+
+func subVV(z, x, y []Word) (c Word) {
+ return subVV_g(z, x, y)
+}
+
+func addVW(z, x []Word, y Word) (c Word) {
+ // TODO: remove indirect function call when golang.org/issue/30548 is fixed
+ fn := addVW_g
+ if len(z) > 32 {
+ fn = addVWlarge
+ }
+ return fn(z, x, y)
+}
+
+func subVW(z, x []Word, y Word) (c Word) {
+ // TODO: remove indirect function call when golang.org/issue/30548 is fixed
+ fn := subVW_g
+ if len(z) > 32 {
+ fn = subVWlarge
+ }
+ return fn(z, x, y)
+}
+
+func shlVU(z, x []Word, s uint) (c Word) {
+ return shlVU_g(z, x, s)
+}
+
+func shrVU(z, x []Word, s uint) (c Word) {
+ return shrVU_g(z, x, s)
+}
+
+func mulAddVWW(z, x []Word, y, r Word) (c Word) {
+ return mulAddVWW_g(z, x, y, r)
+}
+
+func addMulVVW(z, x []Word, y Word) (c Word) {
+ return addMulVVW_g(z, x, y)
+}
diff --git a/src/math/big/arith_decl_s390x.go b/src/math/big/arith_decl_s390x.go
new file mode 100644
index 0000000..6539166
--- /dev/null
+++ b/src/math/big/arith_decl_s390x.go
@@ -0,0 +1,18 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go
+
+package big
+
+import "internal/cpu"
+
+func addVV_check(z, x, y []Word) (c Word)
+func addVV_vec(z, x, y []Word) (c Word)
+func addVV_novec(z, x, y []Word) (c Word)
+func subVV_check(z, x, y []Word) (c Word)
+func subVV_vec(z, x, y []Word) (c Word)
+func subVV_novec(z, x, y []Word) (c Word)
+
+var hasVX = cpu.S390X.HasVX
diff --git a/src/math/big/arith_loong64.s b/src/math/big/arith_loong64.s
new file mode 100644
index 0000000..847e312
--- /dev/null
+++ b/src/math/big/arith_loong64.s
@@ -0,0 +1,34 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go && loong64
+
+#include "textflag.h"
+
+// This file provides fast assembly versions for the elementary
+// arithmetic operations on vectors implemented in arith.go.
+
+TEXT ·addVV(SB),NOSPLIT,$0
+ JMP ·addVV_g(SB)
+
+TEXT ·subVV(SB),NOSPLIT,$0
+ JMP ·subVV_g(SB)
+
+TEXT ·addVW(SB),NOSPLIT,$0
+ JMP ·addVW_g(SB)
+
+TEXT ·subVW(SB),NOSPLIT,$0
+ JMP ·subVW_g(SB)
+
+TEXT ·shlVU(SB),NOSPLIT,$0
+ JMP ·shlVU_g(SB)
+
+TEXT ·shrVU(SB),NOSPLIT,$0
+ JMP ·shrVU_g(SB)
+
+TEXT ·mulAddVWW(SB),NOSPLIT,$0
+ JMP ·mulAddVWW_g(SB)
+
+TEXT ·addMulVVW(SB),NOSPLIT,$0
+ JMP ·addMulVVW_g(SB)
diff --git a/src/math/big/arith_mips64x.s b/src/math/big/arith_mips64x.s
new file mode 100644
index 0000000..393a3ef
--- /dev/null
+++ b/src/math/big/arith_mips64x.s
@@ -0,0 +1,35 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go && (mips64 || mips64le)
+
+#include "textflag.h"
+
+// This file provides fast assembly versions for the elementary
+// arithmetic operations on vectors implemented in arith.go.
+
+TEXT ·addVV(SB),NOSPLIT,$0
+ JMP ·addVV_g(SB)
+
+TEXT ·subVV(SB),NOSPLIT,$0
+ JMP ·subVV_g(SB)
+
+TEXT ·addVW(SB),NOSPLIT,$0
+ JMP ·addVW_g(SB)
+
+TEXT ·subVW(SB),NOSPLIT,$0
+ JMP ·subVW_g(SB)
+
+TEXT ·shlVU(SB),NOSPLIT,$0
+ JMP ·shlVU_g(SB)
+
+TEXT ·shrVU(SB),NOSPLIT,$0
+ JMP ·shrVU_g(SB)
+
+TEXT ·mulAddVWW(SB),NOSPLIT,$0
+ JMP ·mulAddVWW_g(SB)
+
+TEXT ·addMulVVW(SB),NOSPLIT,$0
+ JMP ·addMulVVW_g(SB)
+
diff --git a/src/math/big/arith_mipsx.s b/src/math/big/arith_mipsx.s
new file mode 100644
index 0000000..cdb4bbc
--- /dev/null
+++ b/src/math/big/arith_mipsx.s
@@ -0,0 +1,35 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go && (mips || mipsle)
+
+#include "textflag.h"
+
+// This file provides fast assembly versions for the elementary
+// arithmetic operations on vectors implemented in arith.go.
+
+TEXT ·addVV(SB),NOSPLIT,$0
+ JMP ·addVV_g(SB)
+
+TEXT ·subVV(SB),NOSPLIT,$0
+ JMP ·subVV_g(SB)
+
+TEXT ·addVW(SB),NOSPLIT,$0
+ JMP ·addVW_g(SB)
+
+TEXT ·subVW(SB),NOSPLIT,$0
+ JMP ·subVW_g(SB)
+
+TEXT ·shlVU(SB),NOSPLIT,$0
+ JMP ·shlVU_g(SB)
+
+TEXT ·shrVU(SB),NOSPLIT,$0
+ JMP ·shrVU_g(SB)
+
+TEXT ·mulAddVWW(SB),NOSPLIT,$0
+ JMP ·mulAddVWW_g(SB)
+
+TEXT ·addMulVVW(SB),NOSPLIT,$0
+ JMP ·addMulVVW_g(SB)
+
diff --git a/src/math/big/arith_ppc64x.s b/src/math/big/arith_ppc64x.s
new file mode 100644
index 0000000..9512a12
--- /dev/null
+++ b/src/math/big/arith_ppc64x.s
@@ -0,0 +1,631 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go && (ppc64 || ppc64le)
+
+#include "textflag.h"
+
+// This file provides fast assembly versions for the elementary
+// arithmetic operations on vectors implemented in arith.go.
+
+// func addVV(z, y, y []Word) (c Word)
+// z[i] = x[i] + y[i] for all i, carrying
+TEXT ·addVV(SB), NOSPLIT, $0
+ MOVD z_len+8(FP), R7 // R7 = z_len
+ MOVD x+24(FP), R8 // R8 = x[]
+ MOVD y+48(FP), R9 // R9 = y[]
+ MOVD z+0(FP), R10 // R10 = z[]
+
+ // If z_len = 0, we are done
+ CMP R0, R7
+ MOVD R0, R4
+ BEQ done
+
+ // Process the first iteration out of the loop so we can
+ // use MOVDU and avoid 3 index registers updates.
+ MOVD 0(R8), R11 // R11 = x[i]
+ MOVD 0(R9), R12 // R12 = y[i]
+ ADD $-1, R7 // R7 = z_len - 1
+ ADDC R12, R11, R15 // R15 = x[i] + y[i], set CA
+ CMP R0, R7
+ MOVD R15, 0(R10) // z[i]
+ BEQ final // If z_len was 1, we are done
+
+ SRD $2, R7, R5 // R5 = z_len/4
+ CMP R0, R5
+ MOVD R5, CTR // Set up loop counter
+ BEQ tail // If R5 = 0, we can't use the loop
+
+ // Process 4 elements per iteration. Unrolling this loop
+ // means a performance trade-off: we will lose performance
+ // for small values of z_len (0.90x in the worst case), but
+ // gain significant performance as z_len increases (up to
+ // 1.45x).
+
+ PCALIGN $16
+loop:
+ MOVD 8(R8), R11 // R11 = x[i]
+ MOVD 16(R8), R12 // R12 = x[i+1]
+ MOVD 24(R8), R14 // R14 = x[i+2]
+ MOVDU 32(R8), R15 // R15 = x[i+3]
+ MOVD 8(R9), R16 // R16 = y[i]
+ MOVD 16(R9), R17 // R17 = y[i+1]
+ MOVD 24(R9), R18 // R18 = y[i+2]
+ MOVDU 32(R9), R19 // R19 = y[i+3]
+ ADDE R11, R16, R20 // R20 = x[i] + y[i] + CA
+ ADDE R12, R17, R21 // R21 = x[i+1] + y[i+1] + CA
+ ADDE R14, R18, R22 // R22 = x[i+2] + y[i+2] + CA
+ ADDE R15, R19, R23 // R23 = x[i+3] + y[i+3] + CA
+ MOVD R20, 8(R10) // z[i]
+ MOVD R21, 16(R10) // z[i+1]
+ MOVD R22, 24(R10) // z[i+2]
+ MOVDU R23, 32(R10) // z[i+3]
+ ADD $-4, R7 // R7 = z_len - 4
+ BC 16, 0, loop // bdnz
+
+ // We may have more elements to read
+ CMP R0, R7
+ BEQ final
+
+ // Process the remaining elements, one at a time
+tail:
+ MOVDU 8(R8), R11 // R11 = x[i]
+ MOVDU 8(R9), R16 // R16 = y[i]
+ ADD $-1, R7 // R7 = z_len - 1
+ ADDE R11, R16, R20 // R20 = x[i] + y[i] + CA
+ CMP R0, R7
+ MOVDU R20, 8(R10) // z[i]
+ BEQ final // If R7 = 0, we are done
+
+ MOVDU 8(R8), R11
+ MOVDU 8(R9), R16
+ ADD $-1, R7
+ ADDE R11, R16, R20
+ CMP R0, R7
+ MOVDU R20, 8(R10)
+ BEQ final
+
+ MOVD 8(R8), R11
+ MOVD 8(R9), R16
+ ADDE R11, R16, R20
+ MOVD R20, 8(R10)
+
+final:
+ ADDZE R4 // Capture CA
+
+done:
+ MOVD R4, c+72(FP)
+ RET
+
+// func subVV(z, x, y []Word) (c Word)
+// z[i] = x[i] - y[i] for all i, carrying
+TEXT ·subVV(SB), NOSPLIT, $0
+ MOVD z_len+8(FP), R7 // R7 = z_len
+ MOVD x+24(FP), R8 // R8 = x[]
+ MOVD y+48(FP), R9 // R9 = y[]
+ MOVD z+0(FP), R10 // R10 = z[]
+
+ // If z_len = 0, we are done
+ CMP R0, R7
+ MOVD R0, R4
+ BEQ done
+
+ // Process the first iteration out of the loop so we can
+ // use MOVDU and avoid 3 index registers updates.
+ MOVD 0(R8), R11 // R11 = x[i]
+ MOVD 0(R9), R12 // R12 = y[i]
+ ADD $-1, R7 // R7 = z_len - 1
+ SUBC R12, R11, R15 // R15 = x[i] - y[i], set CA
+ CMP R0, R7
+ MOVD R15, 0(R10) // z[i]
+ BEQ final // If z_len was 1, we are done
+
+ SRD $2, R7, R5 // R5 = z_len/4
+ CMP R0, R5
+ MOVD R5, CTR // Set up loop counter
+ BEQ tail // If R5 = 0, we can't use the loop
+
+ // Process 4 elements per iteration. Unrolling this loop
+ // means a performance trade-off: we will lose performance
+ // for small values of z_len (0.92x in the worst case), but
+ // gain significant performance as z_len increases (up to
+ // 1.45x).
+
+ PCALIGN $16
+loop:
+ MOVD 8(R8), R11 // R11 = x[i]
+ MOVD 16(R8), R12 // R12 = x[i+1]
+ MOVD 24(R8), R14 // R14 = x[i+2]
+ MOVDU 32(R8), R15 // R15 = x[i+3]
+ MOVD 8(R9), R16 // R16 = y[i]
+ MOVD 16(R9), R17 // R17 = y[i+1]
+ MOVD 24(R9), R18 // R18 = y[i+2]
+ MOVDU 32(R9), R19 // R19 = y[i+3]
+ SUBE R16, R11, R20 // R20 = x[i] - y[i] + CA
+ SUBE R17, R12, R21 // R21 = x[i+1] - y[i+1] + CA
+ SUBE R18, R14, R22 // R22 = x[i+2] - y[i+2] + CA
+ SUBE R19, R15, R23 // R23 = x[i+3] - y[i+3] + CA
+ MOVD R20, 8(R10) // z[i]
+ MOVD R21, 16(R10) // z[i+1]
+ MOVD R22, 24(R10) // z[i+2]
+ MOVDU R23, 32(R10) // z[i+3]
+ ADD $-4, R7 // R7 = z_len - 4
+ BC 16, 0, loop // bdnz
+
+ // We may have more elements to read
+ CMP R0, R7
+ BEQ final
+
+ // Process the remaining elements, one at a time
+tail:
+ MOVDU 8(R8), R11 // R11 = x[i]
+ MOVDU 8(R9), R16 // R16 = y[i]
+ ADD $-1, R7 // R7 = z_len - 1
+ SUBE R16, R11, R20 // R20 = x[i] - y[i] + CA
+ CMP R0, R7
+ MOVDU R20, 8(R10) // z[i]
+ BEQ final // If R7 = 0, we are done
+
+ MOVDU 8(R8), R11
+ MOVDU 8(R9), R16
+ ADD $-1, R7
+ SUBE R16, R11, R20
+ CMP R0, R7
+ MOVDU R20, 8(R10)
+ BEQ final
+
+ MOVD 8(R8), R11
+ MOVD 8(R9), R16
+ SUBE R16, R11, R20
+ MOVD R20, 8(R10)
+
+final:
+ ADDZE R4
+ XOR $1, R4
+
+done:
+ MOVD R4, c+72(FP)
+ RET
+
+// func addVW(z, x []Word, y Word) (c Word)
+TEXT ·addVW(SB), NOSPLIT, $0
+ MOVD z+0(FP), R10 // R10 = z[]
+ MOVD x+24(FP), R8 // R8 = x[]
+ MOVD y+48(FP), R4 // R4 = y = c
+ MOVD z_len+8(FP), R11 // R11 = z_len
+
+ CMP R0, R11 // If z_len is zero, return
+ BEQ done
+
+ // We will process the first iteration out of the loop so we capture
+ // the value of c. In the subsequent iterations, we will rely on the
+ // value of CA set here.
+ MOVD 0(R8), R20 // R20 = x[i]
+ ADD $-1, R11 // R11 = z_len - 1
+ ADDC R20, R4, R6 // R6 = x[i] + c
+ CMP R0, R11 // If z_len was 1, we are done
+ MOVD R6, 0(R10) // z[i]
+ BEQ final
+
+ // We will read 4 elements per iteration
+ SRD $2, R11, R9 // R9 = z_len/4
+ DCBT (R8)
+ CMP R0, R9
+ MOVD R9, CTR // Set up the loop counter
+ BEQ tail // If R9 = 0, we can't use the loop
+ PCALIGN $16
+
+loop:
+ MOVD 8(R8), R20 // R20 = x[i]
+ MOVD 16(R8), R21 // R21 = x[i+1]
+ MOVD 24(R8), R22 // R22 = x[i+2]
+ MOVDU 32(R8), R23 // R23 = x[i+3]
+ ADDZE R20, R24 // R24 = x[i] + CA
+ ADDZE R21, R25 // R25 = x[i+1] + CA
+ ADDZE R22, R26 // R26 = x[i+2] + CA
+ ADDZE R23, R27 // R27 = x[i+3] + CA
+ MOVD R24, 8(R10) // z[i]
+ MOVD R25, 16(R10) // z[i+1]
+ MOVD R26, 24(R10) // z[i+2]
+ MOVDU R27, 32(R10) // z[i+3]
+ ADD $-4, R11 // R11 = z_len - 4
+ BC 16, 0, loop // bdnz
+
+ // We may have some elements to read
+ CMP R0, R11
+ BEQ final
+
+tail:
+ MOVDU 8(R8), R20
+ ADDZE R20, R24
+ ADD $-1, R11
+ MOVDU R24, 8(R10)
+ CMP R0, R11
+ BEQ final
+
+ MOVDU 8(R8), R20
+ ADDZE R20, R24
+ ADD $-1, R11
+ MOVDU R24, 8(R10)
+ CMP R0, R11
+ BEQ final
+
+ MOVD 8(R8), R20
+ ADDZE R20, R24
+ MOVD R24, 8(R10)
+
+final:
+ ADDZE R0, R4 // c = CA
+done:
+ MOVD R4, c+56(FP)
+ RET
+
+// func subVW(z, x []Word, y Word) (c Word)
+TEXT ·subVW(SB), NOSPLIT, $0
+ MOVD z+0(FP), R10 // R10 = z[]
+ MOVD x+24(FP), R8 // R8 = x[]
+ MOVD y+48(FP), R4 // R4 = y = c
+ MOVD z_len+8(FP), R11 // R11 = z_len
+
+ CMP R0, R11 // If z_len is zero, return
+ BEQ done
+
+ // We will process the first iteration out of the loop so we capture
+ // the value of c. In the subsequent iterations, we will rely on the
+ // value of CA set here.
+ MOVD 0(R8), R20 // R20 = x[i]
+ ADD $-1, R11 // R11 = z_len - 1
+ SUBC R4, R20, R6 // R6 = x[i] - c
+ CMP R0, R11 // If z_len was 1, we are done
+ MOVD R6, 0(R10) // z[i]
+ BEQ final
+
+ // We will read 4 elements per iteration
+ SRD $2, R11, R9 // R9 = z_len/4
+ DCBT (R8)
+ CMP R0, R9
+ MOVD R9, CTR // Set up the loop counter
+ BEQ tail // If R9 = 0, we can't use the loop
+
+ // The loop here is almost the same as the one used in s390x, but
+ // we don't need to capture CA every iteration because we've already
+ // done that above.
+
+ PCALIGN $16
+loop:
+ MOVD 8(R8), R20
+ MOVD 16(R8), R21
+ MOVD 24(R8), R22
+ MOVDU 32(R8), R23
+ SUBE R0, R20
+ SUBE R0, R21
+ SUBE R0, R22
+ SUBE R0, R23
+ MOVD R20, 8(R10)
+ MOVD R21, 16(R10)
+ MOVD R22, 24(R10)
+ MOVDU R23, 32(R10)
+ ADD $-4, R11
+ BC 16, 0, loop // bdnz
+
+ // We may have some elements to read
+ CMP R0, R11
+ BEQ final
+
+tail:
+ MOVDU 8(R8), R20
+ SUBE R0, R20
+ ADD $-1, R11
+ MOVDU R20, 8(R10)
+ CMP R0, R11
+ BEQ final
+
+ MOVDU 8(R8), R20
+ SUBE R0, R20
+ ADD $-1, R11
+ MOVDU R20, 8(R10)
+ CMP R0, R11
+ BEQ final
+
+ MOVD 8(R8), R20
+ SUBE R0, R20
+ MOVD R20, 8(R10)
+
+final:
+ // Capture CA
+ SUBE R4, R4
+ NEG R4, R4
+
+done:
+ MOVD R4, c+56(FP)
+ RET
+
+//func shlVU(z, x []Word, s uint) (c Word)
+TEXT ·shlVU(SB), NOSPLIT, $0
+ MOVD z+0(FP), R3
+ MOVD x+24(FP), R6
+ MOVD s+48(FP), R9
+ MOVD z_len+8(FP), R4
+ MOVD x_len+32(FP), R7
+ CMP R9, R0 // s==0 copy(z,x)
+ BEQ zeroshift
+ CMP R4, R0 // len(z)==0 return
+ BEQ done
+
+ ADD $-1, R4, R5 // len(z)-1
+ SUBC R9, $64, R4 // ŝ=_W-s, we skip & by _W-1 as the caller ensures s < _W(64)
+ SLD $3, R5, R7
+ ADD R6, R7, R15 // save starting address &x[len(z)-1]
+ ADD R3, R7, R16 // save starting address &z[len(z)-1]
+ MOVD (R6)(R7), R14
+ SRD R4, R14, R7 // compute x[len(z)-1]>>ŝ into R7
+ CMP R5, R0 // iterate from i=len(z)-1 to 0
+ BEQ loopexit // Already at end?
+ MOVD 0(R15),R10 // x[i]
+ PCALIGN $16
+shloop:
+ SLD R9, R10, R10 // x[i]<<s
+ MOVDU -8(R15), R14
+ SRD R4, R14, R11 // x[i-1]>>ŝ
+ OR R11, R10, R10
+ MOVD R10, 0(R16) // z[i-1]=x[i]<<s | x[i-1]>>ŝ
+ MOVD R14, R10 // reuse x[i-1] for next iteration
+ ADD $-8, R16 // i--
+ CMP R15, R6 // &x[i-1]>&x[0]?
+ BGT shloop
+loopexit:
+ MOVD 0(R6), R4
+ SLD R9, R4, R4
+ MOVD R4, 0(R3) // z[0]=x[0]<<s
+ MOVD R7, c+56(FP) // store pre-computed x[len(z)-1]>>ŝ into c
+ RET
+
+zeroshift:
+ CMP R6, R0 // x is null, nothing to copy
+ BEQ done
+ CMP R6, R3 // if x is same as z, nothing to copy
+ BEQ done
+ CMP R7, R4
+ ISEL $0, R7, R4, R7 // Take the lower bound of lengths of x,z
+ SLD $3, R7, R7
+ SUB R6, R3, R11 // dest - src
+ CMPU R11, R7, CR2 // < len?
+ BLT CR2, backward // there is overlap, copy backwards
+ MOVD $0, R14
+ // shlVU processes backwards, but added a forward copy option
+ // since its faster on POWER
+repeat:
+ MOVD (R6)(R14), R15 // Copy 8 bytes at a time
+ MOVD R15, (R3)(R14)
+ ADD $8, R14
+ CMP R14, R7 // More 8 bytes left?
+ BLT repeat
+ BR done
+backward:
+ ADD $-8,R7, R14
+repeatback:
+ MOVD (R6)(R14), R15 // copy x into z backwards
+ MOVD R15, (R3)(R14) // copy 8 bytes at a time
+ SUB $8, R14
+ CMP R14, $-8 // More 8 bytes left?
+ BGT repeatback
+
+done:
+ MOVD R0, c+56(FP) // c=0
+ RET
+
+//func shrVU(z, x []Word, s uint) (c Word)
+TEXT ·shrVU(SB), NOSPLIT, $0
+ MOVD z+0(FP), R3
+ MOVD x+24(FP), R6
+ MOVD s+48(FP), R9
+ MOVD z_len+8(FP), R4
+ MOVD x_len+32(FP), R7
+
+ CMP R9, R0 // s==0, copy(z,x)
+ BEQ zeroshift
+ CMP R4, R0 // len(z)==0 return
+ BEQ done
+ SUBC R9, $64, R5 // ŝ=_W-s, we skip & by _W-1 as the caller ensures s < _W(64)
+
+ MOVD 0(R6), R7
+ SLD R5, R7, R7 // compute x[0]<<ŝ
+ MOVD $1, R8 // iterate from i=1 to i<len(z)
+ CMP R8, R4
+ BGE loopexit // Already at end?
+
+ // vectorize if len(z) is >=3, else jump to scalar loop
+ CMP R4, $3
+ BLT scalar
+ MTVSRD R9, VS38 // s
+ VSPLTB $7, V6, V4
+ MTVSRD R5, VS39 // ŝ
+ VSPLTB $7, V7, V2
+ ADD $-2, R4, R16
+ PCALIGN $16
+loopback:
+ ADD $-1, R8, R10
+ SLD $3, R10
+ LXVD2X (R6)(R10), VS32 // load x[i-1], x[i]
+ SLD $3, R8, R12
+ LXVD2X (R6)(R12), VS33 // load x[i], x[i+1]
+
+ VSRD V0, V4, V3 // x[i-1]>>s, x[i]>>s
+ VSLD V1, V2, V5 // x[i]<<ŝ, x[i+1]<<ŝ
+ VOR V3, V5, V5 // Or(|) the two registers together
+ STXVD2X VS37, (R3)(R10) // store into z[i-1] and z[i]
+ ADD $2, R8 // Done processing 2 entries, i and i+1
+ CMP R8, R16 // Are there at least a couple of more entries left?
+ BLE loopback
+ CMP R8, R4 // Are we at the last element?
+ BEQ loopexit
+scalar:
+ ADD $-1, R8, R10
+ SLD $3, R10
+ MOVD (R6)(R10),R11
+ SRD R9, R11, R11 // x[len(z)-2] >> s
+ SLD $3, R8, R12
+ MOVD (R6)(R12), R12
+ SLD R5, R12, R12 // x[len(z)-1]<<ŝ
+ OR R12, R11, R11 // x[len(z)-2]>>s | x[len(z)-1]<<ŝ
+ MOVD R11, (R3)(R10) // z[len(z)-2]=x[len(z)-2]>>s | x[len(z)-1]<<ŝ
+loopexit:
+ ADD $-1, R4
+ SLD $3, R4
+ MOVD (R6)(R4), R5
+ SRD R9, R5, R5 // x[len(z)-1]>>s
+ MOVD R5, (R3)(R4) // z[len(z)-1]=x[len(z)-1]>>s
+ MOVD R7, c+56(FP) // store pre-computed x[0]<<ŝ into c
+ RET
+
+zeroshift:
+ CMP R6, R0 // x is null, nothing to copy
+ BEQ done
+ CMP R6, R3 // if x is same as z, nothing to copy
+ BEQ done
+ CMP R7, R4
+ ISEL $0, R7, R4, R7 // Take the lower bounds of lengths of x, z
+ SLD $3, R7, R7
+ MOVD $0, R14
+repeat:
+ MOVD (R6)(R14), R15 // copy 8 bytes at a time
+ MOVD R15, (R3)(R14) // shrVU processes bytes only forwards
+ ADD $8, R14
+ CMP R14, R7 // More 8 bytes left?
+ BLT repeat
+done:
+ MOVD R0, c+56(FP)
+ RET
+
+// func mulAddVWW(z, x []Word, y, r Word) (c Word)
+TEXT ·mulAddVWW(SB), NOSPLIT, $0
+ MOVD z+0(FP), R10 // R10 = z[]
+ MOVD x+24(FP), R8 // R8 = x[]
+ MOVD y+48(FP), R9 // R9 = y
+ MOVD r+56(FP), R4 // R4 = r = c
+ MOVD z_len+8(FP), R11 // R11 = z_len
+
+ CMP R0, R11
+ BEQ done
+
+ MOVD 0(R8), R20
+ ADD $-1, R11
+ MULLD R9, R20, R6 // R6 = z0 = Low-order(x[i]*y)
+ MULHDU R9, R20, R7 // R7 = z1 = High-order(x[i]*y)
+ ADDC R4, R6 // R6 = z0 + r
+ ADDZE R7 // R7 = z1 + CA
+ CMP R0, R11
+ MOVD R7, R4 // R4 = c
+ MOVD R6, 0(R10) // z[i]
+ BEQ done
+
+ // We will read 4 elements per iteration
+ SRD $2, R11, R14 // R14 = z_len/4
+ DCBT (R8)
+ CMP R0, R14
+ MOVD R14, CTR // Set up the loop counter
+ BEQ tail // If R9 = 0, we can't use the loop
+ PCALIGN $16
+
+loop:
+ MOVD 8(R8), R20 // R20 = x[i]
+ MOVD 16(R8), R21 // R21 = x[i+1]
+ MOVD 24(R8), R22 // R22 = x[i+2]
+ MOVDU 32(R8), R23 // R23 = x[i+3]
+ MULLD R9, R20, R24 // R24 = z0[i]
+ MULHDU R9, R20, R20 // R20 = z1[i]
+ ADDC R4, R24 // R24 = z0[i] + c
+ ADDZE R20 // R7 = z1[i] + CA
+ MULLD R9, R21, R25
+ MULHDU R9, R21, R21
+ ADDC R20, R25
+ ADDZE R21
+ MULLD R9, R22, R26
+ MULHDU R9, R22, R22
+ MULLD R9, R23, R27
+ MULHDU R9, R23, R23
+ ADDC R21, R26
+ ADDZE R22
+ MOVD R24, 8(R10) // z[i]
+ MOVD R25, 16(R10) // z[i+1]
+ ADDC R22, R27
+ ADDZE R23,R4 // update carry
+ MOVD R26, 24(R10) // z[i+2]
+ MOVDU R27, 32(R10) // z[i+3]
+ ADD $-4, R11 // R11 = z_len - 4
+ BC 16, 0, loop // bdnz
+
+ // We may have some elements to read
+ CMP R0, R11
+ BEQ done
+
+ // Process the remaining elements, one at a time
+tail:
+ MOVDU 8(R8), R20 // R20 = x[i]
+ MULLD R9, R20, R24 // R24 = z0[i]
+ MULHDU R9, R20, R25 // R25 = z1[i]
+ ADD $-1, R11 // R11 = z_len - 1
+ ADDC R4, R24
+ ADDZE R25
+ MOVDU R24, 8(R10) // z[i]
+ CMP R0, R11
+ MOVD R25, R4 // R4 = c
+ BEQ done // If R11 = 0, we are done
+
+ MOVDU 8(R8), R20
+ MULLD R9, R20, R24
+ MULHDU R9, R20, R25
+ ADD $-1, R11
+ ADDC R4, R24
+ ADDZE R25
+ MOVDU R24, 8(R10)
+ CMP R0, R11
+ MOVD R25, R4
+ BEQ done
+
+ MOVD 8(R8), R20
+ MULLD R9, R20, R24
+ MULHDU R9, R20, R25
+ ADD $-1, R11
+ ADDC R4, R24
+ ADDZE R25
+ MOVD R24, 8(R10)
+ MOVD R25, R4
+
+done:
+ MOVD R4, c+64(FP)
+ RET
+
+// func addMulVVW(z, x []Word, y Word) (c Word)
+TEXT ·addMulVVW(SB), NOSPLIT, $0
+ MOVD z+0(FP), R10 // R10 = z[]
+ MOVD x+24(FP), R8 // R8 = x[]
+ MOVD y+48(FP), R9 // R9 = y
+ MOVD z_len+8(FP), R22 // R22 = z_len
+
+ MOVD R0, R3 // R3 will be the index register
+ CMP R0, R22
+ MOVD R0, R4 // R4 = c = 0
+ MOVD R22, CTR // Initialize loop counter
+ BEQ done
+ PCALIGN $16
+
+loop:
+ MOVD (R8)(R3), R20 // Load x[i]
+ MOVD (R10)(R3), R21 // Load z[i]
+ MULLD R9, R20, R6 // R6 = Low-order(x[i]*y)
+ MULHDU R9, R20, R7 // R7 = High-order(x[i]*y)
+ ADDC R21, R6 // R6 = z0
+ ADDZE R7 // R7 = z1
+ ADDC R4, R6 // R6 = z0 + c + 0
+ ADDZE R7, R4 // c += z1
+ MOVD R6, (R10)(R3) // Store z[i]
+ ADD $8, R3
+ BC 16, 0, loop // bdnz
+
+done:
+ MOVD R4, c+56(FP)
+ RET
+
+
diff --git a/src/math/big/arith_riscv64.s b/src/math/big/arith_riscv64.s
new file mode 100644
index 0000000..bad3249
--- /dev/null
+++ b/src/math/big/arith_riscv64.s
@@ -0,0 +1,35 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go && riscv64
+
+#include "textflag.h"
+
+// This file provides fast assembly versions for the elementary
+// arithmetic operations on vectors implemented in arith.go.
+
+TEXT ·addVV(SB),NOSPLIT,$0
+ JMP ·addVV_g(SB)
+
+TEXT ·subVV(SB),NOSPLIT,$0
+ JMP ·subVV_g(SB)
+
+TEXT ·addVW(SB),NOSPLIT,$0
+ JMP ·addVW_g(SB)
+
+TEXT ·subVW(SB),NOSPLIT,$0
+ JMP ·subVW_g(SB)
+
+TEXT ·shlVU(SB),NOSPLIT,$0
+ JMP ·shlVU_g(SB)
+
+TEXT ·shrVU(SB),NOSPLIT,$0
+ JMP ·shrVU_g(SB)
+
+TEXT ·mulAddVWW(SB),NOSPLIT,$0
+ JMP ·mulAddVWW_g(SB)
+
+TEXT ·addMulVVW(SB),NOSPLIT,$0
+ JMP ·addMulVVW_g(SB)
+
diff --git a/src/math/big/arith_s390x.s b/src/math/big/arith_s390x.s
new file mode 100644
index 0000000..01a7bb2
--- /dev/null
+++ b/src/math/big/arith_s390x.s
@@ -0,0 +1,786 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go
+
+#include "textflag.h"
+
+// This file provides fast assembly versions for the elementary
+// arithmetic operations on vectors implemented in arith.go.
+
+// DI = R3, CX = R4, SI = r10, r8 = r8, r9=r9, r10 = r2, r11 = r5, r12 = r6, r13 = r7, r14 = r1 (R0 set to 0) + use R11
+// func addVV(z, x, y []Word) (c Word)
+
+TEXT ·addVV(SB), NOSPLIT, $0
+ MOVD addvectorfacility+0x00(SB), R1
+ BR (R1)
+
+TEXT ·addVV_check(SB), NOSPLIT, $0
+ MOVB ·hasVX(SB), R1
+ CMPBEQ R1, $1, vectorimpl // vectorfacility = 1, vector supported
+ MOVD $addvectorfacility+0x00(SB), R1
+ MOVD $·addVV_novec(SB), R2
+ MOVD R2, 0(R1)
+
+ // MOVD $·addVV_novec(SB), 0(R1)
+ BR ·addVV_novec(SB)
+
+vectorimpl:
+ MOVD $addvectorfacility+0x00(SB), R1
+ MOVD $·addVV_vec(SB), R2
+ MOVD R2, 0(R1)
+
+ // MOVD $·addVV_vec(SB), 0(R1)
+ BR ·addVV_vec(SB)
+
+GLOBL addvectorfacility+0x00(SB), NOPTR, $8
+DATA addvectorfacility+0x00(SB)/8, $·addVV_check(SB)
+
+TEXT ·addVV_vec(SB), NOSPLIT, $0
+ MOVD z_len+8(FP), R3
+ MOVD x+24(FP), R8
+ MOVD y+48(FP), R9
+ MOVD z+0(FP), R2
+
+ MOVD $0, R4 // c = 0
+ MOVD $0, R0 // make sure it's zero
+ MOVD $0, R10 // i = 0
+
+ // s/JL/JMP/ below to disable the unrolled loop
+ SUB $4, R3
+ BLT v1
+ SUB $12, R3 // n -= 16
+ BLT A1 // if n < 0 goto A1
+
+ MOVD R8, R5
+ MOVD R9, R6
+ MOVD R2, R7
+
+ // n >= 0
+ // regular loop body unrolled 16x
+ VZERO V0 // c = 0
+
+UU1:
+ VLM 0(R5), V1, V4 // 64-bytes into V1..V8
+ ADD $64, R5
+ VPDI $0x4, V1, V1, V1 // flip the doublewords to big-endian order
+ VPDI $0x4, V2, V2, V2 // flip the doublewords to big-endian order
+
+ VLM 0(R6), V9, V12 // 64-bytes into V9..V16
+ ADD $64, R6
+ VPDI $0x4, V9, V9, V9 // flip the doublewords to big-endian order
+ VPDI $0x4, V10, V10, V10 // flip the doublewords to big-endian order
+
+ VACCCQ V1, V9, V0, V25
+ VACQ V1, V9, V0, V17
+ VACCCQ V2, V10, V25, V26
+ VACQ V2, V10, V25, V18
+
+ VLM 0(R5), V5, V6 // 32-bytes into V1..V8
+ VLM 0(R6), V13, V14 // 32-bytes into V9..V16
+ ADD $32, R5
+ ADD $32, R6
+
+ VPDI $0x4, V3, V3, V3 // flip the doublewords to big-endian order
+ VPDI $0x4, V4, V4, V4 // flip the doublewords to big-endian order
+ VPDI $0x4, V11, V11, V11 // flip the doublewords to big-endian order
+ VPDI $0x4, V12, V12, V12 // flip the doublewords to big-endian order
+
+ VACCCQ V3, V11, V26, V27
+ VACQ V3, V11, V26, V19
+ VACCCQ V4, V12, V27, V28
+ VACQ V4, V12, V27, V20
+
+ VLM 0(R5), V7, V8 // 32-bytes into V1..V8
+ VLM 0(R6), V15, V16 // 32-bytes into V9..V16
+ ADD $32, R5
+ ADD $32, R6
+
+ VPDI $0x4, V5, V5, V5 // flip the doublewords to big-endian order
+ VPDI $0x4, V6, V6, V6 // flip the doublewords to big-endian order
+ VPDI $0x4, V13, V13, V13 // flip the doublewords to big-endian order
+ VPDI $0x4, V14, V14, V14 // flip the doublewords to big-endian order
+
+ VACCCQ V5, V13, V28, V29
+ VACQ V5, V13, V28, V21
+ VACCCQ V6, V14, V29, V30
+ VACQ V6, V14, V29, V22
+
+ VPDI $0x4, V7, V7, V7 // flip the doublewords to big-endian order
+ VPDI $0x4, V8, V8, V8 // flip the doublewords to big-endian order
+ VPDI $0x4, V15, V15, V15 // flip the doublewords to big-endian order
+ VPDI $0x4, V16, V16, V16 // flip the doublewords to big-endian order
+
+ VACCCQ V7, V15, V30, V31
+ VACQ V7, V15, V30, V23
+ VACCCQ V8, V16, V31, V0 // V0 has carry-over
+ VACQ V8, V16, V31, V24
+
+ VPDI $0x4, V17, V17, V17 // flip the doublewords to big-endian order
+ VPDI $0x4, V18, V18, V18 // flip the doublewords to big-endian order
+ VPDI $0x4, V19, V19, V19 // flip the doublewords to big-endian order
+ VPDI $0x4, V20, V20, V20 // flip the doublewords to big-endian order
+ VPDI $0x4, V21, V21, V21 // flip the doublewords to big-endian order
+ VPDI $0x4, V22, V22, V22 // flip the doublewords to big-endian order
+ VPDI $0x4, V23, V23, V23 // flip the doublewords to big-endian order
+ VPDI $0x4, V24, V24, V24 // flip the doublewords to big-endian order
+ VSTM V17, V24, 0(R7) // 128-bytes into z
+ ADD $128, R7
+ ADD $128, R10 // i += 16
+ SUB $16, R3 // n -= 16
+ BGE UU1 // if n >= 0 goto U1
+ VLGVG $1, V0, R4 // put cf into R4
+ NEG R4, R4 // save cf
+
+A1:
+ ADD $12, R3 // n += 16
+
+ // s/JL/JMP/ below to disable the unrolled loop
+ BLT v1 // if n < 0 goto v1
+
+U1: // n >= 0
+ // regular loop body unrolled 4x
+ MOVD 0(R8)(R10*1), R5
+ MOVD 8(R8)(R10*1), R6
+ MOVD 16(R8)(R10*1), R7
+ MOVD 24(R8)(R10*1), R1
+ ADDC R4, R4 // restore CF
+ MOVD 0(R9)(R10*1), R11
+ ADDE R11, R5
+ MOVD 8(R9)(R10*1), R11
+ ADDE R11, R6
+ MOVD 16(R9)(R10*1), R11
+ ADDE R11, R7
+ MOVD 24(R9)(R10*1), R11
+ ADDE R11, R1
+ MOVD R0, R4
+ ADDE R4, R4 // save CF
+ NEG R4, R4
+ MOVD R5, 0(R2)(R10*1)
+ MOVD R6, 8(R2)(R10*1)
+ MOVD R7, 16(R2)(R10*1)
+ MOVD R1, 24(R2)(R10*1)
+
+ ADD $32, R10 // i += 4
+ SUB $4, R3 // n -= 4
+ BGE U1 // if n >= 0 goto U1
+
+v1:
+ ADD $4, R3 // n += 4
+ BLE E1 // if n <= 0 goto E1
+
+L1: // n > 0
+ ADDC R4, R4 // restore CF
+ MOVD 0(R8)(R10*1), R5
+ MOVD 0(R9)(R10*1), R11
+ ADDE R11, R5
+ MOVD R5, 0(R2)(R10*1)
+ MOVD R0, R4
+ ADDE R4, R4 // save CF
+ NEG R4, R4
+
+ ADD $8, R10 // i++
+ SUB $1, R3 // n--
+ BGT L1 // if n > 0 goto L1
+
+E1:
+ NEG R4, R4
+ MOVD R4, c+72(FP) // return c
+ RET
+
+TEXT ·addVV_novec(SB), NOSPLIT, $0
+novec:
+ MOVD z_len+8(FP), R3
+ MOVD x+24(FP), R8
+ MOVD y+48(FP), R9
+ MOVD z+0(FP), R2
+
+ MOVD $0, R4 // c = 0
+ MOVD $0, R0 // make sure it's zero
+ MOVD $0, R10 // i = 0
+
+ // s/JL/JMP/ below to disable the unrolled loop
+ SUB $4, R3 // n -= 4
+ BLT v1n // if n < 0 goto v1n
+
+U1n: // n >= 0
+ // regular loop body unrolled 4x
+ MOVD 0(R8)(R10*1), R5
+ MOVD 8(R8)(R10*1), R6
+ MOVD 16(R8)(R10*1), R7
+ MOVD 24(R8)(R10*1), R1
+ ADDC R4, R4 // restore CF
+ MOVD 0(R9)(R10*1), R11
+ ADDE R11, R5
+ MOVD 8(R9)(R10*1), R11
+ ADDE R11, R6
+ MOVD 16(R9)(R10*1), R11
+ ADDE R11, R7
+ MOVD 24(R9)(R10*1), R11
+ ADDE R11, R1
+ MOVD R0, R4
+ ADDE R4, R4 // save CF
+ NEG R4, R4
+ MOVD R5, 0(R2)(R10*1)
+ MOVD R6, 8(R2)(R10*1)
+ MOVD R7, 16(R2)(R10*1)
+ MOVD R1, 24(R2)(R10*1)
+
+ ADD $32, R10 // i += 4
+ SUB $4, R3 // n -= 4
+ BGE U1n // if n >= 0 goto U1n
+
+v1n:
+ ADD $4, R3 // n += 4
+ BLE E1n // if n <= 0 goto E1n
+
+L1n: // n > 0
+ ADDC R4, R4 // restore CF
+ MOVD 0(R8)(R10*1), R5
+ MOVD 0(R9)(R10*1), R11
+ ADDE R11, R5
+ MOVD R5, 0(R2)(R10*1)
+ MOVD R0, R4
+ ADDE R4, R4 // save CF
+ NEG R4, R4
+
+ ADD $8, R10 // i++
+ SUB $1, R3 // n--
+ BGT L1n // if n > 0 goto L1n
+
+E1n:
+ NEG R4, R4
+ MOVD R4, c+72(FP) // return c
+ RET
+
+TEXT ·subVV(SB), NOSPLIT, $0
+ MOVD subvectorfacility+0x00(SB), R1
+ BR (R1)
+
+TEXT ·subVV_check(SB), NOSPLIT, $0
+ MOVB ·hasVX(SB), R1
+ CMPBEQ R1, $1, vectorimpl // vectorfacility = 1, vector supported
+ MOVD $subvectorfacility+0x00(SB), R1
+ MOVD $·subVV_novec(SB), R2
+ MOVD R2, 0(R1)
+
+ // MOVD $·subVV_novec(SB), 0(R1)
+ BR ·subVV_novec(SB)
+
+vectorimpl:
+ MOVD $subvectorfacility+0x00(SB), R1
+ MOVD $·subVV_vec(SB), R2
+ MOVD R2, 0(R1)
+
+ // MOVD $·subVV_vec(SB), 0(R1)
+ BR ·subVV_vec(SB)
+
+GLOBL subvectorfacility+0x00(SB), NOPTR, $8
+DATA subvectorfacility+0x00(SB)/8, $·subVV_check(SB)
+
+// DI = R3, CX = R4, SI = r10, r8 = r8, r9=r9, r10 = r2, r11 = r5, r12 = r6, r13 = r7, r14 = r1 (R0 set to 0) + use R11
+// func subVV(z, x, y []Word) (c Word)
+// (same as addVV except for SUBC/SUBE instead of ADDC/ADDE and label names)
+TEXT ·subVV_vec(SB), NOSPLIT, $0
+ MOVD z_len+8(FP), R3
+ MOVD x+24(FP), R8
+ MOVD y+48(FP), R9
+ MOVD z+0(FP), R2
+ MOVD $0, R4 // c = 0
+ MOVD $0, R0 // make sure it's zero
+ MOVD $0, R10 // i = 0
+
+ // s/JL/JMP/ below to disable the unrolled loop
+ SUB $4, R3 // n -= 4
+ BLT v1 // if n < 0 goto v1
+ SUB $12, R3 // n -= 16
+ BLT A1 // if n < 0 goto A1
+
+ MOVD R8, R5
+ MOVD R9, R6
+ MOVD R2, R7
+
+ // n >= 0
+ // regular loop body unrolled 16x
+ VZERO V0 // cf = 0
+ MOVD $1, R4 // for 390 subtraction cf starts as 1 (no borrow)
+ VLVGG $1, R4, V0 // put carry into V0
+
+UU1:
+ VLM 0(R5), V1, V4 // 64-bytes into V1..V8
+ ADD $64, R5
+ VPDI $0x4, V1, V1, V1 // flip the doublewords to big-endian order
+ VPDI $0x4, V2, V2, V2 // flip the doublewords to big-endian order
+
+ VLM 0(R6), V9, V12 // 64-bytes into V9..V16
+ ADD $64, R6
+ VPDI $0x4, V9, V9, V9 // flip the doublewords to big-endian order
+ VPDI $0x4, V10, V10, V10 // flip the doublewords to big-endian order
+
+ VSBCBIQ V1, V9, V0, V25
+ VSBIQ V1, V9, V0, V17
+ VSBCBIQ V2, V10, V25, V26
+ VSBIQ V2, V10, V25, V18
+
+ VLM 0(R5), V5, V6 // 32-bytes into V1..V8
+ VLM 0(R6), V13, V14 // 32-bytes into V9..V16
+ ADD $32, R5
+ ADD $32, R6
+
+ VPDI $0x4, V3, V3, V3 // flip the doublewords to big-endian order
+ VPDI $0x4, V4, V4, V4 // flip the doublewords to big-endian order
+ VPDI $0x4, V11, V11, V11 // flip the doublewords to big-endian order
+ VPDI $0x4, V12, V12, V12 // flip the doublewords to big-endian order
+
+ VSBCBIQ V3, V11, V26, V27
+ VSBIQ V3, V11, V26, V19
+ VSBCBIQ V4, V12, V27, V28
+ VSBIQ V4, V12, V27, V20
+
+ VLM 0(R5), V7, V8 // 32-bytes into V1..V8
+ VLM 0(R6), V15, V16 // 32-bytes into V9..V16
+ ADD $32, R5
+ ADD $32, R6
+
+ VPDI $0x4, V5, V5, V5 // flip the doublewords to big-endian order
+ VPDI $0x4, V6, V6, V6 // flip the doublewords to big-endian order
+ VPDI $0x4, V13, V13, V13 // flip the doublewords to big-endian order
+ VPDI $0x4, V14, V14, V14 // flip the doublewords to big-endian order
+
+ VSBCBIQ V5, V13, V28, V29
+ VSBIQ V5, V13, V28, V21
+ VSBCBIQ V6, V14, V29, V30
+ VSBIQ V6, V14, V29, V22
+
+ VPDI $0x4, V7, V7, V7 // flip the doublewords to big-endian order
+ VPDI $0x4, V8, V8, V8 // flip the doublewords to big-endian order
+ VPDI $0x4, V15, V15, V15 // flip the doublewords to big-endian order
+ VPDI $0x4, V16, V16, V16 // flip the doublewords to big-endian order
+
+ VSBCBIQ V7, V15, V30, V31
+ VSBIQ V7, V15, V30, V23
+ VSBCBIQ V8, V16, V31, V0 // V0 has carry-over
+ VSBIQ V8, V16, V31, V24
+
+ VPDI $0x4, V17, V17, V17 // flip the doublewords to big-endian order
+ VPDI $0x4, V18, V18, V18 // flip the doublewords to big-endian order
+ VPDI $0x4, V19, V19, V19 // flip the doublewords to big-endian order
+ VPDI $0x4, V20, V20, V20 // flip the doublewords to big-endian order
+ VPDI $0x4, V21, V21, V21 // flip the doublewords to big-endian order
+ VPDI $0x4, V22, V22, V22 // flip the doublewords to big-endian order
+ VPDI $0x4, V23, V23, V23 // flip the doublewords to big-endian order
+ VPDI $0x4, V24, V24, V24 // flip the doublewords to big-endian order
+ VSTM V17, V24, 0(R7) // 128-bytes into z
+ ADD $128, R7
+ ADD $128, R10 // i += 16
+ SUB $16, R3 // n -= 16
+ BGE UU1 // if n >= 0 goto U1
+ VLGVG $1, V0, R4 // put cf into R4
+ SUB $1, R4 // save cf
+
+A1:
+ ADD $12, R3 // n += 16
+ BLT v1 // if n < 0 goto v1
+
+U1: // n >= 0
+ // regular loop body unrolled 4x
+ MOVD 0(R8)(R10*1), R5
+ MOVD 8(R8)(R10*1), R6
+ MOVD 16(R8)(R10*1), R7
+ MOVD 24(R8)(R10*1), R1
+ MOVD R0, R11
+ SUBC R4, R11 // restore CF
+ MOVD 0(R9)(R10*1), R11
+ SUBE R11, R5
+ MOVD 8(R9)(R10*1), R11
+ SUBE R11, R6
+ MOVD 16(R9)(R10*1), R11
+ SUBE R11, R7
+ MOVD 24(R9)(R10*1), R11
+ SUBE R11, R1
+ MOVD R0, R4
+ SUBE R4, R4 // save CF
+ MOVD R5, 0(R2)(R10*1)
+ MOVD R6, 8(R2)(R10*1)
+ MOVD R7, 16(R2)(R10*1)
+ MOVD R1, 24(R2)(R10*1)
+
+ ADD $32, R10 // i += 4
+ SUB $4, R3 // n -= 4
+ BGE U1 // if n >= 0 goto U1n
+
+v1:
+ ADD $4, R3 // n += 4
+ BLE E1 // if n <= 0 goto E1
+
+L1: // n > 0
+ MOVD R0, R11
+ SUBC R4, R11 // restore CF
+ MOVD 0(R8)(R10*1), R5
+ MOVD 0(R9)(R10*1), R11
+ SUBE R11, R5
+ MOVD R5, 0(R2)(R10*1)
+ MOVD R0, R4
+ SUBE R4, R4 // save CF
+
+ ADD $8, R10 // i++
+ SUB $1, R3 // n--
+ BGT L1 // if n > 0 goto L1n
+
+E1:
+ NEG R4, R4
+ MOVD R4, c+72(FP) // return c
+ RET
+
+// DI = R3, CX = R4, SI = r10, r8 = r8, r9=r9, r10 = r2, r11 = r5, r12 = r6, r13 = r7, r14 = r1 (R0 set to 0) + use R11
+// func subVV(z, x, y []Word) (c Word)
+// (same as addVV except for SUBC/SUBE instead of ADDC/ADDE and label names)
+TEXT ·subVV_novec(SB), NOSPLIT, $0
+ MOVD z_len+8(FP), R3
+ MOVD x+24(FP), R8
+ MOVD y+48(FP), R9
+ MOVD z+0(FP), R2
+
+ MOVD $0, R4 // c = 0
+ MOVD $0, R0 // make sure it's zero
+ MOVD $0, R10 // i = 0
+
+ // s/JL/JMP/ below to disable the unrolled loop
+ SUB $4, R3 // n -= 4
+ BLT v1 // if n < 0 goto v1
+
+U1: // n >= 0
+ // regular loop body unrolled 4x
+ MOVD 0(R8)(R10*1), R5
+ MOVD 8(R8)(R10*1), R6
+ MOVD 16(R8)(R10*1), R7
+ MOVD 24(R8)(R10*1), R1
+ MOVD R0, R11
+ SUBC R4, R11 // restore CF
+ MOVD 0(R9)(R10*1), R11
+ SUBE R11, R5
+ MOVD 8(R9)(R10*1), R11
+ SUBE R11, R6
+ MOVD 16(R9)(R10*1), R11
+ SUBE R11, R7
+ MOVD 24(R9)(R10*1), R11
+ SUBE R11, R1
+ MOVD R0, R4
+ SUBE R4, R4 // save CF
+ MOVD R5, 0(R2)(R10*1)
+ MOVD R6, 8(R2)(R10*1)
+ MOVD R7, 16(R2)(R10*1)
+ MOVD R1, 24(R2)(R10*1)
+
+ ADD $32, R10 // i += 4
+ SUB $4, R3 // n -= 4
+ BGE U1 // if n >= 0 goto U1
+
+v1:
+ ADD $4, R3 // n += 4
+ BLE E1 // if n <= 0 goto E1
+
+L1: // n > 0
+ MOVD R0, R11
+ SUBC R4, R11 // restore CF
+ MOVD 0(R8)(R10*1), R5
+ MOVD 0(R9)(R10*1), R11
+ SUBE R11, R5
+ MOVD R5, 0(R2)(R10*1)
+ MOVD R0, R4
+ SUBE R4, R4 // save CF
+
+ ADD $8, R10 // i++
+ SUB $1, R3 // n--
+ BGT L1 // if n > 0 goto L1
+
+E1:
+ NEG R4, R4
+ MOVD R4, c+72(FP) // return c
+ RET
+
+TEXT ·addVW(SB), NOSPLIT, $0
+ MOVD z_len+8(FP), R5 // length of z
+ MOVD x+24(FP), R6
+ MOVD y+48(FP), R7 // c = y
+ MOVD z+0(FP), R8
+
+ CMPBEQ R5, $0, returnC // if len(z) == 0, we can have an early return
+
+ // Add the first two words, and determine which path (copy path or loop path) to take based on the carry flag.
+ ADDC 0(R6), R7
+ MOVD R7, 0(R8)
+ CMPBEQ R5, $1, returnResult // len(z) == 1
+ MOVD $0, R9
+ ADDE 8(R6), R9
+ MOVD R9, 8(R8)
+ CMPBEQ R5, $2, returnResult // len(z) == 2
+
+ // Update the counters
+ MOVD $16, R12 // i = 2
+ MOVD $-2(R5), R5 // n = n - 2
+
+loopOverEachWord:
+ BRC $12, copySetup // carry = 0, copy the rest
+ MOVD $1, R9
+
+ // Originally we used the carry flag generated in the previous iteration
+ // (i.e: ADDE could be used here to do the addition). However, since we
+ // already know carry is 1 (otherwise we will go to copy section), we can use
+ // ADDC here so the current iteration does not depend on the carry flag
+ // generated in the previous iteration. This could be useful when branch prediction happens.
+ ADDC 0(R6)(R12*1), R9
+ MOVD R9, 0(R8)(R12*1) // z[i] = x[i] + c
+
+ MOVD $8(R12), R12 // i++
+ BRCTG R5, loopOverEachWord // n--
+
+// Return the current carry value
+returnResult:
+ MOVD $0, R0
+ ADDE R0, R0
+ MOVD R0, c+56(FP)
+ RET
+
+// Update position of x(R6) and z(R8) based on the current counter value and perform copying.
+// With the assumption that x and z will not overlap with each other or x and z will
+// point to same memory region, we can use a faster version of copy using only MVC here.
+// In the following implementation, we have three copy loops, each copying a word, 4 words, and
+// 32 words at a time. Via benchmarking, this implementation is faster than calling runtime·memmove.
+copySetup:
+ ADD R12, R6
+ ADD R12, R8
+
+ CMPBGE R5, $4, mediumLoop
+
+smallLoop: // does a loop unrolling to copy word when n < 4
+ CMPBEQ R5, $0, returnZero
+ MVC $8, 0(R6), 0(R8)
+ CMPBEQ R5, $1, returnZero
+ MVC $8, 8(R6), 8(R8)
+ CMPBEQ R5, $2, returnZero
+ MVC $8, 16(R6), 16(R8)
+
+returnZero:
+ MOVD $0, c+56(FP) // return 0 as carry
+ RET
+
+mediumLoop:
+ CMPBLT R5, $4, smallLoop
+ CMPBLT R5, $32, mediumLoopBody
+
+largeLoop: // Copying 256 bytes at a time.
+ MVC $256, 0(R6), 0(R8)
+ MOVD $256(R6), R6
+ MOVD $256(R8), R8
+ MOVD $-32(R5), R5
+ CMPBGE R5, $32, largeLoop
+ BR mediumLoop
+
+mediumLoopBody: // Copying 32 bytes at a time
+ MVC $32, 0(R6), 0(R8)
+ MOVD $32(R6), R6
+ MOVD $32(R8), R8
+ MOVD $-4(R5), R5
+ CMPBGE R5, $4, mediumLoopBody
+ BR smallLoop
+
+returnC:
+ MOVD R7, c+56(FP)
+ RET
+
+TEXT ·subVW(SB), NOSPLIT, $0
+ MOVD z_len+8(FP), R5
+ MOVD x+24(FP), R6
+ MOVD y+48(FP), R7 // The borrow bit passed in
+ MOVD z+0(FP), R8
+ MOVD $0, R0 // R0 is a temporary variable used during computation. Ensure it has zero in it.
+
+ CMPBEQ R5, $0, returnC // len(z) == 0, have an early return
+
+ // Subtract the first two words, and determine which path (copy path or loop path) to take based on the borrow flag
+ MOVD 0(R6), R9
+ SUBC R7, R9
+ MOVD R9, 0(R8)
+ CMPBEQ R5, $1, returnResult
+ MOVD 8(R6), R9
+ SUBE R0, R9
+ MOVD R9, 8(R8)
+ CMPBEQ R5, $2, returnResult
+
+ // Update the counters
+ MOVD $16, R12 // i = 2
+ MOVD $-2(R5), R5 // n = n - 2
+
+loopOverEachWord:
+ BRC $3, copySetup // no borrow, copy the rest
+ MOVD 0(R6)(R12*1), R9
+
+ // Originally we used the borrow flag generated in the previous iteration
+ // (i.e: SUBE could be used here to do the subtraction). However, since we
+ // already know borrow is 1 (otherwise we will go to copy section), we can
+ // use SUBC here so the current iteration does not depend on the borrow flag
+ // generated in the previous iteration. This could be useful when branch prediction happens.
+ SUBC $1, R9
+ MOVD R9, 0(R8)(R12*1) // z[i] = x[i] - 1
+
+ MOVD $8(R12), R12 // i++
+ BRCTG R5, loopOverEachWord // n--
+
+// return the current borrow value
+returnResult:
+ SUBE R0, R0
+ NEG R0, R0
+ MOVD R0, c+56(FP)
+ RET
+
+// Update position of x(R6) and z(R8) based on the current counter value and perform copying.
+// With the assumption that x and z will not overlap with each other or x and z will
+// point to same memory region, we can use a faster version of copy using only MVC here.
+// In the following implementation, we have three copy loops, each copying a word, 4 words, and
+// 32 words at a time. Via benchmarking, this implementation is faster than calling runtime·memmove.
+copySetup:
+ ADD R12, R6
+ ADD R12, R8
+
+ CMPBGE R5, $4, mediumLoop
+
+smallLoop: // does a loop unrolling to copy word when n < 4
+ CMPBEQ R5, $0, returnZero
+ MVC $8, 0(R6), 0(R8)
+ CMPBEQ R5, $1, returnZero
+ MVC $8, 8(R6), 8(R8)
+ CMPBEQ R5, $2, returnZero
+ MVC $8, 16(R6), 16(R8)
+
+returnZero:
+ MOVD $0, c+56(FP) // return 0 as borrow
+ RET
+
+mediumLoop:
+ CMPBLT R5, $4, smallLoop
+ CMPBLT R5, $32, mediumLoopBody
+
+largeLoop: // Copying 256 bytes at a time
+ MVC $256, 0(R6), 0(R8)
+ MOVD $256(R6), R6
+ MOVD $256(R8), R8
+ MOVD $-32(R5), R5
+ CMPBGE R5, $32, largeLoop
+ BR mediumLoop
+
+mediumLoopBody: // Copying 32 bytes at a time
+ MVC $32, 0(R6), 0(R8)
+ MOVD $32(R6), R6
+ MOVD $32(R8), R8
+ MOVD $-4(R5), R5
+ CMPBGE R5, $4, mediumLoopBody
+ BR smallLoop
+
+returnC:
+ MOVD R7, c+56(FP)
+ RET
+
+// func shlVU(z, x []Word, s uint) (c Word)
+TEXT ·shlVU(SB), NOSPLIT, $0
+ BR ·shlVU_g(SB)
+
+// func shrVU(z, x []Word, s uint) (c Word)
+TEXT ·shrVU(SB), NOSPLIT, $0
+ BR ·shrVU_g(SB)
+
+// CX = R4, r8 = r8, r9=r9, r10 = r2, r11 = r5, DX = r3, AX = r6, BX = R1, (R0 set to 0) + use R11 + use R7 for i
+// func mulAddVWW(z, x []Word, y, r Word) (c Word)
+TEXT ·mulAddVWW(SB), NOSPLIT, $0
+ MOVD z+0(FP), R2
+ MOVD x+24(FP), R8
+ MOVD y+48(FP), R9
+ MOVD r+56(FP), R4 // c = r
+ MOVD z_len+8(FP), R5
+ MOVD $0, R1 // i = 0
+ MOVD $0, R7 // i*8 = 0
+ MOVD $0, R0 // make sure it's zero
+ BR E5
+
+L5:
+ MOVD (R8)(R1*1), R6
+ MULHDU R9, R6
+ ADDC R4, R11 // add to low order bits
+ ADDE R0, R6
+ MOVD R11, (R2)(R1*1)
+ MOVD R6, R4
+ ADD $8, R1 // i*8 + 8
+ ADD $1, R7 // i++
+
+E5:
+ CMPBLT R7, R5, L5 // i < n
+
+ MOVD R4, c+64(FP)
+ RET
+
+// func addMulVVW(z, x []Word, y Word) (c Word)
+// CX = R4, r8 = r8, r9=r9, r10 = r2, r11 = r5, AX = r11, DX = R6, r12=r12, BX = R1, (R0 set to 0) + use R11 + use R7 for i
+TEXT ·addMulVVW(SB), NOSPLIT, $0
+ MOVD z+0(FP), R2
+ MOVD x+24(FP), R8
+ MOVD y+48(FP), R9
+ MOVD z_len+8(FP), R5
+
+ MOVD $0, R1 // i*8 = 0
+ MOVD $0, R7 // i = 0
+ MOVD $0, R0 // make sure it's zero
+ MOVD $0, R4 // c = 0
+
+ MOVD R5, R12
+ AND $-2, R12
+ CMPBGE R5, $2, A6
+ BR E6
+
+A6:
+ MOVD (R8)(R1*1), R6
+ MULHDU R9, R6
+ MOVD (R2)(R1*1), R10
+ ADDC R10, R11 // add to low order bits
+ ADDE R0, R6
+ ADDC R4, R11
+ ADDE R0, R6
+ MOVD R6, R4
+ MOVD R11, (R2)(R1*1)
+
+ MOVD (8)(R8)(R1*1), R6
+ MULHDU R9, R6
+ MOVD (8)(R2)(R1*1), R10
+ ADDC R10, R11 // add to low order bits
+ ADDE R0, R6
+ ADDC R4, R11
+ ADDE R0, R6
+ MOVD R6, R4
+ MOVD R11, (8)(R2)(R1*1)
+
+ ADD $16, R1 // i*8 + 8
+ ADD $2, R7 // i++
+
+ CMPBLT R7, R12, A6
+ BR E6
+
+L6:
+ MOVD (R8)(R1*1), R6
+ MULHDU R9, R6
+ MOVD (R2)(R1*1), R10
+ ADDC R10, R11 // add to low order bits
+ ADDE R0, R6
+ ADDC R4, R11
+ ADDE R0, R6
+ MOVD R6, R4
+ MOVD R11, (R2)(R1*1)
+
+ ADD $8, R1 // i*8 + 8
+ ADD $1, R7 // i++
+
+E6:
+ CMPBLT R7, R5, L6 // i < n
+
+ MOVD R4, c+56(FP)
+ RET
+
diff --git a/src/math/big/arith_s390x_test.go b/src/math/big/arith_s390x_test.go
new file mode 100644
index 0000000..0b91cc1
--- /dev/null
+++ b/src/math/big/arith_s390x_test.go
@@ -0,0 +1,32 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build s390x && !math_big_pure_go
+
+package big
+
+import (
+ "testing"
+)
+
+// Tests whether the non vector routines are working, even when the tests are run on a
+// vector-capable machine
+
+func TestFunVVnovec(t *testing.T) {
+ if hasVX {
+ for _, a := range sumVV {
+ arg := a
+ testFunVV(t, "addVV_novec", addVV_novec, arg)
+
+ arg = argVV{a.z, a.y, a.x, a.c}
+ testFunVV(t, "addVV_novec symmetric", addVV_novec, arg)
+
+ arg = argVV{a.x, a.z, a.y, a.c}
+ testFunVV(t, "subVV_novec", subVV_novec, arg)
+
+ arg = argVV{a.y, a.z, a.x, a.c}
+ testFunVV(t, "subVV_novec symmetric", subVV_novec, arg)
+ }
+ }
+}
diff --git a/src/math/big/arith_test.go b/src/math/big/arith_test.go
new file mode 100644
index 0000000..64225bb
--- /dev/null
+++ b/src/math/big/arith_test.go
@@ -0,0 +1,697 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "fmt"
+ "internal/testenv"
+ "math/bits"
+ "math/rand"
+ "strings"
+ "testing"
+)
+
+var isRaceBuilder = strings.HasSuffix(testenv.Builder(), "-race")
+
+type funVV func(z, x, y []Word) (c Word)
+type argVV struct {
+ z, x, y nat
+ c Word
+}
+
+var sumVV = []argVV{
+ {},
+ {nat{0}, nat{0}, nat{0}, 0},
+ {nat{1}, nat{1}, nat{0}, 0},
+ {nat{0}, nat{_M}, nat{1}, 1},
+ {nat{80235}, nat{12345}, nat{67890}, 0},
+ {nat{_M - 1}, nat{_M}, nat{_M}, 1},
+ {nat{0, 0, 0, 0}, nat{_M, _M, _M, _M}, nat{1, 0, 0, 0}, 1},
+ {nat{0, 0, 0, _M}, nat{_M, _M, _M, _M - 1}, nat{1, 0, 0, 0}, 0},
+ {nat{0, 0, 0, 0}, nat{_M, 0, _M, 0}, nat{1, _M, 0, _M}, 1},
+}
+
+func testFunVV(t *testing.T, msg string, f funVV, a argVV) {
+ z := make(nat, len(a.z))
+ c := f(z, a.x, a.y)
+ for i, zi := range z {
+ if zi != a.z[i] {
+ t.Errorf("%s%+v\n\tgot z[%d] = %#x; want %#x", msg, a, i, zi, a.z[i])
+ break
+ }
+ }
+ if c != a.c {
+ t.Errorf("%s%+v\n\tgot c = %#x; want %#x", msg, a, c, a.c)
+ }
+}
+
+func TestFunVV(t *testing.T) {
+ for _, a := range sumVV {
+ arg := a
+ testFunVV(t, "addVV_g", addVV_g, arg)
+ testFunVV(t, "addVV", addVV, arg)
+
+ arg = argVV{a.z, a.y, a.x, a.c}
+ testFunVV(t, "addVV_g symmetric", addVV_g, arg)
+ testFunVV(t, "addVV symmetric", addVV, arg)
+
+ arg = argVV{a.x, a.z, a.y, a.c}
+ testFunVV(t, "subVV_g", subVV_g, arg)
+ testFunVV(t, "subVV", subVV, arg)
+
+ arg = argVV{a.y, a.z, a.x, a.c}
+ testFunVV(t, "subVV_g symmetric", subVV_g, arg)
+ testFunVV(t, "subVV symmetric", subVV, arg)
+ }
+}
+
+// Always the same seed for reproducible results.
+var rnd = rand.New(rand.NewSource(0))
+
+func rndW() Word {
+ return Word(rnd.Int63()<<1 | rnd.Int63n(2))
+}
+
+func rndV(n int) []Word {
+ v := make([]Word, n)
+ for i := range v {
+ v[i] = rndW()
+ }
+ return v
+}
+
+var benchSizes = []int{1, 2, 3, 4, 5, 1e1, 1e2, 1e3, 1e4, 1e5}
+
+func BenchmarkAddVV(b *testing.B) {
+ for _, n := range benchSizes {
+ if isRaceBuilder && n > 1e3 {
+ continue
+ }
+ x := rndV(n)
+ y := rndV(n)
+ z := make([]Word, n)
+ b.Run(fmt.Sprint(n), func(b *testing.B) {
+ b.SetBytes(int64(n * _W))
+ for i := 0; i < b.N; i++ {
+ addVV(z, x, y)
+ }
+ })
+ }
+}
+
+func BenchmarkSubVV(b *testing.B) {
+ for _, n := range benchSizes {
+ if isRaceBuilder && n > 1e3 {
+ continue
+ }
+ x := rndV(n)
+ y := rndV(n)
+ z := make([]Word, n)
+ b.Run(fmt.Sprint(n), func(b *testing.B) {
+ b.SetBytes(int64(n * _W))
+ for i := 0; i < b.N; i++ {
+ subVV(z, x, y)
+ }
+ })
+ }
+}
+
+type funVW func(z, x []Word, y Word) (c Word)
+type argVW struct {
+ z, x nat
+ y Word
+ c Word
+}
+
+var sumVW = []argVW{
+ {},
+ {nil, nil, 2, 2},
+ {nat{0}, nat{0}, 0, 0},
+ {nat{1}, nat{0}, 1, 0},
+ {nat{1}, nat{1}, 0, 0},
+ {nat{0}, nat{_M}, 1, 1},
+ {nat{0, 0, 0, 0}, nat{_M, _M, _M, _M}, 1, 1},
+ {nat{585}, nat{314}, 271, 0},
+}
+
+var lshVW = []argVW{
+ {},
+ {nat{0}, nat{0}, 0, 0},
+ {nat{0}, nat{0}, 1, 0},
+ {nat{0}, nat{0}, 20, 0},
+
+ {nat{_M}, nat{_M}, 0, 0},
+ {nat{_M << 1 & _M}, nat{_M}, 1, 1},
+ {nat{_M << 20 & _M}, nat{_M}, 20, _M >> (_W - 20)},
+
+ {nat{_M, _M, _M}, nat{_M, _M, _M}, 0, 0},
+ {nat{_M << 1 & _M, _M, _M}, nat{_M, _M, _M}, 1, 1},
+ {nat{_M << 20 & _M, _M, _M}, nat{_M, _M, _M}, 20, _M >> (_W - 20)},
+}
+
+var rshVW = []argVW{
+ {},
+ {nat{0}, nat{0}, 0, 0},
+ {nat{0}, nat{0}, 1, 0},
+ {nat{0}, nat{0}, 20, 0},
+
+ {nat{_M}, nat{_M}, 0, 0},
+ {nat{_M >> 1}, nat{_M}, 1, _M << (_W - 1) & _M},
+ {nat{_M >> 20}, nat{_M}, 20, _M << (_W - 20) & _M},
+
+ {nat{_M, _M, _M}, nat{_M, _M, _M}, 0, 0},
+ {nat{_M, _M, _M >> 1}, nat{_M, _M, _M}, 1, _M << (_W - 1) & _M},
+ {nat{_M, _M, _M >> 20}, nat{_M, _M, _M}, 20, _M << (_W - 20) & _M},
+}
+
+func testFunVW(t *testing.T, msg string, f funVW, a argVW) {
+ z := make(nat, len(a.z))
+ c := f(z, a.x, a.y)
+ for i, zi := range z {
+ if zi != a.z[i] {
+ t.Errorf("%s%+v\n\tgot z[%d] = %#x; want %#x", msg, a, i, zi, a.z[i])
+ break
+ }
+ }
+ if c != a.c {
+ t.Errorf("%s%+v\n\tgot c = %#x; want %#x", msg, a, c, a.c)
+ }
+}
+
+func testFunVWext(t *testing.T, msg string, f funVW, f_g funVW, a argVW) {
+ // using the result of addVW_g/subVW_g as golden
+ z_g := make(nat, len(a.z))
+ c_g := f_g(z_g, a.x, a.y)
+ c := f(a.z, a.x, a.y)
+
+ for i, zi := range a.z {
+ if zi != z_g[i] {
+ t.Errorf("%s\n\tgot z[%d] = %#x; want %#x", msg, i, zi, z_g[i])
+ break
+ }
+ }
+ if c != c_g {
+ t.Errorf("%s\n\tgot c = %#x; want %#x", msg, c, c_g)
+ }
+}
+
+func makeFunVW(f func(z, x []Word, s uint) (c Word)) funVW {
+ return func(z, x []Word, s Word) (c Word) {
+ return f(z, x, uint(s))
+ }
+}
+
+func TestFunVW(t *testing.T) {
+ for _, a := range sumVW {
+ arg := a
+ testFunVW(t, "addVW_g", addVW_g, arg)
+ testFunVW(t, "addVW", addVW, arg)
+
+ arg = argVW{a.x, a.z, a.y, a.c}
+ testFunVW(t, "subVW_g", subVW_g, arg)
+ testFunVW(t, "subVW", subVW, arg)
+ }
+
+ shlVW_g := makeFunVW(shlVU_g)
+ shlVW := makeFunVW(shlVU)
+ for _, a := range lshVW {
+ arg := a
+ testFunVW(t, "shlVU_g", shlVW_g, arg)
+ testFunVW(t, "shlVU", shlVW, arg)
+ }
+
+ shrVW_g := makeFunVW(shrVU_g)
+ shrVW := makeFunVW(shrVU)
+ for _, a := range rshVW {
+ arg := a
+ testFunVW(t, "shrVU_g", shrVW_g, arg)
+ testFunVW(t, "shrVU", shrVW, arg)
+ }
+}
+
+// Construct a vector comprising the same word, usually '0' or 'maximum uint'
+func makeWordVec(e Word, n int) []Word {
+ v := make([]Word, n)
+ for i := range v {
+ v[i] = e
+ }
+ return v
+}
+
+// Extended testing to addVW and subVW using various kinds of input data.
+// We utilize the results of addVW_g and subVW_g as golden reference to check
+// correctness.
+func TestFunVWExt(t *testing.T) {
+ // 32 is the current threshold that triggers an optimized version of
+ // calculation for large-sized vector, ensure we have sizes around it tested.
+ var vwSizes = []int{0, 1, 3, 4, 5, 8, 9, 23, 31, 32, 33, 34, 35, 36, 50, 120}
+ for _, n := range vwSizes {
+ // vector of random numbers, using the result of addVW_g/subVW_g as golden
+ x := rndV(n)
+ y := rndW()
+ z := make(nat, n)
+ arg := argVW{z, x, y, 0}
+ testFunVWext(t, "addVW, random inputs", addVW, addVW_g, arg)
+ testFunVWext(t, "subVW, random inputs", subVW, subVW_g, arg)
+
+ // vector of random numbers, but make 'x' and 'z' share storage
+ arg = argVW{x, x, y, 0}
+ testFunVWext(t, "addVW, random inputs, sharing storage", addVW, addVW_g, arg)
+ testFunVWext(t, "subVW, random inputs, sharing storage", subVW, subVW_g, arg)
+
+ // vector of maximum uint, to force carry flag set in each 'add'
+ y = ^Word(0)
+ x = makeWordVec(y, n)
+ arg = argVW{z, x, y, 0}
+ testFunVWext(t, "addVW, vector of max uint", addVW, addVW_g, arg)
+
+ // vector of '0', to force carry flag set in each 'sub'
+ x = makeWordVec(0, n)
+ arg = argVW{z, x, 1, 0}
+ testFunVWext(t, "subVW, vector of zero", subVW, subVW_g, arg)
+ }
+}
+
+type argVU struct {
+ d []Word // d is a Word slice, the input parameters x and z come from this array.
+ l uint // l is the length of the input parameters x and z.
+ xp uint // xp is the starting position of the input parameter x, x := d[xp:xp+l].
+ zp uint // zp is the starting position of the input parameter z, z := d[zp:zp+l].
+ s uint // s is the shift number.
+ r []Word // r is the expected output result z.
+ c Word // c is the expected return value.
+ m string // message.
+}
+
+var argshlVUIn = []Word{1, 2, 4, 8, 16, 32, 64, 0, 0, 0}
+var argshlVUr0 = []Word{1, 2, 4, 8, 16, 32, 64}
+var argshlVUr1 = []Word{2, 4, 8, 16, 32, 64, 128}
+var argshlVUrWm1 = []Word{1 << (_W - 1), 0, 1, 2, 4, 8, 16}
+
+var argshlVU = []argVU{
+ // test cases for shlVU
+ {[]Word{1, _M, _M, _M, _M, _M, 3 << (_W - 2), 0}, 7, 0, 0, 1, []Word{2, _M - 1, _M, _M, _M, _M, 1<<(_W-1) + 1}, 1, "complete overlap of shlVU"},
+ {[]Word{1, _M, _M, _M, _M, _M, 3 << (_W - 2), 0, 0, 0, 0}, 7, 0, 3, 1, []Word{2, _M - 1, _M, _M, _M, _M, 1<<(_W-1) + 1}, 1, "partial overlap by half of shlVU"},
+ {[]Word{1, _M, _M, _M, _M, _M, 3 << (_W - 2), 0, 0, 0, 0, 0, 0, 0}, 7, 0, 6, 1, []Word{2, _M - 1, _M, _M, _M, _M, 1<<(_W-1) + 1}, 1, "partial overlap by 1 Word of shlVU"},
+ {[]Word{1, _M, _M, _M, _M, _M, 3 << (_W - 2), 0, 0, 0, 0, 0, 0, 0, 0}, 7, 0, 7, 1, []Word{2, _M - 1, _M, _M, _M, _M, 1<<(_W-1) + 1}, 1, "no overlap of shlVU"},
+ // additional test cases with shift values of 0, 1 and (_W-1)
+ {argshlVUIn, 7, 0, 0, 0, argshlVUr0, 0, "complete overlap of shlVU and shift of 0"},
+ {argshlVUIn, 7, 0, 0, 1, argshlVUr1, 0, "complete overlap of shlVU and shift of 1"},
+ {argshlVUIn, 7, 0, 0, _W - 1, argshlVUrWm1, 32, "complete overlap of shlVU and shift of _W - 1"},
+ {argshlVUIn, 7, 0, 1, 0, argshlVUr0, 0, "partial overlap by 6 Words of shlVU and shift of 0"},
+ {argshlVUIn, 7, 0, 1, 1, argshlVUr1, 0, "partial overlap by 6 Words of shlVU and shift of 1"},
+ {argshlVUIn, 7, 0, 1, _W - 1, argshlVUrWm1, 32, "partial overlap by 6 Words of shlVU and shift of _W - 1"},
+ {argshlVUIn, 7, 0, 2, 0, argshlVUr0, 0, "partial overlap by 5 Words of shlVU and shift of 0"},
+ {argshlVUIn, 7, 0, 2, 1, argshlVUr1, 0, "partial overlap by 5 Words of shlVU and shift of 1"},
+ {argshlVUIn, 7, 0, 2, _W - 1, argshlVUrWm1, 32, "partial overlap by 5 Words of shlVU abd shift of _W - 1"},
+ {argshlVUIn, 7, 0, 3, 0, argshlVUr0, 0, "partial overlap by 4 Words of shlVU and shift of 0"},
+ {argshlVUIn, 7, 0, 3, 1, argshlVUr1, 0, "partial overlap by 4 Words of shlVU and shift of 1"},
+ {argshlVUIn, 7, 0, 3, _W - 1, argshlVUrWm1, 32, "partial overlap by 4 Words of shlVU and shift of _W - 1"},
+}
+
+var argshrVUIn = []Word{0, 0, 0, 1, 2, 4, 8, 16, 32, 64}
+var argshrVUr0 = []Word{1, 2, 4, 8, 16, 32, 64}
+var argshrVUr1 = []Word{0, 1, 2, 4, 8, 16, 32}
+var argshrVUrWm1 = []Word{4, 8, 16, 32, 64, 128, 0}
+
+var argshrVU = []argVU{
+ // test cases for shrVU
+ {[]Word{0, 3, _M, _M, _M, _M, _M, 1 << (_W - 1)}, 7, 1, 1, 1, []Word{1<<(_W-1) + 1, _M, _M, _M, _M, _M >> 1, 1 << (_W - 2)}, 1 << (_W - 1), "complete overlap of shrVU"},
+ {[]Word{0, 0, 0, 0, 3, _M, _M, _M, _M, _M, 1 << (_W - 1)}, 7, 4, 1, 1, []Word{1<<(_W-1) + 1, _M, _M, _M, _M, _M >> 1, 1 << (_W - 2)}, 1 << (_W - 1), "partial overlap by half of shrVU"},
+ {[]Word{0, 0, 0, 0, 0, 0, 0, 3, _M, _M, _M, _M, _M, 1 << (_W - 1)}, 7, 7, 1, 1, []Word{1<<(_W-1) + 1, _M, _M, _M, _M, _M >> 1, 1 << (_W - 2)}, 1 << (_W - 1), "partial overlap by 1 Word of shrVU"},
+ {[]Word{0, 0, 0, 0, 0, 0, 0, 0, 3, _M, _M, _M, _M, _M, 1 << (_W - 1)}, 7, 8, 1, 1, []Word{1<<(_W-1) + 1, _M, _M, _M, _M, _M >> 1, 1 << (_W - 2)}, 1 << (_W - 1), "no overlap of shrVU"},
+ // additional test cases with shift values of 0, 1 and (_W-1)
+ {argshrVUIn, 7, 3, 3, 0, argshrVUr0, 0, "complete overlap of shrVU and shift of 0"},
+ {argshrVUIn, 7, 3, 3, 1, argshrVUr1, 1 << (_W - 1), "complete overlap of shrVU and shift of 1"},
+ {argshrVUIn, 7, 3, 3, _W - 1, argshrVUrWm1, 2, "complete overlap of shrVU and shift of _W - 1"},
+ {argshrVUIn, 7, 3, 2, 0, argshrVUr0, 0, "partial overlap by 6 Words of shrVU and shift of 0"},
+ {argshrVUIn, 7, 3, 2, 1, argshrVUr1, 1 << (_W - 1), "partial overlap by 6 Words of shrVU and shift of 1"},
+ {argshrVUIn, 7, 3, 2, _W - 1, argshrVUrWm1, 2, "partial overlap by 6 Words of shrVU and shift of _W - 1"},
+ {argshrVUIn, 7, 3, 1, 0, argshrVUr0, 0, "partial overlap by 5 Words of shrVU and shift of 0"},
+ {argshrVUIn, 7, 3, 1, 1, argshrVUr1, 1 << (_W - 1), "partial overlap by 5 Words of shrVU and shift of 1"},
+ {argshrVUIn, 7, 3, 1, _W - 1, argshrVUrWm1, 2, "partial overlap by 5 Words of shrVU and shift of _W - 1"},
+ {argshrVUIn, 7, 3, 0, 0, argshrVUr0, 0, "partial overlap by 4 Words of shrVU and shift of 0"},
+ {argshrVUIn, 7, 3, 0, 1, argshrVUr1, 1 << (_W - 1), "partial overlap by 4 Words of shrVU and shift of 1"},
+ {argshrVUIn, 7, 3, 0, _W - 1, argshrVUrWm1, 2, "partial overlap by 4 Words of shrVU and shift of _W - 1"},
+}
+
+func testShiftFunc(t *testing.T, f func(z, x []Word, s uint) Word, a argVU) {
+ // work on copy of a.d to preserve the original data.
+ b := make([]Word, len(a.d))
+ copy(b, a.d)
+ z := b[a.zp : a.zp+a.l]
+ x := b[a.xp : a.xp+a.l]
+ c := f(z, x, a.s)
+ for i, zi := range z {
+ if zi != a.r[i] {
+ t.Errorf("d := %v, %s(d[%d:%d], d[%d:%d], %d)\n\tgot z[%d] = %#x; want %#x", a.d, a.m, a.zp, a.zp+a.l, a.xp, a.xp+a.l, a.s, i, zi, a.r[i])
+ break
+ }
+ }
+ if c != a.c {
+ t.Errorf("d := %v, %s(d[%d:%d], d[%d:%d], %d)\n\tgot c = %#x; want %#x", a.d, a.m, a.zp, a.zp+a.l, a.xp, a.xp+a.l, a.s, c, a.c)
+ }
+}
+
+func TestShiftOverlap(t *testing.T) {
+ for _, a := range argshlVU {
+ arg := a
+ testShiftFunc(t, shlVU, arg)
+ }
+
+ for _, a := range argshrVU {
+ arg := a
+ testShiftFunc(t, shrVU, arg)
+ }
+}
+
+func TestIssue31084(t *testing.T) {
+ // compute 10^n via 5^n << n.
+ const n = 165
+ p := nat(nil).expNN(nat{5}, nat{n}, nil, false)
+ p = p.shl(p, n)
+ got := string(p.utoa(10))
+ want := "1" + strings.Repeat("0", n)
+ if got != want {
+ t.Errorf("shl(%v, %v)\n\tgot %s\n\twant %s", p, n, got, want)
+ }
+}
+
+const issue42838Value = "159309191113245227702888039776771180559110455519261878607388585338616290151305816094308987472018268594098344692611135542392730712890625"
+
+func TestIssue42838(t *testing.T) {
+ const s = 192
+ z, _, _, _ := nat(nil).scan(strings.NewReader(issue42838Value), 0, false)
+ z = z.shl(z, s)
+ got := string(z.utoa(10))
+ want := "1" + strings.Repeat("0", s)
+ if got != want {
+ t.Errorf("shl(%v, %v)\n\tgot %s\n\twant %s", z, s, got, want)
+ }
+}
+
+func BenchmarkAddVW(b *testing.B) {
+ for _, n := range benchSizes {
+ if isRaceBuilder && n > 1e3 {
+ continue
+ }
+ x := rndV(n)
+ y := rndW()
+ z := make([]Word, n)
+ b.Run(fmt.Sprint(n), func(b *testing.B) {
+ b.SetBytes(int64(n * _S))
+ for i := 0; i < b.N; i++ {
+ addVW(z, x, y)
+ }
+ })
+ }
+}
+
+// Benchmarking addVW using vector of maximum uint to force carry flag set
+func BenchmarkAddVWext(b *testing.B) {
+ for _, n := range benchSizes {
+ if isRaceBuilder && n > 1e3 {
+ continue
+ }
+ y := ^Word(0)
+ x := makeWordVec(y, n)
+ z := make([]Word, n)
+ b.Run(fmt.Sprint(n), func(b *testing.B) {
+ b.SetBytes(int64(n * _S))
+ for i := 0; i < b.N; i++ {
+ addVW(z, x, y)
+ }
+ })
+ }
+}
+
+func BenchmarkSubVW(b *testing.B) {
+ for _, n := range benchSizes {
+ if isRaceBuilder && n > 1e3 {
+ continue
+ }
+ x := rndV(n)
+ y := rndW()
+ z := make([]Word, n)
+ b.Run(fmt.Sprint(n), func(b *testing.B) {
+ b.SetBytes(int64(n * _S))
+ for i := 0; i < b.N; i++ {
+ subVW(z, x, y)
+ }
+ })
+ }
+}
+
+// Benchmarking subVW using vector of zero to force carry flag set
+func BenchmarkSubVWext(b *testing.B) {
+ for _, n := range benchSizes {
+ if isRaceBuilder && n > 1e3 {
+ continue
+ }
+ x := makeWordVec(0, n)
+ y := Word(1)
+ z := make([]Word, n)
+ b.Run(fmt.Sprint(n), func(b *testing.B) {
+ b.SetBytes(int64(n * _S))
+ for i := 0; i < b.N; i++ {
+ subVW(z, x, y)
+ }
+ })
+ }
+}
+
+type funVWW func(z, x []Word, y, r Word) (c Word)
+type argVWW struct {
+ z, x nat
+ y, r Word
+ c Word
+}
+
+var prodVWW = []argVWW{
+ {},
+ {nat{0}, nat{0}, 0, 0, 0},
+ {nat{991}, nat{0}, 0, 991, 0},
+ {nat{0}, nat{_M}, 0, 0, 0},
+ {nat{991}, nat{_M}, 0, 991, 0},
+ {nat{0}, nat{0}, _M, 0, 0},
+ {nat{991}, nat{0}, _M, 991, 0},
+ {nat{1}, nat{1}, 1, 0, 0},
+ {nat{992}, nat{1}, 1, 991, 0},
+ {nat{22793}, nat{991}, 23, 0, 0},
+ {nat{22800}, nat{991}, 23, 7, 0},
+ {nat{0, 0, 0, 22793}, nat{0, 0, 0, 991}, 23, 0, 0},
+ {nat{7, 0, 0, 22793}, nat{0, 0, 0, 991}, 23, 7, 0},
+ {nat{0, 0, 0, 0}, nat{7893475, 7395495, 798547395, 68943}, 0, 0, 0},
+ {nat{991, 0, 0, 0}, nat{7893475, 7395495, 798547395, 68943}, 0, 991, 0},
+ {nat{0, 0, 0, 0}, nat{0, 0, 0, 0}, 894375984, 0, 0},
+ {nat{991, 0, 0, 0}, nat{0, 0, 0, 0}, 894375984, 991, 0},
+ {nat{_M << 1 & _M}, nat{_M}, 1 << 1, 0, _M >> (_W - 1)},
+ {nat{_M<<1&_M + 1}, nat{_M}, 1 << 1, 1, _M >> (_W - 1)},
+ {nat{_M << 7 & _M}, nat{_M}, 1 << 7, 0, _M >> (_W - 7)},
+ {nat{_M<<7&_M + 1<<6}, nat{_M}, 1 << 7, 1 << 6, _M >> (_W - 7)},
+ {nat{_M << 7 & _M, _M, _M, _M}, nat{_M, _M, _M, _M}, 1 << 7, 0, _M >> (_W - 7)},
+ {nat{_M<<7&_M + 1<<6, _M, _M, _M}, nat{_M, _M, _M, _M}, 1 << 7, 1 << 6, _M >> (_W - 7)},
+}
+
+func testFunVWW(t *testing.T, msg string, f funVWW, a argVWW) {
+ z := make(nat, len(a.z))
+ c := f(z, a.x, a.y, a.r)
+ for i, zi := range z {
+ if zi != a.z[i] {
+ t.Errorf("%s%+v\n\tgot z[%d] = %#x; want %#x", msg, a, i, zi, a.z[i])
+ break
+ }
+ }
+ if c != a.c {
+ t.Errorf("%s%+v\n\tgot c = %#x; want %#x", msg, a, c, a.c)
+ }
+}
+
+// TODO(gri) mulAddVWW and divWVW are symmetric operations but
+// their signature is not symmetric. Try to unify.
+
+type funWVW func(z []Word, xn Word, x []Word, y Word) (r Word)
+type argWVW struct {
+ z nat
+ xn Word
+ x nat
+ y Word
+ r Word
+}
+
+func testFunWVW(t *testing.T, msg string, f funWVW, a argWVW) {
+ z := make(nat, len(a.z))
+ r := f(z, a.xn, a.x, a.y)
+ for i, zi := range z {
+ if zi != a.z[i] {
+ t.Errorf("%s%+v\n\tgot z[%d] = %#x; want %#x", msg, a, i, zi, a.z[i])
+ break
+ }
+ }
+ if r != a.r {
+ t.Errorf("%s%+v\n\tgot r = %#x; want %#x", msg, a, r, a.r)
+ }
+}
+
+func TestFunVWW(t *testing.T) {
+ for _, a := range prodVWW {
+ arg := a
+ testFunVWW(t, "mulAddVWW_g", mulAddVWW_g, arg)
+ testFunVWW(t, "mulAddVWW", mulAddVWW, arg)
+
+ if a.y != 0 && a.r < a.y {
+ arg := argWVW{a.x, a.c, a.z, a.y, a.r}
+ testFunWVW(t, "divWVW", divWVW, arg)
+ }
+ }
+}
+
+var mulWWTests = []struct {
+ x, y Word
+ q, r Word
+}{
+ {_M, _M, _M - 1, 1},
+ // 32 bit only: {0xc47dfa8c, 50911, 0x98a4, 0x998587f4},
+}
+
+func TestMulWW(t *testing.T) {
+ for i, test := range mulWWTests {
+ q, r := mulWW(test.x, test.y)
+ if q != test.q || r != test.r {
+ t.Errorf("#%d got (%x, %x) want (%x, %x)", i, q, r, test.q, test.r)
+ }
+ }
+}
+
+var mulAddWWWTests = []struct {
+ x, y, c Word
+ q, r Word
+}{
+ // TODO(agl): These will only work on 64-bit platforms.
+ // {15064310297182388543, 0xe7df04d2d35d5d80, 13537600649892366549, 13644450054494335067, 10832252001440893781},
+ // {15064310297182388543, 0xdab2f18048baa68d, 13644450054494335067, 12869334219691522700, 14233854684711418382},
+ {_M, _M, 0, _M - 1, 1},
+ {_M, _M, _M, _M, 0},
+}
+
+func TestMulAddWWW(t *testing.T) {
+ for i, test := range mulAddWWWTests {
+ q, r := mulAddWWW_g(test.x, test.y, test.c)
+ if q != test.q || r != test.r {
+ t.Errorf("#%d got (%x, %x) want (%x, %x)", i, q, r, test.q, test.r)
+ }
+ }
+}
+
+var divWWTests = []struct {
+ x1, x0, y Word
+ q, r Word
+}{
+ {_M >> 1, 0, _M, _M >> 1, _M >> 1},
+ {_M - (1 << (_W - 2)), _M, 3 << (_W - 2), _M, _M - (1 << (_W - 2))},
+}
+
+const testsNumber = 1 << 16
+
+func TestDivWW(t *testing.T) {
+ i := 0
+ for i, test := range divWWTests {
+ rec := reciprocalWord(test.y)
+ q, r := divWW(test.x1, test.x0, test.y, rec)
+ if q != test.q || r != test.r {
+ t.Errorf("#%d got (%x, %x) want (%x, %x)", i, q, r, test.q, test.r)
+ }
+ }
+ //random tests
+ for ; i < testsNumber; i++ {
+ x1 := rndW()
+ x0 := rndW()
+ y := rndW()
+ if x1 >= y {
+ continue
+ }
+ rec := reciprocalWord(y)
+ qGot, rGot := divWW(x1, x0, y, rec)
+ qWant, rWant := bits.Div(uint(x1), uint(x0), uint(y))
+ if uint(qGot) != qWant || uint(rGot) != rWant {
+ t.Errorf("#%d got (%x, %x) want (%x, %x)", i, qGot, rGot, qWant, rWant)
+ }
+ }
+}
+
+func BenchmarkMulAddVWW(b *testing.B) {
+ for _, n := range benchSizes {
+ if isRaceBuilder && n > 1e3 {
+ continue
+ }
+ z := make([]Word, n+1)
+ x := rndV(n)
+ y := rndW()
+ r := rndW()
+ b.Run(fmt.Sprint(n), func(b *testing.B) {
+ b.SetBytes(int64(n * _W))
+ for i := 0; i < b.N; i++ {
+ mulAddVWW(z, x, y, r)
+ }
+ })
+ }
+}
+
+func BenchmarkAddMulVVW(b *testing.B) {
+ for _, n := range benchSizes {
+ if isRaceBuilder && n > 1e3 {
+ continue
+ }
+ x := rndV(n)
+ y := rndW()
+ z := make([]Word, n)
+ b.Run(fmt.Sprint(n), func(b *testing.B) {
+ b.SetBytes(int64(n * _W))
+ for i := 0; i < b.N; i++ {
+ addMulVVW(z, x, y)
+ }
+ })
+ }
+}
+func BenchmarkDivWVW(b *testing.B) {
+ for _, n := range benchSizes {
+ if isRaceBuilder && n > 1e3 {
+ continue
+ }
+ x := rndV(n)
+ y := rndW()
+ z := make([]Word, n)
+ b.Run(fmt.Sprint(n), func(b *testing.B) {
+ b.SetBytes(int64(n * _W))
+ for i := 0; i < b.N; i++ {
+ divWVW(z, 0, x, y)
+ }
+ })
+ }
+}
+
+func BenchmarkNonZeroShifts(b *testing.B) {
+ for _, n := range benchSizes {
+ if isRaceBuilder && n > 1e3 {
+ continue
+ }
+ x := rndV(n)
+ s := uint(rand.Int63n(_W-2)) + 1 // avoid 0 and over-large shifts
+ z := make([]Word, n)
+ b.Run(fmt.Sprint(n), func(b *testing.B) {
+ b.SetBytes(int64(n * _W))
+ b.Run("shrVU", func(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ _ = shrVU(z, x, s)
+ }
+ })
+ b.Run("shlVU", func(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ _ = shlVU(z, x, s)
+ }
+ })
+ })
+ }
+}
diff --git a/src/math/big/arith_wasm.s b/src/math/big/arith_wasm.s
new file mode 100644
index 0000000..fd51031
--- /dev/null
+++ b/src/math/big/arith_wasm.s
@@ -0,0 +1,32 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go
+
+#include "textflag.h"
+
+TEXT ·addVV(SB),NOSPLIT,$0
+ JMP ·addVV_g(SB)
+
+TEXT ·subVV(SB),NOSPLIT,$0
+ JMP ·subVV_g(SB)
+
+TEXT ·addVW(SB),NOSPLIT,$0
+ JMP ·addVW_g(SB)
+
+TEXT ·subVW(SB),NOSPLIT,$0
+ JMP ·subVW_g(SB)
+
+TEXT ·shlVU(SB),NOSPLIT,$0
+ JMP ·shlVU_g(SB)
+
+TEXT ·shrVU(SB),NOSPLIT,$0
+ JMP ·shrVU_g(SB)
+
+TEXT ·mulAddVWW(SB),NOSPLIT,$0
+ JMP ·mulAddVWW_g(SB)
+
+TEXT ·addMulVVW(SB),NOSPLIT,$0
+ JMP ·addMulVVW_g(SB)
+
diff --git a/src/math/big/bits_test.go b/src/math/big/bits_test.go
new file mode 100644
index 0000000..985b60b
--- /dev/null
+++ b/src/math/big/bits_test.go
@@ -0,0 +1,224 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements the Bits type used for testing Float operations
+// via an independent (albeit slower) representations for floating-point
+// numbers.
+
+package big
+
+import (
+ "fmt"
+ "sort"
+ "testing"
+)
+
+// A Bits value b represents a finite floating-point number x of the form
+//
+// x = 2**b[0] + 2**b[1] + ... 2**b[len(b)-1]
+//
+// The order of slice elements is not significant. Negative elements may be
+// used to form fractions. A Bits value is normalized if each b[i] occurs at
+// most once. For instance Bits{0, 0, 1} is not normalized but represents the
+// same floating-point number as Bits{2}, which is normalized. The zero (nil)
+// value of Bits is a ready to use Bits value and represents the value 0.
+type Bits []int
+
+func (x Bits) add(y Bits) Bits {
+ return append(x, y...)
+}
+
+func (x Bits) mul(y Bits) Bits {
+ var p Bits
+ for _, x := range x {
+ for _, y := range y {
+ p = append(p, x+y)
+ }
+ }
+ return p
+}
+
+func TestMulBits(t *testing.T) {
+ for _, test := range []struct {
+ x, y, want Bits
+ }{
+ {nil, nil, nil},
+ {Bits{}, Bits{}, nil},
+ {Bits{0}, Bits{0}, Bits{0}},
+ {Bits{0}, Bits{1}, Bits{1}},
+ {Bits{1}, Bits{1, 2, 3}, Bits{2, 3, 4}},
+ {Bits{-1}, Bits{1}, Bits{0}},
+ {Bits{-10, -1, 0, 1, 10}, Bits{1, 2, 3}, Bits{-9, -8, -7, 0, 1, 2, 1, 2, 3, 2, 3, 4, 11, 12, 13}},
+ } {
+ got := fmt.Sprintf("%v", test.x.mul(test.y))
+ want := fmt.Sprintf("%v", test.want)
+ if got != want {
+ t.Errorf("%v * %v = %s; want %s", test.x, test.y, got, want)
+ }
+
+ }
+}
+
+// norm returns the normalized bits for x: It removes multiple equal entries
+// by treating them as an addition (e.g., Bits{5, 5} => Bits{6}), and it sorts
+// the result list for reproducible results.
+func (x Bits) norm() Bits {
+ m := make(map[int]bool)
+ for _, b := range x {
+ for m[b] {
+ m[b] = false
+ b++
+ }
+ m[b] = true
+ }
+ var z Bits
+ for b, set := range m {
+ if set {
+ z = append(z, b)
+ }
+ }
+ sort.Ints([]int(z))
+ return z
+}
+
+func TestNormBits(t *testing.T) {
+ for _, test := range []struct {
+ x, want Bits
+ }{
+ {nil, nil},
+ {Bits{}, Bits{}},
+ {Bits{0}, Bits{0}},
+ {Bits{0, 0}, Bits{1}},
+ {Bits{3, 1, 1}, Bits{2, 3}},
+ {Bits{10, 9, 8, 7, 6, 6}, Bits{11}},
+ } {
+ got := fmt.Sprintf("%v", test.x.norm())
+ want := fmt.Sprintf("%v", test.want)
+ if got != want {
+ t.Errorf("normBits(%v) = %s; want %s", test.x, got, want)
+ }
+
+ }
+}
+
+// round returns the Float value corresponding to x after rounding x
+// to prec bits according to mode.
+func (x Bits) round(prec uint, mode RoundingMode) *Float {
+ x = x.norm()
+
+ // determine range
+ var min, max int
+ for i, b := range x {
+ if i == 0 || b < min {
+ min = b
+ }
+ if i == 0 || b > max {
+ max = b
+ }
+ }
+ prec0 := uint(max + 1 - min)
+ if prec >= prec0 {
+ return x.Float()
+ }
+ // prec < prec0
+
+ // determine bit 0, rounding, and sticky bit, and result bits z
+ var bit0, rbit, sbit uint
+ var z Bits
+ r := max - int(prec)
+ for _, b := range x {
+ switch {
+ case b == r:
+ rbit = 1
+ case b < r:
+ sbit = 1
+ default:
+ // b > r
+ if b == r+1 {
+ bit0 = 1
+ }
+ z = append(z, b)
+ }
+ }
+
+ // round
+ f := z.Float() // rounded to zero
+ if mode == ToNearestAway {
+ panic("not yet implemented")
+ }
+ if mode == ToNearestEven && rbit == 1 && (sbit == 1 || sbit == 0 && bit0 != 0) || mode == AwayFromZero {
+ // round away from zero
+ f.SetMode(ToZero).SetPrec(prec)
+ f.Add(f, Bits{int(r) + 1}.Float())
+ }
+ return f
+}
+
+// Float returns the *Float z of the smallest possible precision such that
+// z = sum(2**bits[i]), with i = range bits. If multiple bits[i] are equal,
+// they are added: Bits{0, 1, 0}.Float() == 2**0 + 2**1 + 2**0 = 4.
+func (bits Bits) Float() *Float {
+ // handle 0
+ if len(bits) == 0 {
+ return new(Float)
+ }
+ // len(bits) > 0
+
+ // determine lsb exponent
+ var min int
+ for i, b := range bits {
+ if i == 0 || b < min {
+ min = b
+ }
+ }
+
+ // create bit pattern
+ x := NewInt(0)
+ for _, b := range bits {
+ badj := b - min
+ // propagate carry if necessary
+ for x.Bit(badj) != 0 {
+ x.SetBit(x, badj, 0)
+ badj++
+ }
+ x.SetBit(x, badj, 1)
+ }
+
+ // create corresponding float
+ z := new(Float).SetInt(x) // normalized
+ if e := int64(z.exp) + int64(min); MinExp <= e && e <= MaxExp {
+ z.exp = int32(e)
+ } else {
+ // this should never happen for our test cases
+ panic("exponent out of range")
+ }
+ return z
+}
+
+func TestFromBits(t *testing.T) {
+ for _, test := range []struct {
+ bits Bits
+ want string
+ }{
+ // all different bit numbers
+ {nil, "0"},
+ {Bits{0}, "0x.8p+1"},
+ {Bits{1}, "0x.8p+2"},
+ {Bits{-1}, "0x.8p+0"},
+ {Bits{63}, "0x.8p+64"},
+ {Bits{33, -30}, "0x.8000000000000001p+34"},
+ {Bits{255, 0}, "0x.8000000000000000000000000000000000000000000000000000000000000001p+256"},
+
+ // multiple equal bit numbers
+ {Bits{0, 0}, "0x.8p+2"},
+ {Bits{0, 0, 0, 0}, "0x.8p+3"},
+ {Bits{0, 1, 0}, "0x.8p+3"},
+ {append(Bits{2, 1, 0} /* 7 */, Bits{3, 1} /* 10 */ ...), "0x.88p+5" /* 17 */},
+ } {
+ f := test.bits.Float()
+ if got := f.Text('p', 0); got != test.want {
+ t.Errorf("setBits(%v) = %s; want %s", test.bits, got, test.want)
+ }
+ }
+}
diff --git a/src/math/big/calibrate_test.go b/src/math/big/calibrate_test.go
new file mode 100644
index 0000000..d85833a
--- /dev/null
+++ b/src/math/big/calibrate_test.go
@@ -0,0 +1,173 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Calibration used to determine thresholds for using
+// different algorithms. Ideally, this would be converted
+// to go generate to create thresholds.go
+
+// This file prints execution times for the Mul benchmark
+// given different Karatsuba thresholds. The result may be
+// used to manually fine-tune the threshold constant. The
+// results are somewhat fragile; use repeated runs to get
+// a clear picture.
+
+// Calculates lower and upper thresholds for when basicSqr
+// is faster than standard multiplication.
+
+// Usage: go test -run='^TestCalibrate$' -v -calibrate
+
+package big
+
+import (
+ "flag"
+ "fmt"
+ "testing"
+ "time"
+)
+
+var calibrate = flag.Bool("calibrate", false, "run calibration test")
+
+const (
+ sqrModeMul = "mul(x, x)"
+ sqrModeBasic = "basicSqr(x)"
+ sqrModeKaratsuba = "karatsubaSqr(x)"
+)
+
+func TestCalibrate(t *testing.T) {
+ if !*calibrate {
+ return
+ }
+
+ computeKaratsubaThresholds()
+
+ // compute basicSqrThreshold where overhead becomes negligible
+ minSqr := computeSqrThreshold(10, 30, 1, 3, sqrModeMul, sqrModeBasic)
+ // compute karatsubaSqrThreshold where karatsuba is faster
+ maxSqr := computeSqrThreshold(200, 500, 10, 3, sqrModeBasic, sqrModeKaratsuba)
+ if minSqr != 0 {
+ fmt.Printf("found basicSqrThreshold = %d\n", minSqr)
+ } else {
+ fmt.Println("no basicSqrThreshold found")
+ }
+ if maxSqr != 0 {
+ fmt.Printf("found karatsubaSqrThreshold = %d\n", maxSqr)
+ } else {
+ fmt.Println("no karatsubaSqrThreshold found")
+ }
+}
+
+func karatsubaLoad(b *testing.B) {
+ BenchmarkMul(b)
+}
+
+// measureKaratsuba returns the time to run a Karatsuba-relevant benchmark
+// given Karatsuba threshold th.
+func measureKaratsuba(th int) time.Duration {
+ th, karatsubaThreshold = karatsubaThreshold, th
+ res := testing.Benchmark(karatsubaLoad)
+ karatsubaThreshold = th
+ return time.Duration(res.NsPerOp())
+}
+
+func computeKaratsubaThresholds() {
+ fmt.Printf("Multiplication times for varying Karatsuba thresholds\n")
+ fmt.Printf("(run repeatedly for good results)\n")
+
+ // determine Tk, the work load execution time using basic multiplication
+ Tb := measureKaratsuba(1e9) // th == 1e9 => Karatsuba multiplication disabled
+ fmt.Printf("Tb = %10s\n", Tb)
+
+ // thresholds
+ th := 4
+ th1 := -1
+ th2 := -1
+
+ var deltaOld time.Duration
+ for count := -1; count != 0 && th < 128; count-- {
+ // determine Tk, the work load execution time using Karatsuba multiplication
+ Tk := measureKaratsuba(th)
+
+ // improvement over Tb
+ delta := (Tb - Tk) * 100 / Tb
+
+ fmt.Printf("th = %3d Tk = %10s %4d%%", th, Tk, delta)
+
+ // determine break-even point
+ if Tk < Tb && th1 < 0 {
+ th1 = th
+ fmt.Print(" break-even point")
+ }
+
+ // determine diminishing return
+ if 0 < delta && delta < deltaOld && th2 < 0 {
+ th2 = th
+ fmt.Print(" diminishing return")
+ }
+ deltaOld = delta
+
+ fmt.Println()
+
+ // trigger counter
+ if th1 >= 0 && th2 >= 0 && count < 0 {
+ count = 10 // this many extra measurements after we got both thresholds
+ }
+
+ th++
+ }
+}
+
+func measureSqr(words, nruns int, mode string) time.Duration {
+ // more runs for better statistics
+ initBasicSqr, initKaratsubaSqr := basicSqrThreshold, karatsubaSqrThreshold
+
+ switch mode {
+ case sqrModeMul:
+ basicSqrThreshold = words + 1
+ case sqrModeBasic:
+ basicSqrThreshold, karatsubaSqrThreshold = words-1, words+1
+ case sqrModeKaratsuba:
+ karatsubaSqrThreshold = words - 1
+ }
+
+ var testval int64
+ for i := 0; i < nruns; i++ {
+ res := testing.Benchmark(func(b *testing.B) { benchmarkNatSqr(b, words) })
+ testval += res.NsPerOp()
+ }
+ testval /= int64(nruns)
+
+ basicSqrThreshold, karatsubaSqrThreshold = initBasicSqr, initKaratsubaSqr
+
+ return time.Duration(testval)
+}
+
+func computeSqrThreshold(from, to, step, nruns int, lower, upper string) int {
+ fmt.Printf("Calibrating threshold between %s and %s\n", lower, upper)
+ fmt.Printf("Looking for a timing difference for x between %d - %d words by %d step\n", from, to, step)
+ var initPos bool
+ var threshold int
+ for i := from; i <= to; i += step {
+ baseline := measureSqr(i, nruns, lower)
+ testval := measureSqr(i, nruns, upper)
+ pos := baseline > testval
+ delta := baseline - testval
+ percent := delta * 100 / baseline
+ fmt.Printf("words = %3d deltaT = %10s (%4d%%) is %s better: %v", i, delta, percent, upper, pos)
+ if i == from {
+ initPos = pos
+ }
+ if threshold == 0 && pos != initPos {
+ threshold = i
+ fmt.Printf(" threshold found")
+ }
+ fmt.Println()
+
+ }
+ if threshold != 0 {
+ fmt.Printf("Found threshold = %d between %d - %d\n", threshold, from, to)
+ } else {
+ fmt.Printf("Found NO threshold between %d - %d\n", from, to)
+ }
+ return threshold
+}
diff --git a/src/math/big/decimal.go b/src/math/big/decimal.go
new file mode 100644
index 0000000..716f03b
--- /dev/null
+++ b/src/math/big/decimal.go
@@ -0,0 +1,270 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements multi-precision decimal numbers.
+// The implementation is for float to decimal conversion only;
+// not general purpose use.
+// The only operations are precise conversion from binary to
+// decimal and rounding.
+//
+// The key observation and some code (shr) is borrowed from
+// strconv/decimal.go: conversion of binary fractional values can be done
+// precisely in multi-precision decimal because 2 divides 10 (required for
+// >> of mantissa); but conversion of decimal floating-point values cannot
+// be done precisely in binary representation.
+//
+// In contrast to strconv/decimal.go, only right shift is implemented in
+// decimal format - left shift can be done precisely in binary format.
+
+package big
+
+// A decimal represents an unsigned floating-point number in decimal representation.
+// The value of a non-zero decimal d is d.mant * 10**d.exp with 0.1 <= d.mant < 1,
+// with the most-significant mantissa digit at index 0. For the zero decimal, the
+// mantissa length and exponent are 0.
+// The zero value for decimal represents a ready-to-use 0.0.
+type decimal struct {
+ mant []byte // mantissa ASCII digits, big-endian
+ exp int // exponent
+}
+
+// at returns the i'th mantissa digit, starting with the most significant digit at 0.
+func (d *decimal) at(i int) byte {
+ if 0 <= i && i < len(d.mant) {
+ return d.mant[i]
+ }
+ return '0'
+}
+
+// Maximum shift amount that can be done in one pass without overflow.
+// A Word has _W bits and (1<<maxShift - 1)*10 + 9 must fit into Word.
+const maxShift = _W - 4
+
+// TODO(gri) Since we know the desired decimal precision when converting
+// a floating-point number, we may be able to limit the number of decimal
+// digits that need to be computed by init by providing an additional
+// precision argument and keeping track of when a number was truncated early
+// (equivalent of "sticky bit" in binary rounding).
+
+// TODO(gri) Along the same lines, enforce some limit to shift magnitudes
+// to avoid "infinitely" long running conversions (until we run out of space).
+
+// Init initializes x to the decimal representation of m << shift (for
+// shift >= 0), or m >> -shift (for shift < 0).
+func (x *decimal) init(m nat, shift int) {
+ // special case 0
+ if len(m) == 0 {
+ x.mant = x.mant[:0]
+ x.exp = 0
+ return
+ }
+
+ // Optimization: If we need to shift right, first remove any trailing
+ // zero bits from m to reduce shift amount that needs to be done in
+ // decimal format (since that is likely slower).
+ if shift < 0 {
+ ntz := m.trailingZeroBits()
+ s := uint(-shift)
+ if s >= ntz {
+ s = ntz // shift at most ntz bits
+ }
+ m = nat(nil).shr(m, s)
+ shift += int(s)
+ }
+
+ // Do any shift left in binary representation.
+ if shift > 0 {
+ m = nat(nil).shl(m, uint(shift))
+ shift = 0
+ }
+
+ // Convert mantissa into decimal representation.
+ s := m.utoa(10)
+ n := len(s)
+ x.exp = n
+ // Trim trailing zeros; instead the exponent is tracking
+ // the decimal point independent of the number of digits.
+ for n > 0 && s[n-1] == '0' {
+ n--
+ }
+ x.mant = append(x.mant[:0], s[:n]...)
+
+ // Do any (remaining) shift right in decimal representation.
+ if shift < 0 {
+ for shift < -maxShift {
+ shr(x, maxShift)
+ shift += maxShift
+ }
+ shr(x, uint(-shift))
+ }
+}
+
+// shr implements x >> s, for s <= maxShift.
+func shr(x *decimal, s uint) {
+ // Division by 1<<s using shift-and-subtract algorithm.
+
+ // pick up enough leading digits to cover first shift
+ r := 0 // read index
+ var n Word
+ for n>>s == 0 && r < len(x.mant) {
+ ch := Word(x.mant[r])
+ r++
+ n = n*10 + ch - '0'
+ }
+ if n == 0 {
+ // x == 0; shouldn't get here, but handle anyway
+ x.mant = x.mant[:0]
+ return
+ }
+ for n>>s == 0 {
+ r++
+ n *= 10
+ }
+ x.exp += 1 - r
+
+ // read a digit, write a digit
+ w := 0 // write index
+ mask := Word(1)<<s - 1
+ for r < len(x.mant) {
+ ch := Word(x.mant[r])
+ r++
+ d := n >> s
+ n &= mask // n -= d << s
+ x.mant[w] = byte(d + '0')
+ w++
+ n = n*10 + ch - '0'
+ }
+
+ // write extra digits that still fit
+ for n > 0 && w < len(x.mant) {
+ d := n >> s
+ n &= mask
+ x.mant[w] = byte(d + '0')
+ w++
+ n = n * 10
+ }
+ x.mant = x.mant[:w] // the number may be shorter (e.g. 1024 >> 10)
+
+ // append additional digits that didn't fit
+ for n > 0 {
+ d := n >> s
+ n &= mask
+ x.mant = append(x.mant, byte(d+'0'))
+ n = n * 10
+ }
+
+ trim(x)
+}
+
+func (x *decimal) String() string {
+ if len(x.mant) == 0 {
+ return "0"
+ }
+
+ var buf []byte
+ switch {
+ case x.exp <= 0:
+ // 0.00ddd
+ buf = make([]byte, 0, 2+(-x.exp)+len(x.mant))
+ buf = append(buf, "0."...)
+ buf = appendZeros(buf, -x.exp)
+ buf = append(buf, x.mant...)
+
+ case /* 0 < */ x.exp < len(x.mant):
+ // dd.ddd
+ buf = make([]byte, 0, 1+len(x.mant))
+ buf = append(buf, x.mant[:x.exp]...)
+ buf = append(buf, '.')
+ buf = append(buf, x.mant[x.exp:]...)
+
+ default: // len(x.mant) <= x.exp
+ // ddd00
+ buf = make([]byte, 0, x.exp)
+ buf = append(buf, x.mant...)
+ buf = appendZeros(buf, x.exp-len(x.mant))
+ }
+
+ return string(buf)
+}
+
+// appendZeros appends n 0 digits to buf and returns buf.
+func appendZeros(buf []byte, n int) []byte {
+ for ; n > 0; n-- {
+ buf = append(buf, '0')
+ }
+ return buf
+}
+
+// shouldRoundUp reports if x should be rounded up
+// if shortened to n digits. n must be a valid index
+// for x.mant.
+func shouldRoundUp(x *decimal, n int) bool {
+ if x.mant[n] == '5' && n+1 == len(x.mant) {
+ // exactly halfway - round to even
+ return n > 0 && (x.mant[n-1]-'0')&1 != 0
+ }
+ // not halfway - digit tells all (x.mant has no trailing zeros)
+ return x.mant[n] >= '5'
+}
+
+// round sets x to (at most) n mantissa digits by rounding it
+// to the nearest even value with n (or fever) mantissa digits.
+// If n < 0, x remains unchanged.
+func (x *decimal) round(n int) {
+ if n < 0 || n >= len(x.mant) {
+ return // nothing to do
+ }
+
+ if shouldRoundUp(x, n) {
+ x.roundUp(n)
+ } else {
+ x.roundDown(n)
+ }
+}
+
+func (x *decimal) roundUp(n int) {
+ if n < 0 || n >= len(x.mant) {
+ return // nothing to do
+ }
+ // 0 <= n < len(x.mant)
+
+ // find first digit < '9'
+ for n > 0 && x.mant[n-1] >= '9' {
+ n--
+ }
+
+ if n == 0 {
+ // all digits are '9's => round up to '1' and update exponent
+ x.mant[0] = '1' // ok since len(x.mant) > n
+ x.mant = x.mant[:1]
+ x.exp++
+ return
+ }
+
+ // n > 0 && x.mant[n-1] < '9'
+ x.mant[n-1]++
+ x.mant = x.mant[:n]
+ // x already trimmed
+}
+
+func (x *decimal) roundDown(n int) {
+ if n < 0 || n >= len(x.mant) {
+ return // nothing to do
+ }
+ x.mant = x.mant[:n]
+ trim(x)
+}
+
+// trim cuts off any trailing zeros from x's mantissa;
+// they are meaningless for the value of x.
+func trim(x *decimal) {
+ i := len(x.mant)
+ for i > 0 && x.mant[i-1] == '0' {
+ i--
+ }
+ x.mant = x.mant[:i]
+ if i == 0 {
+ x.exp = 0
+ }
+}
diff --git a/src/math/big/decimal_test.go b/src/math/big/decimal_test.go
new file mode 100644
index 0000000..424811e
--- /dev/null
+++ b/src/math/big/decimal_test.go
@@ -0,0 +1,134 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "fmt"
+ "testing"
+)
+
+func TestDecimalString(t *testing.T) {
+ for _, test := range []struct {
+ x decimal
+ want string
+ }{
+ {want: "0"},
+ {decimal{nil, 1000}, "0"}, // exponent of 0 is ignored
+ {decimal{[]byte("12345"), 0}, "0.12345"},
+ {decimal{[]byte("12345"), -3}, "0.00012345"},
+ {decimal{[]byte("12345"), +3}, "123.45"},
+ {decimal{[]byte("12345"), +10}, "1234500000"},
+ } {
+ if got := test.x.String(); got != test.want {
+ t.Errorf("%v == %s; want %s", test.x, got, test.want)
+ }
+ }
+}
+
+func TestDecimalInit(t *testing.T) {
+ for _, test := range []struct {
+ x Word
+ shift int
+ want string
+ }{
+ {0, 0, "0"},
+ {0, -100, "0"},
+ {0, 100, "0"},
+ {1, 0, "1"},
+ {1, 10, "1024"},
+ {1, 100, "1267650600228229401496703205376"},
+ {1, -100, "0.0000000000000000000000000000007888609052210118054117285652827862296732064351090230047702789306640625"},
+ {12345678, 8, "3160493568"},
+ {12345678, -8, "48225.3046875"},
+ {195312, 9, "99999744"},
+ {1953125, 9, "1000000000"},
+ } {
+ var d decimal
+ d.init(nat{test.x}.norm(), test.shift)
+ if got := d.String(); got != test.want {
+ t.Errorf("%d << %d == %s; want %s", test.x, test.shift, got, test.want)
+ }
+ }
+}
+
+func TestDecimalRounding(t *testing.T) {
+ for _, test := range []struct {
+ x uint64
+ n int
+ down, even, up string
+ }{
+ {0, 0, "0", "0", "0"},
+ {0, 1, "0", "0", "0"},
+
+ {1, 0, "0", "0", "10"},
+ {5, 0, "0", "0", "10"},
+ {9, 0, "0", "10", "10"},
+
+ {15, 1, "10", "20", "20"},
+ {45, 1, "40", "40", "50"},
+ {95, 1, "90", "100", "100"},
+
+ {12344999, 4, "12340000", "12340000", "12350000"},
+ {12345000, 4, "12340000", "12340000", "12350000"},
+ {12345001, 4, "12340000", "12350000", "12350000"},
+ {23454999, 4, "23450000", "23450000", "23460000"},
+ {23455000, 4, "23450000", "23460000", "23460000"},
+ {23455001, 4, "23450000", "23460000", "23460000"},
+
+ {99994999, 4, "99990000", "99990000", "100000000"},
+ {99995000, 4, "99990000", "100000000", "100000000"},
+ {99999999, 4, "99990000", "100000000", "100000000"},
+
+ {12994999, 4, "12990000", "12990000", "13000000"},
+ {12995000, 4, "12990000", "13000000", "13000000"},
+ {12999999, 4, "12990000", "13000000", "13000000"},
+ } {
+ x := nat(nil).setUint64(test.x)
+
+ var d decimal
+ d.init(x, 0)
+ d.roundDown(test.n)
+ if got := d.String(); got != test.down {
+ t.Errorf("roundDown(%d, %d) = %s; want %s", test.x, test.n, got, test.down)
+ }
+
+ d.init(x, 0)
+ d.round(test.n)
+ if got := d.String(); got != test.even {
+ t.Errorf("round(%d, %d) = %s; want %s", test.x, test.n, got, test.even)
+ }
+
+ d.init(x, 0)
+ d.roundUp(test.n)
+ if got := d.String(); got != test.up {
+ t.Errorf("roundUp(%d, %d) = %s; want %s", test.x, test.n, got, test.up)
+ }
+ }
+}
+
+var sink string
+
+func BenchmarkDecimalConversion(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ for shift := -100; shift <= +100; shift++ {
+ var d decimal
+ d.init(natOne, shift)
+ sink = d.String()
+ }
+ }
+}
+
+func BenchmarkFloatString(b *testing.B) {
+ x := new(Float)
+ for _, prec := range []uint{1e2, 1e3, 1e4, 1e5} {
+ x.SetPrec(prec).SetRat(NewRat(1, 3))
+ b.Run(fmt.Sprintf("%v", prec), func(b *testing.B) {
+ b.ReportAllocs()
+ for i := 0; i < b.N; i++ {
+ sink = x.String()
+ }
+ })
+ }
+}
diff --git a/src/math/big/doc.go b/src/math/big/doc.go
new file mode 100644
index 0000000..2038546
--- /dev/null
+++ b/src/math/big/doc.go
@@ -0,0 +1,98 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+/*
+Package big implements arbitrary-precision arithmetic (big numbers).
+The following numeric types are supported:
+
+ Int signed integers
+ Rat rational numbers
+ Float floating-point numbers
+
+The zero value for an [Int], [Rat], or [Float] correspond to 0. Thus, new
+values can be declared in the usual ways and denote 0 without further
+initialization:
+
+ var x Int // &x is an *Int of value 0
+ var r = &Rat{} // r is a *Rat of value 0
+ y := new(Float) // y is a *Float of value 0
+
+Alternatively, new values can be allocated and initialized with factory
+functions of the form:
+
+ func NewT(v V) *T
+
+For instance, [NewInt](x) returns an *[Int] set to the value of the int64
+argument x, [NewRat](a, b) returns a *[Rat] set to the fraction a/b where
+a and b are int64 values, and [NewFloat](f) returns a *[Float] initialized
+to the float64 argument f. More flexibility is provided with explicit
+setters, for instance:
+
+ var z1 Int
+ z1.SetUint64(123) // z1 := 123
+ z2 := new(Rat).SetFloat64(1.25) // z2 := 5/4
+ z3 := new(Float).SetInt(z1) // z3 := 123.0
+
+Setters, numeric operations and predicates are represented as methods of
+the form:
+
+ func (z *T) SetV(v V) *T // z = v
+ func (z *T) Unary(x *T) *T // z = unary x
+ func (z *T) Binary(x, y *T) *T // z = x binary y
+ func (x *T) Pred() P // p = pred(x)
+
+with T one of [Int], [Rat], or [Float]. For unary and binary operations, the
+result is the receiver (usually named z in that case; see below); if it
+is one of the operands x or y it may be safely overwritten (and its memory
+reused).
+
+Arithmetic expressions are typically written as a sequence of individual
+method calls, with each call corresponding to an operation. The receiver
+denotes the result and the method arguments are the operation's operands.
+For instance, given three *Int values a, b and c, the invocation
+
+ c.Add(a, b)
+
+computes the sum a + b and stores the result in c, overwriting whatever
+value was held in c before. Unless specified otherwise, operations permit
+aliasing of parameters, so it is perfectly ok to write
+
+ sum.Add(sum, x)
+
+to accumulate values x in a sum.
+
+(By always passing in a result value via the receiver, memory use can be
+much better controlled. Instead of having to allocate new memory for each
+result, an operation can reuse the space allocated for the result value,
+and overwrite that value with the new result in the process.)
+
+Notational convention: Incoming method parameters (including the receiver)
+are named consistently in the API to clarify their use. Incoming operands
+are usually named x, y, a, b, and so on, but never z. A parameter specifying
+the result is named z (typically the receiver).
+
+For instance, the arguments for (*Int).Add are named x and y, and because
+the receiver specifies the result destination, it is called z:
+
+ func (z *Int) Add(x, y *Int) *Int
+
+Methods of this form typically return the incoming receiver as well, to
+enable simple call chaining.
+
+Methods which don't require a result value to be passed in (for instance,
+[Int.Sign]), simply return the result. In this case, the receiver is typically
+the first operand, named x:
+
+ func (x *Int) Sign() int
+
+Various methods support conversions between strings and corresponding
+numeric values, and vice versa: *[Int], *[Rat], and *[Float] values implement
+the Stringer interface for a (default) string representation of the value,
+but also provide SetString methods to initialize a value from a string in
+a variety of supported formats (see the respective SetString documentation).
+
+Finally, *[Int], *[Rat], and *[Float] satisfy [fmt.Scanner] for scanning
+and (except for *[Rat]) the Formatter interface for formatted printing.
+*/
+package big
diff --git a/src/math/big/example_rat_test.go b/src/math/big/example_rat_test.go
new file mode 100644
index 0000000..dc67430
--- /dev/null
+++ b/src/math/big/example_rat_test.go
@@ -0,0 +1,68 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big_test
+
+import (
+ "fmt"
+ "math/big"
+)
+
+// Use the classic continued fraction for e
+//
+// e = [1; 0, 1, 1, 2, 1, 1, ... 2n, 1, 1, ...]
+//
+// i.e., for the nth term, use
+//
+// 1 if n mod 3 != 1
+// (n-1)/3 * 2 if n mod 3 == 1
+func recur(n, lim int64) *big.Rat {
+ term := new(big.Rat)
+ if n%3 != 1 {
+ term.SetInt64(1)
+ } else {
+ term.SetInt64((n - 1) / 3 * 2)
+ }
+
+ if n > lim {
+ return term
+ }
+
+ // Directly initialize frac as the fractional
+ // inverse of the result of recur.
+ frac := new(big.Rat).Inv(recur(n+1, lim))
+
+ return term.Add(term, frac)
+}
+
+// This example demonstrates how to use big.Rat to compute the
+// first 15 terms in the sequence of rational convergents for
+// the constant e (base of natural logarithm).
+func Example_eConvergents() {
+ for i := 1; i <= 15; i++ {
+ r := recur(0, int64(i))
+
+ // Print r both as a fraction and as a floating-point number.
+ // Since big.Rat implements fmt.Formatter, we can use %-13s to
+ // get a left-aligned string representation of the fraction.
+ fmt.Printf("%-13s = %s\n", r, r.FloatString(8))
+ }
+
+ // Output:
+ // 2/1 = 2.00000000
+ // 3/1 = 3.00000000
+ // 8/3 = 2.66666667
+ // 11/4 = 2.75000000
+ // 19/7 = 2.71428571
+ // 87/32 = 2.71875000
+ // 106/39 = 2.71794872
+ // 193/71 = 2.71830986
+ // 1264/465 = 2.71827957
+ // 1457/536 = 2.71828358
+ // 2721/1001 = 2.71828172
+ // 23225/8544 = 2.71828184
+ // 25946/9545 = 2.71828182
+ // 49171/18089 = 2.71828183
+ // 517656/190435 = 2.71828183
+}
diff --git a/src/math/big/example_test.go b/src/math/big/example_test.go
new file mode 100644
index 0000000..31ca784
--- /dev/null
+++ b/src/math/big/example_test.go
@@ -0,0 +1,148 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big_test
+
+import (
+ "fmt"
+ "log"
+ "math"
+ "math/big"
+)
+
+func ExampleRat_SetString() {
+ r := new(big.Rat)
+ r.SetString("355/113")
+ fmt.Println(r.FloatString(3))
+ // Output: 3.142
+}
+
+func ExampleInt_SetString() {
+ i := new(big.Int)
+ i.SetString("644", 8) // octal
+ fmt.Println(i)
+ // Output: 420
+}
+
+func ExampleFloat_SetString() {
+ f := new(big.Float)
+ f.SetString("3.14159")
+ fmt.Println(f)
+ // Output: 3.14159
+}
+
+func ExampleRat_Scan() {
+ // The Scan function is rarely used directly;
+ // the fmt package recognizes it as an implementation of fmt.Scanner.
+ r := new(big.Rat)
+ _, err := fmt.Sscan("1.5000", r)
+ if err != nil {
+ log.Println("error scanning value:", err)
+ } else {
+ fmt.Println(r)
+ }
+ // Output: 3/2
+}
+
+func ExampleInt_Scan() {
+ // The Scan function is rarely used directly;
+ // the fmt package recognizes it as an implementation of fmt.Scanner.
+ i := new(big.Int)
+ _, err := fmt.Sscan("18446744073709551617", i)
+ if err != nil {
+ log.Println("error scanning value:", err)
+ } else {
+ fmt.Println(i)
+ }
+ // Output: 18446744073709551617
+}
+
+func ExampleFloat_Scan() {
+ // The Scan function is rarely used directly;
+ // the fmt package recognizes it as an implementation of fmt.Scanner.
+ f := new(big.Float)
+ _, err := fmt.Sscan("1.19282e99", f)
+ if err != nil {
+ log.Println("error scanning value:", err)
+ } else {
+ fmt.Println(f)
+ }
+ // Output: 1.19282e+99
+}
+
+// This example demonstrates how to use big.Int to compute the smallest
+// Fibonacci number with 100 decimal digits and to test whether it is prime.
+func Example_fibonacci() {
+ // Initialize two big ints with the first two numbers in the sequence.
+ a := big.NewInt(0)
+ b := big.NewInt(1)
+
+ // Initialize limit as 10^99, the smallest integer with 100 digits.
+ var limit big.Int
+ limit.Exp(big.NewInt(10), big.NewInt(99), nil)
+
+ // Loop while a is smaller than 1e100.
+ for a.Cmp(&limit) < 0 {
+ // Compute the next Fibonacci number, storing it in a.
+ a.Add(a, b)
+ // Swap a and b so that b is the next number in the sequence.
+ a, b = b, a
+ }
+ fmt.Println(a) // 100-digit Fibonacci number
+
+ // Test a for primality.
+ // (ProbablyPrimes' argument sets the number of Miller-Rabin
+ // rounds to be performed. 20 is a good value.)
+ fmt.Println(a.ProbablyPrime(20))
+
+ // Output:
+ // 1344719667586153181419716641724567886890850696275767987106294472017884974410332069524504824747437757
+ // false
+}
+
+// This example shows how to use big.Float to compute the square root of 2 with
+// a precision of 200 bits, and how to print the result as a decimal number.
+func Example_sqrt2() {
+ // We'll do computations with 200 bits of precision in the mantissa.
+ const prec = 200
+
+ // Compute the square root of 2 using Newton's Method. We start with
+ // an initial estimate for sqrt(2), and then iterate:
+ // x_{n+1} = 1/2 * ( x_n + (2.0 / x_n) )
+
+ // Since Newton's Method doubles the number of correct digits at each
+ // iteration, we need at least log_2(prec) steps.
+ steps := int(math.Log2(prec))
+
+ // Initialize values we need for the computation.
+ two := new(big.Float).SetPrec(prec).SetInt64(2)
+ half := new(big.Float).SetPrec(prec).SetFloat64(0.5)
+
+ // Use 1 as the initial estimate.
+ x := new(big.Float).SetPrec(prec).SetInt64(1)
+
+ // We use t as a temporary variable. There's no need to set its precision
+ // since big.Float values with unset (== 0) precision automatically assume
+ // the largest precision of the arguments when used as the result (receiver)
+ // of a big.Float operation.
+ t := new(big.Float)
+
+ // Iterate.
+ for i := 0; i <= steps; i++ {
+ t.Quo(two, x) // t = 2.0 / x_n
+ t.Add(x, t) // t = x_n + (2.0 / x_n)
+ x.Mul(half, t) // x_{n+1} = 0.5 * t
+ }
+
+ // We can use the usual fmt.Printf verbs since big.Float implements fmt.Formatter
+ fmt.Printf("sqrt(2) = %.50f\n", x)
+
+ // Print the error between 2 and x*x.
+ t.Mul(x, x) // t = x*x
+ fmt.Printf("error = %e\n", t.Sub(two, t))
+
+ // Output:
+ // sqrt(2) = 1.41421356237309504880168872420969807856967187537695
+ // error = 0.000000e+00
+}
diff --git a/src/math/big/float.go b/src/math/big/float.go
new file mode 100644
index 0000000..1c97ec9
--- /dev/null
+++ b/src/math/big/float.go
@@ -0,0 +1,1736 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements multi-precision floating-point numbers.
+// Like in the GNU MPFR library (https://www.mpfr.org/), operands
+// can be of mixed precision. Unlike MPFR, the rounding mode is
+// not specified with each operation, but with each operand. The
+// rounding mode of the result operand determines the rounding
+// mode of an operation. This is a from-scratch implementation.
+
+package big
+
+import (
+ "fmt"
+ "math"
+ "math/bits"
+)
+
+const debugFloat = false // enable for debugging
+
+// A nonzero finite Float represents a multi-precision floating point number
+//
+// sign × mantissa × 2**exponent
+//
+// with 0.5 <= mantissa < 1.0, and MinExp <= exponent <= MaxExp.
+// A Float may also be zero (+0, -0) or infinite (+Inf, -Inf).
+// All Floats are ordered, and the ordering of two Floats x and y
+// is defined by x.Cmp(y).
+//
+// Each Float value also has a precision, rounding mode, and accuracy.
+// The precision is the maximum number of mantissa bits available to
+// represent the value. The rounding mode specifies how a result should
+// be rounded to fit into the mantissa bits, and accuracy describes the
+// rounding error with respect to the exact result.
+//
+// Unless specified otherwise, all operations (including setters) that
+// specify a *Float variable for the result (usually via the receiver
+// with the exception of [Float.MantExp]), round the numeric result according
+// to the precision and rounding mode of the result variable.
+//
+// If the provided result precision is 0 (see below), it is set to the
+// precision of the argument with the largest precision value before any
+// rounding takes place, and the rounding mode remains unchanged. Thus,
+// uninitialized Floats provided as result arguments will have their
+// precision set to a reasonable value determined by the operands, and
+// their mode is the zero value for RoundingMode (ToNearestEven).
+//
+// By setting the desired precision to 24 or 53 and using matching rounding
+// mode (typically [ToNearestEven]), Float operations produce the same results
+// as the corresponding float32 or float64 IEEE-754 arithmetic for operands
+// that correspond to normal (i.e., not denormal) float32 or float64 numbers.
+// Exponent underflow and overflow lead to a 0 or an Infinity for different
+// values than IEEE-754 because Float exponents have a much larger range.
+//
+// The zero (uninitialized) value for a Float is ready to use and represents
+// the number +0.0 exactly, with precision 0 and rounding mode [ToNearestEven].
+//
+// Operations always take pointer arguments (*Float) rather
+// than Float values, and each unique Float value requires
+// its own unique *Float pointer. To "copy" a Float value,
+// an existing (or newly allocated) Float must be set to
+// a new value using the [Float.Set] method; shallow copies
+// of Floats are not supported and may lead to errors.
+type Float struct {
+ prec uint32
+ mode RoundingMode
+ acc Accuracy
+ form form
+ neg bool
+ mant nat
+ exp int32
+}
+
+// An ErrNaN panic is raised by a [Float] operation that would lead to
+// a NaN under IEEE-754 rules. An ErrNaN implements the error interface.
+type ErrNaN struct {
+ msg string
+}
+
+func (err ErrNaN) Error() string {
+ return err.msg
+}
+
+// NewFloat allocates and returns a new [Float] set to x,
+// with precision 53 and rounding mode [ToNearestEven].
+// NewFloat panics with [ErrNaN] if x is a NaN.
+func NewFloat(x float64) *Float {
+ if math.IsNaN(x) {
+ panic(ErrNaN{"NewFloat(NaN)"})
+ }
+ return new(Float).SetFloat64(x)
+}
+
+// Exponent and precision limits.
+const (
+ MaxExp = math.MaxInt32 // largest supported exponent
+ MinExp = math.MinInt32 // smallest supported exponent
+ MaxPrec = math.MaxUint32 // largest (theoretically) supported precision; likely memory-limited
+)
+
+// Internal representation: The mantissa bits x.mant of a nonzero finite
+// Float x are stored in a nat slice long enough to hold up to x.prec bits;
+// the slice may (but doesn't have to) be shorter if the mantissa contains
+// trailing 0 bits. x.mant is normalized if the msb of x.mant == 1 (i.e.,
+// the msb is shifted all the way "to the left"). Thus, if the mantissa has
+// trailing 0 bits or x.prec is not a multiple of the Word size _W,
+// x.mant[0] has trailing zero bits. The msb of the mantissa corresponds
+// to the value 0.5; the exponent x.exp shifts the binary point as needed.
+//
+// A zero or non-finite Float x ignores x.mant and x.exp.
+//
+// x form neg mant exp
+// ----------------------------------------------------------
+// ±0 zero sign - -
+// 0 < |x| < +Inf finite sign mantissa exponent
+// ±Inf inf sign - -
+
+// A form value describes the internal representation.
+type form byte
+
+// The form value order is relevant - do not change!
+const (
+ zero form = iota
+ finite
+ inf
+)
+
+// RoundingMode determines how a [Float] value is rounded to the
+// desired precision. Rounding may change the [Float] value; the
+// rounding error is described by the [Float]'s [Accuracy].
+type RoundingMode byte
+
+// These constants define supported rounding modes.
+const (
+ ToNearestEven RoundingMode = iota // == IEEE 754-2008 roundTiesToEven
+ ToNearestAway // == IEEE 754-2008 roundTiesToAway
+ ToZero // == IEEE 754-2008 roundTowardZero
+ AwayFromZero // no IEEE 754-2008 equivalent
+ ToNegativeInf // == IEEE 754-2008 roundTowardNegative
+ ToPositiveInf // == IEEE 754-2008 roundTowardPositive
+)
+
+//go:generate stringer -type=RoundingMode
+
+// Accuracy describes the rounding error produced by the most recent
+// operation that generated a [Float] value, relative to the exact value.
+type Accuracy int8
+
+// Constants describing the [Accuracy] of a [Float].
+const (
+ Below Accuracy = -1
+ Exact Accuracy = 0
+ Above Accuracy = +1
+)
+
+//go:generate stringer -type=Accuracy
+
+// SetPrec sets z's precision to prec and returns the (possibly) rounded
+// value of z. Rounding occurs according to z's rounding mode if the mantissa
+// cannot be represented in prec bits without loss of precision.
+// SetPrec(0) maps all finite values to ±0; infinite values remain unchanged.
+// If prec > [MaxPrec], it is set to [MaxPrec].
+func (z *Float) SetPrec(prec uint) *Float {
+ z.acc = Exact // optimistically assume no rounding is needed
+
+ // special case
+ if prec == 0 {
+ z.prec = 0
+ if z.form == finite {
+ // truncate z to 0
+ z.acc = makeAcc(z.neg)
+ z.form = zero
+ }
+ return z
+ }
+
+ // general case
+ if prec > MaxPrec {
+ prec = MaxPrec
+ }
+ old := z.prec
+ z.prec = uint32(prec)
+ if z.prec < old {
+ z.round(0)
+ }
+ return z
+}
+
+func makeAcc(above bool) Accuracy {
+ if above {
+ return Above
+ }
+ return Below
+}
+
+// SetMode sets z's rounding mode to mode and returns an exact z.
+// z remains unchanged otherwise.
+// z.SetMode(z.Mode()) is a cheap way to set z's accuracy to [Exact].
+func (z *Float) SetMode(mode RoundingMode) *Float {
+ z.mode = mode
+ z.acc = Exact
+ return z
+}
+
+// Prec returns the mantissa precision of x in bits.
+// The result may be 0 for |x| == 0 and |x| == Inf.
+func (x *Float) Prec() uint {
+ return uint(x.prec)
+}
+
+// MinPrec returns the minimum precision required to represent x exactly
+// (i.e., the smallest prec before x.SetPrec(prec) would start rounding x).
+// The result is 0 for |x| == 0 and |x| == Inf.
+func (x *Float) MinPrec() uint {
+ if x.form != finite {
+ return 0
+ }
+ return uint(len(x.mant))*_W - x.mant.trailingZeroBits()
+}
+
+// Mode returns the rounding mode of x.
+func (x *Float) Mode() RoundingMode {
+ return x.mode
+}
+
+// Acc returns the accuracy of x produced by the most recent
+// operation, unless explicitly documented otherwise by that
+// operation.
+func (x *Float) Acc() Accuracy {
+ return x.acc
+}
+
+// Sign returns:
+//
+// -1 if x < 0
+// 0 if x is ±0
+// +1 if x > 0
+func (x *Float) Sign() int {
+ if debugFloat {
+ x.validate()
+ }
+ if x.form == zero {
+ return 0
+ }
+ if x.neg {
+ return -1
+ }
+ return 1
+}
+
+// MantExp breaks x into its mantissa and exponent components
+// and returns the exponent. If a non-nil mant argument is
+// provided its value is set to the mantissa of x, with the
+// same precision and rounding mode as x. The components
+// satisfy x == mant × 2**exp, with 0.5 <= |mant| < 1.0.
+// Calling MantExp with a nil argument is an efficient way to
+// get the exponent of the receiver.
+//
+// Special cases are:
+//
+// ( ±0).MantExp(mant) = 0, with mant set to ±0
+// (±Inf).MantExp(mant) = 0, with mant set to ±Inf
+//
+// x and mant may be the same in which case x is set to its
+// mantissa value.
+func (x *Float) MantExp(mant *Float) (exp int) {
+ if debugFloat {
+ x.validate()
+ }
+ if x.form == finite {
+ exp = int(x.exp)
+ }
+ if mant != nil {
+ mant.Copy(x)
+ if mant.form == finite {
+ mant.exp = 0
+ }
+ }
+ return
+}
+
+func (z *Float) setExpAndRound(exp int64, sbit uint) {
+ if exp < MinExp {
+ // underflow
+ z.acc = makeAcc(z.neg)
+ z.form = zero
+ return
+ }
+
+ if exp > MaxExp {
+ // overflow
+ z.acc = makeAcc(!z.neg)
+ z.form = inf
+ return
+ }
+
+ z.form = finite
+ z.exp = int32(exp)
+ z.round(sbit)
+}
+
+// SetMantExp sets z to mant × 2**exp and returns z.
+// The result z has the same precision and rounding mode
+// as mant. SetMantExp is an inverse of [Float.MantExp] but does
+// not require 0.5 <= |mant| < 1.0. Specifically, for a
+// given x of type *[Float], SetMantExp relates to [Float.MantExp]
+// as follows:
+//
+// mant := new(Float)
+// new(Float).SetMantExp(mant, x.MantExp(mant)).Cmp(x) == 0
+//
+// Special cases are:
+//
+// z.SetMantExp( ±0, exp) = ±0
+// z.SetMantExp(±Inf, exp) = ±Inf
+//
+// z and mant may be the same in which case z's exponent
+// is set to exp.
+func (z *Float) SetMantExp(mant *Float, exp int) *Float {
+ if debugFloat {
+ z.validate()
+ mant.validate()
+ }
+ z.Copy(mant)
+
+ if z.form == finite {
+ // 0 < |mant| < +Inf
+ z.setExpAndRound(int64(z.exp)+int64(exp), 0)
+ }
+ return z
+}
+
+// Signbit reports whether x is negative or negative zero.
+func (x *Float) Signbit() bool {
+ return x.neg
+}
+
+// IsInf reports whether x is +Inf or -Inf.
+func (x *Float) IsInf() bool {
+ return x.form == inf
+}
+
+// IsInt reports whether x is an integer.
+// ±Inf values are not integers.
+func (x *Float) IsInt() bool {
+ if debugFloat {
+ x.validate()
+ }
+ // special cases
+ if x.form != finite {
+ return x.form == zero
+ }
+ // x.form == finite
+ if x.exp <= 0 {
+ return false
+ }
+ // x.exp > 0
+ return x.prec <= uint32(x.exp) || x.MinPrec() <= uint(x.exp) // not enough bits for fractional mantissa
+}
+
+// debugging support
+func (x *Float) validate() {
+ if !debugFloat {
+ // avoid performance bugs
+ panic("validate called but debugFloat is not set")
+ }
+ if msg := x.validate0(); msg != "" {
+ panic(msg)
+ }
+}
+
+func (x *Float) validate0() string {
+ if x.form != finite {
+ return ""
+ }
+ m := len(x.mant)
+ if m == 0 {
+ return "nonzero finite number with empty mantissa"
+ }
+ const msb = 1 << (_W - 1)
+ if x.mant[m-1]&msb == 0 {
+ return fmt.Sprintf("msb not set in last word %#x of %s", x.mant[m-1], x.Text('p', 0))
+ }
+ if x.prec == 0 {
+ return "zero precision finite number"
+ }
+ return ""
+}
+
+// round rounds z according to z.mode to z.prec bits and sets z.acc accordingly.
+// sbit must be 0 or 1 and summarizes any "sticky bit" information one might
+// have before calling round. z's mantissa must be normalized (with the msb set)
+// or empty.
+//
+// CAUTION: The rounding modes ToNegativeInf, ToPositiveInf are affected by the
+// sign of z. For correct rounding, the sign of z must be set correctly before
+// calling round.
+func (z *Float) round(sbit uint) {
+ if debugFloat {
+ z.validate()
+ }
+
+ z.acc = Exact
+ if z.form != finite {
+ // ±0 or ±Inf => nothing left to do
+ return
+ }
+ // z.form == finite && len(z.mant) > 0
+ // m > 0 implies z.prec > 0 (checked by validate)
+
+ m := uint32(len(z.mant)) // present mantissa length in words
+ bits := m * _W // present mantissa bits; bits > 0
+ if bits <= z.prec {
+ // mantissa fits => nothing to do
+ return
+ }
+ // bits > z.prec
+
+ // Rounding is based on two bits: the rounding bit (rbit) and the
+ // sticky bit (sbit). The rbit is the bit immediately before the
+ // z.prec leading mantissa bits (the "0.5"). The sbit is set if any
+ // of the bits before the rbit are set (the "0.25", "0.125", etc.):
+ //
+ // rbit sbit => "fractional part"
+ //
+ // 0 0 == 0
+ // 0 1 > 0 , < 0.5
+ // 1 0 == 0.5
+ // 1 1 > 0.5, < 1.0
+
+ // bits > z.prec: mantissa too large => round
+ r := uint(bits - z.prec - 1) // rounding bit position; r >= 0
+ rbit := z.mant.bit(r) & 1 // rounding bit; be safe and ensure it's a single bit
+ // The sticky bit is only needed for rounding ToNearestEven
+ // or when the rounding bit is zero. Avoid computation otherwise.
+ if sbit == 0 && (rbit == 0 || z.mode == ToNearestEven) {
+ sbit = z.mant.sticky(r)
+ }
+ sbit &= 1 // be safe and ensure it's a single bit
+
+ // cut off extra words
+ n := (z.prec + (_W - 1)) / _W // mantissa length in words for desired precision
+ if m > n {
+ copy(z.mant, z.mant[m-n:]) // move n last words to front
+ z.mant = z.mant[:n]
+ }
+
+ // determine number of trailing zero bits (ntz) and compute lsb mask of mantissa's least-significant word
+ ntz := n*_W - z.prec // 0 <= ntz < _W
+ lsb := Word(1) << ntz
+
+ // round if result is inexact
+ if rbit|sbit != 0 {
+ // Make rounding decision: The result mantissa is truncated ("rounded down")
+ // by default. Decide if we need to increment, or "round up", the (unsigned)
+ // mantissa.
+ inc := false
+ switch z.mode {
+ case ToNegativeInf:
+ inc = z.neg
+ case ToZero:
+ // nothing to do
+ case ToNearestEven:
+ inc = rbit != 0 && (sbit != 0 || z.mant[0]&lsb != 0)
+ case ToNearestAway:
+ inc = rbit != 0
+ case AwayFromZero:
+ inc = true
+ case ToPositiveInf:
+ inc = !z.neg
+ default:
+ panic("unreachable")
+ }
+
+ // A positive result (!z.neg) is Above the exact result if we increment,
+ // and it's Below if we truncate (Exact results require no rounding).
+ // For a negative result (z.neg) it is exactly the opposite.
+ z.acc = makeAcc(inc != z.neg)
+
+ if inc {
+ // add 1 to mantissa
+ if addVW(z.mant, z.mant, lsb) != 0 {
+ // mantissa overflow => adjust exponent
+ if z.exp >= MaxExp {
+ // exponent overflow
+ z.form = inf
+ return
+ }
+ z.exp++
+ // adjust mantissa: divide by 2 to compensate for exponent adjustment
+ shrVU(z.mant, z.mant, 1)
+ // set msb == carry == 1 from the mantissa overflow above
+ const msb = 1 << (_W - 1)
+ z.mant[n-1] |= msb
+ }
+ }
+ }
+
+ // zero out trailing bits in least-significant word
+ z.mant[0] &^= lsb - 1
+
+ if debugFloat {
+ z.validate()
+ }
+}
+
+func (z *Float) setBits64(neg bool, x uint64) *Float {
+ if z.prec == 0 {
+ z.prec = 64
+ }
+ z.acc = Exact
+ z.neg = neg
+ if x == 0 {
+ z.form = zero
+ return z
+ }
+ // x != 0
+ z.form = finite
+ s := bits.LeadingZeros64(x)
+ z.mant = z.mant.setUint64(x << uint(s))
+ z.exp = int32(64 - s) // always fits
+ if z.prec < 64 {
+ z.round(0)
+ }
+ return z
+}
+
+// SetUint64 sets z to the (possibly rounded) value of x and returns z.
+// If z's precision is 0, it is changed to 64 (and rounding will have
+// no effect).
+func (z *Float) SetUint64(x uint64) *Float {
+ return z.setBits64(false, x)
+}
+
+// SetInt64 sets z to the (possibly rounded) value of x and returns z.
+// If z's precision is 0, it is changed to 64 (and rounding will have
+// no effect).
+func (z *Float) SetInt64(x int64) *Float {
+ u := x
+ if u < 0 {
+ u = -u
+ }
+ // We cannot simply call z.SetUint64(uint64(u)) and change
+ // the sign afterwards because the sign affects rounding.
+ return z.setBits64(x < 0, uint64(u))
+}
+
+// SetFloat64 sets z to the (possibly rounded) value of x and returns z.
+// If z's precision is 0, it is changed to 53 (and rounding will have
+// no effect). SetFloat64 panics with [ErrNaN] if x is a NaN.
+func (z *Float) SetFloat64(x float64) *Float {
+ if z.prec == 0 {
+ z.prec = 53
+ }
+ if math.IsNaN(x) {
+ panic(ErrNaN{"Float.SetFloat64(NaN)"})
+ }
+ z.acc = Exact
+ z.neg = math.Signbit(x) // handle -0, -Inf correctly
+ if x == 0 {
+ z.form = zero
+ return z
+ }
+ if math.IsInf(x, 0) {
+ z.form = inf
+ return z
+ }
+ // normalized x != 0
+ z.form = finite
+ fmant, exp := math.Frexp(x) // get normalized mantissa
+ z.mant = z.mant.setUint64(1<<63 | math.Float64bits(fmant)<<11)
+ z.exp = int32(exp) // always fits
+ if z.prec < 53 {
+ z.round(0)
+ }
+ return z
+}
+
+// fnorm normalizes mantissa m by shifting it to the left
+// such that the msb of the most-significant word (msw) is 1.
+// It returns the shift amount. It assumes that len(m) != 0.
+func fnorm(m nat) int64 {
+ if debugFloat && (len(m) == 0 || m[len(m)-1] == 0) {
+ panic("msw of mantissa is 0")
+ }
+ s := nlz(m[len(m)-1])
+ if s > 0 {
+ c := shlVU(m, m, s)
+ if debugFloat && c != 0 {
+ panic("nlz or shlVU incorrect")
+ }
+ }
+ return int64(s)
+}
+
+// SetInt sets z to the (possibly rounded) value of x and returns z.
+// If z's precision is 0, it is changed to the larger of x.BitLen()
+// or 64 (and rounding will have no effect).
+func (z *Float) SetInt(x *Int) *Float {
+ // TODO(gri) can be more efficient if z.prec > 0
+ // but small compared to the size of x, or if there
+ // are many trailing 0's.
+ bits := uint32(x.BitLen())
+ if z.prec == 0 {
+ z.prec = umax32(bits, 64)
+ }
+ z.acc = Exact
+ z.neg = x.neg
+ if len(x.abs) == 0 {
+ z.form = zero
+ return z
+ }
+ // x != 0
+ z.mant = z.mant.set(x.abs)
+ fnorm(z.mant)
+ z.setExpAndRound(int64(bits), 0)
+ return z
+}
+
+// SetRat sets z to the (possibly rounded) value of x and returns z.
+// If z's precision is 0, it is changed to the largest of a.BitLen(),
+// b.BitLen(), or 64; with x = a/b.
+func (z *Float) SetRat(x *Rat) *Float {
+ if x.IsInt() {
+ return z.SetInt(x.Num())
+ }
+ var a, b Float
+ a.SetInt(x.Num())
+ b.SetInt(x.Denom())
+ if z.prec == 0 {
+ z.prec = umax32(a.prec, b.prec)
+ }
+ return z.Quo(&a, &b)
+}
+
+// SetInf sets z to the infinite Float -Inf if signbit is
+// set, or +Inf if signbit is not set, and returns z. The
+// precision of z is unchanged and the result is always
+// [Exact].
+func (z *Float) SetInf(signbit bool) *Float {
+ z.acc = Exact
+ z.form = inf
+ z.neg = signbit
+ return z
+}
+
+// Set sets z to the (possibly rounded) value of x and returns z.
+// If z's precision is 0, it is changed to the precision of x
+// before setting z (and rounding will have no effect).
+// Rounding is performed according to z's precision and rounding
+// mode; and z's accuracy reports the result error relative to the
+// exact (not rounded) result.
+func (z *Float) Set(x *Float) *Float {
+ if debugFloat {
+ x.validate()
+ }
+ z.acc = Exact
+ if z != x {
+ z.form = x.form
+ z.neg = x.neg
+ if x.form == finite {
+ z.exp = x.exp
+ z.mant = z.mant.set(x.mant)
+ }
+ if z.prec == 0 {
+ z.prec = x.prec
+ } else if z.prec < x.prec {
+ z.round(0)
+ }
+ }
+ return z
+}
+
+// Copy sets z to x, with the same precision, rounding mode, and
+// accuracy as x, and returns z. x is not changed even if z and
+// x are the same.
+func (z *Float) Copy(x *Float) *Float {
+ if debugFloat {
+ x.validate()
+ }
+ if z != x {
+ z.prec = x.prec
+ z.mode = x.mode
+ z.acc = x.acc
+ z.form = x.form
+ z.neg = x.neg
+ if z.form == finite {
+ z.mant = z.mant.set(x.mant)
+ z.exp = x.exp
+ }
+ }
+ return z
+}
+
+// msb32 returns the 32 most significant bits of x.
+func msb32(x nat) uint32 {
+ i := len(x) - 1
+ if i < 0 {
+ return 0
+ }
+ if debugFloat && x[i]&(1<<(_W-1)) == 0 {
+ panic("x not normalized")
+ }
+ switch _W {
+ case 32:
+ return uint32(x[i])
+ case 64:
+ return uint32(x[i] >> 32)
+ }
+ panic("unreachable")
+}
+
+// msb64 returns the 64 most significant bits of x.
+func msb64(x nat) uint64 {
+ i := len(x) - 1
+ if i < 0 {
+ return 0
+ }
+ if debugFloat && x[i]&(1<<(_W-1)) == 0 {
+ panic("x not normalized")
+ }
+ switch _W {
+ case 32:
+ v := uint64(x[i]) << 32
+ if i > 0 {
+ v |= uint64(x[i-1])
+ }
+ return v
+ case 64:
+ return uint64(x[i])
+ }
+ panic("unreachable")
+}
+
+// Uint64 returns the unsigned integer resulting from truncating x
+// towards zero. If 0 <= x <= math.MaxUint64, the result is [Exact]
+// if x is an integer and [Below] otherwise.
+// The result is (0, [Above]) for x < 0, and ([math.MaxUint64], [Below])
+// for x > [math.MaxUint64].
+func (x *Float) Uint64() (uint64, Accuracy) {
+ if debugFloat {
+ x.validate()
+ }
+
+ switch x.form {
+ case finite:
+ if x.neg {
+ return 0, Above
+ }
+ // 0 < x < +Inf
+ if x.exp <= 0 {
+ // 0 < x < 1
+ return 0, Below
+ }
+ // 1 <= x < Inf
+ if x.exp <= 64 {
+ // u = trunc(x) fits into a uint64
+ u := msb64(x.mant) >> (64 - uint32(x.exp))
+ if x.MinPrec() <= 64 {
+ return u, Exact
+ }
+ return u, Below // x truncated
+ }
+ // x too large
+ return math.MaxUint64, Below
+
+ case zero:
+ return 0, Exact
+
+ case inf:
+ if x.neg {
+ return 0, Above
+ }
+ return math.MaxUint64, Below
+ }
+
+ panic("unreachable")
+}
+
+// Int64 returns the integer resulting from truncating x towards zero.
+// If [math.MinInt64] <= x <= [math.MaxInt64], the result is [Exact] if x is
+// an integer, and [Above] (x < 0) or [Below] (x > 0) otherwise.
+// The result is ([math.MinInt64], [Above]) for x < [math.MinInt64],
+// and ([math.MaxInt64], [Below]) for x > [math.MaxInt64].
+func (x *Float) Int64() (int64, Accuracy) {
+ if debugFloat {
+ x.validate()
+ }
+
+ switch x.form {
+ case finite:
+ // 0 < |x| < +Inf
+ acc := makeAcc(x.neg)
+ if x.exp <= 0 {
+ // 0 < |x| < 1
+ return 0, acc
+ }
+ // x.exp > 0
+
+ // 1 <= |x| < +Inf
+ if x.exp <= 63 {
+ // i = trunc(x) fits into an int64 (excluding math.MinInt64)
+ i := int64(msb64(x.mant) >> (64 - uint32(x.exp)))
+ if x.neg {
+ i = -i
+ }
+ if x.MinPrec() <= uint(x.exp) {
+ return i, Exact
+ }
+ return i, acc // x truncated
+ }
+ if x.neg {
+ // check for special case x == math.MinInt64 (i.e., x == -(0.5 << 64))
+ if x.exp == 64 && x.MinPrec() == 1 {
+ acc = Exact
+ }
+ return math.MinInt64, acc
+ }
+ // x too large
+ return math.MaxInt64, Below
+
+ case zero:
+ return 0, Exact
+
+ case inf:
+ if x.neg {
+ return math.MinInt64, Above
+ }
+ return math.MaxInt64, Below
+ }
+
+ panic("unreachable")
+}
+
+// Float32 returns the float32 value nearest to x. If x is too small to be
+// represented by a float32 (|x| < [math.SmallestNonzeroFloat32]), the result
+// is (0, [Below]) or (-0, [Above]), respectively, depending on the sign of x.
+// If x is too large to be represented by a float32 (|x| > [math.MaxFloat32]),
+// the result is (+Inf, [Above]) or (-Inf, [Below]), depending on the sign of x.
+func (x *Float) Float32() (float32, Accuracy) {
+ if debugFloat {
+ x.validate()
+ }
+
+ switch x.form {
+ case finite:
+ // 0 < |x| < +Inf
+
+ const (
+ fbits = 32 // float size
+ mbits = 23 // mantissa size (excluding implicit msb)
+ ebits = fbits - mbits - 1 // 8 exponent size
+ bias = 1<<(ebits-1) - 1 // 127 exponent bias
+ dmin = 1 - bias - mbits // -149 smallest unbiased exponent (denormal)
+ emin = 1 - bias // -126 smallest unbiased exponent (normal)
+ emax = bias // 127 largest unbiased exponent (normal)
+ )
+
+ // Float mantissa m is 0.5 <= m < 1.0; compute exponent e for float32 mantissa.
+ e := x.exp - 1 // exponent for normal mantissa m with 1.0 <= m < 2.0
+
+ // Compute precision p for float32 mantissa.
+ // If the exponent is too small, we have a denormal number before
+ // rounding and fewer than p mantissa bits of precision available
+ // (the exponent remains fixed but the mantissa gets shifted right).
+ p := mbits + 1 // precision of normal float
+ if e < emin {
+ // recompute precision
+ p = mbits + 1 - emin + int(e)
+ // If p == 0, the mantissa of x is shifted so much to the right
+ // that its msb falls immediately to the right of the float32
+ // mantissa space. In other words, if the smallest denormal is
+ // considered "1.0", for p == 0, the mantissa value m is >= 0.5.
+ // If m > 0.5, it is rounded up to 1.0; i.e., the smallest denormal.
+ // If m == 0.5, it is rounded down to even, i.e., 0.0.
+ // If p < 0, the mantissa value m is <= "0.25" which is never rounded up.
+ if p < 0 /* m <= 0.25 */ || p == 0 && x.mant.sticky(uint(len(x.mant))*_W-1) == 0 /* m == 0.5 */ {
+ // underflow to ±0
+ if x.neg {
+ var z float32
+ return -z, Above
+ }
+ return 0.0, Below
+ }
+ // otherwise, round up
+ // We handle p == 0 explicitly because it's easy and because
+ // Float.round doesn't support rounding to 0 bits of precision.
+ if p == 0 {
+ if x.neg {
+ return -math.SmallestNonzeroFloat32, Below
+ }
+ return math.SmallestNonzeroFloat32, Above
+ }
+ }
+ // p > 0
+
+ // round
+ var r Float
+ r.prec = uint32(p)
+ r.Set(x)
+ e = r.exp - 1
+
+ // Rounding may have caused r to overflow to ±Inf
+ // (rounding never causes underflows to 0).
+ // If the exponent is too large, also overflow to ±Inf.
+ if r.form == inf || e > emax {
+ // overflow
+ if x.neg {
+ return float32(math.Inf(-1)), Below
+ }
+ return float32(math.Inf(+1)), Above
+ }
+ // e <= emax
+
+ // Determine sign, biased exponent, and mantissa.
+ var sign, bexp, mant uint32
+ if x.neg {
+ sign = 1 << (fbits - 1)
+ }
+
+ // Rounding may have caused a denormal number to
+ // become normal. Check again.
+ if e < emin {
+ // denormal number: recompute precision
+ // Since rounding may have at best increased precision
+ // and we have eliminated p <= 0 early, we know p > 0.
+ // bexp == 0 for denormals
+ p = mbits + 1 - emin + int(e)
+ mant = msb32(r.mant) >> uint(fbits-p)
+ } else {
+ // normal number: emin <= e <= emax
+ bexp = uint32(e+bias) << mbits
+ mant = msb32(r.mant) >> ebits & (1<<mbits - 1) // cut off msb (implicit 1 bit)
+ }
+
+ return math.Float32frombits(sign | bexp | mant), r.acc
+
+ case zero:
+ if x.neg {
+ var z float32
+ return -z, Exact
+ }
+ return 0.0, Exact
+
+ case inf:
+ if x.neg {
+ return float32(math.Inf(-1)), Exact
+ }
+ return float32(math.Inf(+1)), Exact
+ }
+
+ panic("unreachable")
+}
+
+// Float64 returns the float64 value nearest to x. If x is too small to be
+// represented by a float64 (|x| < [math.SmallestNonzeroFloat64]), the result
+// is (0, [Below]) or (-0, [Above]), respectively, depending on the sign of x.
+// If x is too large to be represented by a float64 (|x| > [math.MaxFloat64]),
+// the result is (+Inf, [Above]) or (-Inf, [Below]), depending on the sign of x.
+func (x *Float) Float64() (float64, Accuracy) {
+ if debugFloat {
+ x.validate()
+ }
+
+ switch x.form {
+ case finite:
+ // 0 < |x| < +Inf
+
+ const (
+ fbits = 64 // float size
+ mbits = 52 // mantissa size (excluding implicit msb)
+ ebits = fbits - mbits - 1 // 11 exponent size
+ bias = 1<<(ebits-1) - 1 // 1023 exponent bias
+ dmin = 1 - bias - mbits // -1074 smallest unbiased exponent (denormal)
+ emin = 1 - bias // -1022 smallest unbiased exponent (normal)
+ emax = bias // 1023 largest unbiased exponent (normal)
+ )
+
+ // Float mantissa m is 0.5 <= m < 1.0; compute exponent e for float64 mantissa.
+ e := x.exp - 1 // exponent for normal mantissa m with 1.0 <= m < 2.0
+
+ // Compute precision p for float64 mantissa.
+ // If the exponent is too small, we have a denormal number before
+ // rounding and fewer than p mantissa bits of precision available
+ // (the exponent remains fixed but the mantissa gets shifted right).
+ p := mbits + 1 // precision of normal float
+ if e < emin {
+ // recompute precision
+ p = mbits + 1 - emin + int(e)
+ // If p == 0, the mantissa of x is shifted so much to the right
+ // that its msb falls immediately to the right of the float64
+ // mantissa space. In other words, if the smallest denormal is
+ // considered "1.0", for p == 0, the mantissa value m is >= 0.5.
+ // If m > 0.5, it is rounded up to 1.0; i.e., the smallest denormal.
+ // If m == 0.5, it is rounded down to even, i.e., 0.0.
+ // If p < 0, the mantissa value m is <= "0.25" which is never rounded up.
+ if p < 0 /* m <= 0.25 */ || p == 0 && x.mant.sticky(uint(len(x.mant))*_W-1) == 0 /* m == 0.5 */ {
+ // underflow to ±0
+ if x.neg {
+ var z float64
+ return -z, Above
+ }
+ return 0.0, Below
+ }
+ // otherwise, round up
+ // We handle p == 0 explicitly because it's easy and because
+ // Float.round doesn't support rounding to 0 bits of precision.
+ if p == 0 {
+ if x.neg {
+ return -math.SmallestNonzeroFloat64, Below
+ }
+ return math.SmallestNonzeroFloat64, Above
+ }
+ }
+ // p > 0
+
+ // round
+ var r Float
+ r.prec = uint32(p)
+ r.Set(x)
+ e = r.exp - 1
+
+ // Rounding may have caused r to overflow to ±Inf
+ // (rounding never causes underflows to 0).
+ // If the exponent is too large, also overflow to ±Inf.
+ if r.form == inf || e > emax {
+ // overflow
+ if x.neg {
+ return math.Inf(-1), Below
+ }
+ return math.Inf(+1), Above
+ }
+ // e <= emax
+
+ // Determine sign, biased exponent, and mantissa.
+ var sign, bexp, mant uint64
+ if x.neg {
+ sign = 1 << (fbits - 1)
+ }
+
+ // Rounding may have caused a denormal number to
+ // become normal. Check again.
+ if e < emin {
+ // denormal number: recompute precision
+ // Since rounding may have at best increased precision
+ // and we have eliminated p <= 0 early, we know p > 0.
+ // bexp == 0 for denormals
+ p = mbits + 1 - emin + int(e)
+ mant = msb64(r.mant) >> uint(fbits-p)
+ } else {
+ // normal number: emin <= e <= emax
+ bexp = uint64(e+bias) << mbits
+ mant = msb64(r.mant) >> ebits & (1<<mbits - 1) // cut off msb (implicit 1 bit)
+ }
+
+ return math.Float64frombits(sign | bexp | mant), r.acc
+
+ case zero:
+ if x.neg {
+ var z float64
+ return -z, Exact
+ }
+ return 0.0, Exact
+
+ case inf:
+ if x.neg {
+ return math.Inf(-1), Exact
+ }
+ return math.Inf(+1), Exact
+ }
+
+ panic("unreachable")
+}
+
+// Int returns the result of truncating x towards zero;
+// or nil if x is an infinity.
+// The result is [Exact] if x.IsInt(); otherwise it is [Below]
+// for x > 0, and [Above] for x < 0.
+// If a non-nil *[Int] argument z is provided, [Int] stores
+// the result in z instead of allocating a new [Int].
+func (x *Float) Int(z *Int) (*Int, Accuracy) {
+ if debugFloat {
+ x.validate()
+ }
+
+ if z == nil && x.form <= finite {
+ z = new(Int)
+ }
+
+ switch x.form {
+ case finite:
+ // 0 < |x| < +Inf
+ acc := makeAcc(x.neg)
+ if x.exp <= 0 {
+ // 0 < |x| < 1
+ return z.SetInt64(0), acc
+ }
+ // x.exp > 0
+
+ // 1 <= |x| < +Inf
+ // determine minimum required precision for x
+ allBits := uint(len(x.mant)) * _W
+ exp := uint(x.exp)
+ if x.MinPrec() <= exp {
+ acc = Exact
+ }
+ // shift mantissa as needed
+ if z == nil {
+ z = new(Int)
+ }
+ z.neg = x.neg
+ switch {
+ case exp > allBits:
+ z.abs = z.abs.shl(x.mant, exp-allBits)
+ default:
+ z.abs = z.abs.set(x.mant)
+ case exp < allBits:
+ z.abs = z.abs.shr(x.mant, allBits-exp)
+ }
+ return z, acc
+
+ case zero:
+ return z.SetInt64(0), Exact
+
+ case inf:
+ return nil, makeAcc(x.neg)
+ }
+
+ panic("unreachable")
+}
+
+// Rat returns the rational number corresponding to x;
+// or nil if x is an infinity.
+// The result is [Exact] if x is not an Inf.
+// If a non-nil *[Rat] argument z is provided, [Rat] stores
+// the result in z instead of allocating a new [Rat].
+func (x *Float) Rat(z *Rat) (*Rat, Accuracy) {
+ if debugFloat {
+ x.validate()
+ }
+
+ if z == nil && x.form <= finite {
+ z = new(Rat)
+ }
+
+ switch x.form {
+ case finite:
+ // 0 < |x| < +Inf
+ allBits := int32(len(x.mant)) * _W
+ // build up numerator and denominator
+ z.a.neg = x.neg
+ switch {
+ case x.exp > allBits:
+ z.a.abs = z.a.abs.shl(x.mant, uint(x.exp-allBits))
+ z.b.abs = z.b.abs[:0] // == 1 (see Rat)
+ // z already in normal form
+ default:
+ z.a.abs = z.a.abs.set(x.mant)
+ z.b.abs = z.b.abs[:0] // == 1 (see Rat)
+ // z already in normal form
+ case x.exp < allBits:
+ z.a.abs = z.a.abs.set(x.mant)
+ t := z.b.abs.setUint64(1)
+ z.b.abs = t.shl(t, uint(allBits-x.exp))
+ z.norm()
+ }
+ return z, Exact
+
+ case zero:
+ return z.SetInt64(0), Exact
+
+ case inf:
+ return nil, makeAcc(x.neg)
+ }
+
+ panic("unreachable")
+}
+
+// Abs sets z to the (possibly rounded) value |x| (the absolute value of x)
+// and returns z.
+func (z *Float) Abs(x *Float) *Float {
+ z.Set(x)
+ z.neg = false
+ return z
+}
+
+// Neg sets z to the (possibly rounded) value of x with its sign negated,
+// and returns z.
+func (z *Float) Neg(x *Float) *Float {
+ z.Set(x)
+ z.neg = !z.neg
+ return z
+}
+
+func validateBinaryOperands(x, y *Float) {
+ if !debugFloat {
+ // avoid performance bugs
+ panic("validateBinaryOperands called but debugFloat is not set")
+ }
+ if len(x.mant) == 0 {
+ panic("empty mantissa for x")
+ }
+ if len(y.mant) == 0 {
+ panic("empty mantissa for y")
+ }
+}
+
+// z = x + y, ignoring signs of x and y for the addition
+// but using the sign of z for rounding the result.
+// x and y must have a non-empty mantissa and valid exponent.
+func (z *Float) uadd(x, y *Float) {
+ // Note: This implementation requires 2 shifts most of the
+ // time. It is also inefficient if exponents or precisions
+ // differ by wide margins. The following article describes
+ // an efficient (but much more complicated) implementation
+ // compatible with the internal representation used here:
+ //
+ // Vincent Lefèvre: "The Generic Multiple-Precision Floating-
+ // Point Addition With Exact Rounding (as in the MPFR Library)"
+ // http://www.vinc17.net/research/papers/rnc6.pdf
+
+ if debugFloat {
+ validateBinaryOperands(x, y)
+ }
+
+ // compute exponents ex, ey for mantissa with "binary point"
+ // on the right (mantissa.0) - use int64 to avoid overflow
+ ex := int64(x.exp) - int64(len(x.mant))*_W
+ ey := int64(y.exp) - int64(len(y.mant))*_W
+
+ al := alias(z.mant, x.mant) || alias(z.mant, y.mant)
+
+ // TODO(gri) having a combined add-and-shift primitive
+ // could make this code significantly faster
+ switch {
+ case ex < ey:
+ if al {
+ t := nat(nil).shl(y.mant, uint(ey-ex))
+ z.mant = z.mant.add(x.mant, t)
+ } else {
+ z.mant = z.mant.shl(y.mant, uint(ey-ex))
+ z.mant = z.mant.add(x.mant, z.mant)
+ }
+ default:
+ // ex == ey, no shift needed
+ z.mant = z.mant.add(x.mant, y.mant)
+ case ex > ey:
+ if al {
+ t := nat(nil).shl(x.mant, uint(ex-ey))
+ z.mant = z.mant.add(t, y.mant)
+ } else {
+ z.mant = z.mant.shl(x.mant, uint(ex-ey))
+ z.mant = z.mant.add(z.mant, y.mant)
+ }
+ ex = ey
+ }
+ // len(z.mant) > 0
+
+ z.setExpAndRound(ex+int64(len(z.mant))*_W-fnorm(z.mant), 0)
+}
+
+// z = x - y for |x| > |y|, ignoring signs of x and y for the subtraction
+// but using the sign of z for rounding the result.
+// x and y must have a non-empty mantissa and valid exponent.
+func (z *Float) usub(x, y *Float) {
+ // This code is symmetric to uadd.
+ // We have not factored the common code out because
+ // eventually uadd (and usub) should be optimized
+ // by special-casing, and the code will diverge.
+
+ if debugFloat {
+ validateBinaryOperands(x, y)
+ }
+
+ ex := int64(x.exp) - int64(len(x.mant))*_W
+ ey := int64(y.exp) - int64(len(y.mant))*_W
+
+ al := alias(z.mant, x.mant) || alias(z.mant, y.mant)
+
+ switch {
+ case ex < ey:
+ if al {
+ t := nat(nil).shl(y.mant, uint(ey-ex))
+ z.mant = t.sub(x.mant, t)
+ } else {
+ z.mant = z.mant.shl(y.mant, uint(ey-ex))
+ z.mant = z.mant.sub(x.mant, z.mant)
+ }
+ default:
+ // ex == ey, no shift needed
+ z.mant = z.mant.sub(x.mant, y.mant)
+ case ex > ey:
+ if al {
+ t := nat(nil).shl(x.mant, uint(ex-ey))
+ z.mant = t.sub(t, y.mant)
+ } else {
+ z.mant = z.mant.shl(x.mant, uint(ex-ey))
+ z.mant = z.mant.sub(z.mant, y.mant)
+ }
+ ex = ey
+ }
+
+ // operands may have canceled each other out
+ if len(z.mant) == 0 {
+ z.acc = Exact
+ z.form = zero
+ z.neg = false
+ return
+ }
+ // len(z.mant) > 0
+
+ z.setExpAndRound(ex+int64(len(z.mant))*_W-fnorm(z.mant), 0)
+}
+
+// z = x * y, ignoring signs of x and y for the multiplication
+// but using the sign of z for rounding the result.
+// x and y must have a non-empty mantissa and valid exponent.
+func (z *Float) umul(x, y *Float) {
+ if debugFloat {
+ validateBinaryOperands(x, y)
+ }
+
+ // Note: This is doing too much work if the precision
+ // of z is less than the sum of the precisions of x
+ // and y which is often the case (e.g., if all floats
+ // have the same precision).
+ // TODO(gri) Optimize this for the common case.
+
+ e := int64(x.exp) + int64(y.exp)
+ if x == y {
+ z.mant = z.mant.sqr(x.mant)
+ } else {
+ z.mant = z.mant.mul(x.mant, y.mant)
+ }
+ z.setExpAndRound(e-fnorm(z.mant), 0)
+}
+
+// z = x / y, ignoring signs of x and y for the division
+// but using the sign of z for rounding the result.
+// x and y must have a non-empty mantissa and valid exponent.
+func (z *Float) uquo(x, y *Float) {
+ if debugFloat {
+ validateBinaryOperands(x, y)
+ }
+
+ // mantissa length in words for desired result precision + 1
+ // (at least one extra bit so we get the rounding bit after
+ // the division)
+ n := int(z.prec/_W) + 1
+
+ // compute adjusted x.mant such that we get enough result precision
+ xadj := x.mant
+ if d := n - len(x.mant) + len(y.mant); d > 0 {
+ // d extra words needed => add d "0 digits" to x
+ xadj = make(nat, len(x.mant)+d)
+ copy(xadj[d:], x.mant)
+ }
+ // TODO(gri): If we have too many digits (d < 0), we should be able
+ // to shorten x for faster division. But we must be extra careful
+ // with rounding in that case.
+
+ // Compute d before division since there may be aliasing of x.mant
+ // (via xadj) or y.mant with z.mant.
+ d := len(xadj) - len(y.mant)
+
+ // divide
+ var r nat
+ z.mant, r = z.mant.div(nil, xadj, y.mant)
+ e := int64(x.exp) - int64(y.exp) - int64(d-len(z.mant))*_W
+
+ // The result is long enough to include (at least) the rounding bit.
+ // If there's a non-zero remainder, the corresponding fractional part
+ // (if it were computed), would have a non-zero sticky bit (if it were
+ // zero, it couldn't have a non-zero remainder).
+ var sbit uint
+ if len(r) > 0 {
+ sbit = 1
+ }
+
+ z.setExpAndRound(e-fnorm(z.mant), sbit)
+}
+
+// ucmp returns -1, 0, or +1, depending on whether
+// |x| < |y|, |x| == |y|, or |x| > |y|.
+// x and y must have a non-empty mantissa and valid exponent.
+func (x *Float) ucmp(y *Float) int {
+ if debugFloat {
+ validateBinaryOperands(x, y)
+ }
+
+ switch {
+ case x.exp < y.exp:
+ return -1
+ case x.exp > y.exp:
+ return +1
+ }
+ // x.exp == y.exp
+
+ // compare mantissas
+ i := len(x.mant)
+ j := len(y.mant)
+ for i > 0 || j > 0 {
+ var xm, ym Word
+ if i > 0 {
+ i--
+ xm = x.mant[i]
+ }
+ if j > 0 {
+ j--
+ ym = y.mant[j]
+ }
+ switch {
+ case xm < ym:
+ return -1
+ case xm > ym:
+ return +1
+ }
+ }
+
+ return 0
+}
+
+// Handling of sign bit as defined by IEEE 754-2008, section 6.3:
+//
+// When neither the inputs nor result are NaN, the sign of a product or
+// quotient is the exclusive OR of the operands’ signs; the sign of a sum,
+// or of a difference x−y regarded as a sum x+(−y), differs from at most
+// one of the addends’ signs; and the sign of the result of conversions,
+// the quantize operation, the roundToIntegral operations, and the
+// roundToIntegralExact (see 5.3.1) is the sign of the first or only operand.
+// These rules shall apply even when operands or results are zero or infinite.
+//
+// When the sum of two operands with opposite signs (or the difference of
+// two operands with like signs) is exactly zero, the sign of that sum (or
+// difference) shall be +0 in all rounding-direction attributes except
+// roundTowardNegative; under that attribute, the sign of an exact zero
+// sum (or difference) shall be −0. However, x+x = x−(−x) retains the same
+// sign as x even when x is zero.
+//
+// See also: https://play.golang.org/p/RtH3UCt5IH
+
+// Add sets z to the rounded sum x+y and returns z. If z's precision is 0,
+// it is changed to the larger of x's or y's precision before the operation.
+// Rounding is performed according to z's precision and rounding mode; and
+// z's accuracy reports the result error relative to the exact (not rounded)
+// result. Add panics with [ErrNaN] if x and y are infinities with opposite
+// signs. The value of z is undefined in that case.
+func (z *Float) Add(x, y *Float) *Float {
+ if debugFloat {
+ x.validate()
+ y.validate()
+ }
+
+ if z.prec == 0 {
+ z.prec = umax32(x.prec, y.prec)
+ }
+
+ if x.form == finite && y.form == finite {
+ // x + y (common case)
+
+ // Below we set z.neg = x.neg, and when z aliases y this will
+ // change the y operand's sign. This is fine, because if an
+ // operand aliases the receiver it'll be overwritten, but we still
+ // want the original x.neg and y.neg values when we evaluate
+ // x.neg != y.neg, so we need to save y.neg before setting z.neg.
+ yneg := y.neg
+
+ z.neg = x.neg
+ if x.neg == yneg {
+ // x + y == x + y
+ // (-x) + (-y) == -(x + y)
+ z.uadd(x, y)
+ } else {
+ // x + (-y) == x - y == -(y - x)
+ // (-x) + y == y - x == -(x - y)
+ if x.ucmp(y) > 0 {
+ z.usub(x, y)
+ } else {
+ z.neg = !z.neg
+ z.usub(y, x)
+ }
+ }
+ if z.form == zero && z.mode == ToNegativeInf && z.acc == Exact {
+ z.neg = true
+ }
+ return z
+ }
+
+ if x.form == inf && y.form == inf && x.neg != y.neg {
+ // +Inf + -Inf
+ // -Inf + +Inf
+ // value of z is undefined but make sure it's valid
+ z.acc = Exact
+ z.form = zero
+ z.neg = false
+ panic(ErrNaN{"addition of infinities with opposite signs"})
+ }
+
+ if x.form == zero && y.form == zero {
+ // ±0 + ±0
+ z.acc = Exact
+ z.form = zero
+ z.neg = x.neg && y.neg // -0 + -0 == -0
+ return z
+ }
+
+ if x.form == inf || y.form == zero {
+ // ±Inf + y
+ // x + ±0
+ return z.Set(x)
+ }
+
+ // ±0 + y
+ // x + ±Inf
+ return z.Set(y)
+}
+
+// Sub sets z to the rounded difference x-y and returns z.
+// Precision, rounding, and accuracy reporting are as for [Float.Add].
+// Sub panics with [ErrNaN] if x and y are infinities with equal
+// signs. The value of z is undefined in that case.
+func (z *Float) Sub(x, y *Float) *Float {
+ if debugFloat {
+ x.validate()
+ y.validate()
+ }
+
+ if z.prec == 0 {
+ z.prec = umax32(x.prec, y.prec)
+ }
+
+ if x.form == finite && y.form == finite {
+ // x - y (common case)
+ yneg := y.neg
+ z.neg = x.neg
+ if x.neg != yneg {
+ // x - (-y) == x + y
+ // (-x) - y == -(x + y)
+ z.uadd(x, y)
+ } else {
+ // x - y == x - y == -(y - x)
+ // (-x) - (-y) == y - x == -(x - y)
+ if x.ucmp(y) > 0 {
+ z.usub(x, y)
+ } else {
+ z.neg = !z.neg
+ z.usub(y, x)
+ }
+ }
+ if z.form == zero && z.mode == ToNegativeInf && z.acc == Exact {
+ z.neg = true
+ }
+ return z
+ }
+
+ if x.form == inf && y.form == inf && x.neg == y.neg {
+ // +Inf - +Inf
+ // -Inf - -Inf
+ // value of z is undefined but make sure it's valid
+ z.acc = Exact
+ z.form = zero
+ z.neg = false
+ panic(ErrNaN{"subtraction of infinities with equal signs"})
+ }
+
+ if x.form == zero && y.form == zero {
+ // ±0 - ±0
+ z.acc = Exact
+ z.form = zero
+ z.neg = x.neg && !y.neg // -0 - +0 == -0
+ return z
+ }
+
+ if x.form == inf || y.form == zero {
+ // ±Inf - y
+ // x - ±0
+ return z.Set(x)
+ }
+
+ // ±0 - y
+ // x - ±Inf
+ return z.Neg(y)
+}
+
+// Mul sets z to the rounded product x*y and returns z.
+// Precision, rounding, and accuracy reporting are as for [Float.Add].
+// Mul panics with [ErrNaN] if one operand is zero and the other
+// operand an infinity. The value of z is undefined in that case.
+func (z *Float) Mul(x, y *Float) *Float {
+ if debugFloat {
+ x.validate()
+ y.validate()
+ }
+
+ if z.prec == 0 {
+ z.prec = umax32(x.prec, y.prec)
+ }
+
+ z.neg = x.neg != y.neg
+
+ if x.form == finite && y.form == finite {
+ // x * y (common case)
+ z.umul(x, y)
+ return z
+ }
+
+ z.acc = Exact
+ if x.form == zero && y.form == inf || x.form == inf && y.form == zero {
+ // ±0 * ±Inf
+ // ±Inf * ±0
+ // value of z is undefined but make sure it's valid
+ z.form = zero
+ z.neg = false
+ panic(ErrNaN{"multiplication of zero with infinity"})
+ }
+
+ if x.form == inf || y.form == inf {
+ // ±Inf * y
+ // x * ±Inf
+ z.form = inf
+ return z
+ }
+
+ // ±0 * y
+ // x * ±0
+ z.form = zero
+ return z
+}
+
+// Quo sets z to the rounded quotient x/y and returns z.
+// Precision, rounding, and accuracy reporting are as for [Float.Add].
+// Quo panics with [ErrNaN] if both operands are zero or infinities.
+// The value of z is undefined in that case.
+func (z *Float) Quo(x, y *Float) *Float {
+ if debugFloat {
+ x.validate()
+ y.validate()
+ }
+
+ if z.prec == 0 {
+ z.prec = umax32(x.prec, y.prec)
+ }
+
+ z.neg = x.neg != y.neg
+
+ if x.form == finite && y.form == finite {
+ // x / y (common case)
+ z.uquo(x, y)
+ return z
+ }
+
+ z.acc = Exact
+ if x.form == zero && y.form == zero || x.form == inf && y.form == inf {
+ // ±0 / ±0
+ // ±Inf / ±Inf
+ // value of z is undefined but make sure it's valid
+ z.form = zero
+ z.neg = false
+ panic(ErrNaN{"division of zero by zero or infinity by infinity"})
+ }
+
+ if x.form == zero || y.form == inf {
+ // ±0 / y
+ // x / ±Inf
+ z.form = zero
+ return z
+ }
+
+ // x / ±0
+ // ±Inf / y
+ z.form = inf
+ return z
+}
+
+// Cmp compares x and y and returns:
+//
+// -1 if x < y
+// 0 if x == y (incl. -0 == 0, -Inf == -Inf, and +Inf == +Inf)
+// +1 if x > y
+func (x *Float) Cmp(y *Float) int {
+ if debugFloat {
+ x.validate()
+ y.validate()
+ }
+
+ mx := x.ord()
+ my := y.ord()
+ switch {
+ case mx < my:
+ return -1
+ case mx > my:
+ return +1
+ }
+ // mx == my
+
+ // only if |mx| == 1 we have to compare the mantissae
+ switch mx {
+ case -1:
+ return y.ucmp(x)
+ case +1:
+ return x.ucmp(y)
+ }
+
+ return 0
+}
+
+// ord classifies x and returns:
+//
+// -2 if -Inf == x
+// -1 if -Inf < x < 0
+// 0 if x == 0 (signed or unsigned)
+// +1 if 0 < x < +Inf
+// +2 if x == +Inf
+func (x *Float) ord() int {
+ var m int
+ switch x.form {
+ case finite:
+ m = 1
+ case zero:
+ return 0
+ case inf:
+ m = 2
+ }
+ if x.neg {
+ m = -m
+ }
+ return m
+}
+
+func umax32(x, y uint32) uint32 {
+ if x > y {
+ return x
+ }
+ return y
+}
diff --git a/src/math/big/float_test.go b/src/math/big/float_test.go
new file mode 100644
index 0000000..bb045a0
--- /dev/null
+++ b/src/math/big/float_test.go
@@ -0,0 +1,1856 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "flag"
+ "fmt"
+ "math"
+ "strconv"
+ "strings"
+ "testing"
+)
+
+// Verify that ErrNaN implements the error interface.
+var _ error = ErrNaN{}
+
+func (x *Float) uint64() uint64 {
+ u, acc := x.Uint64()
+ if acc != Exact {
+ panic(fmt.Sprintf("%s is not a uint64", x.Text('g', 10)))
+ }
+ return u
+}
+
+func (x *Float) int64() int64 {
+ i, acc := x.Int64()
+ if acc != Exact {
+ panic(fmt.Sprintf("%s is not an int64", x.Text('g', 10)))
+ }
+ return i
+}
+
+func TestFloatZeroValue(t *testing.T) {
+ // zero (uninitialized) value is a ready-to-use 0.0
+ var x Float
+ if s := x.Text('f', 1); s != "0.0" {
+ t.Errorf("zero value = %s; want 0.0", s)
+ }
+
+ // zero value has precision 0
+ if prec := x.Prec(); prec != 0 {
+ t.Errorf("prec = %d; want 0", prec)
+ }
+
+ // zero value can be used in any and all positions of binary operations
+ make := func(x int) *Float {
+ var f Float
+ if x != 0 {
+ f.SetInt64(int64(x))
+ }
+ // x == 0 translates into the zero value
+ return &f
+ }
+ for _, test := range []struct {
+ z, x, y, want int
+ opname rune
+ op func(z, x, y *Float) *Float
+ }{
+ {0, 0, 0, 0, '+', (*Float).Add},
+ {0, 1, 2, 3, '+', (*Float).Add},
+ {1, 2, 0, 2, '+', (*Float).Add},
+ {2, 0, 1, 1, '+', (*Float).Add},
+
+ {0, 0, 0, 0, '-', (*Float).Sub},
+ {0, 1, 2, -1, '-', (*Float).Sub},
+ {1, 2, 0, 2, '-', (*Float).Sub},
+ {2, 0, 1, -1, '-', (*Float).Sub},
+
+ {0, 0, 0, 0, '*', (*Float).Mul},
+ {0, 1, 2, 2, '*', (*Float).Mul},
+ {1, 2, 0, 0, '*', (*Float).Mul},
+ {2, 0, 1, 0, '*', (*Float).Mul},
+
+ // {0, 0, 0, 0, '/', (*Float).Quo}, // panics
+ {0, 2, 1, 2, '/', (*Float).Quo},
+ {1, 2, 0, 0, '/', (*Float).Quo}, // = +Inf
+ {2, 0, 1, 0, '/', (*Float).Quo},
+ } {
+ z := make(test.z)
+ test.op(z, make(test.x), make(test.y))
+ got := 0
+ if !z.IsInf() {
+ got = int(z.int64())
+ }
+ if got != test.want {
+ t.Errorf("%d %c %d = %d; want %d", test.x, test.opname, test.y, got, test.want)
+ }
+ }
+
+ // TODO(gri) test how precision is set for zero value results
+}
+
+func makeFloat(s string) *Float {
+ x, _, err := ParseFloat(s, 0, 1000, ToNearestEven)
+ if err != nil {
+ panic(err)
+ }
+ return x
+}
+
+func TestFloatSetPrec(t *testing.T) {
+ for _, test := range []struct {
+ x string
+ prec uint
+ want string
+ acc Accuracy
+ }{
+ // prec 0
+ {"0", 0, "0", Exact},
+ {"-0", 0, "-0", Exact},
+ {"-Inf", 0, "-Inf", Exact},
+ {"+Inf", 0, "+Inf", Exact},
+ {"123", 0, "0", Below},
+ {"-123", 0, "-0", Above},
+
+ // prec at upper limit
+ {"0", MaxPrec, "0", Exact},
+ {"-0", MaxPrec, "-0", Exact},
+ {"-Inf", MaxPrec, "-Inf", Exact},
+ {"+Inf", MaxPrec, "+Inf", Exact},
+
+ // just a few regular cases - general rounding is tested elsewhere
+ {"1.5", 1, "2", Above},
+ {"-1.5", 1, "-2", Below},
+ {"123", 1e6, "123", Exact},
+ {"-123", 1e6, "-123", Exact},
+ } {
+ x := makeFloat(test.x).SetPrec(test.prec)
+ prec := test.prec
+ if prec > MaxPrec {
+ prec = MaxPrec
+ }
+ if got := x.Prec(); got != prec {
+ t.Errorf("%s.SetPrec(%d).Prec() == %d; want %d", test.x, test.prec, got, prec)
+ }
+ if got, acc := x.String(), x.Acc(); got != test.want || acc != test.acc {
+ t.Errorf("%s.SetPrec(%d) = %s (%s); want %s (%s)", test.x, test.prec, got, acc, test.want, test.acc)
+ }
+ }
+}
+
+func TestFloatMinPrec(t *testing.T) {
+ const max = 100
+ for _, test := range []struct {
+ x string
+ want uint
+ }{
+ {"0", 0},
+ {"-0", 0},
+ {"+Inf", 0},
+ {"-Inf", 0},
+ {"1", 1},
+ {"2", 1},
+ {"3", 2},
+ {"0x8001", 16},
+ {"0x8001p-1000", 16},
+ {"0x8001p+1000", 16},
+ {"0.1", max},
+ } {
+ x := makeFloat(test.x).SetPrec(max)
+ if got := x.MinPrec(); got != test.want {
+ t.Errorf("%s.MinPrec() = %d; want %d", test.x, got, test.want)
+ }
+ }
+}
+
+func TestFloatSign(t *testing.T) {
+ for _, test := range []struct {
+ x string
+ s int
+ }{
+ {"-Inf", -1},
+ {"-1", -1},
+ {"-0", 0},
+ {"+0", 0},
+ {"+1", +1},
+ {"+Inf", +1},
+ } {
+ x := makeFloat(test.x)
+ s := x.Sign()
+ if s != test.s {
+ t.Errorf("%s.Sign() = %d; want %d", test.x, s, test.s)
+ }
+ }
+}
+
+// alike(x, y) is like x.Cmp(y) == 0 but also considers the sign of 0 (0 != -0).
+func alike(x, y *Float) bool {
+ return x.Cmp(y) == 0 && x.Signbit() == y.Signbit()
+}
+
+func alike32(x, y float32) bool {
+ // we can ignore NaNs
+ return x == y && math.Signbit(float64(x)) == math.Signbit(float64(y))
+}
+
+func alike64(x, y float64) bool {
+ // we can ignore NaNs
+ return x == y && math.Signbit(x) == math.Signbit(y)
+}
+
+func TestFloatMantExp(t *testing.T) {
+ for _, test := range []struct {
+ x string
+ mant string
+ exp int
+ }{
+ {"0", "0", 0},
+ {"+0", "0", 0},
+ {"-0", "-0", 0},
+ {"Inf", "+Inf", 0},
+ {"+Inf", "+Inf", 0},
+ {"-Inf", "-Inf", 0},
+ {"1.5", "0.75", 1},
+ {"1.024e3", "0.5", 11},
+ {"-0.125", "-0.5", -2},
+ } {
+ x := makeFloat(test.x)
+ mant := makeFloat(test.mant)
+ m := new(Float)
+ e := x.MantExp(m)
+ if !alike(m, mant) || e != test.exp {
+ t.Errorf("%s.MantExp() = %s, %d; want %s, %d", test.x, m.Text('g', 10), e, test.mant, test.exp)
+ }
+ }
+}
+
+func TestFloatMantExpAliasing(t *testing.T) {
+ x := makeFloat("0.5p10")
+ if e := x.MantExp(x); e != 10 {
+ t.Fatalf("Float.MantExp aliasing error: got %d; want 10", e)
+ }
+ if want := makeFloat("0.5"); !alike(x, want) {
+ t.Fatalf("Float.MantExp aliasing error: got %s; want %s", x.Text('g', 10), want.Text('g', 10))
+ }
+}
+
+func TestFloatSetMantExp(t *testing.T) {
+ for _, test := range []struct {
+ frac string
+ exp int
+ z string
+ }{
+ {"0", 0, "0"},
+ {"+0", 0, "0"},
+ {"-0", 0, "-0"},
+ {"Inf", 1234, "+Inf"},
+ {"+Inf", -1234, "+Inf"},
+ {"-Inf", -1234, "-Inf"},
+ {"0", MinExp, "0"},
+ {"0.25", MinExp, "+0"}, // exponent underflow
+ {"-0.25", MinExp, "-0"}, // exponent underflow
+ {"1", MaxExp, "+Inf"}, // exponent overflow
+ {"2", MaxExp - 1, "+Inf"}, // exponent overflow
+ {"0.75", 1, "1.5"},
+ {"0.5", 11, "1024"},
+ {"-0.5", -2, "-0.125"},
+ {"32", 5, "1024"},
+ {"1024", -10, "1"},
+ } {
+ frac := makeFloat(test.frac)
+ want := makeFloat(test.z)
+ var z Float
+ z.SetMantExp(frac, test.exp)
+ if !alike(&z, want) {
+ t.Errorf("SetMantExp(%s, %d) = %s; want %s", test.frac, test.exp, z.Text('g', 10), test.z)
+ }
+ // test inverse property
+ mant := new(Float)
+ if z.SetMantExp(mant, want.MantExp(mant)).Cmp(want) != 0 {
+ t.Errorf("Inverse property not satisfied: got %s; want %s", z.Text('g', 10), test.z)
+ }
+ }
+}
+
+func TestFloatPredicates(t *testing.T) {
+ for _, test := range []struct {
+ x string
+ sign int
+ signbit, inf bool
+ }{
+ {x: "-Inf", sign: -1, signbit: true, inf: true},
+ {x: "-1", sign: -1, signbit: true},
+ {x: "-0", signbit: true},
+ {x: "0"},
+ {x: "1", sign: 1},
+ {x: "+Inf", sign: 1, inf: true},
+ } {
+ x := makeFloat(test.x)
+ if got := x.Signbit(); got != test.signbit {
+ t.Errorf("(%s).Signbit() = %v; want %v", test.x, got, test.signbit)
+ }
+ if got := x.Sign(); got != test.sign {
+ t.Errorf("(%s).Sign() = %d; want %d", test.x, got, test.sign)
+ }
+ if got := x.IsInf(); got != test.inf {
+ t.Errorf("(%s).IsInf() = %v; want %v", test.x, got, test.inf)
+ }
+ }
+}
+
+func TestFloatIsInt(t *testing.T) {
+ for _, test := range []string{
+ "0 int",
+ "-0 int",
+ "1 int",
+ "-1 int",
+ "0.5",
+ "1.23",
+ "1.23e1",
+ "1.23e2 int",
+ "0.000000001e+8",
+ "0.000000001e+9 int",
+ "1.2345e200 int",
+ "Inf",
+ "+Inf",
+ "-Inf",
+ } {
+ s := strings.TrimSuffix(test, " int")
+ want := s != test
+ if got := makeFloat(s).IsInt(); got != want {
+ t.Errorf("%s.IsInt() == %t", s, got)
+ }
+ }
+}
+
+func fromBinary(s string) int64 {
+ x, err := strconv.ParseInt(s, 2, 64)
+ if err != nil {
+ panic(err)
+ }
+ return x
+}
+
+func toBinary(x int64) string {
+ return strconv.FormatInt(x, 2)
+}
+
+func testFloatRound(t *testing.T, x, r int64, prec uint, mode RoundingMode) {
+ // verify test data
+ var ok bool
+ switch mode {
+ case ToNearestEven, ToNearestAway:
+ ok = true // nothing to do for now
+ case ToZero:
+ if x < 0 {
+ ok = r >= x
+ } else {
+ ok = r <= x
+ }
+ case AwayFromZero:
+ if x < 0 {
+ ok = r <= x
+ } else {
+ ok = r >= x
+ }
+ case ToNegativeInf:
+ ok = r <= x
+ case ToPositiveInf:
+ ok = r >= x
+ default:
+ panic("unreachable")
+ }
+ if !ok {
+ t.Fatalf("incorrect test data for prec = %d, %s: x = %s, r = %s", prec, mode, toBinary(x), toBinary(r))
+ }
+
+ // compute expected accuracy
+ a := Exact
+ switch {
+ case r < x:
+ a = Below
+ case r > x:
+ a = Above
+ }
+
+ // round
+ f := new(Float).SetMode(mode).SetInt64(x).SetPrec(prec)
+
+ // check result
+ r1 := f.int64()
+ p1 := f.Prec()
+ a1 := f.Acc()
+ if r1 != r || p1 != prec || a1 != a {
+ t.Errorf("round %s (%d bits, %s) incorrect: got %s (%d bits, %s); want %s (%d bits, %s)",
+ toBinary(x), prec, mode,
+ toBinary(r1), p1, a1,
+ toBinary(r), prec, a)
+ return
+ }
+
+ // g and f should be the same
+ // (rounding by SetPrec after SetInt64 using default precision
+ // should be the same as rounding by SetInt64 after setting the
+ // precision)
+ g := new(Float).SetMode(mode).SetPrec(prec).SetInt64(x)
+ if !alike(g, f) {
+ t.Errorf("round %s (%d bits, %s) not symmetric: got %s and %s; want %s",
+ toBinary(x), prec, mode,
+ toBinary(g.int64()),
+ toBinary(r1),
+ toBinary(r),
+ )
+ return
+ }
+
+ // h and f should be the same
+ // (repeated rounding should be idempotent)
+ h := new(Float).SetMode(mode).SetPrec(prec).Set(f)
+ if !alike(h, f) {
+ t.Errorf("round %s (%d bits, %s) not idempotent: got %s and %s; want %s",
+ toBinary(x), prec, mode,
+ toBinary(h.int64()),
+ toBinary(r1),
+ toBinary(r),
+ )
+ return
+ }
+}
+
+// TestFloatRound tests basic rounding.
+func TestFloatRound(t *testing.T) {
+ for _, test := range []struct {
+ prec uint
+ x, zero, neven, naway, away string // input, results rounded to prec bits
+ }{
+ {5, "1000", "1000", "1000", "1000", "1000"},
+ {5, "1001", "1001", "1001", "1001", "1001"},
+ {5, "1010", "1010", "1010", "1010", "1010"},
+ {5, "1011", "1011", "1011", "1011", "1011"},
+ {5, "1100", "1100", "1100", "1100", "1100"},
+ {5, "1101", "1101", "1101", "1101", "1101"},
+ {5, "1110", "1110", "1110", "1110", "1110"},
+ {5, "1111", "1111", "1111", "1111", "1111"},
+
+ {4, "1000", "1000", "1000", "1000", "1000"},
+ {4, "1001", "1001", "1001", "1001", "1001"},
+ {4, "1010", "1010", "1010", "1010", "1010"},
+ {4, "1011", "1011", "1011", "1011", "1011"},
+ {4, "1100", "1100", "1100", "1100", "1100"},
+ {4, "1101", "1101", "1101", "1101", "1101"},
+ {4, "1110", "1110", "1110", "1110", "1110"},
+ {4, "1111", "1111", "1111", "1111", "1111"},
+
+ {3, "1000", "1000", "1000", "1000", "1000"},
+ {3, "1001", "1000", "1000", "1010", "1010"},
+ {3, "1010", "1010", "1010", "1010", "1010"},
+ {3, "1011", "1010", "1100", "1100", "1100"},
+ {3, "1100", "1100", "1100", "1100", "1100"},
+ {3, "1101", "1100", "1100", "1110", "1110"},
+ {3, "1110", "1110", "1110", "1110", "1110"},
+ {3, "1111", "1110", "10000", "10000", "10000"},
+
+ {3, "1000001", "1000000", "1000000", "1000000", "1010000"},
+ {3, "1001001", "1000000", "1010000", "1010000", "1010000"},
+ {3, "1010001", "1010000", "1010000", "1010000", "1100000"},
+ {3, "1011001", "1010000", "1100000", "1100000", "1100000"},
+ {3, "1100001", "1100000", "1100000", "1100000", "1110000"},
+ {3, "1101001", "1100000", "1110000", "1110000", "1110000"},
+ {3, "1110001", "1110000", "1110000", "1110000", "10000000"},
+ {3, "1111001", "1110000", "10000000", "10000000", "10000000"},
+
+ {2, "1000", "1000", "1000", "1000", "1000"},
+ {2, "1001", "1000", "1000", "1000", "1100"},
+ {2, "1010", "1000", "1000", "1100", "1100"},
+ {2, "1011", "1000", "1100", "1100", "1100"},
+ {2, "1100", "1100", "1100", "1100", "1100"},
+ {2, "1101", "1100", "1100", "1100", "10000"},
+ {2, "1110", "1100", "10000", "10000", "10000"},
+ {2, "1111", "1100", "10000", "10000", "10000"},
+
+ {2, "1000001", "1000000", "1000000", "1000000", "1100000"},
+ {2, "1001001", "1000000", "1000000", "1000000", "1100000"},
+ {2, "1010001", "1000000", "1100000", "1100000", "1100000"},
+ {2, "1011001", "1000000", "1100000", "1100000", "1100000"},
+ {2, "1100001", "1100000", "1100000", "1100000", "10000000"},
+ {2, "1101001", "1100000", "1100000", "1100000", "10000000"},
+ {2, "1110001", "1100000", "10000000", "10000000", "10000000"},
+ {2, "1111001", "1100000", "10000000", "10000000", "10000000"},
+
+ {1, "1000", "1000", "1000", "1000", "1000"},
+ {1, "1001", "1000", "1000", "1000", "10000"},
+ {1, "1010", "1000", "1000", "1000", "10000"},
+ {1, "1011", "1000", "1000", "1000", "10000"},
+ {1, "1100", "1000", "10000", "10000", "10000"},
+ {1, "1101", "1000", "10000", "10000", "10000"},
+ {1, "1110", "1000", "10000", "10000", "10000"},
+ {1, "1111", "1000", "10000", "10000", "10000"},
+
+ {1, "1000001", "1000000", "1000000", "1000000", "10000000"},
+ {1, "1001001", "1000000", "1000000", "1000000", "10000000"},
+ {1, "1010001", "1000000", "1000000", "1000000", "10000000"},
+ {1, "1011001", "1000000", "1000000", "1000000", "10000000"},
+ {1, "1100001", "1000000", "10000000", "10000000", "10000000"},
+ {1, "1101001", "1000000", "10000000", "10000000", "10000000"},
+ {1, "1110001", "1000000", "10000000", "10000000", "10000000"},
+ {1, "1111001", "1000000", "10000000", "10000000", "10000000"},
+ } {
+ x := fromBinary(test.x)
+ z := fromBinary(test.zero)
+ e := fromBinary(test.neven)
+ n := fromBinary(test.naway)
+ a := fromBinary(test.away)
+ prec := test.prec
+
+ testFloatRound(t, x, z, prec, ToZero)
+ testFloatRound(t, x, e, prec, ToNearestEven)
+ testFloatRound(t, x, n, prec, ToNearestAway)
+ testFloatRound(t, x, a, prec, AwayFromZero)
+
+ testFloatRound(t, x, z, prec, ToNegativeInf)
+ testFloatRound(t, x, a, prec, ToPositiveInf)
+
+ testFloatRound(t, -x, -a, prec, ToNegativeInf)
+ testFloatRound(t, -x, -z, prec, ToPositiveInf)
+ }
+}
+
+// TestFloatRound24 tests that rounding a float64 to 24 bits
+// matches IEEE-754 rounding to nearest when converting a
+// float64 to a float32 (excluding denormal numbers).
+func TestFloatRound24(t *testing.T) {
+ const x0 = 1<<26 - 0x10 // 11...110000 (26 bits)
+ for d := 0; d <= 0x10; d++ {
+ x := float64(x0 + d)
+ f := new(Float).SetPrec(24).SetFloat64(x)
+ got, _ := f.Float32()
+ want := float32(x)
+ if got != want {
+ t.Errorf("Round(%g, 24) = %g; want %g", x, got, want)
+ }
+ }
+}
+
+func TestFloatSetUint64(t *testing.T) {
+ for _, want := range []uint64{
+ 0,
+ 1,
+ 2,
+ 10,
+ 100,
+ 1<<32 - 1,
+ 1 << 32,
+ 1<<64 - 1,
+ } {
+ var f Float
+ f.SetUint64(want)
+ if got := f.uint64(); got != want {
+ t.Errorf("got %#x (%s); want %#x", got, f.Text('p', 0), want)
+ }
+ }
+
+ // test basic rounding behavior (exhaustive rounding testing is done elsewhere)
+ const x uint64 = 0x8765432187654321 // 64 bits needed
+ for prec := uint(1); prec <= 64; prec++ {
+ f := new(Float).SetPrec(prec).SetMode(ToZero).SetUint64(x)
+ got := f.uint64()
+ want := x &^ (1<<(64-prec) - 1) // cut off (round to zero) low 64-prec bits
+ if got != want {
+ t.Errorf("got %#x (%s); want %#x", got, f.Text('p', 0), want)
+ }
+ }
+}
+
+func TestFloatSetInt64(t *testing.T) {
+ for _, want := range []int64{
+ 0,
+ 1,
+ 2,
+ 10,
+ 100,
+ 1<<32 - 1,
+ 1 << 32,
+ 1<<63 - 1,
+ } {
+ for i := range [2]int{} {
+ if i&1 != 0 {
+ want = -want
+ }
+ var f Float
+ f.SetInt64(want)
+ if got := f.int64(); got != want {
+ t.Errorf("got %#x (%s); want %#x", got, f.Text('p', 0), want)
+ }
+ }
+ }
+
+ // test basic rounding behavior (exhaustive rounding testing is done elsewhere)
+ const x int64 = 0x7654321076543210 // 63 bits needed
+ for prec := uint(1); prec <= 63; prec++ {
+ f := new(Float).SetPrec(prec).SetMode(ToZero).SetInt64(x)
+ got := f.int64()
+ want := x &^ (1<<(63-prec) - 1) // cut off (round to zero) low 63-prec bits
+ if got != want {
+ t.Errorf("got %#x (%s); want %#x", got, f.Text('p', 0), want)
+ }
+ }
+}
+
+func TestFloatSetFloat64(t *testing.T) {
+ for _, want := range []float64{
+ 0,
+ 1,
+ 2,
+ 12345,
+ 1e10,
+ 1e100,
+ 3.14159265e10,
+ 2.718281828e-123,
+ 1.0 / 3,
+ math.MaxFloat32,
+ math.MaxFloat64,
+ math.SmallestNonzeroFloat32,
+ math.SmallestNonzeroFloat64,
+ math.Inf(-1),
+ math.Inf(0),
+ -math.Inf(1),
+ } {
+ for i := range [2]int{} {
+ if i&1 != 0 {
+ want = -want
+ }
+ var f Float
+ f.SetFloat64(want)
+ if got, acc := f.Float64(); got != want || acc != Exact {
+ t.Errorf("got %g (%s, %s); want %g (Exact)", got, f.Text('p', 0), acc, want)
+ }
+ }
+ }
+
+ // test basic rounding behavior (exhaustive rounding testing is done elsewhere)
+ const x uint64 = 0x8765432143218 // 53 bits needed
+ for prec := uint(1); prec <= 52; prec++ {
+ f := new(Float).SetPrec(prec).SetMode(ToZero).SetFloat64(float64(x))
+ got, _ := f.Float64()
+ want := float64(x &^ (1<<(52-prec) - 1)) // cut off (round to zero) low 53-prec bits
+ if got != want {
+ t.Errorf("got %g (%s); want %g", got, f.Text('p', 0), want)
+ }
+ }
+
+ // test NaN
+ defer func() {
+ if p, ok := recover().(ErrNaN); !ok {
+ t.Errorf("got %v; want ErrNaN panic", p)
+ }
+ }()
+ var f Float
+ f.SetFloat64(math.NaN())
+ // should not reach here
+ t.Errorf("got %s; want ErrNaN panic", f.Text('p', 0))
+}
+
+func TestFloatSetInt(t *testing.T) {
+ for _, want := range []string{
+ "0",
+ "1",
+ "-1",
+ "1234567890",
+ "123456789012345678901234567890",
+ "123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890",
+ } {
+ var x Int
+ _, ok := x.SetString(want, 0)
+ if !ok {
+ t.Errorf("invalid integer %s", want)
+ continue
+ }
+ n := x.BitLen()
+
+ var f Float
+ f.SetInt(&x)
+
+ // check precision
+ if n < 64 {
+ n = 64
+ }
+ if prec := f.Prec(); prec != uint(n) {
+ t.Errorf("got prec = %d; want %d", prec, n)
+ }
+
+ // check value
+ got := f.Text('g', 100)
+ if got != want {
+ t.Errorf("got %s (%s); want %s", got, f.Text('p', 0), want)
+ }
+ }
+
+ // TODO(gri) test basic rounding behavior
+}
+
+func TestFloatSetRat(t *testing.T) {
+ for _, want := range []string{
+ "0",
+ "1",
+ "-1",
+ "1234567890",
+ "123456789012345678901234567890",
+ "123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890",
+ "1.2",
+ "3.14159265",
+ // TODO(gri) expand
+ } {
+ var x Rat
+ _, ok := x.SetString(want)
+ if !ok {
+ t.Errorf("invalid fraction %s", want)
+ continue
+ }
+ n := max(x.Num().BitLen(), x.Denom().BitLen())
+
+ var f1, f2 Float
+ f2.SetPrec(1000)
+ f1.SetRat(&x)
+ f2.SetRat(&x)
+
+ // check precision when set automatically
+ if n < 64 {
+ n = 64
+ }
+ if prec := f1.Prec(); prec != uint(n) {
+ t.Errorf("got prec = %d; want %d", prec, n)
+ }
+
+ got := f2.Text('g', 100)
+ if got != want {
+ t.Errorf("got %s (%s); want %s", got, f2.Text('p', 0), want)
+ }
+ }
+}
+
+func TestFloatSetInf(t *testing.T) {
+ var f Float
+ for _, test := range []struct {
+ signbit bool
+ prec uint
+ want string
+ }{
+ {false, 0, "+Inf"},
+ {true, 0, "-Inf"},
+ {false, 10, "+Inf"},
+ {true, 30, "-Inf"},
+ } {
+ x := f.SetPrec(test.prec).SetInf(test.signbit)
+ if got := x.String(); got != test.want || x.Prec() != test.prec {
+ t.Errorf("SetInf(%v) = %s (prec = %d); want %s (prec = %d)", test.signbit, got, x.Prec(), test.want, test.prec)
+ }
+ }
+}
+
+func TestFloatUint64(t *testing.T) {
+ for _, test := range []struct {
+ x string
+ out uint64
+ acc Accuracy
+ }{
+ {"-Inf", 0, Above},
+ {"-1", 0, Above},
+ {"-1e-1000", 0, Above},
+ {"-0", 0, Exact},
+ {"0", 0, Exact},
+ {"1e-1000", 0, Below},
+ {"1", 1, Exact},
+ {"1.000000000000000000001", 1, Below},
+ {"12345.0", 12345, Exact},
+ {"12345.000000000000000000001", 12345, Below},
+ {"18446744073709551615", 18446744073709551615, Exact},
+ {"18446744073709551615.000000000000000000001", math.MaxUint64, Below},
+ {"18446744073709551616", math.MaxUint64, Below},
+ {"1e10000", math.MaxUint64, Below},
+ {"+Inf", math.MaxUint64, Below},
+ } {
+ x := makeFloat(test.x)
+ out, acc := x.Uint64()
+ if out != test.out || acc != test.acc {
+ t.Errorf("%s: got %d (%s); want %d (%s)", test.x, out, acc, test.out, test.acc)
+ }
+ }
+}
+
+func TestFloatInt64(t *testing.T) {
+ for _, test := range []struct {
+ x string
+ out int64
+ acc Accuracy
+ }{
+ {"-Inf", math.MinInt64, Above},
+ {"-1e10000", math.MinInt64, Above},
+ {"-9223372036854775809", math.MinInt64, Above},
+ {"-9223372036854775808.000000000000000000001", math.MinInt64, Above},
+ {"-9223372036854775808", -9223372036854775808, Exact},
+ {"-9223372036854775807.000000000000000000001", -9223372036854775807, Above},
+ {"-9223372036854775807", -9223372036854775807, Exact},
+ {"-12345.000000000000000000001", -12345, Above},
+ {"-12345.0", -12345, Exact},
+ {"-1.000000000000000000001", -1, Above},
+ {"-1.5", -1, Above},
+ {"-1", -1, Exact},
+ {"-1e-1000", 0, Above},
+ {"0", 0, Exact},
+ {"1e-1000", 0, Below},
+ {"1", 1, Exact},
+ {"1.000000000000000000001", 1, Below},
+ {"1.5", 1, Below},
+ {"12345.0", 12345, Exact},
+ {"12345.000000000000000000001", 12345, Below},
+ {"9223372036854775807", 9223372036854775807, Exact},
+ {"9223372036854775807.000000000000000000001", math.MaxInt64, Below},
+ {"9223372036854775808", math.MaxInt64, Below},
+ {"1e10000", math.MaxInt64, Below},
+ {"+Inf", math.MaxInt64, Below},
+ } {
+ x := makeFloat(test.x)
+ out, acc := x.Int64()
+ if out != test.out || acc != test.acc {
+ t.Errorf("%s: got %d (%s); want %d (%s)", test.x, out, acc, test.out, test.acc)
+ }
+ }
+}
+
+func TestFloatFloat32(t *testing.T) {
+ for _, test := range []struct {
+ x string
+ out float32
+ acc Accuracy
+ }{
+ {"0", 0, Exact},
+
+ // underflow to zero
+ {"1e-1000", 0, Below},
+ {"0x0.000002p-127", 0, Below},
+ {"0x.0000010p-126", 0, Below},
+
+ // denormals
+ {"1.401298464e-45", math.SmallestNonzeroFloat32, Above}, // rounded up to smallest denormal
+ {"0x.ffffff8p-149", math.SmallestNonzeroFloat32, Above}, // rounded up to smallest denormal
+ {"0x.0000018p-126", math.SmallestNonzeroFloat32, Above}, // rounded up to smallest denormal
+ {"0x.0000020p-126", math.SmallestNonzeroFloat32, Exact},
+ {"0x.8p-148", math.SmallestNonzeroFloat32, Exact},
+ {"1p-149", math.SmallestNonzeroFloat32, Exact},
+ {"0x.fffffep-126", math.Float32frombits(0x7fffff), Exact}, // largest denormal
+
+ // special denormal cases (see issues 14553, 14651)
+ {"0x0.0000001p-126", math.Float32frombits(0x00000000), Below}, // underflow to zero
+ {"0x0.0000008p-126", math.Float32frombits(0x00000000), Below}, // underflow to zero
+ {"0x0.0000010p-126", math.Float32frombits(0x00000000), Below}, // rounded down to even
+ {"0x0.0000011p-126", math.Float32frombits(0x00000001), Above}, // rounded up to smallest denormal
+ {"0x0.0000018p-126", math.Float32frombits(0x00000001), Above}, // rounded up to smallest denormal
+
+ {"0x1.0000000p-149", math.Float32frombits(0x00000001), Exact}, // smallest denormal
+ {"0x0.0000020p-126", math.Float32frombits(0x00000001), Exact}, // smallest denormal
+ {"0x0.fffffe0p-126", math.Float32frombits(0x007fffff), Exact}, // largest denormal
+ {"0x1.0000000p-126", math.Float32frombits(0x00800000), Exact}, // smallest normal
+
+ {"0x0.8p-149", math.Float32frombits(0x000000000), Below}, // rounded down to even
+ {"0x0.9p-149", math.Float32frombits(0x000000001), Above}, // rounded up to smallest denormal
+ {"0x0.ap-149", math.Float32frombits(0x000000001), Above}, // rounded up to smallest denormal
+ {"0x0.bp-149", math.Float32frombits(0x000000001), Above}, // rounded up to smallest denormal
+ {"0x0.cp-149", math.Float32frombits(0x000000001), Above}, // rounded up to smallest denormal
+
+ {"0x1.0p-149", math.Float32frombits(0x000000001), Exact}, // smallest denormal
+ {"0x1.7p-149", math.Float32frombits(0x000000001), Below},
+ {"0x1.8p-149", math.Float32frombits(0x000000002), Above},
+ {"0x1.9p-149", math.Float32frombits(0x000000002), Above},
+
+ {"0x2.0p-149", math.Float32frombits(0x000000002), Exact},
+ {"0x2.8p-149", math.Float32frombits(0x000000002), Below}, // rounded down to even
+ {"0x2.9p-149", math.Float32frombits(0x000000003), Above},
+
+ {"0x3.0p-149", math.Float32frombits(0x000000003), Exact},
+ {"0x3.7p-149", math.Float32frombits(0x000000003), Below},
+ {"0x3.8p-149", math.Float32frombits(0x000000004), Above}, // rounded up to even
+
+ {"0x4.0p-149", math.Float32frombits(0x000000004), Exact},
+ {"0x4.8p-149", math.Float32frombits(0x000000004), Below}, // rounded down to even
+ {"0x4.9p-149", math.Float32frombits(0x000000005), Above},
+
+ // specific case from issue 14553
+ {"0x7.7p-149", math.Float32frombits(0x000000007), Below},
+ {"0x7.8p-149", math.Float32frombits(0x000000008), Above},
+ {"0x7.9p-149", math.Float32frombits(0x000000008), Above},
+
+ // normals
+ {"0x.ffffffp-126", math.Float32frombits(0x00800000), Above}, // rounded up to smallest normal
+ {"1p-126", math.Float32frombits(0x00800000), Exact}, // smallest normal
+ {"0x1.fffffep-126", math.Float32frombits(0x00ffffff), Exact},
+ {"0x1.ffffffp-126", math.Float32frombits(0x01000000), Above}, // rounded up
+ {"1", 1, Exact},
+ {"1.000000000000000000001", 1, Below},
+ {"12345.0", 12345, Exact},
+ {"12345.000000000000000000001", 12345, Below},
+ {"0x1.fffffe0p127", math.MaxFloat32, Exact},
+ {"0x1.fffffe8p127", math.MaxFloat32, Below},
+
+ // overflow
+ {"0x1.ffffff0p127", float32(math.Inf(+1)), Above},
+ {"0x1p128", float32(math.Inf(+1)), Above},
+ {"1e10000", float32(math.Inf(+1)), Above},
+ {"0x1.ffffff0p2147483646", float32(math.Inf(+1)), Above}, // overflow in rounding
+
+ // inf
+ {"Inf", float32(math.Inf(+1)), Exact},
+ } {
+ for i := 0; i < 2; i++ {
+ // test both signs
+ tx, tout, tacc := test.x, test.out, test.acc
+ if i != 0 {
+ tx = "-" + tx
+ tout = -tout
+ tacc = -tacc
+ }
+
+ // conversion should match strconv where syntax is agreeable
+ if f, err := strconv.ParseFloat(tx, 32); err == nil && !alike32(float32(f), tout) {
+ t.Errorf("%s: got %g; want %g (incorrect test data)", tx, f, tout)
+ }
+
+ x := makeFloat(tx)
+ out, acc := x.Float32()
+ if !alike32(out, tout) || acc != tacc {
+ t.Errorf("%s: got %g (%#08x, %s); want %g (%#08x, %s)", tx, out, math.Float32bits(out), acc, test.out, math.Float32bits(test.out), tacc)
+ }
+
+ // test that x.SetFloat64(float64(f)).Float32() == f
+ var x2 Float
+ out2, acc2 := x2.SetFloat64(float64(out)).Float32()
+ if !alike32(out2, out) || acc2 != Exact {
+ t.Errorf("idempotency test: got %g (%s); want %g (Exact)", out2, acc2, out)
+ }
+ }
+ }
+}
+
+func TestFloatFloat64(t *testing.T) {
+ const smallestNormalFloat64 = 2.2250738585072014e-308 // 1p-1022
+ for _, test := range []struct {
+ x string
+ out float64
+ acc Accuracy
+ }{
+ {"0", 0, Exact},
+
+ // underflow to zero
+ {"1e-1000", 0, Below},
+ {"0x0.0000000000001p-1023", 0, Below},
+ {"0x0.00000000000008p-1022", 0, Below},
+
+ // denormals
+ {"0x0.0000000000000cp-1022", math.SmallestNonzeroFloat64, Above}, // rounded up to smallest denormal
+ {"0x0.00000000000010p-1022", math.SmallestNonzeroFloat64, Exact}, // smallest denormal
+ {"0x.8p-1073", math.SmallestNonzeroFloat64, Exact},
+ {"1p-1074", math.SmallestNonzeroFloat64, Exact},
+ {"0x.fffffffffffffp-1022", math.Float64frombits(0x000fffffffffffff), Exact}, // largest denormal
+
+ // special denormal cases (see issues 14553, 14651)
+ {"0x0.00000000000001p-1022", math.Float64frombits(0x00000000000000000), Below}, // underflow to zero
+ {"0x0.00000000000004p-1022", math.Float64frombits(0x00000000000000000), Below}, // underflow to zero
+ {"0x0.00000000000008p-1022", math.Float64frombits(0x00000000000000000), Below}, // rounded down to even
+ {"0x0.00000000000009p-1022", math.Float64frombits(0x00000000000000001), Above}, // rounded up to smallest denormal
+ {"0x0.0000000000000ap-1022", math.Float64frombits(0x00000000000000001), Above}, // rounded up to smallest denormal
+
+ {"0x0.8p-1074", math.Float64frombits(0x00000000000000000), Below}, // rounded down to even
+ {"0x0.9p-1074", math.Float64frombits(0x00000000000000001), Above}, // rounded up to smallest denormal
+ {"0x0.ap-1074", math.Float64frombits(0x00000000000000001), Above}, // rounded up to smallest denormal
+ {"0x0.bp-1074", math.Float64frombits(0x00000000000000001), Above}, // rounded up to smallest denormal
+ {"0x0.cp-1074", math.Float64frombits(0x00000000000000001), Above}, // rounded up to smallest denormal
+
+ {"0x1.0p-1074", math.Float64frombits(0x00000000000000001), Exact},
+ {"0x1.7p-1074", math.Float64frombits(0x00000000000000001), Below},
+ {"0x1.8p-1074", math.Float64frombits(0x00000000000000002), Above},
+ {"0x1.9p-1074", math.Float64frombits(0x00000000000000002), Above},
+
+ {"0x2.0p-1074", math.Float64frombits(0x00000000000000002), Exact},
+ {"0x2.8p-1074", math.Float64frombits(0x00000000000000002), Below}, // rounded down to even
+ {"0x2.9p-1074", math.Float64frombits(0x00000000000000003), Above},
+
+ {"0x3.0p-1074", math.Float64frombits(0x00000000000000003), Exact},
+ {"0x3.7p-1074", math.Float64frombits(0x00000000000000003), Below},
+ {"0x3.8p-1074", math.Float64frombits(0x00000000000000004), Above}, // rounded up to even
+
+ {"0x4.0p-1074", math.Float64frombits(0x00000000000000004), Exact},
+ {"0x4.8p-1074", math.Float64frombits(0x00000000000000004), Below}, // rounded down to even
+ {"0x4.9p-1074", math.Float64frombits(0x00000000000000005), Above},
+
+ // normals
+ {"0x.fffffffffffff8p-1022", math.Float64frombits(0x0010000000000000), Above}, // rounded up to smallest normal
+ {"1p-1022", math.Float64frombits(0x0010000000000000), Exact}, // smallest normal
+ {"1", 1, Exact},
+ {"1.000000000000000000001", 1, Below},
+ {"12345.0", 12345, Exact},
+ {"12345.000000000000000000001", 12345, Below},
+ {"0x1.fffffffffffff0p1023", math.MaxFloat64, Exact},
+ {"0x1.fffffffffffff4p1023", math.MaxFloat64, Below},
+
+ // overflow
+ {"0x1.fffffffffffff8p1023", math.Inf(+1), Above},
+ {"0x1p1024", math.Inf(+1), Above},
+ {"1e10000", math.Inf(+1), Above},
+ {"0x1.fffffffffffff8p2147483646", math.Inf(+1), Above}, // overflow in rounding
+ {"Inf", math.Inf(+1), Exact},
+
+ // selected denormalized values that were handled incorrectly in the past
+ {"0x.fffffffffffffp-1022", smallestNormalFloat64 - math.SmallestNonzeroFloat64, Exact},
+ {"4503599627370495p-1074", smallestNormalFloat64 - math.SmallestNonzeroFloat64, Exact},
+
+ // https://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
+ {"2.2250738585072011e-308", 2.225073858507201e-308, Below},
+ // https://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
+ {"2.2250738585072012e-308", 2.2250738585072014e-308, Above},
+ } {
+ for i := 0; i < 2; i++ {
+ // test both signs
+ tx, tout, tacc := test.x, test.out, test.acc
+ if i != 0 {
+ tx = "-" + tx
+ tout = -tout
+ tacc = -tacc
+ }
+
+ // conversion should match strconv where syntax is agreeable
+ if f, err := strconv.ParseFloat(tx, 64); err == nil && !alike64(f, tout) {
+ t.Errorf("%s: got %g; want %g (incorrect test data)", tx, f, tout)
+ }
+
+ x := makeFloat(tx)
+ out, acc := x.Float64()
+ if !alike64(out, tout) || acc != tacc {
+ t.Errorf("%s: got %g (%#016x, %s); want %g (%#016x, %s)", tx, out, math.Float64bits(out), acc, test.out, math.Float64bits(test.out), tacc)
+ }
+
+ // test that x.SetFloat64(f).Float64() == f
+ var x2 Float
+ out2, acc2 := x2.SetFloat64(out).Float64()
+ if !alike64(out2, out) || acc2 != Exact {
+ t.Errorf("idempotency test: got %g (%s); want %g (Exact)", out2, acc2, out)
+ }
+ }
+ }
+}
+
+func TestFloatInt(t *testing.T) {
+ for _, test := range []struct {
+ x string
+ want string
+ acc Accuracy
+ }{
+ {"0", "0", Exact},
+ {"+0", "0", Exact},
+ {"-0", "0", Exact},
+ {"Inf", "nil", Below},
+ {"+Inf", "nil", Below},
+ {"-Inf", "nil", Above},
+ {"1", "1", Exact},
+ {"-1", "-1", Exact},
+ {"1.23", "1", Below},
+ {"-1.23", "-1", Above},
+ {"123e-2", "1", Below},
+ {"123e-3", "0", Below},
+ {"123e-4", "0", Below},
+ {"1e-1000", "0", Below},
+ {"-1e-1000", "0", Above},
+ {"1e+10", "10000000000", Exact},
+ {"1e+100", "10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", Exact},
+ } {
+ x := makeFloat(test.x)
+ res, acc := x.Int(nil)
+ got := "nil"
+ if res != nil {
+ got = res.String()
+ }
+ if got != test.want || acc != test.acc {
+ t.Errorf("%s: got %s (%s); want %s (%s)", test.x, got, acc, test.want, test.acc)
+ }
+ }
+
+ // check that supplied *Int is used
+ for _, f := range []string{"0", "1", "-1", "1234"} {
+ x := makeFloat(f)
+ i := new(Int)
+ if res, _ := x.Int(i); res != i {
+ t.Errorf("(%s).Int is not using supplied *Int", f)
+ }
+ }
+}
+
+func TestFloatRat(t *testing.T) {
+ for _, test := range []struct {
+ x, want string
+ acc Accuracy
+ }{
+ {"0", "0/1", Exact},
+ {"+0", "0/1", Exact},
+ {"-0", "0/1", Exact},
+ {"Inf", "nil", Below},
+ {"+Inf", "nil", Below},
+ {"-Inf", "nil", Above},
+ {"1", "1/1", Exact},
+ {"-1", "-1/1", Exact},
+ {"1.25", "5/4", Exact},
+ {"-1.25", "-5/4", Exact},
+ {"1e10", "10000000000/1", Exact},
+ {"1p10", "1024/1", Exact},
+ {"-1p-10", "-1/1024", Exact},
+ {"3.14159265", "7244019449799623199/2305843009213693952", Exact},
+ } {
+ x := makeFloat(test.x).SetPrec(64)
+ res, acc := x.Rat(nil)
+ got := "nil"
+ if res != nil {
+ got = res.String()
+ }
+ if got != test.want {
+ t.Errorf("%s: got %s; want %s", test.x, got, test.want)
+ continue
+ }
+ if acc != test.acc {
+ t.Errorf("%s: got %s; want %s", test.x, acc, test.acc)
+ continue
+ }
+
+ // inverse conversion
+ if res != nil {
+ got := new(Float).SetPrec(64).SetRat(res)
+ if got.Cmp(x) != 0 {
+ t.Errorf("%s: got %s; want %s", test.x, got, x)
+ }
+ }
+ }
+
+ // check that supplied *Rat is used
+ for _, f := range []string{"0", "1", "-1", "1234"} {
+ x := makeFloat(f)
+ r := new(Rat)
+ if res, _ := x.Rat(r); res != r {
+ t.Errorf("(%s).Rat is not using supplied *Rat", f)
+ }
+ }
+}
+
+func TestFloatAbs(t *testing.T) {
+ for _, test := range []string{
+ "0",
+ "1",
+ "1234",
+ "1.23e-2",
+ "1e-1000",
+ "1e1000",
+ "Inf",
+ } {
+ p := makeFloat(test)
+ a := new(Float).Abs(p)
+ if !alike(a, p) {
+ t.Errorf("%s: got %s; want %s", test, a.Text('g', 10), test)
+ }
+
+ n := makeFloat("-" + test)
+ a.Abs(n)
+ if !alike(a, p) {
+ t.Errorf("-%s: got %s; want %s", test, a.Text('g', 10), test)
+ }
+ }
+}
+
+func TestFloatNeg(t *testing.T) {
+ for _, test := range []string{
+ "0",
+ "1",
+ "1234",
+ "1.23e-2",
+ "1e-1000",
+ "1e1000",
+ "Inf",
+ } {
+ p1 := makeFloat(test)
+ n1 := makeFloat("-" + test)
+ n2 := new(Float).Neg(p1)
+ p2 := new(Float).Neg(n2)
+ if !alike(n2, n1) {
+ t.Errorf("%s: got %s; want %s", test, n2.Text('g', 10), n1.Text('g', 10))
+ }
+ if !alike(p2, p1) {
+ t.Errorf("%s: got %s; want %s", test, p2.Text('g', 10), p1.Text('g', 10))
+ }
+ }
+}
+
+func TestFloatInc(t *testing.T) {
+ const n = 10
+ for _, prec := range precList {
+ if 1<<prec < n {
+ continue // prec must be large enough to hold all numbers from 0 to n
+ }
+ var x, one Float
+ x.SetPrec(prec)
+ one.SetInt64(1)
+ for i := 0; i < n; i++ {
+ x.Add(&x, &one)
+ }
+ if x.Cmp(new(Float).SetInt64(n)) != 0 {
+ t.Errorf("prec = %d: got %s; want %d", prec, &x, n)
+ }
+ }
+}
+
+// Selected precisions with which to run various tests.
+var precList = [...]uint{1, 2, 5, 8, 10, 16, 23, 24, 32, 50, 53, 64, 100, 128, 500, 511, 512, 513, 1000, 10000}
+
+// Selected bits with which to run various tests.
+// Each entry is a list of bits representing a floating-point number (see fromBits).
+var bitsList = [...]Bits{
+ {}, // = 0
+ {0}, // = 1
+ {1}, // = 2
+ {-1}, // = 1/2
+ {10}, // = 2**10 == 1024
+ {-10}, // = 2**-10 == 1/1024
+ {100, 10, 1}, // = 2**100 + 2**10 + 2**1
+ {0, -1, -2, -10},
+ // TODO(gri) add more test cases
+}
+
+// TestFloatAdd tests Float.Add/Sub by comparing the result of a "manual"
+// addition/subtraction of arguments represented by Bits values with the
+// respective Float addition/subtraction for a variety of precisions
+// and rounding modes.
+func TestFloatAdd(t *testing.T) {
+ for _, xbits := range bitsList {
+ for _, ybits := range bitsList {
+ // exact values
+ x := xbits.Float()
+ y := ybits.Float()
+ zbits := xbits.add(ybits)
+ z := zbits.Float()
+
+ for i, mode := range [...]RoundingMode{ToZero, ToNearestEven, AwayFromZero} {
+ for _, prec := range precList {
+ got := new(Float).SetPrec(prec).SetMode(mode)
+ got.Add(x, y)
+ want := zbits.round(prec, mode)
+ if got.Cmp(want) != 0 {
+ t.Errorf("i = %d, prec = %d, %s:\n\t %s %v\n\t+ %s %v\n\t= %s\n\twant %s",
+ i, prec, mode, x, xbits, y, ybits, got, want)
+ }
+
+ got.Sub(z, x)
+ want = ybits.round(prec, mode)
+ if got.Cmp(want) != 0 {
+ t.Errorf("i = %d, prec = %d, %s:\n\t %s %v\n\t- %s %v\n\t= %s\n\twant %s",
+ i, prec, mode, z, zbits, x, xbits, got, want)
+ }
+ }
+ }
+ }
+ }
+}
+
+// TestFloatAddRoundZero tests Float.Add/Sub rounding when the result is exactly zero.
+// x + (-x) or x - x for non-zero x should be +0 in all cases except when
+// the rounding mode is ToNegativeInf in which case it should be -0.
+func TestFloatAddRoundZero(t *testing.T) {
+ for _, mode := range [...]RoundingMode{ToNearestEven, ToNearestAway, ToZero, AwayFromZero, ToPositiveInf, ToNegativeInf} {
+ x := NewFloat(5.0)
+ y := new(Float).Neg(x)
+ want := NewFloat(0.0)
+ if mode == ToNegativeInf {
+ want.Neg(want)
+ }
+ got := new(Float).SetMode(mode)
+ got.Add(x, y)
+ if got.Cmp(want) != 0 || got.neg != (mode == ToNegativeInf) {
+ t.Errorf("%s:\n\t %v\n\t+ %v\n\t= %v\n\twant %v",
+ mode, x, y, got, want)
+ }
+ got.Sub(x, x)
+ if got.Cmp(want) != 0 || got.neg != (mode == ToNegativeInf) {
+ t.Errorf("%v:\n\t %v\n\t- %v\n\t= %v\n\twant %v",
+ mode, x, x, got, want)
+ }
+ }
+}
+
+// TestFloatAdd32 tests that Float.Add/Sub of numbers with
+// 24bit mantissa behaves like float32 addition/subtraction
+// (excluding denormal numbers).
+func TestFloatAdd32(t *testing.T) {
+ // chose base such that we cross the mantissa precision limit
+ const base = 1<<26 - 0x10 // 11...110000 (26 bits)
+ for d := 0; d <= 0x10; d++ {
+ for i := range [2]int{} {
+ x0, y0 := float64(base), float64(d)
+ if i&1 != 0 {
+ x0, y0 = y0, x0
+ }
+
+ x := NewFloat(x0)
+ y := NewFloat(y0)
+ z := new(Float).SetPrec(24)
+
+ z.Add(x, y)
+ got, acc := z.Float32()
+ want := float32(y0) + float32(x0)
+ if got != want || acc != Exact {
+ t.Errorf("d = %d: %g + %g = %g (%s); want %g (Exact)", d, x0, y0, got, acc, want)
+ }
+
+ z.Sub(z, y)
+ got, acc = z.Float32()
+ want = float32(want) - float32(y0)
+ if got != want || acc != Exact {
+ t.Errorf("d = %d: %g - %g = %g (%s); want %g (Exact)", d, x0+y0, y0, got, acc, want)
+ }
+ }
+ }
+}
+
+// TestFloatAdd64 tests that Float.Add/Sub of numbers with
+// 53bit mantissa behaves like float64 addition/subtraction.
+func TestFloatAdd64(t *testing.T) {
+ // chose base such that we cross the mantissa precision limit
+ const base = 1<<55 - 0x10 // 11...110000 (55 bits)
+ for d := 0; d <= 0x10; d++ {
+ for i := range [2]int{} {
+ x0, y0 := float64(base), float64(d)
+ if i&1 != 0 {
+ x0, y0 = y0, x0
+ }
+
+ x := NewFloat(x0)
+ y := NewFloat(y0)
+ z := new(Float).SetPrec(53)
+
+ z.Add(x, y)
+ got, acc := z.Float64()
+ want := x0 + y0
+ if got != want || acc != Exact {
+ t.Errorf("d = %d: %g + %g = %g (%s); want %g (Exact)", d, x0, y0, got, acc, want)
+ }
+
+ z.Sub(z, y)
+ got, acc = z.Float64()
+ want -= y0
+ if got != want || acc != Exact {
+ t.Errorf("d = %d: %g - %g = %g (%s); want %g (Exact)", d, x0+y0, y0, got, acc, want)
+ }
+ }
+ }
+}
+
+func TestIssue20490(t *testing.T) {
+ var tests = []struct {
+ a, b float64
+ }{
+ {4, 1},
+ {-4, 1},
+ {4, -1},
+ {-4, -1},
+ }
+
+ for _, test := range tests {
+ a, b := NewFloat(test.a), NewFloat(test.b)
+ diff := new(Float).Sub(a, b)
+ b.Sub(a, b)
+ if b.Cmp(diff) != 0 {
+ t.Errorf("got %g - %g = %g; want %g\n", a, NewFloat(test.b), b, diff)
+ }
+
+ b = NewFloat(test.b)
+ sum := new(Float).Add(a, b)
+ b.Add(a, b)
+ if b.Cmp(sum) != 0 {
+ t.Errorf("got %g + %g = %g; want %g\n", a, NewFloat(test.b), b, sum)
+ }
+
+ }
+}
+
+// TestFloatMul tests Float.Mul/Quo by comparing the result of a "manual"
+// multiplication/division of arguments represented by Bits values with the
+// respective Float multiplication/division for a variety of precisions
+// and rounding modes.
+func TestFloatMul(t *testing.T) {
+ for _, xbits := range bitsList {
+ for _, ybits := range bitsList {
+ // exact values
+ x := xbits.Float()
+ y := ybits.Float()
+ zbits := xbits.mul(ybits)
+ z := zbits.Float()
+
+ for i, mode := range [...]RoundingMode{ToZero, ToNearestEven, AwayFromZero} {
+ for _, prec := range precList {
+ got := new(Float).SetPrec(prec).SetMode(mode)
+ got.Mul(x, y)
+ want := zbits.round(prec, mode)
+ if got.Cmp(want) != 0 {
+ t.Errorf("i = %d, prec = %d, %s:\n\t %v %v\n\t* %v %v\n\t= %v\n\twant %v",
+ i, prec, mode, x, xbits, y, ybits, got, want)
+ }
+
+ if x.Sign() == 0 {
+ continue // ignore div-0 case (not invertable)
+ }
+ got.Quo(z, x)
+ want = ybits.round(prec, mode)
+ if got.Cmp(want) != 0 {
+ t.Errorf("i = %d, prec = %d, %s:\n\t %v %v\n\t/ %v %v\n\t= %v\n\twant %v",
+ i, prec, mode, z, zbits, x, xbits, got, want)
+ }
+ }
+ }
+ }
+ }
+}
+
+// TestFloatMul64 tests that Float.Mul/Quo of numbers with
+// 53bit mantissa behaves like float64 multiplication/division.
+func TestFloatMul64(t *testing.T) {
+ for _, test := range []struct {
+ x, y float64
+ }{
+ {0, 0},
+ {0, 1},
+ {1, 1},
+ {1, 1.5},
+ {1.234, 0.5678},
+ {2.718281828, 3.14159265358979},
+ {2.718281828e10, 3.14159265358979e-32},
+ {1.0 / 3, 1e200},
+ } {
+ for i := range [8]int{} {
+ x0, y0 := test.x, test.y
+ if i&1 != 0 {
+ x0 = -x0
+ }
+ if i&2 != 0 {
+ y0 = -y0
+ }
+ if i&4 != 0 {
+ x0, y0 = y0, x0
+ }
+
+ x := NewFloat(x0)
+ y := NewFloat(y0)
+ z := new(Float).SetPrec(53)
+
+ z.Mul(x, y)
+ got, _ := z.Float64()
+ want := x0 * y0
+ if got != want {
+ t.Errorf("%g * %g = %g; want %g", x0, y0, got, want)
+ }
+
+ if y0 == 0 {
+ continue // avoid division-by-zero
+ }
+ z.Quo(z, y)
+ got, _ = z.Float64()
+ want /= y0
+ if got != want {
+ t.Errorf("%g / %g = %g; want %g", x0*y0, y0, got, want)
+ }
+ }
+ }
+}
+
+func TestIssue6866(t *testing.T) {
+ for _, prec := range precList {
+ two := new(Float).SetPrec(prec).SetInt64(2)
+ one := new(Float).SetPrec(prec).SetInt64(1)
+ three := new(Float).SetPrec(prec).SetInt64(3)
+ msix := new(Float).SetPrec(prec).SetInt64(-6)
+ psix := new(Float).SetPrec(prec).SetInt64(+6)
+
+ p := new(Float).SetPrec(prec)
+ z1 := new(Float).SetPrec(prec)
+ z2 := new(Float).SetPrec(prec)
+
+ // z1 = 2 + 1.0/3*-6
+ p.Quo(one, three)
+ p.Mul(p, msix)
+ z1.Add(two, p)
+
+ // z2 = 2 - 1.0/3*+6
+ p.Quo(one, three)
+ p.Mul(p, psix)
+ z2.Sub(two, p)
+
+ if z1.Cmp(z2) != 0 {
+ t.Fatalf("prec %d: got z1 = %v != z2 = %v; want z1 == z2\n", prec, z1, z2)
+ }
+ if z1.Sign() != 0 {
+ t.Errorf("prec %d: got z1 = %v; want 0", prec, z1)
+ }
+ if z2.Sign() != 0 {
+ t.Errorf("prec %d: got z2 = %v; want 0", prec, z2)
+ }
+ }
+}
+
+func TestFloatQuo(t *testing.T) {
+ // TODO(gri) make the test vary these precisions
+ preci := 200 // precision of integer part
+ precf := 20 // precision of fractional part
+
+ for i := 0; i < 8; i++ {
+ // compute accurate (not rounded) result z
+ bits := Bits{preci - 1}
+ if i&3 != 0 {
+ bits = append(bits, 0)
+ }
+ if i&2 != 0 {
+ bits = append(bits, -1)
+ }
+ if i&1 != 0 {
+ bits = append(bits, -precf)
+ }
+ z := bits.Float()
+
+ // compute accurate x as z*y
+ y := NewFloat(3.14159265358979323e123)
+
+ x := new(Float).SetPrec(z.Prec() + y.Prec()).SetMode(ToZero)
+ x.Mul(z, y)
+
+ // leave for debugging
+ // fmt.Printf("x = %s\ny = %s\nz = %s\n", x, y, z)
+
+ if got := x.Acc(); got != Exact {
+ t.Errorf("got acc = %s; want exact", got)
+ }
+
+ // round accurate z for a variety of precisions and
+ // modes and compare against result of x / y.
+ for _, mode := range [...]RoundingMode{ToZero, ToNearestEven, AwayFromZero} {
+ for d := -5; d < 5; d++ {
+ prec := uint(preci + d)
+ got := new(Float).SetPrec(prec).SetMode(mode).Quo(x, y)
+ want := bits.round(prec, mode)
+ if got.Cmp(want) != 0 {
+ t.Errorf("i = %d, prec = %d, %s:\n\t %s\n\t/ %s\n\t= %s\n\twant %s",
+ i, prec, mode, x, y, got, want)
+ }
+ }
+ }
+ }
+}
+
+var long = flag.Bool("long", false, "run very long tests")
+
+// TestFloatQuoSmoke tests all divisions x/y for values x, y in the range [-n, +n];
+// it serves as a smoke test for basic correctness of division.
+func TestFloatQuoSmoke(t *testing.T) {
+ n := 10
+ if *long {
+ n = 1000
+ }
+
+ const dprec = 3 // max. precision variation
+ const prec = 10 + dprec // enough bits to hold n precisely
+ for x := -n; x <= n; x++ {
+ for y := -n; y < n; y++ {
+ if y == 0 {
+ continue
+ }
+
+ a := float64(x)
+ b := float64(y)
+ c := a / b
+
+ // vary operand precision (only ok as long as a, b can be represented correctly)
+ for ad := -dprec; ad <= dprec; ad++ {
+ for bd := -dprec; bd <= dprec; bd++ {
+ A := new(Float).SetPrec(uint(prec + ad)).SetFloat64(a)
+ B := new(Float).SetPrec(uint(prec + bd)).SetFloat64(b)
+ C := new(Float).SetPrec(53).Quo(A, B) // C has float64 mantissa width
+
+ cc, acc := C.Float64()
+ if cc != c {
+ t.Errorf("%g/%g = %s; want %.5g\n", a, b, C.Text('g', 5), c)
+ continue
+ }
+ if acc != Exact {
+ t.Errorf("%g/%g got %s result; want exact result", a, b, acc)
+ }
+ }
+ }
+ }
+ }
+}
+
+// TestFloatArithmeticSpecialValues tests that Float operations produce the
+// correct results for combinations of zero (±0), finite (±1 and ±2.71828),
+// and infinite (±Inf) operands.
+func TestFloatArithmeticSpecialValues(t *testing.T) {
+ zero := 0.0
+ args := []float64{math.Inf(-1), -2.71828, -1, -zero, zero, 1, 2.71828, math.Inf(1)}
+ xx := new(Float)
+ yy := new(Float)
+ got := new(Float)
+ want := new(Float)
+ for i := 0; i < 4; i++ {
+ for _, x := range args {
+ xx.SetFloat64(x)
+ // check conversion is correct
+ // (no need to do this for y, since we see exactly the
+ // same values there)
+ if got, acc := xx.Float64(); got != x || acc != Exact {
+ t.Errorf("Float(%g) == %g (%s)", x, got, acc)
+ }
+ for _, y := range args {
+ yy.SetFloat64(y)
+ var (
+ op string
+ z float64
+ f func(z, x, y *Float) *Float
+ )
+ switch i {
+ case 0:
+ op = "+"
+ z = x + y
+ f = (*Float).Add
+ case 1:
+ op = "-"
+ z = x - y
+ f = (*Float).Sub
+ case 2:
+ op = "*"
+ z = x * y
+ f = (*Float).Mul
+ case 3:
+ op = "/"
+ z = x / y
+ f = (*Float).Quo
+ default:
+ panic("unreachable")
+ }
+ var errnan bool // set if execution of f panicked with ErrNaN
+ // protect execution of f
+ func() {
+ defer func() {
+ if p := recover(); p != nil {
+ _ = p.(ErrNaN) // re-panic if not ErrNaN
+ errnan = true
+ }
+ }()
+ f(got, xx, yy)
+ }()
+ if math.IsNaN(z) {
+ if !errnan {
+ t.Errorf("%5g %s %5g = %5s; want ErrNaN panic", x, op, y, got)
+ }
+ continue
+ }
+ if errnan {
+ t.Errorf("%5g %s %5g panicked with ErrNan; want %5s", x, op, y, want)
+ continue
+ }
+ want.SetFloat64(z)
+ if !alike(got, want) {
+ t.Errorf("%5g %s %5g = %5s; want %5s", x, op, y, got, want)
+ }
+ }
+ }
+ }
+}
+
+func TestFloatArithmeticOverflow(t *testing.T) {
+ for _, test := range []struct {
+ prec uint
+ mode RoundingMode
+ op byte
+ x, y, want string
+ acc Accuracy
+ }{
+ {4, ToNearestEven, '+', "0", "0", "0", Exact}, // smoke test
+ {4, ToNearestEven, '+', "0x.8p+0", "0x.8p+0", "0x.8p+1", Exact}, // smoke test
+
+ {4, ToNearestEven, '+', "0", "0x.8p2147483647", "0x.8p+2147483647", Exact},
+ {4, ToNearestEven, '+', "0x.8p2147483500", "0x.8p2147483647", "0x.8p+2147483647", Below}, // rounded to zero
+ {4, ToNearestEven, '+', "0x.8p2147483647", "0x.8p2147483647", "+Inf", Above}, // exponent overflow in +
+ {4, ToNearestEven, '+', "-0x.8p2147483647", "-0x.8p2147483647", "-Inf", Below}, // exponent overflow in +
+ {4, ToNearestEven, '-', "-0x.8p2147483647", "0x.8p2147483647", "-Inf", Below}, // exponent overflow in -
+
+ {4, ToZero, '+', "0x.fp2147483647", "0x.8p2147483643", "0x.fp+2147483647", Below}, // rounded to zero
+ {4, ToNearestEven, '+', "0x.fp2147483647", "0x.8p2147483643", "+Inf", Above}, // exponent overflow in rounding
+ {4, AwayFromZero, '+', "0x.fp2147483647", "0x.8p2147483643", "+Inf", Above}, // exponent overflow in rounding
+
+ {4, AwayFromZero, '-', "-0x.fp2147483647", "0x.8p2147483644", "-Inf", Below}, // exponent overflow in rounding
+ {4, ToNearestEven, '-', "-0x.fp2147483647", "0x.8p2147483643", "-Inf", Below}, // exponent overflow in rounding
+ {4, ToZero, '-', "-0x.fp2147483647", "0x.8p2147483643", "-0x.fp+2147483647", Above}, // rounded to zero
+
+ {4, ToNearestEven, '+', "0", "0x.8p-2147483648", "0x.8p-2147483648", Exact},
+ {4, ToNearestEven, '+', "0x.8p-2147483648", "0x.8p-2147483648", "0x.8p-2147483647", Exact},
+
+ {4, ToNearestEven, '*', "1", "0x.8p2147483647", "0x.8p+2147483647", Exact},
+ {4, ToNearestEven, '*', "2", "0x.8p2147483647", "+Inf", Above}, // exponent overflow in *
+ {4, ToNearestEven, '*', "-2", "0x.8p2147483647", "-Inf", Below}, // exponent overflow in *
+
+ {4, ToNearestEven, '/', "0.5", "0x.8p2147483647", "0x.8p-2147483646", Exact},
+ {4, ToNearestEven, '/', "0x.8p+0", "0x.8p2147483647", "0x.8p-2147483646", Exact},
+ {4, ToNearestEven, '/', "0x.8p-1", "0x.8p2147483647", "0x.8p-2147483647", Exact},
+ {4, ToNearestEven, '/', "0x.8p-2", "0x.8p2147483647", "0x.8p-2147483648", Exact},
+ {4, ToNearestEven, '/', "0x.8p-3", "0x.8p2147483647", "0", Below}, // exponent underflow in /
+ } {
+ x := makeFloat(test.x)
+ y := makeFloat(test.y)
+ z := new(Float).SetPrec(test.prec).SetMode(test.mode)
+ switch test.op {
+ case '+':
+ z.Add(x, y)
+ case '-':
+ z.Sub(x, y)
+ case '*':
+ z.Mul(x, y)
+ case '/':
+ z.Quo(x, y)
+ default:
+ panic("unreachable")
+ }
+ if got := z.Text('p', 0); got != test.want || z.Acc() != test.acc {
+ t.Errorf(
+ "prec = %d (%s): %s %c %s = %s (%s); want %s (%s)",
+ test.prec, test.mode, x.Text('p', 0), test.op, y.Text('p', 0), got, z.Acc(), test.want, test.acc,
+ )
+ }
+ }
+}
+
+// TODO(gri) Add tests that check correctness in the presence of aliasing.
+
+// For rounding modes ToNegativeInf and ToPositiveInf, rounding is affected
+// by the sign of the value to be rounded. Test that rounding happens after
+// the sign of a result has been set.
+// This test uses specific values that are known to fail if rounding is
+// "factored" out before setting the result sign.
+func TestFloatArithmeticRounding(t *testing.T) {
+ for _, test := range []struct {
+ mode RoundingMode
+ prec uint
+ x, y, want int64
+ op byte
+ }{
+ {ToZero, 3, -0x8, -0x1, -0x8, '+'},
+ {AwayFromZero, 3, -0x8, -0x1, -0xa, '+'},
+ {ToNegativeInf, 3, -0x8, -0x1, -0xa, '+'},
+
+ {ToZero, 3, -0x8, 0x1, -0x8, '-'},
+ {AwayFromZero, 3, -0x8, 0x1, -0xa, '-'},
+ {ToNegativeInf, 3, -0x8, 0x1, -0xa, '-'},
+
+ {ToZero, 3, -0x9, 0x1, -0x8, '*'},
+ {AwayFromZero, 3, -0x9, 0x1, -0xa, '*'},
+ {ToNegativeInf, 3, -0x9, 0x1, -0xa, '*'},
+
+ {ToZero, 3, -0x9, 0x1, -0x8, '/'},
+ {AwayFromZero, 3, -0x9, 0x1, -0xa, '/'},
+ {ToNegativeInf, 3, -0x9, 0x1, -0xa, '/'},
+ } {
+ var x, y, z Float
+ x.SetInt64(test.x)
+ y.SetInt64(test.y)
+ z.SetPrec(test.prec).SetMode(test.mode)
+ switch test.op {
+ case '+':
+ z.Add(&x, &y)
+ case '-':
+ z.Sub(&x, &y)
+ case '*':
+ z.Mul(&x, &y)
+ case '/':
+ z.Quo(&x, &y)
+ default:
+ panic("unreachable")
+ }
+ if got, acc := z.Int64(); got != test.want || acc != Exact {
+ t.Errorf("%s, %d bits: %d %c %d = %d (%s); want %d (Exact)",
+ test.mode, test.prec, test.x, test.op, test.y, got, acc, test.want,
+ )
+ }
+ }
+}
+
+// TestFloatCmpSpecialValues tests that Cmp produces the correct results for
+// combinations of zero (±0), finite (±1 and ±2.71828), and infinite (±Inf)
+// operands.
+func TestFloatCmpSpecialValues(t *testing.T) {
+ zero := 0.0
+ args := []float64{math.Inf(-1), -2.71828, -1, -zero, zero, 1, 2.71828, math.Inf(1)}
+ xx := new(Float)
+ yy := new(Float)
+ for i := 0; i < 4; i++ {
+ for _, x := range args {
+ xx.SetFloat64(x)
+ // check conversion is correct
+ // (no need to do this for y, since we see exactly the
+ // same values there)
+ if got, acc := xx.Float64(); got != x || acc != Exact {
+ t.Errorf("Float(%g) == %g (%s)", x, got, acc)
+ }
+ for _, y := range args {
+ yy.SetFloat64(y)
+ got := xx.Cmp(yy)
+ want := 0
+ switch {
+ case x < y:
+ want = -1
+ case x > y:
+ want = +1
+ }
+ if got != want {
+ t.Errorf("(%g).Cmp(%g) = %v; want %v", x, y, got, want)
+ }
+ }
+ }
+ }
+}
+
+func BenchmarkFloatAdd(b *testing.B) {
+ x := new(Float)
+ y := new(Float)
+ z := new(Float)
+
+ for _, prec := range []uint{10, 1e2, 1e3, 1e4, 1e5} {
+ x.SetPrec(prec).SetRat(NewRat(1, 3))
+ y.SetPrec(prec).SetRat(NewRat(1, 6))
+ z.SetPrec(prec)
+
+ b.Run(fmt.Sprintf("%v", prec), func(b *testing.B) {
+ b.ReportAllocs()
+ for i := 0; i < b.N; i++ {
+ z.Add(x, y)
+ }
+ })
+ }
+}
+
+func BenchmarkFloatSub(b *testing.B) {
+ x := new(Float)
+ y := new(Float)
+ z := new(Float)
+
+ for _, prec := range []uint{10, 1e2, 1e3, 1e4, 1e5} {
+ x.SetPrec(prec).SetRat(NewRat(1, 3))
+ y.SetPrec(prec).SetRat(NewRat(1, 6))
+ z.SetPrec(prec)
+
+ b.Run(fmt.Sprintf("%v", prec), func(b *testing.B) {
+ b.ReportAllocs()
+ for i := 0; i < b.N; i++ {
+ z.Sub(x, y)
+ }
+ })
+ }
+}
diff --git a/src/math/big/floatconv.go b/src/math/big/floatconv.go
new file mode 100644
index 0000000..d8c69b8
--- /dev/null
+++ b/src/math/big/floatconv.go
@@ -0,0 +1,302 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements string-to-Float conversion functions.
+
+package big
+
+import (
+ "fmt"
+ "io"
+ "strings"
+)
+
+var floatZero Float
+
+// SetString sets z to the value of s and returns z and a boolean indicating
+// success. s must be a floating-point number of the same format as accepted
+// by [Float.Parse], with base argument 0. The entire string (not just a prefix) must
+// be valid for success. If the operation failed, the value of z is undefined
+// but the returned value is nil.
+func (z *Float) SetString(s string) (*Float, bool) {
+ if f, _, err := z.Parse(s, 0); err == nil {
+ return f, true
+ }
+ return nil, false
+}
+
+// scan is like Parse but reads the longest possible prefix representing a valid
+// floating point number from an io.ByteScanner rather than a string. It serves
+// as the implementation of Parse. It does not recognize ±Inf and does not expect
+// EOF at the end.
+func (z *Float) scan(r io.ByteScanner, base int) (f *Float, b int, err error) {
+ prec := z.prec
+ if prec == 0 {
+ prec = 64
+ }
+
+ // A reasonable value in case of an error.
+ z.form = zero
+
+ // sign
+ z.neg, err = scanSign(r)
+ if err != nil {
+ return
+ }
+
+ // mantissa
+ var fcount int // fractional digit count; valid if <= 0
+ z.mant, b, fcount, err = z.mant.scan(r, base, true)
+ if err != nil {
+ return
+ }
+
+ // exponent
+ var exp int64
+ var ebase int
+ exp, ebase, err = scanExponent(r, true, base == 0)
+ if err != nil {
+ return
+ }
+
+ // special-case 0
+ if len(z.mant) == 0 {
+ z.prec = prec
+ z.acc = Exact
+ z.form = zero
+ f = z
+ return
+ }
+ // len(z.mant) > 0
+
+ // The mantissa may have a radix point (fcount <= 0) and there
+ // may be a nonzero exponent exp. The radix point amounts to a
+ // division by b**(-fcount). An exponent means multiplication by
+ // ebase**exp. Finally, mantissa normalization (shift left) requires
+ // a correcting multiplication by 2**(-shiftcount). Multiplications
+ // are commutative, so we can apply them in any order as long as there
+ // is no loss of precision. We only have powers of 2 and 10, and
+ // we split powers of 10 into the product of the same powers of
+ // 2 and 5. This reduces the size of the multiplication factor
+ // needed for base-10 exponents.
+
+ // normalize mantissa and determine initial exponent contributions
+ exp2 := int64(len(z.mant))*_W - fnorm(z.mant)
+ exp5 := int64(0)
+
+ // determine binary or decimal exponent contribution of radix point
+ if fcount < 0 {
+ // The mantissa has a radix point ddd.dddd; and
+ // -fcount is the number of digits to the right
+ // of '.'. Adjust relevant exponent accordingly.
+ d := int64(fcount)
+ switch b {
+ case 10:
+ exp5 = d
+ fallthrough // 10**e == 5**e * 2**e
+ case 2:
+ exp2 += d
+ case 8:
+ exp2 += d * 3 // octal digits are 3 bits each
+ case 16:
+ exp2 += d * 4 // hexadecimal digits are 4 bits each
+ default:
+ panic("unexpected mantissa base")
+ }
+ // fcount consumed - not needed anymore
+ }
+
+ // take actual exponent into account
+ switch ebase {
+ case 10:
+ exp5 += exp
+ fallthrough // see fallthrough above
+ case 2:
+ exp2 += exp
+ default:
+ panic("unexpected exponent base")
+ }
+ // exp consumed - not needed anymore
+
+ // apply 2**exp2
+ if MinExp <= exp2 && exp2 <= MaxExp {
+ z.prec = prec
+ z.form = finite
+ z.exp = int32(exp2)
+ f = z
+ } else {
+ err = fmt.Errorf("exponent overflow")
+ return
+ }
+
+ if exp5 == 0 {
+ // no decimal exponent contribution
+ z.round(0)
+ return
+ }
+ // exp5 != 0
+
+ // apply 5**exp5
+ p := new(Float).SetPrec(z.Prec() + 64) // use more bits for p -- TODO(gri) what is the right number?
+ if exp5 < 0 {
+ z.Quo(z, p.pow5(uint64(-exp5)))
+ } else {
+ z.Mul(z, p.pow5(uint64(exp5)))
+ }
+
+ return
+}
+
+// These powers of 5 fit into a uint64.
+//
+// for p, q := uint64(0), uint64(1); p < q; p, q = q, q*5 {
+// fmt.Println(q)
+// }
+var pow5tab = [...]uint64{
+ 1,
+ 5,
+ 25,
+ 125,
+ 625,
+ 3125,
+ 15625,
+ 78125,
+ 390625,
+ 1953125,
+ 9765625,
+ 48828125,
+ 244140625,
+ 1220703125,
+ 6103515625,
+ 30517578125,
+ 152587890625,
+ 762939453125,
+ 3814697265625,
+ 19073486328125,
+ 95367431640625,
+ 476837158203125,
+ 2384185791015625,
+ 11920928955078125,
+ 59604644775390625,
+ 298023223876953125,
+ 1490116119384765625,
+ 7450580596923828125,
+}
+
+// pow5 sets z to 5**n and returns z.
+// n must not be negative.
+func (z *Float) pow5(n uint64) *Float {
+ const m = uint64(len(pow5tab) - 1)
+ if n <= m {
+ return z.SetUint64(pow5tab[n])
+ }
+ // n > m
+
+ z.SetUint64(pow5tab[m])
+ n -= m
+
+ // use more bits for f than for z
+ // TODO(gri) what is the right number?
+ f := new(Float).SetPrec(z.Prec() + 64).SetUint64(5)
+
+ for n > 0 {
+ if n&1 != 0 {
+ z.Mul(z, f)
+ }
+ f.Mul(f, f)
+ n >>= 1
+ }
+
+ return z
+}
+
+// Parse parses s which must contain a text representation of a floating-
+// point number with a mantissa in the given conversion base (the exponent
+// is always a decimal number), or a string representing an infinite value.
+//
+// For base 0, an underscore character “_” may appear between a base
+// prefix and an adjacent digit, and between successive digits; such
+// underscores do not change the value of the number, or the returned
+// digit count. Incorrect placement of underscores is reported as an
+// error if there are no other errors. If base != 0, underscores are
+// not recognized and thus terminate scanning like any other character
+// that is not a valid radix point or digit.
+//
+// It sets z to the (possibly rounded) value of the corresponding floating-
+// point value, and returns z, the actual base b, and an error err, if any.
+// The entire string (not just a prefix) must be consumed for success.
+// If z's precision is 0, it is changed to 64 before rounding takes effect.
+// The number must be of the form:
+//
+// number = [ sign ] ( float | "inf" | "Inf" ) .
+// sign = "+" | "-" .
+// float = ( mantissa | prefix pmantissa ) [ exponent ] .
+// prefix = "0" [ "b" | "B" | "o" | "O" | "x" | "X" ] .
+// mantissa = digits "." [ digits ] | digits | "." digits .
+// pmantissa = [ "_" ] digits "." [ digits ] | [ "_" ] digits | "." digits .
+// exponent = ( "e" | "E" | "p" | "P" ) [ sign ] digits .
+// digits = digit { [ "_" ] digit } .
+// digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
+//
+// The base argument must be 0, 2, 8, 10, or 16. Providing an invalid base
+// argument will lead to a run-time panic.
+//
+// For base 0, the number prefix determines the actual base: A prefix of
+// “0b” or “0B” selects base 2, “0o” or “0O” selects base 8, and
+// “0x” or “0X” selects base 16. Otherwise, the actual base is 10 and
+// no prefix is accepted. The octal prefix "0" is not supported (a leading
+// "0" is simply considered a "0").
+//
+// A "p" or "P" exponent indicates a base 2 (rather than base 10) exponent;
+// for instance, "0x1.fffffffffffffp1023" (using base 0) represents the
+// maximum float64 value. For hexadecimal mantissae, the exponent character
+// must be one of 'p' or 'P', if present (an "e" or "E" exponent indicator
+// cannot be distinguished from a mantissa digit).
+//
+// The returned *Float f is nil and the value of z is valid but not
+// defined if an error is reported.
+func (z *Float) Parse(s string, base int) (f *Float, b int, err error) {
+ // scan doesn't handle ±Inf
+ if len(s) == 3 && (s == "Inf" || s == "inf") {
+ f = z.SetInf(false)
+ return
+ }
+ if len(s) == 4 && (s[0] == '+' || s[0] == '-') && (s[1:] == "Inf" || s[1:] == "inf") {
+ f = z.SetInf(s[0] == '-')
+ return
+ }
+
+ r := strings.NewReader(s)
+ if f, b, err = z.scan(r, base); err != nil {
+ return
+ }
+
+ // entire string must have been consumed
+ if ch, err2 := r.ReadByte(); err2 == nil {
+ err = fmt.Errorf("expected end of string, found %q", ch)
+ } else if err2 != io.EOF {
+ err = err2
+ }
+
+ return
+}
+
+// ParseFloat is like f.Parse(s, base) with f set to the given precision
+// and rounding mode.
+func ParseFloat(s string, base int, prec uint, mode RoundingMode) (f *Float, b int, err error) {
+ return new(Float).SetPrec(prec).SetMode(mode).Parse(s, base)
+}
+
+var _ fmt.Scanner = (*Float)(nil) // *Float must implement fmt.Scanner
+
+// Scan is a support routine for [fmt.Scanner]; it sets z to the value of
+// the scanned number. It accepts formats whose verbs are supported by
+// [fmt.Scan] for floating point values, which are:
+// 'b' (binary), 'e', 'E', 'f', 'F', 'g' and 'G'.
+// Scan doesn't handle ±Inf.
+func (z *Float) Scan(s fmt.ScanState, ch rune) error {
+ s.SkipSpace()
+ _, _, err := z.scan(byteReader{s}, 0)
+ return err
+}
diff --git a/src/math/big/floatconv_test.go b/src/math/big/floatconv_test.go
new file mode 100644
index 0000000..a1cc38a
--- /dev/null
+++ b/src/math/big/floatconv_test.go
@@ -0,0 +1,825 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "bytes"
+ "fmt"
+ "math"
+ "math/bits"
+ "strconv"
+ "testing"
+)
+
+var zero_ float64
+
+func TestFloatSetFloat64String(t *testing.T) {
+ inf := math.Inf(0)
+ nan := math.NaN()
+
+ for _, test := range []struct {
+ s string
+ x float64 // NaNs represent invalid inputs
+ }{
+ // basics
+ {"0", 0},
+ {"-0", -zero_},
+ {"+0", 0},
+ {"1", 1},
+ {"-1", -1},
+ {"+1", 1},
+ {"1.234", 1.234},
+ {"-1.234", -1.234},
+ {"+1.234", 1.234},
+ {".1", 0.1},
+ {"1.", 1},
+ {"+1.", 1},
+
+ // various zeros
+ {"0e100", 0},
+ {"-0e+100", -zero_},
+ {"+0e-100", 0},
+ {"0E100", 0},
+ {"-0E+100", -zero_},
+ {"+0E-100", 0},
+
+ // various decimal exponent formats
+ {"1.e10", 1e10},
+ {"1e+10", 1e10},
+ {"+1e-10", 1e-10},
+ {"1E10", 1e10},
+ {"1.E+10", 1e10},
+ {"+1E-10", 1e-10},
+
+ // infinities
+ {"Inf", inf},
+ {"+Inf", inf},
+ {"-Inf", -inf},
+ {"inf", inf},
+ {"+inf", inf},
+ {"-inf", -inf},
+
+ // invalid numbers
+ {"", nan},
+ {"-", nan},
+ {"0x", nan},
+ {"0e", nan},
+ {"1.2ef", nan},
+ {"2..3", nan},
+ {"123..", nan},
+ {"infinity", nan},
+ {"foobar", nan},
+
+ // invalid underscores
+ {"_", nan},
+ {"0_", nan},
+ {"1__0", nan},
+ {"123_.", nan},
+ {"123._", nan},
+ {"123._4", nan},
+ {"1_2.3_4_", nan},
+ {"_.123", nan},
+ {"_123.456", nan},
+ {"10._0", nan},
+ {"10.0e_0", nan},
+ {"10.0e0_", nan},
+ {"0P-0__0", nan},
+
+ // misc decimal values
+ {"3.14159265", 3.14159265},
+ {"-687436.79457e-245", -687436.79457e-245},
+ {"-687436.79457E245", -687436.79457e245},
+ {".0000000000000000000000000000000000000001", 1e-40},
+ {"+10000000000000000000000000000000000000000e-0", 1e40},
+
+ // decimal mantissa, binary exponent
+ {"0p0", 0},
+ {"-0p0", -zero_},
+ {"1p10", 1 << 10},
+ {"1p+10", 1 << 10},
+ {"+1p-10", 1.0 / (1 << 10)},
+ {"1024p-12", 0.25},
+ {"-1p10", -1024},
+ {"1.5p1", 3},
+
+ // binary mantissa, decimal exponent
+ {"0b0", 0},
+ {"-0b0", -zero_},
+ {"0b0e+10", 0},
+ {"-0b0e-10", -zero_},
+ {"0b1010", 10},
+ {"0B1010E2", 1000},
+ {"0b.1", 0.5},
+ {"0b.001", 0.125},
+ {"0b.001e3", 125},
+
+ // binary mantissa, binary exponent
+ {"0b0p+10", 0},
+ {"-0b0p-10", -zero_},
+ {"0b.1010p4", 10},
+ {"0b1p-1", 0.5},
+ {"0b001p-3", 0.125},
+ {"0b.001p3", 1},
+ {"0b0.01p2", 1},
+ {"0b0.01P+2", 1},
+
+ // octal mantissa, decimal exponent
+ {"0o0", 0},
+ {"-0o0", -zero_},
+ {"0o0e+10", 0},
+ {"-0o0e-10", -zero_},
+ {"0o12", 10},
+ {"0O12E2", 1000},
+ {"0o.4", 0.5},
+ {"0o.01", 0.015625},
+ {"0o.01e3", 15.625},
+
+ // octal mantissa, binary exponent
+ {"0o0p+10", 0},
+ {"-0o0p-10", -zero_},
+ {"0o.12p6", 10},
+ {"0o4p-3", 0.5},
+ {"0o0014p-6", 0.1875},
+ {"0o.001p9", 1},
+ {"0o0.01p7", 2},
+ {"0O0.01P+2", 0.0625},
+
+ // hexadecimal mantissa and exponent
+ {"0x0", 0},
+ {"-0x0", -zero_},
+ {"0x0p+10", 0},
+ {"-0x0p-10", -zero_},
+ {"0xff", 255},
+ {"0X.8p1", 1},
+ {"-0X0.00008p16", -0.5},
+ {"-0X0.00008P+16", -0.5},
+ {"0x0.0000000000001p-1022", math.SmallestNonzeroFloat64},
+ {"0x1.fffffffffffffp1023", math.MaxFloat64},
+
+ // underscores
+ {"0_0", 0},
+ {"1_000.", 1000},
+ {"1_2_3.4_5_6", 123.456},
+ {"1.0e0_0", 1},
+ {"1p+1_0", 1024},
+ {"0b_1000", 0x8},
+ {"0b_1011_1101", 0xbd},
+ {"0x_f0_0d_1eP+0_8", 0xf00d1e00},
+ } {
+ var x Float
+ x.SetPrec(53)
+ _, ok := x.SetString(test.s)
+ if math.IsNaN(test.x) {
+ // test.s is invalid
+ if ok {
+ t.Errorf("%s: want parse error", test.s)
+ }
+ continue
+ }
+ // test.s is valid
+ if !ok {
+ t.Errorf("%s: got parse error", test.s)
+ continue
+ }
+ f, _ := x.Float64()
+ want := new(Float).SetFloat64(test.x)
+ if x.Cmp(want) != 0 || x.Signbit() != want.Signbit() {
+ t.Errorf("%s: got %v (%v); want %v", test.s, &x, f, test.x)
+ }
+ }
+}
+
+func fdiv(a, b float64) float64 { return a / b }
+
+const (
+ below1e23 = 99999999999999974834176
+ above1e23 = 100000000000000008388608
+)
+
+func TestFloat64Text(t *testing.T) {
+ for _, test := range []struct {
+ x float64
+ format byte
+ prec int
+ want string
+ }{
+ {0, 'f', 0, "0"},
+ {math.Copysign(0, -1), 'f', 0, "-0"},
+ {1, 'f', 0, "1"},
+ {-1, 'f', 0, "-1"},
+
+ {0.001, 'e', 0, "1e-03"},
+ {0.459, 'e', 0, "5e-01"},
+ {1.459, 'e', 0, "1e+00"},
+ {2.459, 'e', 1, "2.5e+00"},
+ {3.459, 'e', 2, "3.46e+00"},
+ {4.459, 'e', 3, "4.459e+00"},
+ {5.459, 'e', 4, "5.4590e+00"},
+
+ {0.001, 'f', 0, "0"},
+ {0.459, 'f', 0, "0"},
+ {1.459, 'f', 0, "1"},
+ {2.459, 'f', 1, "2.5"},
+ {3.459, 'f', 2, "3.46"},
+ {4.459, 'f', 3, "4.459"},
+ {5.459, 'f', 4, "5.4590"},
+
+ {0, 'b', 0, "0"},
+ {math.Copysign(0, -1), 'b', 0, "-0"},
+ {1.0, 'b', 0, "4503599627370496p-52"},
+ {-1.0, 'b', 0, "-4503599627370496p-52"},
+ {4503599627370496, 'b', 0, "4503599627370496p+0"},
+
+ {0, 'p', 0, "0"},
+ {math.Copysign(0, -1), 'p', 0, "-0"},
+ {1024.0, 'p', 0, "0x.8p+11"},
+ {-1024.0, 'p', 0, "-0x.8p+11"},
+
+ // all test cases below from strconv/ftoa_test.go
+ {1, 'e', 5, "1.00000e+00"},
+ {1, 'f', 5, "1.00000"},
+ {1, 'g', 5, "1"},
+ {1, 'g', -1, "1"},
+ {20, 'g', -1, "20"},
+ {1234567.8, 'g', -1, "1.2345678e+06"},
+ {200000, 'g', -1, "200000"},
+ {2000000, 'g', -1, "2e+06"},
+
+ // g conversion and zero suppression
+ {400, 'g', 2, "4e+02"},
+ {40, 'g', 2, "40"},
+ {4, 'g', 2, "4"},
+ {.4, 'g', 2, "0.4"},
+ {.04, 'g', 2, "0.04"},
+ {.004, 'g', 2, "0.004"},
+ {.0004, 'g', 2, "0.0004"},
+ {.00004, 'g', 2, "4e-05"},
+ {.000004, 'g', 2, "4e-06"},
+
+ {0, 'e', 5, "0.00000e+00"},
+ {0, 'f', 5, "0.00000"},
+ {0, 'g', 5, "0"},
+ {0, 'g', -1, "0"},
+
+ {-1, 'e', 5, "-1.00000e+00"},
+ {-1, 'f', 5, "-1.00000"},
+ {-1, 'g', 5, "-1"},
+ {-1, 'g', -1, "-1"},
+
+ {12, 'e', 5, "1.20000e+01"},
+ {12, 'f', 5, "12.00000"},
+ {12, 'g', 5, "12"},
+ {12, 'g', -1, "12"},
+
+ {123456700, 'e', 5, "1.23457e+08"},
+ {123456700, 'f', 5, "123456700.00000"},
+ {123456700, 'g', 5, "1.2346e+08"},
+ {123456700, 'g', -1, "1.234567e+08"},
+
+ {1.2345e6, 'e', 5, "1.23450e+06"},
+ {1.2345e6, 'f', 5, "1234500.00000"},
+ {1.2345e6, 'g', 5, "1.2345e+06"},
+
+ {1e23, 'e', 17, "9.99999999999999916e+22"},
+ {1e23, 'f', 17, "99999999999999991611392.00000000000000000"},
+ {1e23, 'g', 17, "9.9999999999999992e+22"},
+
+ {1e23, 'e', -1, "1e+23"},
+ {1e23, 'f', -1, "100000000000000000000000"},
+ {1e23, 'g', -1, "1e+23"},
+
+ {below1e23, 'e', 17, "9.99999999999999748e+22"},
+ {below1e23, 'f', 17, "99999999999999974834176.00000000000000000"},
+ {below1e23, 'g', 17, "9.9999999999999975e+22"},
+
+ {below1e23, 'e', -1, "9.999999999999997e+22"},
+ {below1e23, 'f', -1, "99999999999999970000000"},
+ {below1e23, 'g', -1, "9.999999999999997e+22"},
+
+ {above1e23, 'e', 17, "1.00000000000000008e+23"},
+ {above1e23, 'f', 17, "100000000000000008388608.00000000000000000"},
+ {above1e23, 'g', 17, "1.0000000000000001e+23"},
+
+ {above1e23, 'e', -1, "1.0000000000000001e+23"},
+ {above1e23, 'f', -1, "100000000000000010000000"},
+ {above1e23, 'g', -1, "1.0000000000000001e+23"},
+
+ {5e-304 / 1e20, 'g', -1, "5e-324"},
+ {-5e-304 / 1e20, 'g', -1, "-5e-324"},
+ {fdiv(5e-304, 1e20), 'g', -1, "5e-324"}, // avoid constant arithmetic
+ {fdiv(-5e-304, 1e20), 'g', -1, "-5e-324"}, // avoid constant arithmetic
+
+ {32, 'g', -1, "32"},
+ {32, 'g', 0, "3e+01"},
+
+ {100, 'x', -1, "0x1.9p+06"},
+
+ // {math.NaN(), 'g', -1, "NaN"}, // Float doesn't support NaNs
+ // {-math.NaN(), 'g', -1, "NaN"}, // Float doesn't support NaNs
+ {math.Inf(0), 'g', -1, "+Inf"},
+ {math.Inf(-1), 'g', -1, "-Inf"},
+ {-math.Inf(0), 'g', -1, "-Inf"},
+
+ {-1, 'b', -1, "-4503599627370496p-52"},
+
+ // fixed bugs
+ {0.9, 'f', 1, "0.9"},
+ {0.09, 'f', 1, "0.1"},
+ {0.0999, 'f', 1, "0.1"},
+ {0.05, 'f', 1, "0.1"},
+ {0.05, 'f', 0, "0"},
+ {0.5, 'f', 1, "0.5"},
+ {0.5, 'f', 0, "0"},
+ {1.5, 'f', 0, "2"},
+
+ // https://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
+ {2.2250738585072012e-308, 'g', -1, "2.2250738585072014e-308"},
+ // https://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
+ {2.2250738585072011e-308, 'g', -1, "2.225073858507201e-308"},
+
+ // Issue 2625.
+ {383260575764816448, 'f', 0, "383260575764816448"},
+ {383260575764816448, 'g', -1, "3.8326057576481645e+17"},
+
+ // Issue 15918.
+ {1, 'f', -10, "1"},
+ {1, 'f', -11, "1"},
+ {1, 'f', -12, "1"},
+ } {
+ // The test cases are from the strconv package which tests float64 values.
+ // When formatting values with prec = -1 (shortest representation),
+ // the actually available mantissa precision matters.
+ // For denormalized values, that precision is < 53 (SetFloat64 default).
+ // Compute and set the actual precision explicitly.
+ f := new(Float).SetPrec(actualPrec(test.x)).SetFloat64(test.x)
+ got := f.Text(test.format, test.prec)
+ if got != test.want {
+ t.Errorf("%v: got %s; want %s", test, got, test.want)
+ continue
+ }
+
+ if test.format == 'b' && test.x == 0 {
+ continue // 'b' format in strconv.Float requires knowledge of bias for 0.0
+ }
+ if test.format == 'p' {
+ continue // 'p' format not supported in strconv.Format
+ }
+
+ // verify that Float format matches strconv format
+ want := strconv.FormatFloat(test.x, test.format, test.prec, 64)
+ if got != want {
+ t.Errorf("%v: got %s; want %s (strconv)", test, got, want)
+ }
+ }
+}
+
+// actualPrec returns the number of actually used mantissa bits.
+func actualPrec(x float64) uint {
+ if mant := math.Float64bits(x); x != 0 && mant&(0x7ff<<52) == 0 {
+ // x is denormalized
+ return 64 - uint(bits.LeadingZeros64(mant&(1<<52-1)))
+ }
+ return 53
+}
+
+func TestFloatText(t *testing.T) {
+ const defaultRound = ^RoundingMode(0)
+
+ for _, test := range []struct {
+ x string
+ round RoundingMode
+ prec uint
+ format byte
+ digits int
+ want string
+ }{
+ {"0", defaultRound, 10, 'f', 0, "0"},
+ {"-0", defaultRound, 10, 'f', 0, "-0"},
+ {"1", defaultRound, 10, 'f', 0, "1"},
+ {"-1", defaultRound, 10, 'f', 0, "-1"},
+
+ {"1.459", defaultRound, 100, 'e', 0, "1e+00"},
+ {"2.459", defaultRound, 100, 'e', 1, "2.5e+00"},
+ {"3.459", defaultRound, 100, 'e', 2, "3.46e+00"},
+ {"4.459", defaultRound, 100, 'e', 3, "4.459e+00"},
+ {"5.459", defaultRound, 100, 'e', 4, "5.4590e+00"},
+
+ {"1.459", defaultRound, 100, 'E', 0, "1E+00"},
+ {"2.459", defaultRound, 100, 'E', 1, "2.5E+00"},
+ {"3.459", defaultRound, 100, 'E', 2, "3.46E+00"},
+ {"4.459", defaultRound, 100, 'E', 3, "4.459E+00"},
+ {"5.459", defaultRound, 100, 'E', 4, "5.4590E+00"},
+
+ {"1.459", defaultRound, 100, 'f', 0, "1"},
+ {"2.459", defaultRound, 100, 'f', 1, "2.5"},
+ {"3.459", defaultRound, 100, 'f', 2, "3.46"},
+ {"4.459", defaultRound, 100, 'f', 3, "4.459"},
+ {"5.459", defaultRound, 100, 'f', 4, "5.4590"},
+
+ {"1.459", defaultRound, 100, 'g', 0, "1"},
+ {"2.459", defaultRound, 100, 'g', 1, "2"},
+ {"3.459", defaultRound, 100, 'g', 2, "3.5"},
+ {"4.459", defaultRound, 100, 'g', 3, "4.46"},
+ {"5.459", defaultRound, 100, 'g', 4, "5.459"},
+
+ {"1459", defaultRound, 53, 'g', 0, "1e+03"},
+ {"2459", defaultRound, 53, 'g', 1, "2e+03"},
+ {"3459", defaultRound, 53, 'g', 2, "3.5e+03"},
+ {"4459", defaultRound, 53, 'g', 3, "4.46e+03"},
+ {"5459", defaultRound, 53, 'g', 4, "5459"},
+
+ {"1459", defaultRound, 53, 'G', 0, "1E+03"},
+ {"2459", defaultRound, 53, 'G', 1, "2E+03"},
+ {"3459", defaultRound, 53, 'G', 2, "3.5E+03"},
+ {"4459", defaultRound, 53, 'G', 3, "4.46E+03"},
+ {"5459", defaultRound, 53, 'G', 4, "5459"},
+
+ {"3", defaultRound, 10, 'e', 40, "3.0000000000000000000000000000000000000000e+00"},
+ {"3", defaultRound, 10, 'f', 40, "3.0000000000000000000000000000000000000000"},
+ {"3", defaultRound, 10, 'g', 40, "3"},
+
+ {"3e40", defaultRound, 100, 'e', 40, "3.0000000000000000000000000000000000000000e+40"},
+ {"3e40", defaultRound, 100, 'f', 4, "30000000000000000000000000000000000000000.0000"},
+ {"3e40", defaultRound, 100, 'g', 40, "3e+40"},
+
+ // make sure "stupid" exponents don't stall the machine
+ {"1e1000000", defaultRound, 64, 'p', 0, "0x.88b3a28a05eade3ap+3321929"},
+ {"1e646456992", defaultRound, 64, 'p', 0, "0x.e883a0c5c8c7c42ap+2147483644"},
+ {"1e646456993", defaultRound, 64, 'p', 0, "+Inf"},
+ {"1e1000000000", defaultRound, 64, 'p', 0, "+Inf"},
+ {"1e-1000000", defaultRound, 64, 'p', 0, "0x.efb4542cc8ca418ap-3321928"},
+ {"1e-646456993", defaultRound, 64, 'p', 0, "0x.e17c8956983d9d59p-2147483647"},
+ {"1e-646456994", defaultRound, 64, 'p', 0, "0"},
+ {"1e-1000000000", defaultRound, 64, 'p', 0, "0"},
+
+ // minimum and maximum values
+ {"1p2147483646", defaultRound, 64, 'p', 0, "0x.8p+2147483647"},
+ {"0x.8p2147483647", defaultRound, 64, 'p', 0, "0x.8p+2147483647"},
+ {"0x.8p-2147483647", defaultRound, 64, 'p', 0, "0x.8p-2147483647"},
+ {"1p-2147483649", defaultRound, 64, 'p', 0, "0x.8p-2147483648"},
+
+ // TODO(gri) need tests for actual large Floats
+
+ {"0", defaultRound, 53, 'b', 0, "0"},
+ {"-0", defaultRound, 53, 'b', 0, "-0"},
+ {"1.0", defaultRound, 53, 'b', 0, "4503599627370496p-52"},
+ {"-1.0", defaultRound, 53, 'b', 0, "-4503599627370496p-52"},
+ {"4503599627370496", defaultRound, 53, 'b', 0, "4503599627370496p+0"},
+
+ // issue 9939
+ {"3", defaultRound, 350, 'b', 0, "1720123961992553633708115671476565205597423741876210842803191629540192157066363606052513914832594264915968p-348"},
+ {"03", defaultRound, 350, 'b', 0, "1720123961992553633708115671476565205597423741876210842803191629540192157066363606052513914832594264915968p-348"},
+ {"3.", defaultRound, 350, 'b', 0, "1720123961992553633708115671476565205597423741876210842803191629540192157066363606052513914832594264915968p-348"},
+ {"3.0", defaultRound, 350, 'b', 0, "1720123961992553633708115671476565205597423741876210842803191629540192157066363606052513914832594264915968p-348"},
+ {"3.00", defaultRound, 350, 'b', 0, "1720123961992553633708115671476565205597423741876210842803191629540192157066363606052513914832594264915968p-348"},
+ {"3.000", defaultRound, 350, 'b', 0, "1720123961992553633708115671476565205597423741876210842803191629540192157066363606052513914832594264915968p-348"},
+
+ {"3", defaultRound, 350, 'p', 0, "0x.cp+2"},
+ {"03", defaultRound, 350, 'p', 0, "0x.cp+2"},
+ {"3.", defaultRound, 350, 'p', 0, "0x.cp+2"},
+ {"3.0", defaultRound, 350, 'p', 0, "0x.cp+2"},
+ {"3.00", defaultRound, 350, 'p', 0, "0x.cp+2"},
+ {"3.000", defaultRound, 350, 'p', 0, "0x.cp+2"},
+
+ {"0", defaultRound, 64, 'p', 0, "0"},
+ {"-0", defaultRound, 64, 'p', 0, "-0"},
+ {"1024.0", defaultRound, 64, 'p', 0, "0x.8p+11"},
+ {"-1024.0", defaultRound, 64, 'p', 0, "-0x.8p+11"},
+
+ {"0", defaultRound, 64, 'x', -1, "0x0p+00"},
+ {"0", defaultRound, 64, 'x', 0, "0x0p+00"},
+ {"0", defaultRound, 64, 'x', 1, "0x0.0p+00"},
+ {"0", defaultRound, 64, 'x', 5, "0x0.00000p+00"},
+ {"3.25", defaultRound, 64, 'x', 0, "0x1p+02"},
+ {"-3.25", defaultRound, 64, 'x', 0, "-0x1p+02"},
+ {"3.25", defaultRound, 64, 'x', 1, "0x1.ap+01"},
+ {"-3.25", defaultRound, 64, 'x', 1, "-0x1.ap+01"},
+ {"3.25", defaultRound, 64, 'x', -1, "0x1.ap+01"},
+ {"-3.25", defaultRound, 64, 'x', -1, "-0x1.ap+01"},
+ {"1024.0", defaultRound, 64, 'x', 0, "0x1p+10"},
+ {"-1024.0", defaultRound, 64, 'x', 0, "-0x1p+10"},
+ {"1024.0", defaultRound, 64, 'x', 5, "0x1.00000p+10"},
+ {"8191.0", defaultRound, 53, 'x', -1, "0x1.fffp+12"},
+ {"8191.5", defaultRound, 53, 'x', -1, "0x1.fff8p+12"},
+ {"8191.53125", defaultRound, 53, 'x', -1, "0x1.fff88p+12"},
+ {"8191.53125", defaultRound, 53, 'x', 4, "0x1.fff8p+12"},
+ {"8191.53125", defaultRound, 53, 'x', 3, "0x1.000p+13"},
+ {"8191.53125", defaultRound, 53, 'x', 0, "0x1p+13"},
+ {"8191.533203125", defaultRound, 53, 'x', -1, "0x1.fff888p+12"},
+ {"8191.533203125", defaultRound, 53, 'x', 5, "0x1.fff88p+12"},
+ {"8191.533203125", defaultRound, 53, 'x', 4, "0x1.fff9p+12"},
+
+ {"8191.53125", defaultRound, 53, 'x', -1, "0x1.fff88p+12"},
+ {"8191.53125", ToNearestEven, 53, 'x', 5, "0x1.fff88p+12"},
+ {"8191.53125", ToNearestAway, 53, 'x', 5, "0x1.fff88p+12"},
+ {"8191.53125", ToZero, 53, 'x', 5, "0x1.fff88p+12"},
+ {"8191.53125", AwayFromZero, 53, 'x', 5, "0x1.fff88p+12"},
+ {"8191.53125", ToNegativeInf, 53, 'x', 5, "0x1.fff88p+12"},
+ {"8191.53125", ToPositiveInf, 53, 'x', 5, "0x1.fff88p+12"},
+
+ {"8191.53125", defaultRound, 53, 'x', 4, "0x1.fff8p+12"},
+ {"8191.53125", defaultRound, 53, 'x', 3, "0x1.000p+13"},
+ {"8191.53125", defaultRound, 53, 'x', 0, "0x1p+13"},
+ {"8191.533203125", defaultRound, 53, 'x', -1, "0x1.fff888p+12"},
+ {"8191.533203125", defaultRound, 53, 'x', 6, "0x1.fff888p+12"},
+ {"8191.533203125", defaultRound, 53, 'x', 5, "0x1.fff88p+12"},
+ {"8191.533203125", defaultRound, 53, 'x', 4, "0x1.fff9p+12"},
+
+ {"8191.53125", ToNearestEven, 53, 'x', 4, "0x1.fff8p+12"},
+ {"8191.53125", ToNearestAway, 53, 'x', 4, "0x1.fff9p+12"},
+ {"8191.53125", ToZero, 53, 'x', 4, "0x1.fff8p+12"},
+ {"8191.53125", ToZero, 53, 'x', 2, "0x1.ffp+12"},
+ {"8191.53125", AwayFromZero, 53, 'x', 4, "0x1.fff9p+12"},
+ {"8191.53125", ToNegativeInf, 53, 'x', 4, "0x1.fff8p+12"},
+ {"-8191.53125", ToNegativeInf, 53, 'x', 4, "-0x1.fff9p+12"},
+ {"8191.53125", ToPositiveInf, 53, 'x', 4, "0x1.fff9p+12"},
+ {"-8191.53125", ToPositiveInf, 53, 'x', 4, "-0x1.fff8p+12"},
+
+ // issue 34343
+ {"0x.8p-2147483648", ToNearestEven, 4, 'p', -1, "0x.8p-2147483648"},
+ {"0x.8p-2147483648", ToNearestEven, 4, 'x', -1, "0x1p-2147483649"},
+ } {
+ f, _, err := ParseFloat(test.x, 0, test.prec, ToNearestEven)
+ if err != nil {
+ t.Errorf("%v: %s", test, err)
+ continue
+ }
+ if test.round != defaultRound {
+ f.SetMode(test.round)
+ }
+
+ got := f.Text(test.format, test.digits)
+ if got != test.want {
+ t.Errorf("%v: got %s; want %s", test, got, test.want)
+ }
+
+ // compare with strconv.FormatFloat output if possible
+ // ('p' format is not supported by strconv.FormatFloat,
+ // and its output for 0.0 prints a biased exponent value
+ // as in 0p-1074 which makes no sense to emulate here)
+ if test.prec == 53 && test.format != 'p' && f.Sign() != 0 && (test.round == ToNearestEven || test.round == defaultRound) {
+ f64, acc := f.Float64()
+ if acc != Exact {
+ t.Errorf("%v: expected exact conversion to float64", test)
+ continue
+ }
+ got := strconv.FormatFloat(f64, test.format, test.digits, 64)
+ if got != test.want {
+ t.Errorf("%v: got %s; want %s", test, got, test.want)
+ }
+ }
+ }
+}
+
+func TestFloatFormat(t *testing.T) {
+ for _, test := range []struct {
+ format string
+ value any // float32, float64, or string (== 512bit *Float)
+ want string
+ }{
+ // from fmt/fmt_test.go
+ {"%+.3e", 0.0, "+0.000e+00"},
+ {"%+.3e", 1.0, "+1.000e+00"},
+ {"%+.3f", -1.0, "-1.000"},
+ {"%+.3F", -1.0, "-1.000"},
+ {"%+.3F", float32(-1.0), "-1.000"},
+ {"%+07.2f", 1.0, "+001.00"},
+ {"%+07.2f", -1.0, "-001.00"},
+ {"%+10.2f", +1.0, " +1.00"},
+ {"%+10.2f", -1.0, " -1.00"},
+ {"% .3E", -1.0, "-1.000E+00"},
+ {"% .3e", 1.0, " 1.000e+00"},
+ {"%+.3g", 0.0, "+0"},
+ {"%+.3g", 1.0, "+1"},
+ {"%+.3g", -1.0, "-1"},
+ {"% .3g", -1.0, "-1"},
+ {"% .3g", 1.0, " 1"},
+ {"%b", float32(1.0), "8388608p-23"},
+ {"%b", 1.0, "4503599627370496p-52"},
+
+ // from fmt/fmt_test.go: old test/fmt_test.go
+ {"%e", 1.0, "1.000000e+00"},
+ {"%e", 1234.5678e3, "1.234568e+06"},
+ {"%e", 1234.5678e-8, "1.234568e-05"},
+ {"%e", -7.0, "-7.000000e+00"},
+ {"%e", -1e-9, "-1.000000e-09"},
+ {"%f", 1234.5678e3, "1234567.800000"},
+ {"%f", 1234.5678e-8, "0.000012"},
+ {"%f", -7.0, "-7.000000"},
+ {"%f", -1e-9, "-0.000000"},
+ {"%g", 1234.5678e3, "1.2345678e+06"},
+ {"%g", float32(1234.5678e3), "1.2345678e+06"},
+ {"%g", 1234.5678e-8, "1.2345678e-05"},
+ {"%g", -7.0, "-7"},
+ {"%g", -1e-9, "-1e-09"},
+ {"%g", float32(-1e-9), "-1e-09"},
+ {"%E", 1.0, "1.000000E+00"},
+ {"%E", 1234.5678e3, "1.234568E+06"},
+ {"%E", 1234.5678e-8, "1.234568E-05"},
+ {"%E", -7.0, "-7.000000E+00"},
+ {"%E", -1e-9, "-1.000000E-09"},
+ {"%G", 1234.5678e3, "1.2345678E+06"},
+ {"%G", float32(1234.5678e3), "1.2345678E+06"},
+ {"%G", 1234.5678e-8, "1.2345678E-05"},
+ {"%G", -7.0, "-7"},
+ {"%G", -1e-9, "-1E-09"},
+ {"%G", float32(-1e-9), "-1E-09"},
+
+ {"%20.6e", 1.2345e3, " 1.234500e+03"},
+ {"%20.6e", 1.2345e-3, " 1.234500e-03"},
+ {"%20e", 1.2345e3, " 1.234500e+03"},
+ {"%20e", 1.2345e-3, " 1.234500e-03"},
+ {"%20.8e", 1.2345e3, " 1.23450000e+03"},
+ {"%20f", 1.23456789e3, " 1234.567890"},
+ {"%20f", 1.23456789e-3, " 0.001235"},
+ {"%20f", 12345678901.23456789, " 12345678901.234568"},
+ {"%-20f", 1.23456789e3, "1234.567890 "},
+ {"%20.8f", 1.23456789e3, " 1234.56789000"},
+ {"%20.8f", 1.23456789e-3, " 0.00123457"},
+ {"%g", 1.23456789e3, "1234.56789"},
+ {"%g", 1.23456789e-3, "0.00123456789"},
+ {"%g", 1.23456789e20, "1.23456789e+20"},
+ {"%20e", math.Inf(1), " +Inf"},
+ {"%-20f", math.Inf(-1), "-Inf "},
+
+ // from fmt/fmt_test.go: comparison of padding rules with C printf
+ {"%.2f", 1.0, "1.00"},
+ {"%.2f", -1.0, "-1.00"},
+ {"% .2f", 1.0, " 1.00"},
+ {"% .2f", -1.0, "-1.00"},
+ {"%+.2f", 1.0, "+1.00"},
+ {"%+.2f", -1.0, "-1.00"},
+ {"%7.2f", 1.0, " 1.00"},
+ {"%7.2f", -1.0, " -1.00"},
+ {"% 7.2f", 1.0, " 1.00"},
+ {"% 7.2f", -1.0, " -1.00"},
+ {"%+7.2f", 1.0, " +1.00"},
+ {"%+7.2f", -1.0, " -1.00"},
+ {"%07.2f", 1.0, "0001.00"},
+ {"%07.2f", -1.0, "-001.00"},
+ {"% 07.2f", 1.0, " 001.00"},
+ {"% 07.2f", -1.0, "-001.00"},
+ {"%+07.2f", 1.0, "+001.00"},
+ {"%+07.2f", -1.0, "-001.00"},
+
+ // from fmt/fmt_test.go: zero padding does not apply to infinities
+ {"%020f", math.Inf(-1), " -Inf"},
+ {"%020f", math.Inf(+1), " +Inf"},
+ {"% 020f", math.Inf(-1), " -Inf"},
+ {"% 020f", math.Inf(+1), " Inf"},
+ {"%+020f", math.Inf(-1), " -Inf"},
+ {"%+020f", math.Inf(+1), " +Inf"},
+ {"%20f", -1.0, " -1.000000"},
+
+ // handle %v like %g
+ {"%v", 0.0, "0"},
+ {"%v", -7.0, "-7"},
+ {"%v", -1e-9, "-1e-09"},
+ {"%v", float32(-1e-9), "-1e-09"},
+ {"%010v", 0.0, "0000000000"},
+
+ // *Float cases
+ {"%.20f", "1e-20", "0.00000000000000000001"},
+ {"%.20f", "-1e-20", "-0.00000000000000000001"},
+ {"%30.20f", "-1e-20", " -0.00000000000000000001"},
+ {"%030.20f", "-1e-20", "-00000000.00000000000000000001"},
+ {"%030.20f", "+1e-20", "000000000.00000000000000000001"},
+ {"% 030.20f", "+1e-20", " 00000000.00000000000000000001"},
+
+ // erroneous formats
+ {"%s", 1.0, "%!s(*big.Float=1)"},
+ } {
+ value := new(Float)
+ switch v := test.value.(type) {
+ case float32:
+ value.SetPrec(24).SetFloat64(float64(v))
+ case float64:
+ value.SetPrec(53).SetFloat64(v)
+ case string:
+ value.SetPrec(512).Parse(v, 0)
+ default:
+ t.Fatalf("unsupported test value: %v (%T)", v, v)
+ }
+
+ if got := fmt.Sprintf(test.format, value); got != test.want {
+ t.Errorf("%v: got %q; want %q", test, got, test.want)
+ }
+ }
+}
+
+func BenchmarkParseFloatSmallExp(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ for _, s := range []string{
+ "1e0",
+ "1e-1",
+ "1e-2",
+ "1e-3",
+ "1e-4",
+ "1e-5",
+ "1e-10",
+ "1e-20",
+ "1e-50",
+ "1e1",
+ "1e2",
+ "1e3",
+ "1e4",
+ "1e5",
+ "1e10",
+ "1e20",
+ "1e50",
+ } {
+ var x Float
+ _, _, err := x.Parse(s, 0)
+ if err != nil {
+ b.Fatalf("%s: %v", s, err)
+ }
+ }
+ }
+}
+
+func BenchmarkParseFloatLargeExp(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ for _, s := range []string{
+ "1e0",
+ "1e-10",
+ "1e-20",
+ "1e-30",
+ "1e-40",
+ "1e-50",
+ "1e-100",
+ "1e-500",
+ "1e-1000",
+ "1e-5000",
+ "1e-10000",
+ "1e10",
+ "1e20",
+ "1e30",
+ "1e40",
+ "1e50",
+ "1e100",
+ "1e500",
+ "1e1000",
+ "1e5000",
+ "1e10000",
+ } {
+ var x Float
+ _, _, err := x.Parse(s, 0)
+ if err != nil {
+ b.Fatalf("%s: %v", s, err)
+ }
+ }
+ }
+}
+
+func TestFloatScan(t *testing.T) {
+ var floatScanTests = []struct {
+ input string
+ format string
+ output string
+ remaining int
+ wantErr bool
+ }{
+ 0: {"10.0", "%f", "10", 0, false},
+ 1: {"23.98+2.0", "%v", "23.98", 4, false},
+ 2: {"-1+1", "%v", "-1", 2, false},
+ 3: {" 00000", "%v", "0", 0, false},
+ 4: {"-123456p-78", "%b", "-4.084816388e-19", 0, false},
+ 5: {"+123", "%b", "123", 0, false},
+ 6: {"-1.234e+56", "%e", "-1.234e+56", 0, false},
+ 7: {"-1.234E-56", "%E", "-1.234e-56", 0, false},
+ 8: {"-1.234e+567", "%g", "-1.234e+567", 0, false},
+ 9: {"+1234567891011.234", "%G", "1.234567891e+12", 0, false},
+
+ // Scan doesn't handle ±Inf.
+ 10: {"Inf", "%v", "", 3, true},
+ 11: {"-Inf", "%v", "", 3, true},
+ 12: {"-Inf", "%v", "", 3, true},
+ }
+
+ var buf bytes.Buffer
+ for i, test := range floatScanTests {
+ x := new(Float)
+ buf.Reset()
+ buf.WriteString(test.input)
+ _, err := fmt.Fscanf(&buf, test.format, x)
+ if test.wantErr {
+ if err == nil {
+ t.Errorf("#%d want non-nil err", i)
+ }
+ continue
+ }
+
+ if err != nil {
+ t.Errorf("#%d error: %s", i, err)
+ }
+
+ if x.String() != test.output {
+ t.Errorf("#%d got %s; want %s", i, x.String(), test.output)
+ }
+ if buf.Len() != test.remaining {
+ t.Errorf("#%d got %d bytes remaining; want %d", i, buf.Len(), test.remaining)
+ }
+ }
+}
diff --git a/src/math/big/floatexample_test.go b/src/math/big/floatexample_test.go
new file mode 100644
index 0000000..0c6668c
--- /dev/null
+++ b/src/math/big/floatexample_test.go
@@ -0,0 +1,141 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big_test
+
+import (
+ "fmt"
+ "math"
+ "math/big"
+)
+
+func ExampleFloat_Add() {
+ // Operate on numbers of different precision.
+ var x, y, z big.Float
+ x.SetInt64(1000) // x is automatically set to 64bit precision
+ y.SetFloat64(2.718281828) // y is automatically set to 53bit precision
+ z.SetPrec(32)
+ z.Add(&x, &y)
+ fmt.Printf("x = %.10g (%s, prec = %d, acc = %s)\n", &x, x.Text('p', 0), x.Prec(), x.Acc())
+ fmt.Printf("y = %.10g (%s, prec = %d, acc = %s)\n", &y, y.Text('p', 0), y.Prec(), y.Acc())
+ fmt.Printf("z = %.10g (%s, prec = %d, acc = %s)\n", &z, z.Text('p', 0), z.Prec(), z.Acc())
+ // Output:
+ // x = 1000 (0x.fap+10, prec = 64, acc = Exact)
+ // y = 2.718281828 (0x.adf85458248cd8p+2, prec = 53, acc = Exact)
+ // z = 1002.718282 (0x.faadf854p+10, prec = 32, acc = Below)
+}
+
+func ExampleFloat_shift() {
+ // Implement Float "shift" by modifying the (binary) exponents directly.
+ for s := -5; s <= 5; s++ {
+ x := big.NewFloat(0.5)
+ x.SetMantExp(x, x.MantExp(nil)+s) // shift x by s
+ fmt.Println(x)
+ }
+ // Output:
+ // 0.015625
+ // 0.03125
+ // 0.0625
+ // 0.125
+ // 0.25
+ // 0.5
+ // 1
+ // 2
+ // 4
+ // 8
+ // 16
+}
+
+func ExampleFloat_Cmp() {
+ inf := math.Inf(1)
+ zero := 0.0
+
+ operands := []float64{-inf, -1.2, -zero, 0, +1.2, +inf}
+
+ fmt.Println(" x y cmp")
+ fmt.Println("---------------")
+ for _, x64 := range operands {
+ x := big.NewFloat(x64)
+ for _, y64 := range operands {
+ y := big.NewFloat(y64)
+ fmt.Printf("%4g %4g %3d\n", x, y, x.Cmp(y))
+ }
+ fmt.Println()
+ }
+
+ // Output:
+ // x y cmp
+ // ---------------
+ // -Inf -Inf 0
+ // -Inf -1.2 -1
+ // -Inf -0 -1
+ // -Inf 0 -1
+ // -Inf 1.2 -1
+ // -Inf +Inf -1
+ //
+ // -1.2 -Inf 1
+ // -1.2 -1.2 0
+ // -1.2 -0 -1
+ // -1.2 0 -1
+ // -1.2 1.2 -1
+ // -1.2 +Inf -1
+ //
+ // -0 -Inf 1
+ // -0 -1.2 1
+ // -0 -0 0
+ // -0 0 0
+ // -0 1.2 -1
+ // -0 +Inf -1
+ //
+ // 0 -Inf 1
+ // 0 -1.2 1
+ // 0 -0 0
+ // 0 0 0
+ // 0 1.2 -1
+ // 0 +Inf -1
+ //
+ // 1.2 -Inf 1
+ // 1.2 -1.2 1
+ // 1.2 -0 1
+ // 1.2 0 1
+ // 1.2 1.2 0
+ // 1.2 +Inf -1
+ //
+ // +Inf -Inf 1
+ // +Inf -1.2 1
+ // +Inf -0 1
+ // +Inf 0 1
+ // +Inf 1.2 1
+ // +Inf +Inf 0
+}
+
+func ExampleRoundingMode() {
+ operands := []float64{2.6, 2.5, 2.1, -2.1, -2.5, -2.6}
+
+ fmt.Print(" x")
+ for mode := big.ToNearestEven; mode <= big.ToPositiveInf; mode++ {
+ fmt.Printf(" %s", mode)
+ }
+ fmt.Println()
+
+ for _, f64 := range operands {
+ fmt.Printf("%4g", f64)
+ for mode := big.ToNearestEven; mode <= big.ToPositiveInf; mode++ {
+ // sample operands above require 2 bits to represent mantissa
+ // set binary precision to 2 to round them to integer values
+ f := new(big.Float).SetPrec(2).SetMode(mode).SetFloat64(f64)
+ fmt.Printf(" %*g", len(mode.String()), f)
+ }
+ fmt.Println()
+ }
+
+ // Output:
+ // x ToNearestEven ToNearestAway ToZero AwayFromZero ToNegativeInf ToPositiveInf
+ // 2.6 3 3 2 3 2 3
+ // 2.5 2 3 2 3 2 3
+ // 2.1 2 2 2 3 2 3
+ // -2.1 -2 -2 -2 -3 -3 -2
+ // -2.5 -2 -3 -2 -3 -3 -2
+ // -2.6 -3 -3 -2 -3 -3 -2
+}
diff --git a/src/math/big/floatmarsh.go b/src/math/big/floatmarsh.go
new file mode 100644
index 0000000..8a908ce
--- /dev/null
+++ b/src/math/big/floatmarsh.go
@@ -0,0 +1,131 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements encoding/decoding of Floats.
+
+package big
+
+import (
+ "encoding/binary"
+ "errors"
+ "fmt"
+)
+
+// Gob codec version. Permits backward-compatible changes to the encoding.
+const floatGobVersion byte = 1
+
+// GobEncode implements the [encoding/gob.GobEncoder] interface.
+// The [Float] value and all its attributes (precision,
+// rounding mode, accuracy) are marshaled.
+func (x *Float) GobEncode() ([]byte, error) {
+ if x == nil {
+ return nil, nil
+ }
+
+ // determine max. space (bytes) required for encoding
+ sz := 1 + 1 + 4 // version + mode|acc|form|neg (3+2+2+1bit) + prec
+ n := 0 // number of mantissa words
+ if x.form == finite {
+ // add space for mantissa and exponent
+ n = int((x.prec + (_W - 1)) / _W) // required mantissa length in words for given precision
+ // actual mantissa slice could be shorter (trailing 0's) or longer (unused bits):
+ // - if shorter, only encode the words present
+ // - if longer, cut off unused words when encoding in bytes
+ // (in practice, this should never happen since rounding
+ // takes care of it, but be safe and do it always)
+ if len(x.mant) < n {
+ n = len(x.mant)
+ }
+ // len(x.mant) >= n
+ sz += 4 + n*_S // exp + mant
+ }
+ buf := make([]byte, sz)
+
+ buf[0] = floatGobVersion
+ b := byte(x.mode&7)<<5 | byte((x.acc+1)&3)<<3 | byte(x.form&3)<<1
+ if x.neg {
+ b |= 1
+ }
+ buf[1] = b
+ binary.BigEndian.PutUint32(buf[2:], x.prec)
+
+ if x.form == finite {
+ binary.BigEndian.PutUint32(buf[6:], uint32(x.exp))
+ x.mant[len(x.mant)-n:].bytes(buf[10:]) // cut off unused trailing words
+ }
+
+ return buf, nil
+}
+
+// GobDecode implements the [encoding/gob.GobDecoder] interface.
+// The result is rounded per the precision and rounding mode of
+// z unless z's precision is 0, in which case z is set exactly
+// to the decoded value.
+func (z *Float) GobDecode(buf []byte) error {
+ if len(buf) == 0 {
+ // Other side sent a nil or default value.
+ *z = Float{}
+ return nil
+ }
+ if len(buf) < 6 {
+ return errors.New("Float.GobDecode: buffer too small")
+ }
+
+ if buf[0] != floatGobVersion {
+ return fmt.Errorf("Float.GobDecode: encoding version %d not supported", buf[0])
+ }
+
+ oldPrec := z.prec
+ oldMode := z.mode
+
+ b := buf[1]
+ z.mode = RoundingMode((b >> 5) & 7)
+ z.acc = Accuracy((b>>3)&3) - 1
+ z.form = form((b >> 1) & 3)
+ z.neg = b&1 != 0
+ z.prec = binary.BigEndian.Uint32(buf[2:])
+
+ if z.form == finite {
+ if len(buf) < 10 {
+ return errors.New("Float.GobDecode: buffer too small for finite form float")
+ }
+ z.exp = int32(binary.BigEndian.Uint32(buf[6:]))
+ z.mant = z.mant.setBytes(buf[10:])
+ }
+
+ if oldPrec != 0 {
+ z.mode = oldMode
+ z.SetPrec(uint(oldPrec))
+ }
+
+ if msg := z.validate0(); msg != "" {
+ return errors.New("Float.GobDecode: " + msg)
+ }
+
+ return nil
+}
+
+// MarshalText implements the [encoding.TextMarshaler] interface.
+// Only the [Float] value is marshaled (in full precision), other
+// attributes such as precision or accuracy are ignored.
+func (x *Float) MarshalText() (text []byte, err error) {
+ if x == nil {
+ return []byte("<nil>"), nil
+ }
+ var buf []byte
+ return x.Append(buf, 'g', -1), nil
+}
+
+// UnmarshalText implements the [encoding.TextUnmarshaler] interface.
+// The result is rounded per the precision and rounding mode of z.
+// If z's precision is 0, it is changed to 64 before rounding takes
+// effect.
+func (z *Float) UnmarshalText(text []byte) error {
+ // TODO(gri): get rid of the []byte/string conversion
+ _, _, err := z.Parse(string(text), 0)
+ if err != nil {
+ err = fmt.Errorf("math/big: cannot unmarshal %q into a *big.Float (%v)", text, err)
+ }
+ return err
+}
diff --git a/src/math/big/floatmarsh_test.go b/src/math/big/floatmarsh_test.go
new file mode 100644
index 0000000..20def68
--- /dev/null
+++ b/src/math/big/floatmarsh_test.go
@@ -0,0 +1,173 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "bytes"
+ "encoding/gob"
+ "encoding/json"
+ "io"
+ "strings"
+ "testing"
+)
+
+var floatVals = []string{
+ "0",
+ "1",
+ "0.1",
+ "2.71828",
+ "1234567890",
+ "3.14e1234",
+ "3.14e-1234",
+ "0.738957395793475734757349579759957975985497e100",
+ "0.73895739579347546656564656573475734957975995797598589749859834759476745986795497e100",
+ "inf",
+ "Inf",
+}
+
+func TestFloatGobEncoding(t *testing.T) {
+ var medium bytes.Buffer
+ enc := gob.NewEncoder(&medium)
+ dec := gob.NewDecoder(&medium)
+ for _, test := range floatVals {
+ for _, sign := range []string{"", "+", "-"} {
+ for _, prec := range []uint{0, 1, 2, 10, 53, 64, 100, 1000} {
+ for _, mode := range []RoundingMode{ToNearestEven, ToNearestAway, ToZero, AwayFromZero, ToNegativeInf, ToPositiveInf} {
+ medium.Reset() // empty buffer for each test case (in case of failures)
+ x := sign + test
+
+ var tx Float
+ _, _, err := tx.SetPrec(prec).SetMode(mode).Parse(x, 0)
+ if err != nil {
+ t.Errorf("parsing of %s (%dbits, %v) failed (invalid test case): %v", x, prec, mode, err)
+ continue
+ }
+
+ // If tx was set to prec == 0, tx.Parse(x, 0) assumes precision 64. Correct it.
+ if prec == 0 {
+ tx.SetPrec(0)
+ }
+
+ if err := enc.Encode(&tx); err != nil {
+ t.Errorf("encoding of %v (%dbits, %v) failed: %v", &tx, prec, mode, err)
+ continue
+ }
+
+ var rx Float
+ if err := dec.Decode(&rx); err != nil {
+ t.Errorf("decoding of %v (%dbits, %v) failed: %v", &tx, prec, mode, err)
+ continue
+ }
+
+ if rx.Cmp(&tx) != 0 {
+ t.Errorf("transmission of %s failed: got %s want %s", x, rx.String(), tx.String())
+ continue
+ }
+
+ if rx.Prec() != prec {
+ t.Errorf("transmission of %s's prec failed: got %d want %d", x, rx.Prec(), prec)
+ }
+
+ if rx.Mode() != mode {
+ t.Errorf("transmission of %s's mode failed: got %s want %s", x, rx.Mode(), mode)
+ }
+
+ if rx.Acc() != tx.Acc() {
+ t.Errorf("transmission of %s's accuracy failed: got %s want %s", x, rx.Acc(), tx.Acc())
+ }
+ }
+ }
+ }
+ }
+}
+
+func TestFloatCorruptGob(t *testing.T) {
+ var buf bytes.Buffer
+ tx := NewFloat(4 / 3).SetPrec(1000).SetMode(ToPositiveInf)
+ if err := gob.NewEncoder(&buf).Encode(tx); err != nil {
+ t.Fatal(err)
+ }
+ b := buf.Bytes()
+
+ var rx Float
+ if err := gob.NewDecoder(bytes.NewReader(b)).Decode(&rx); err != nil {
+ t.Fatal(err)
+ }
+
+ if err := gob.NewDecoder(bytes.NewReader(b[:10])).Decode(&rx); err != io.ErrUnexpectedEOF {
+ t.Errorf("got %v want EOF", err)
+ }
+
+ b[1] = 0
+ if err := gob.NewDecoder(bytes.NewReader(b)).Decode(&rx); err == nil {
+ t.Fatal("got nil want version error")
+ }
+}
+
+func TestFloatJSONEncoding(t *testing.T) {
+ for _, test := range floatVals {
+ for _, sign := range []string{"", "+", "-"} {
+ for _, prec := range []uint{0, 1, 2, 10, 53, 64, 100, 1000} {
+ if prec > 53 && testing.Short() {
+ continue
+ }
+ x := sign + test
+ var tx Float
+ _, _, err := tx.SetPrec(prec).Parse(x, 0)
+ if err != nil {
+ t.Errorf("parsing of %s (prec = %d) failed (invalid test case): %v", x, prec, err)
+ continue
+ }
+ b, err := json.Marshal(&tx)
+ if err != nil {
+ t.Errorf("marshaling of %v (prec = %d) failed: %v", &tx, prec, err)
+ continue
+ }
+ var rx Float
+ rx.SetPrec(prec)
+ if err := json.Unmarshal(b, &rx); err != nil {
+ t.Errorf("unmarshaling of %v (prec = %d) failed: %v", &tx, prec, err)
+ continue
+ }
+ if rx.Cmp(&tx) != 0 {
+ t.Errorf("JSON encoding of %v (prec = %d) failed: got %v want %v", &tx, prec, &rx, &tx)
+ }
+ }
+ }
+ }
+}
+
+func TestFloatGobDecodeShortBuffer(t *testing.T) {
+ for _, tc := range [][]byte{
+ []byte{0x1, 0x0, 0x0, 0x0},
+ []byte{0x1, 0xfa, 0x0, 0x0, 0x0, 0x0},
+ } {
+ err := NewFloat(0).GobDecode(tc)
+ if err == nil {
+ t.Error("expected GobDecode to return error for malformed input")
+ }
+ }
+}
+
+func TestFloatGobDecodeInvalid(t *testing.T) {
+ for _, tc := range []struct {
+ buf []byte
+ msg string
+ }{
+ {
+ []byte{0x1, 0x2a, 0x20, 0x20, 0x20, 0x20, 0x0, 0x20, 0x20, 0x20, 0x0, 0x20, 0x20, 0x20, 0x20, 0x0, 0x0, 0x0, 0x0, 0xc},
+ "Float.GobDecode: msb not set in last word",
+ },
+ {
+ []byte{1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0},
+ "Float.GobDecode: nonzero finite number with empty mantissa",
+ },
+ } {
+ err := NewFloat(0).GobDecode(tc.buf)
+ if err == nil || !strings.HasPrefix(err.Error(), tc.msg) {
+ t.Errorf("expected GobDecode error prefix: %s, got: %v", tc.msg, err)
+ }
+ }
+}
diff --git a/src/math/big/ftoa.go b/src/math/big/ftoa.go
new file mode 100644
index 0000000..f7a4345
--- /dev/null
+++ b/src/math/big/ftoa.go
@@ -0,0 +1,529 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements Float-to-string conversion functions.
+// It is closely following the corresponding implementation
+// in strconv/ftoa.go, but modified and simplified for Float.
+
+package big
+
+import (
+ "bytes"
+ "fmt"
+ "strconv"
+)
+
+// Text converts the floating-point number x to a string according
+// to the given format and precision prec. The format is one of:
+//
+// 'e' -d.dddde±dd, decimal exponent, at least two (possibly 0) exponent digits
+// 'E' -d.ddddE±dd, decimal exponent, at least two (possibly 0) exponent digits
+// 'f' -ddddd.dddd, no exponent
+// 'g' like 'e' for large exponents, like 'f' otherwise
+// 'G' like 'E' for large exponents, like 'f' otherwise
+// 'x' -0xd.dddddp±dd, hexadecimal mantissa, decimal power of two exponent
+// 'p' -0x.dddp±dd, hexadecimal mantissa, decimal power of two exponent (non-standard)
+// 'b' -ddddddp±dd, decimal mantissa, decimal power of two exponent (non-standard)
+//
+// For the power-of-two exponent formats, the mantissa is printed in normalized form:
+//
+// 'x' hexadecimal mantissa in [1, 2), or 0
+// 'p' hexadecimal mantissa in [½, 1), or 0
+// 'b' decimal integer mantissa using x.Prec() bits, or 0
+//
+// Note that the 'x' form is the one used by most other languages and libraries.
+//
+// If format is a different character, Text returns a "%" followed by the
+// unrecognized format character.
+//
+// The precision prec controls the number of digits (excluding the exponent)
+// printed by the 'e', 'E', 'f', 'g', 'G', and 'x' formats.
+// For 'e', 'E', 'f', and 'x', it is the number of digits after the decimal point.
+// For 'g' and 'G' it is the total number of digits. A negative precision selects
+// the smallest number of decimal digits necessary to identify the value x uniquely
+// using x.Prec() mantissa bits.
+// The prec value is ignored for the 'b' and 'p' formats.
+func (x *Float) Text(format byte, prec int) string {
+ cap := 10 // TODO(gri) determine a good/better value here
+ if prec > 0 {
+ cap += prec
+ }
+ return string(x.Append(make([]byte, 0, cap), format, prec))
+}
+
+// String formats x like x.Text('g', 10).
+// (String must be called explicitly, [Float.Format] does not support %s verb.)
+func (x *Float) String() string {
+ return x.Text('g', 10)
+}
+
+// Append appends to buf the string form of the floating-point number x,
+// as generated by x.Text, and returns the extended buffer.
+func (x *Float) Append(buf []byte, fmt byte, prec int) []byte {
+ // sign
+ if x.neg {
+ buf = append(buf, '-')
+ }
+
+ // Inf
+ if x.form == inf {
+ if !x.neg {
+ buf = append(buf, '+')
+ }
+ return append(buf, "Inf"...)
+ }
+
+ // pick off easy formats
+ switch fmt {
+ case 'b':
+ return x.fmtB(buf)
+ case 'p':
+ return x.fmtP(buf)
+ case 'x':
+ return x.fmtX(buf, prec)
+ }
+
+ // Algorithm:
+ // 1) convert Float to multiprecision decimal
+ // 2) round to desired precision
+ // 3) read digits out and format
+
+ // 1) convert Float to multiprecision decimal
+ var d decimal // == 0.0
+ if x.form == finite {
+ // x != 0
+ d.init(x.mant, int(x.exp)-x.mant.bitLen())
+ }
+
+ // 2) round to desired precision
+ shortest := false
+ if prec < 0 {
+ shortest = true
+ roundShortest(&d, x)
+ // Precision for shortest representation mode.
+ switch fmt {
+ case 'e', 'E':
+ prec = len(d.mant) - 1
+ case 'f':
+ prec = max(len(d.mant)-d.exp, 0)
+ case 'g', 'G':
+ prec = len(d.mant)
+ }
+ } else {
+ // round appropriately
+ switch fmt {
+ case 'e', 'E':
+ // one digit before and number of digits after decimal point
+ d.round(1 + prec)
+ case 'f':
+ // number of digits before and after decimal point
+ d.round(d.exp + prec)
+ case 'g', 'G':
+ if prec == 0 {
+ prec = 1
+ }
+ d.round(prec)
+ }
+ }
+
+ // 3) read digits out and format
+ switch fmt {
+ case 'e', 'E':
+ return fmtE(buf, fmt, prec, d)
+ case 'f':
+ return fmtF(buf, prec, d)
+ case 'g', 'G':
+ // trim trailing fractional zeros in %e format
+ eprec := prec
+ if eprec > len(d.mant) && len(d.mant) >= d.exp {
+ eprec = len(d.mant)
+ }
+ // %e is used if the exponent from the conversion
+ // is less than -4 or greater than or equal to the precision.
+ // If precision was the shortest possible, use eprec = 6 for
+ // this decision.
+ if shortest {
+ eprec = 6
+ }
+ exp := d.exp - 1
+ if exp < -4 || exp >= eprec {
+ if prec > len(d.mant) {
+ prec = len(d.mant)
+ }
+ return fmtE(buf, fmt+'e'-'g', prec-1, d)
+ }
+ if prec > d.exp {
+ prec = len(d.mant)
+ }
+ return fmtF(buf, max(prec-d.exp, 0), d)
+ }
+
+ // unknown format
+ if x.neg {
+ buf = buf[:len(buf)-1] // sign was added prematurely - remove it again
+ }
+ return append(buf, '%', fmt)
+}
+
+func roundShortest(d *decimal, x *Float) {
+ // if the mantissa is zero, the number is zero - stop now
+ if len(d.mant) == 0 {
+ return
+ }
+
+ // Approach: All numbers in the interval [x - 1/2ulp, x + 1/2ulp]
+ // (possibly exclusive) round to x for the given precision of x.
+ // Compute the lower and upper bound in decimal form and find the
+ // shortest decimal number d such that lower <= d <= upper.
+
+ // TODO(gri) strconv/ftoa.do describes a shortcut in some cases.
+ // See if we can use it (in adjusted form) here as well.
+
+ // 1) Compute normalized mantissa mant and exponent exp for x such
+ // that the lsb of mant corresponds to 1/2 ulp for the precision of
+ // x (i.e., for mant we want x.prec + 1 bits).
+ mant := nat(nil).set(x.mant)
+ exp := int(x.exp) - mant.bitLen()
+ s := mant.bitLen() - int(x.prec+1)
+ switch {
+ case s < 0:
+ mant = mant.shl(mant, uint(-s))
+ case s > 0:
+ mant = mant.shr(mant, uint(+s))
+ }
+ exp += s
+ // x = mant * 2**exp with lsb(mant) == 1/2 ulp of x.prec
+
+ // 2) Compute lower bound by subtracting 1/2 ulp.
+ var lower decimal
+ var tmp nat
+ lower.init(tmp.sub(mant, natOne), exp)
+
+ // 3) Compute upper bound by adding 1/2 ulp.
+ var upper decimal
+ upper.init(tmp.add(mant, natOne), exp)
+
+ // The upper and lower bounds are possible outputs only if
+ // the original mantissa is even, so that ToNearestEven rounding
+ // would round to the original mantissa and not the neighbors.
+ inclusive := mant[0]&2 == 0 // test bit 1 since original mantissa was shifted by 1
+
+ // Now we can figure out the minimum number of digits required.
+ // Walk along until d has distinguished itself from upper and lower.
+ for i, m := range d.mant {
+ l := lower.at(i)
+ u := upper.at(i)
+
+ // Okay to round down (truncate) if lower has a different digit
+ // or if lower is inclusive and is exactly the result of rounding
+ // down (i.e., and we have reached the final digit of lower).
+ okdown := l != m || inclusive && i+1 == len(lower.mant)
+
+ // Okay to round up if upper has a different digit and either upper
+ // is inclusive or upper is bigger than the result of rounding up.
+ okup := m != u && (inclusive || m+1 < u || i+1 < len(upper.mant))
+
+ // If it's okay to do either, then round to the nearest one.
+ // If it's okay to do only one, do it.
+ switch {
+ case okdown && okup:
+ d.round(i + 1)
+ return
+ case okdown:
+ d.roundDown(i + 1)
+ return
+ case okup:
+ d.roundUp(i + 1)
+ return
+ }
+ }
+}
+
+// %e: d.ddddde±dd
+func fmtE(buf []byte, fmt byte, prec int, d decimal) []byte {
+ // first digit
+ ch := byte('0')
+ if len(d.mant) > 0 {
+ ch = d.mant[0]
+ }
+ buf = append(buf, ch)
+
+ // .moredigits
+ if prec > 0 {
+ buf = append(buf, '.')
+ i := 1
+ m := min(len(d.mant), prec+1)
+ if i < m {
+ buf = append(buf, d.mant[i:m]...)
+ i = m
+ }
+ for ; i <= prec; i++ {
+ buf = append(buf, '0')
+ }
+ }
+
+ // e±
+ buf = append(buf, fmt)
+ var exp int64
+ if len(d.mant) > 0 {
+ exp = int64(d.exp) - 1 // -1 because first digit was printed before '.'
+ }
+ if exp < 0 {
+ ch = '-'
+ exp = -exp
+ } else {
+ ch = '+'
+ }
+ buf = append(buf, ch)
+
+ // dd...d
+ if exp < 10 {
+ buf = append(buf, '0') // at least 2 exponent digits
+ }
+ return strconv.AppendInt(buf, exp, 10)
+}
+
+// %f: ddddddd.ddddd
+func fmtF(buf []byte, prec int, d decimal) []byte {
+ // integer, padded with zeros as needed
+ if d.exp > 0 {
+ m := min(len(d.mant), d.exp)
+ buf = append(buf, d.mant[:m]...)
+ for ; m < d.exp; m++ {
+ buf = append(buf, '0')
+ }
+ } else {
+ buf = append(buf, '0')
+ }
+
+ // fraction
+ if prec > 0 {
+ buf = append(buf, '.')
+ for i := 0; i < prec; i++ {
+ buf = append(buf, d.at(d.exp+i))
+ }
+ }
+
+ return buf
+}
+
+// fmtB appends the string of x in the format mantissa "p" exponent
+// with a decimal mantissa and a binary exponent, or 0" if x is zero,
+// and returns the extended buffer.
+// The mantissa is normalized such that is uses x.Prec() bits in binary
+// representation.
+// The sign of x is ignored, and x must not be an Inf.
+// (The caller handles Inf before invoking fmtB.)
+func (x *Float) fmtB(buf []byte) []byte {
+ if x.form == zero {
+ return append(buf, '0')
+ }
+
+ if debugFloat && x.form != finite {
+ panic("non-finite float")
+ }
+ // x != 0
+
+ // adjust mantissa to use exactly x.prec bits
+ m := x.mant
+ switch w := uint32(len(x.mant)) * _W; {
+ case w < x.prec:
+ m = nat(nil).shl(m, uint(x.prec-w))
+ case w > x.prec:
+ m = nat(nil).shr(m, uint(w-x.prec))
+ }
+
+ buf = append(buf, m.utoa(10)...)
+ buf = append(buf, 'p')
+ e := int64(x.exp) - int64(x.prec)
+ if e >= 0 {
+ buf = append(buf, '+')
+ }
+ return strconv.AppendInt(buf, e, 10)
+}
+
+// fmtX appends the string of x in the format "0x1." mantissa "p" exponent
+// with a hexadecimal mantissa and a binary exponent, or "0x0p0" if x is zero,
+// and returns the extended buffer.
+// A non-zero mantissa is normalized such that 1.0 <= mantissa < 2.0.
+// The sign of x is ignored, and x must not be an Inf.
+// (The caller handles Inf before invoking fmtX.)
+func (x *Float) fmtX(buf []byte, prec int) []byte {
+ if x.form == zero {
+ buf = append(buf, "0x0"...)
+ if prec > 0 {
+ buf = append(buf, '.')
+ for i := 0; i < prec; i++ {
+ buf = append(buf, '0')
+ }
+ }
+ buf = append(buf, "p+00"...)
+ return buf
+ }
+
+ if debugFloat && x.form != finite {
+ panic("non-finite float")
+ }
+
+ // round mantissa to n bits
+ var n uint
+ if prec < 0 {
+ n = 1 + (x.MinPrec()-1+3)/4*4 // round MinPrec up to 1 mod 4
+ } else {
+ n = 1 + 4*uint(prec)
+ }
+ // n%4 == 1
+ x = new(Float).SetPrec(n).SetMode(x.mode).Set(x)
+
+ // adjust mantissa to use exactly n bits
+ m := x.mant
+ switch w := uint(len(x.mant)) * _W; {
+ case w < n:
+ m = nat(nil).shl(m, n-w)
+ case w > n:
+ m = nat(nil).shr(m, w-n)
+ }
+ exp64 := int64(x.exp) - 1 // avoid wrap-around
+
+ hm := m.utoa(16)
+ if debugFloat && hm[0] != '1' {
+ panic("incorrect mantissa: " + string(hm))
+ }
+ buf = append(buf, "0x1"...)
+ if len(hm) > 1 {
+ buf = append(buf, '.')
+ buf = append(buf, hm[1:]...)
+ }
+
+ buf = append(buf, 'p')
+ if exp64 >= 0 {
+ buf = append(buf, '+')
+ } else {
+ exp64 = -exp64
+ buf = append(buf, '-')
+ }
+ // Force at least two exponent digits, to match fmt.
+ if exp64 < 10 {
+ buf = append(buf, '0')
+ }
+ return strconv.AppendInt(buf, exp64, 10)
+}
+
+// fmtP appends the string of x in the format "0x." mantissa "p" exponent
+// with a hexadecimal mantissa and a binary exponent, or "0" if x is zero,
+// and returns the extended buffer.
+// The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0.
+// The sign of x is ignored, and x must not be an Inf.
+// (The caller handles Inf before invoking fmtP.)
+func (x *Float) fmtP(buf []byte) []byte {
+ if x.form == zero {
+ return append(buf, '0')
+ }
+
+ if debugFloat && x.form != finite {
+ panic("non-finite float")
+ }
+ // x != 0
+
+ // remove trailing 0 words early
+ // (no need to convert to hex 0's and trim later)
+ m := x.mant
+ i := 0
+ for i < len(m) && m[i] == 0 {
+ i++
+ }
+ m = m[i:]
+
+ buf = append(buf, "0x."...)
+ buf = append(buf, bytes.TrimRight(m.utoa(16), "0")...)
+ buf = append(buf, 'p')
+ if x.exp >= 0 {
+ buf = append(buf, '+')
+ }
+ return strconv.AppendInt(buf, int64(x.exp), 10)
+}
+
+var _ fmt.Formatter = &floatZero // *Float must implement fmt.Formatter
+
+// Format implements [fmt.Formatter]. It accepts all the regular
+// formats for floating-point numbers ('b', 'e', 'E', 'f', 'F',
+// 'g', 'G', 'x') as well as 'p' and 'v'. See (*Float).Text for the
+// interpretation of 'p'. The 'v' format is handled like 'g'.
+// Format also supports specification of the minimum precision
+// in digits, the output field width, as well as the format flags
+// '+' and ' ' for sign control, '0' for space or zero padding,
+// and '-' for left or right justification. See the fmt package
+// for details.
+func (x *Float) Format(s fmt.State, format rune) {
+ prec, hasPrec := s.Precision()
+ if !hasPrec {
+ prec = 6 // default precision for 'e', 'f'
+ }
+
+ switch format {
+ case 'e', 'E', 'f', 'b', 'p', 'x':
+ // nothing to do
+ case 'F':
+ // (*Float).Text doesn't support 'F'; handle like 'f'
+ format = 'f'
+ case 'v':
+ // handle like 'g'
+ format = 'g'
+ fallthrough
+ case 'g', 'G':
+ if !hasPrec {
+ prec = -1 // default precision for 'g', 'G'
+ }
+ default:
+ fmt.Fprintf(s, "%%!%c(*big.Float=%s)", format, x.String())
+ return
+ }
+ var buf []byte
+ buf = x.Append(buf, byte(format), prec)
+ if len(buf) == 0 {
+ buf = []byte("?") // should never happen, but don't crash
+ }
+ // len(buf) > 0
+
+ var sign string
+ switch {
+ case buf[0] == '-':
+ sign = "-"
+ buf = buf[1:]
+ case buf[0] == '+':
+ // +Inf
+ sign = "+"
+ if s.Flag(' ') {
+ sign = " "
+ }
+ buf = buf[1:]
+ case s.Flag('+'):
+ sign = "+"
+ case s.Flag(' '):
+ sign = " "
+ }
+
+ var padding int
+ if width, hasWidth := s.Width(); hasWidth && width > len(sign)+len(buf) {
+ padding = width - len(sign) - len(buf)
+ }
+
+ switch {
+ case s.Flag('0') && !x.IsInf():
+ // 0-padding on left
+ writeMultiple(s, sign, 1)
+ writeMultiple(s, "0", padding)
+ s.Write(buf)
+ case s.Flag('-'):
+ // padding on right
+ writeMultiple(s, sign, 1)
+ s.Write(buf)
+ writeMultiple(s, " ", padding)
+ default:
+ // padding on left
+ writeMultiple(s, " ", padding)
+ writeMultiple(s, sign, 1)
+ s.Write(buf)
+ }
+}
diff --git a/src/math/big/gcd_test.go b/src/math/big/gcd_test.go
new file mode 100644
index 0000000..3cca2ec
--- /dev/null
+++ b/src/math/big/gcd_test.go
@@ -0,0 +1,64 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements a GCD benchmark.
+// Usage: go test math/big -test.bench GCD
+
+package big
+
+import (
+ "math/rand"
+ "testing"
+)
+
+// randInt returns a pseudo-random Int in the range [1<<(size-1), (1<<size) - 1]
+func randInt(r *rand.Rand, size uint) *Int {
+ n := new(Int).Lsh(intOne, size-1)
+ x := new(Int).Rand(r, n)
+ return x.Add(x, n) // make sure result > 1<<(size-1)
+}
+
+func runGCD(b *testing.B, aSize, bSize uint) {
+ if isRaceBuilder && (aSize > 1000 || bSize > 1000) {
+ b.Skip("skipping on race builder")
+ }
+ b.Run("WithoutXY", func(b *testing.B) {
+ runGCDExt(b, aSize, bSize, false)
+ })
+ b.Run("WithXY", func(b *testing.B) {
+ runGCDExt(b, aSize, bSize, true)
+ })
+}
+
+func runGCDExt(b *testing.B, aSize, bSize uint, calcXY bool) {
+ b.StopTimer()
+ var r = rand.New(rand.NewSource(1234))
+ aa := randInt(r, aSize)
+ bb := randInt(r, bSize)
+ var x, y *Int
+ if calcXY {
+ x = new(Int)
+ y = new(Int)
+ }
+ b.StartTimer()
+ for i := 0; i < b.N; i++ {
+ new(Int).GCD(x, y, aa, bb)
+ }
+}
+
+func BenchmarkGCD10x10(b *testing.B) { runGCD(b, 10, 10) }
+func BenchmarkGCD10x100(b *testing.B) { runGCD(b, 10, 100) }
+func BenchmarkGCD10x1000(b *testing.B) { runGCD(b, 10, 1000) }
+func BenchmarkGCD10x10000(b *testing.B) { runGCD(b, 10, 10000) }
+func BenchmarkGCD10x100000(b *testing.B) { runGCD(b, 10, 100000) }
+func BenchmarkGCD100x100(b *testing.B) { runGCD(b, 100, 100) }
+func BenchmarkGCD100x1000(b *testing.B) { runGCD(b, 100, 1000) }
+func BenchmarkGCD100x10000(b *testing.B) { runGCD(b, 100, 10000) }
+func BenchmarkGCD100x100000(b *testing.B) { runGCD(b, 100, 100000) }
+func BenchmarkGCD1000x1000(b *testing.B) { runGCD(b, 1000, 1000) }
+func BenchmarkGCD1000x10000(b *testing.B) { runGCD(b, 1000, 10000) }
+func BenchmarkGCD1000x100000(b *testing.B) { runGCD(b, 1000, 100000) }
+func BenchmarkGCD10000x10000(b *testing.B) { runGCD(b, 10000, 10000) }
+func BenchmarkGCD10000x100000(b *testing.B) { runGCD(b, 10000, 100000) }
+func BenchmarkGCD100000x100000(b *testing.B) { runGCD(b, 100000, 100000) }
diff --git a/src/math/big/hilbert_test.go b/src/math/big/hilbert_test.go
new file mode 100644
index 0000000..1a84341
--- /dev/null
+++ b/src/math/big/hilbert_test.go
@@ -0,0 +1,160 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// A little test program and benchmark for rational arithmetics.
+// Computes a Hilbert matrix, its inverse, multiplies them
+// and verifies that the product is the identity matrix.
+
+package big
+
+import (
+ "fmt"
+ "testing"
+)
+
+type matrix struct {
+ n, m int
+ a []*Rat
+}
+
+func (a *matrix) at(i, j int) *Rat {
+ if !(0 <= i && i < a.n && 0 <= j && j < a.m) {
+ panic("index out of range")
+ }
+ return a.a[i*a.m+j]
+}
+
+func (a *matrix) set(i, j int, x *Rat) {
+ if !(0 <= i && i < a.n && 0 <= j && j < a.m) {
+ panic("index out of range")
+ }
+ a.a[i*a.m+j] = x
+}
+
+func newMatrix(n, m int) *matrix {
+ if !(0 <= n && 0 <= m) {
+ panic("illegal matrix")
+ }
+ a := new(matrix)
+ a.n = n
+ a.m = m
+ a.a = make([]*Rat, n*m)
+ return a
+}
+
+func newUnit(n int) *matrix {
+ a := newMatrix(n, n)
+ for i := 0; i < n; i++ {
+ for j := 0; j < n; j++ {
+ x := NewRat(0, 1)
+ if i == j {
+ x.SetInt64(1)
+ }
+ a.set(i, j, x)
+ }
+ }
+ return a
+}
+
+func newHilbert(n int) *matrix {
+ a := newMatrix(n, n)
+ for i := 0; i < n; i++ {
+ for j := 0; j < n; j++ {
+ a.set(i, j, NewRat(1, int64(i+j+1)))
+ }
+ }
+ return a
+}
+
+func newInverseHilbert(n int) *matrix {
+ a := newMatrix(n, n)
+ for i := 0; i < n; i++ {
+ for j := 0; j < n; j++ {
+ x1 := new(Rat).SetInt64(int64(i + j + 1))
+ x2 := new(Rat).SetInt(new(Int).Binomial(int64(n+i), int64(n-j-1)))
+ x3 := new(Rat).SetInt(new(Int).Binomial(int64(n+j), int64(n-i-1)))
+ x4 := new(Rat).SetInt(new(Int).Binomial(int64(i+j), int64(i)))
+
+ x1.Mul(x1, x2)
+ x1.Mul(x1, x3)
+ x1.Mul(x1, x4)
+ x1.Mul(x1, x4)
+
+ if (i+j)&1 != 0 {
+ x1.Neg(x1)
+ }
+
+ a.set(i, j, x1)
+ }
+ }
+ return a
+}
+
+func (a *matrix) mul(b *matrix) *matrix {
+ if a.m != b.n {
+ panic("illegal matrix multiply")
+ }
+ c := newMatrix(a.n, b.m)
+ for i := 0; i < c.n; i++ {
+ for j := 0; j < c.m; j++ {
+ x := NewRat(0, 1)
+ for k := 0; k < a.m; k++ {
+ x.Add(x, new(Rat).Mul(a.at(i, k), b.at(k, j)))
+ }
+ c.set(i, j, x)
+ }
+ }
+ return c
+}
+
+func (a *matrix) eql(b *matrix) bool {
+ if a.n != b.n || a.m != b.m {
+ return false
+ }
+ for i := 0; i < a.n; i++ {
+ for j := 0; j < a.m; j++ {
+ if a.at(i, j).Cmp(b.at(i, j)) != 0 {
+ return false
+ }
+ }
+ }
+ return true
+}
+
+func (a *matrix) String() string {
+ s := ""
+ for i := 0; i < a.n; i++ {
+ for j := 0; j < a.m; j++ {
+ s += fmt.Sprintf("\t%s", a.at(i, j))
+ }
+ s += "\n"
+ }
+ return s
+}
+
+func doHilbert(t *testing.T, n int) {
+ a := newHilbert(n)
+ b := newInverseHilbert(n)
+ I := newUnit(n)
+ ab := a.mul(b)
+ if !ab.eql(I) {
+ if t == nil {
+ panic("Hilbert failed")
+ }
+ t.Errorf("a = %s\n", a)
+ t.Errorf("b = %s\n", b)
+ t.Errorf("a*b = %s\n", ab)
+ t.Errorf("I = %s\n", I)
+ }
+}
+
+func TestHilbert(t *testing.T) {
+ doHilbert(t, 10)
+}
+
+func BenchmarkHilbert(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ doHilbert(nil, 10)
+ }
+}
diff --git a/src/math/big/int.go b/src/math/big/int.go
new file mode 100644
index 0000000..b79b459
--- /dev/null
+++ b/src/math/big/int.go
@@ -0,0 +1,1321 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements signed multi-precision integers.
+
+package big
+
+import (
+ "fmt"
+ "io"
+ "math/rand"
+ "strings"
+)
+
+// An Int represents a signed multi-precision integer.
+// The zero value for an Int represents the value 0.
+//
+// Operations always take pointer arguments (*Int) rather
+// than Int values, and each unique Int value requires
+// its own unique *Int pointer. To "copy" an Int value,
+// an existing (or newly allocated) Int must be set to
+// a new value using the [Int.Set] method; shallow copies
+// of Ints are not supported and may lead to errors.
+//
+// Note that methods may leak the Int's value through timing side-channels.
+// Because of this and because of the scope and complexity of the
+// implementation, Int is not well-suited to implement cryptographic operations.
+// The standard library avoids exposing non-trivial Int methods to
+// attacker-controlled inputs and the determination of whether a bug in math/big
+// is considered a security vulnerability might depend on the impact on the
+// standard library.
+type Int struct {
+ neg bool // sign
+ abs nat // absolute value of the integer
+}
+
+var intOne = &Int{false, natOne}
+
+// Sign returns:
+//
+// -1 if x < 0
+// 0 if x == 0
+// +1 if x > 0
+func (x *Int) Sign() int {
+ // This function is used in cryptographic operations. It must not leak
+ // anything but the Int's sign and bit size through side-channels. Any
+ // changes must be reviewed by a security expert.
+ if len(x.abs) == 0 {
+ return 0
+ }
+ if x.neg {
+ return -1
+ }
+ return 1
+}
+
+// SetInt64 sets z to x and returns z.
+func (z *Int) SetInt64(x int64) *Int {
+ neg := false
+ if x < 0 {
+ neg = true
+ x = -x
+ }
+ z.abs = z.abs.setUint64(uint64(x))
+ z.neg = neg
+ return z
+}
+
+// SetUint64 sets z to x and returns z.
+func (z *Int) SetUint64(x uint64) *Int {
+ z.abs = z.abs.setUint64(x)
+ z.neg = false
+ return z
+}
+
+// NewInt allocates and returns a new [Int] set to x.
+func NewInt(x int64) *Int {
+ // This code is arranged to be inlineable and produce
+ // zero allocations when inlined. See issue 29951.
+ u := uint64(x)
+ if x < 0 {
+ u = -u
+ }
+ var abs []Word
+ if x == 0 {
+ } else if _W == 32 && u>>32 != 0 {
+ abs = []Word{Word(u), Word(u >> 32)}
+ } else {
+ abs = []Word{Word(u)}
+ }
+ return &Int{neg: x < 0, abs: abs}
+}
+
+// Set sets z to x and returns z.
+func (z *Int) Set(x *Int) *Int {
+ if z != x {
+ z.abs = z.abs.set(x.abs)
+ z.neg = x.neg
+ }
+ return z
+}
+
+// Bits provides raw (unchecked but fast) access to x by returning its
+// absolute value as a little-endian [Word] slice. The result and x share
+// the same underlying array.
+// Bits is intended to support implementation of missing low-level [Int]
+// functionality outside this package; it should be avoided otherwise.
+func (x *Int) Bits() []Word {
+ // This function is used in cryptographic operations. It must not leak
+ // anything but the Int's sign and bit size through side-channels. Any
+ // changes must be reviewed by a security expert.
+ return x.abs
+}
+
+// SetBits provides raw (unchecked but fast) access to z by setting its
+// value to abs, interpreted as a little-endian [Word] slice, and returning
+// z. The result and abs share the same underlying array.
+// SetBits is intended to support implementation of missing low-level [Int]
+// functionality outside this package; it should be avoided otherwise.
+func (z *Int) SetBits(abs []Word) *Int {
+ z.abs = nat(abs).norm()
+ z.neg = false
+ return z
+}
+
+// Abs sets z to |x| (the absolute value of x) and returns z.
+func (z *Int) Abs(x *Int) *Int {
+ z.Set(x)
+ z.neg = false
+ return z
+}
+
+// Neg sets z to -x and returns z.
+func (z *Int) Neg(x *Int) *Int {
+ z.Set(x)
+ z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
+ return z
+}
+
+// Add sets z to the sum x+y and returns z.
+func (z *Int) Add(x, y *Int) *Int {
+ neg := x.neg
+ if x.neg == y.neg {
+ // x + y == x + y
+ // (-x) + (-y) == -(x + y)
+ z.abs = z.abs.add(x.abs, y.abs)
+ } else {
+ // x + (-y) == x - y == -(y - x)
+ // (-x) + y == y - x == -(x - y)
+ if x.abs.cmp(y.abs) >= 0 {
+ z.abs = z.abs.sub(x.abs, y.abs)
+ } else {
+ neg = !neg
+ z.abs = z.abs.sub(y.abs, x.abs)
+ }
+ }
+ z.neg = len(z.abs) > 0 && neg // 0 has no sign
+ return z
+}
+
+// Sub sets z to the difference x-y and returns z.
+func (z *Int) Sub(x, y *Int) *Int {
+ neg := x.neg
+ if x.neg != y.neg {
+ // x - (-y) == x + y
+ // (-x) - y == -(x + y)
+ z.abs = z.abs.add(x.abs, y.abs)
+ } else {
+ // x - y == x - y == -(y - x)
+ // (-x) - (-y) == y - x == -(x - y)
+ if x.abs.cmp(y.abs) >= 0 {
+ z.abs = z.abs.sub(x.abs, y.abs)
+ } else {
+ neg = !neg
+ z.abs = z.abs.sub(y.abs, x.abs)
+ }
+ }
+ z.neg = len(z.abs) > 0 && neg // 0 has no sign
+ return z
+}
+
+// Mul sets z to the product x*y and returns z.
+func (z *Int) Mul(x, y *Int) *Int {
+ // x * y == x * y
+ // x * (-y) == -(x * y)
+ // (-x) * y == -(x * y)
+ // (-x) * (-y) == x * y
+ if x == y {
+ z.abs = z.abs.sqr(x.abs)
+ z.neg = false
+ return z
+ }
+ z.abs = z.abs.mul(x.abs, y.abs)
+ z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
+ return z
+}
+
+// MulRange sets z to the product of all integers
+// in the range [a, b] inclusively and returns z.
+// If a > b (empty range), the result is 1.
+func (z *Int) MulRange(a, b int64) *Int {
+ switch {
+ case a > b:
+ return z.SetInt64(1) // empty range
+ case a <= 0 && b >= 0:
+ return z.SetInt64(0) // range includes 0
+ }
+ // a <= b && (b < 0 || a > 0)
+
+ neg := false
+ if a < 0 {
+ neg = (b-a)&1 == 0
+ a, b = -b, -a
+ }
+
+ z.abs = z.abs.mulRange(uint64(a), uint64(b))
+ z.neg = neg
+ return z
+}
+
+// Binomial sets z to the binomial coefficient C(n, k) and returns z.
+func (z *Int) Binomial(n, k int64) *Int {
+ if k > n {
+ return z.SetInt64(0)
+ }
+ // reduce the number of multiplications by reducing k
+ if k > n-k {
+ k = n - k // C(n, k) == C(n, n-k)
+ }
+ // C(n, k) == n * (n-1) * ... * (n-k+1) / k * (k-1) * ... * 1
+ // == n * (n-1) * ... * (n-k+1) / 1 * (1+1) * ... * k
+ //
+ // Using the multiplicative formula produces smaller values
+ // at each step, requiring fewer allocations and computations:
+ //
+ // z = 1
+ // for i := 0; i < k; i = i+1 {
+ // z *= n-i
+ // z /= i+1
+ // }
+ //
+ // finally to avoid computing i+1 twice per loop:
+ //
+ // z = 1
+ // i := 0
+ // for i < k {
+ // z *= n-i
+ // i++
+ // z /= i
+ // }
+ var N, K, i, t Int
+ N.SetInt64(n)
+ K.SetInt64(k)
+ z.Set(intOne)
+ for i.Cmp(&K) < 0 {
+ z.Mul(z, t.Sub(&N, &i))
+ i.Add(&i, intOne)
+ z.Quo(z, &i)
+ }
+ return z
+}
+
+// Quo sets z to the quotient x/y for y != 0 and returns z.
+// If y == 0, a division-by-zero run-time panic occurs.
+// Quo implements truncated division (like Go); see [Int.QuoRem] for more details.
+func (z *Int) Quo(x, y *Int) *Int {
+ z.abs, _ = z.abs.div(nil, x.abs, y.abs)
+ z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
+ return z
+}
+
+// Rem sets z to the remainder x%y for y != 0 and returns z.
+// If y == 0, a division-by-zero run-time panic occurs.
+// Rem implements truncated modulus (like Go); see [Int.QuoRem] for more details.
+func (z *Int) Rem(x, y *Int) *Int {
+ _, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
+ z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
+ return z
+}
+
+// QuoRem sets z to the quotient x/y and r to the remainder x%y
+// and returns the pair (z, r) for y != 0.
+// If y == 0, a division-by-zero run-time panic occurs.
+//
+// QuoRem implements T-division and modulus (like Go):
+//
+// q = x/y with the result truncated to zero
+// r = x - y*q
+//
+// (See Daan Leijen, “Division and Modulus for Computer Scientists”.)
+// See DivMod for Euclidean division and modulus (unlike Go).
+func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
+ z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
+ z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
+ return z, r
+}
+
+// Div sets z to the quotient x/y for y != 0 and returns z.
+// If y == 0, a division-by-zero run-time panic occurs.
+// Div implements Euclidean division (unlike Go); see [Int.DivMod] for more details.
+func (z *Int) Div(x, y *Int) *Int {
+ y_neg := y.neg // z may be an alias for y
+ var r Int
+ z.QuoRem(x, y, &r)
+ if r.neg {
+ if y_neg {
+ z.Add(z, intOne)
+ } else {
+ z.Sub(z, intOne)
+ }
+ }
+ return z
+}
+
+// Mod sets z to the modulus x%y for y != 0 and returns z.
+// If y == 0, a division-by-zero run-time panic occurs.
+// Mod implements Euclidean modulus (unlike Go); see [Int.DivMod] for more details.
+func (z *Int) Mod(x, y *Int) *Int {
+ y0 := y // save y
+ if z == y || alias(z.abs, y.abs) {
+ y0 = new(Int).Set(y)
+ }
+ var q Int
+ q.QuoRem(x, y, z)
+ if z.neg {
+ if y0.neg {
+ z.Sub(z, y0)
+ } else {
+ z.Add(z, y0)
+ }
+ }
+ return z
+}
+
+// DivMod sets z to the quotient x div y and m to the modulus x mod y
+// and returns the pair (z, m) for y != 0.
+// If y == 0, a division-by-zero run-time panic occurs.
+//
+// DivMod implements Euclidean division and modulus (unlike Go):
+//
+// q = x div y such that
+// m = x - y*q with 0 <= m < |y|
+//
+// (See Raymond T. Boute, “The Euclidean definition of the functions
+// div and mod”. ACM Transactions on Programming Languages and
+// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
+// ACM press.)
+// See [Int.QuoRem] for T-division and modulus (like Go).
+func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
+ y0 := y // save y
+ if z == y || alias(z.abs, y.abs) {
+ y0 = new(Int).Set(y)
+ }
+ z.QuoRem(x, y, m)
+ if m.neg {
+ if y0.neg {
+ z.Add(z, intOne)
+ m.Sub(m, y0)
+ } else {
+ z.Sub(z, intOne)
+ m.Add(m, y0)
+ }
+ }
+ return z, m
+}
+
+// Cmp compares x and y and returns:
+//
+// -1 if x < y
+// 0 if x == y
+// +1 if x > y
+func (x *Int) Cmp(y *Int) (r int) {
+ // x cmp y == x cmp y
+ // x cmp (-y) == x
+ // (-x) cmp y == y
+ // (-x) cmp (-y) == -(x cmp y)
+ switch {
+ case x == y:
+ // nothing to do
+ case x.neg == y.neg:
+ r = x.abs.cmp(y.abs)
+ if x.neg {
+ r = -r
+ }
+ case x.neg:
+ r = -1
+ default:
+ r = 1
+ }
+ return
+}
+
+// CmpAbs compares the absolute values of x and y and returns:
+//
+// -1 if |x| < |y|
+// 0 if |x| == |y|
+// +1 if |x| > |y|
+func (x *Int) CmpAbs(y *Int) int {
+ return x.abs.cmp(y.abs)
+}
+
+// low32 returns the least significant 32 bits of x.
+func low32(x nat) uint32 {
+ if len(x) == 0 {
+ return 0
+ }
+ return uint32(x[0])
+}
+
+// low64 returns the least significant 64 bits of x.
+func low64(x nat) uint64 {
+ if len(x) == 0 {
+ return 0
+ }
+ v := uint64(x[0])
+ if _W == 32 && len(x) > 1 {
+ return uint64(x[1])<<32 | v
+ }
+ return v
+}
+
+// Int64 returns the int64 representation of x.
+// If x cannot be represented in an int64, the result is undefined.
+func (x *Int) Int64() int64 {
+ v := int64(low64(x.abs))
+ if x.neg {
+ v = -v
+ }
+ return v
+}
+
+// Uint64 returns the uint64 representation of x.
+// If x cannot be represented in a uint64, the result is undefined.
+func (x *Int) Uint64() uint64 {
+ return low64(x.abs)
+}
+
+// IsInt64 reports whether x can be represented as an int64.
+func (x *Int) IsInt64() bool {
+ if len(x.abs) <= 64/_W {
+ w := int64(low64(x.abs))
+ return w >= 0 || x.neg && w == -w
+ }
+ return false
+}
+
+// IsUint64 reports whether x can be represented as a uint64.
+func (x *Int) IsUint64() bool {
+ return !x.neg && len(x.abs) <= 64/_W
+}
+
+// Float64 returns the float64 value nearest x,
+// and an indication of any rounding that occurred.
+func (x *Int) Float64() (float64, Accuracy) {
+ n := x.abs.bitLen() // NB: still uses slow crypto impl!
+ if n == 0 {
+ return 0.0, Exact
+ }
+
+ // Fast path: no more than 53 significant bits.
+ if n <= 53 || n < 64 && n-int(x.abs.trailingZeroBits()) <= 53 {
+ f := float64(low64(x.abs))
+ if x.neg {
+ f = -f
+ }
+ return f, Exact
+ }
+
+ return new(Float).SetInt(x).Float64()
+}
+
+// SetString sets z to the value of s, interpreted in the given base,
+// and returns z and a boolean indicating success. The entire string
+// (not just a prefix) must be valid for success. If SetString fails,
+// the value of z is undefined but the returned value is nil.
+//
+// The base argument must be 0 or a value between 2 and [MaxBase].
+// For base 0, the number prefix determines the actual base: A prefix of
+// “0b” or “0B” selects base 2, “0”, “0o” or “0O” selects base 8,
+// and “0x” or “0X” selects base 16. Otherwise, the selected base is 10
+// and no prefix is accepted.
+//
+// For bases <= 36, lower and upper case letters are considered the same:
+// The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
+// For bases > 36, the upper case letters 'A' to 'Z' represent the digit
+// values 36 to 61.
+//
+// For base 0, an underscore character “_” may appear between a base
+// prefix and an adjacent digit, and between successive digits; such
+// underscores do not change the value of the number.
+// Incorrect placement of underscores is reported as an error if there
+// are no other errors. If base != 0, underscores are not recognized
+// and act like any other character that is not a valid digit.
+func (z *Int) SetString(s string, base int) (*Int, bool) {
+ return z.setFromScanner(strings.NewReader(s), base)
+}
+
+// setFromScanner implements SetString given an io.ByteScanner.
+// For documentation see comments of SetString.
+func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) {
+ if _, _, err := z.scan(r, base); err != nil {
+ return nil, false
+ }
+ // entire content must have been consumed
+ if _, err := r.ReadByte(); err != io.EOF {
+ return nil, false
+ }
+ return z, true // err == io.EOF => scan consumed all content of r
+}
+
+// SetBytes interprets buf as the bytes of a big-endian unsigned
+// integer, sets z to that value, and returns z.
+func (z *Int) SetBytes(buf []byte) *Int {
+ z.abs = z.abs.setBytes(buf)
+ z.neg = false
+ return z
+}
+
+// Bytes returns the absolute value of x as a big-endian byte slice.
+//
+// To use a fixed length slice, or a preallocated one, use [Int.FillBytes].
+func (x *Int) Bytes() []byte {
+ // This function is used in cryptographic operations. It must not leak
+ // anything but the Int's sign and bit size through side-channels. Any
+ // changes must be reviewed by a security expert.
+ buf := make([]byte, len(x.abs)*_S)
+ return buf[x.abs.bytes(buf):]
+}
+
+// FillBytes sets buf to the absolute value of x, storing it as a zero-extended
+// big-endian byte slice, and returns buf.
+//
+// If the absolute value of x doesn't fit in buf, FillBytes will panic.
+func (x *Int) FillBytes(buf []byte) []byte {
+ // Clear whole buffer. (This gets optimized into a memclr.)
+ for i := range buf {
+ buf[i] = 0
+ }
+ x.abs.bytes(buf)
+ return buf
+}
+
+// BitLen returns the length of the absolute value of x in bits.
+// The bit length of 0 is 0.
+func (x *Int) BitLen() int {
+ // This function is used in cryptographic operations. It must not leak
+ // anything but the Int's sign and bit size through side-channels. Any
+ // changes must be reviewed by a security expert.
+ return x.abs.bitLen()
+}
+
+// TrailingZeroBits returns the number of consecutive least significant zero
+// bits of |x|.
+func (x *Int) TrailingZeroBits() uint {
+ return x.abs.trailingZeroBits()
+}
+
+// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
+// If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0,
+// and x and m are not relatively prime, z is unchanged and nil is returned.
+//
+// Modular exponentiation of inputs of a particular size is not a
+// cryptographically constant-time operation.
+func (z *Int) Exp(x, y, m *Int) *Int {
+ return z.exp(x, y, m, false)
+}
+
+func (z *Int) expSlow(x, y, m *Int) *Int {
+ return z.exp(x, y, m, true)
+}
+
+func (z *Int) exp(x, y, m *Int, slow bool) *Int {
+ // See Knuth, volume 2, section 4.6.3.
+ xWords := x.abs
+ if y.neg {
+ if m == nil || len(m.abs) == 0 {
+ return z.SetInt64(1)
+ }
+ // for y < 0: x**y mod m == (x**(-1))**|y| mod m
+ inverse := new(Int).ModInverse(x, m)
+ if inverse == nil {
+ return nil
+ }
+ xWords = inverse.abs
+ }
+ yWords := y.abs
+
+ var mWords nat
+ if m != nil {
+ if z == m || alias(z.abs, m.abs) {
+ m = new(Int).Set(m)
+ }
+ mWords = m.abs // m.abs may be nil for m == 0
+ }
+
+ z.abs = z.abs.expNN(xWords, yWords, mWords, slow)
+ z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
+ if z.neg && len(mWords) > 0 {
+ // make modulus result positive
+ z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m|
+ z.neg = false
+ }
+
+ return z
+}
+
+// GCD sets z to the greatest common divisor of a and b and returns z.
+// If x or y are not nil, GCD sets their value such that z = a*x + b*y.
+//
+// a and b may be positive, zero or negative. (Before Go 1.14 both had
+// to be > 0.) Regardless of the signs of a and b, z is always >= 0.
+//
+// If a == b == 0, GCD sets z = x = y = 0.
+//
+// If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
+//
+// If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
+func (z *Int) GCD(x, y, a, b *Int) *Int {
+ if len(a.abs) == 0 || len(b.abs) == 0 {
+ lenA, lenB, negA, negB := len(a.abs), len(b.abs), a.neg, b.neg
+ if lenA == 0 {
+ z.Set(b)
+ } else {
+ z.Set(a)
+ }
+ z.neg = false
+ if x != nil {
+ if lenA == 0 {
+ x.SetUint64(0)
+ } else {
+ x.SetUint64(1)
+ x.neg = negA
+ }
+ }
+ if y != nil {
+ if lenB == 0 {
+ y.SetUint64(0)
+ } else {
+ y.SetUint64(1)
+ y.neg = negB
+ }
+ }
+ return z
+ }
+
+ return z.lehmerGCD(x, y, a, b)
+}
+
+// lehmerSimulate attempts to simulate several Euclidean update steps
+// using the leading digits of A and B. It returns u0, u1, v0, v1
+// such that A and B can be updated as:
+//
+// A = u0*A + v0*B
+// B = u1*A + v1*B
+//
+// Requirements: A >= B and len(B.abs) >= 2
+// Since we are calculating with full words to avoid overflow,
+// we use 'even' to track the sign of the cosequences.
+// For even iterations: u0, v1 >= 0 && u1, v0 <= 0
+// For odd iterations: u0, v1 <= 0 && u1, v0 >= 0
+func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) {
+ // initialize the digits
+ var a1, a2, u2, v2 Word
+
+ m := len(B.abs) // m >= 2
+ n := len(A.abs) // n >= m >= 2
+
+ // extract the top Word of bits from A and B
+ h := nlz(A.abs[n-1])
+ a1 = A.abs[n-1]<<h | A.abs[n-2]>>(_W-h)
+ // B may have implicit zero words in the high bits if the lengths differ
+ switch {
+ case n == m:
+ a2 = B.abs[n-1]<<h | B.abs[n-2]>>(_W-h)
+ case n == m+1:
+ a2 = B.abs[n-2] >> (_W - h)
+ default:
+ a2 = 0
+ }
+
+ // Since we are calculating with full words to avoid overflow,
+ // we use 'even' to track the sign of the cosequences.
+ // For even iterations: u0, v1 >= 0 && u1, v0 <= 0
+ // For odd iterations: u0, v1 <= 0 && u1, v0 >= 0
+ // The first iteration starts with k=1 (odd).
+ even = false
+ // variables to track the cosequences
+ u0, u1, u2 = 0, 1, 0
+ v0, v1, v2 = 0, 0, 1
+
+ // Calculate the quotient and cosequences using Collins' stopping condition.
+ // Note that overflow of a Word is not possible when computing the remainder
+ // sequence and cosequences since the cosequence size is bounded by the input size.
+ // See section 4.2 of Jebelean for details.
+ for a2 >= v2 && a1-a2 >= v1+v2 {
+ q, r := a1/a2, a1%a2
+ a1, a2 = a2, r
+ u0, u1, u2 = u1, u2, u1+q*u2
+ v0, v1, v2 = v1, v2, v1+q*v2
+ even = !even
+ }
+ return
+}
+
+// lehmerUpdate updates the inputs A and B such that:
+//
+// A = u0*A + v0*B
+// B = u1*A + v1*B
+//
+// where the signs of u0, u1, v0, v1 are given by even
+// For even == true: u0, v1 >= 0 && u1, v0 <= 0
+// For even == false: u0, v1 <= 0 && u1, v0 >= 0
+// q, r, s, t are temporary variables to avoid allocations in the multiplication.
+func lehmerUpdate(A, B, q, r, s, t *Int, u0, u1, v0, v1 Word, even bool) {
+
+ t.abs = t.abs.setWord(u0)
+ s.abs = s.abs.setWord(v0)
+ t.neg = !even
+ s.neg = even
+
+ t.Mul(A, t)
+ s.Mul(B, s)
+
+ r.abs = r.abs.setWord(u1)
+ q.abs = q.abs.setWord(v1)
+ r.neg = even
+ q.neg = !even
+
+ r.Mul(A, r)
+ q.Mul(B, q)
+
+ A.Add(t, s)
+ B.Add(r, q)
+}
+
+// euclidUpdate performs a single step of the Euclidean GCD algorithm
+// if extended is true, it also updates the cosequence Ua, Ub.
+func euclidUpdate(A, B, Ua, Ub, q, r, s, t *Int, extended bool) {
+ q, r = q.QuoRem(A, B, r)
+
+ *A, *B, *r = *B, *r, *A
+
+ if extended {
+ // Ua, Ub = Ub, Ua - q*Ub
+ t.Set(Ub)
+ s.Mul(Ub, q)
+ Ub.Sub(Ua, s)
+ Ua.Set(t)
+ }
+}
+
+// lehmerGCD sets z to the greatest common divisor of a and b,
+// which both must be != 0, and returns z.
+// If x or y are not nil, their values are set such that z = a*x + b*y.
+// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L.
+// This implementation uses the improved condition by Collins requiring only one
+// quotient and avoiding the possibility of single Word overflow.
+// See Jebelean, "Improving the multiprecision Euclidean algorithm",
+// Design and Implementation of Symbolic Computation Systems, pp 45-58.
+// The cosequences are updated according to Algorithm 10.45 from
+// Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192.
+func (z *Int) lehmerGCD(x, y, a, b *Int) *Int {
+ var A, B, Ua, Ub *Int
+
+ A = new(Int).Abs(a)
+ B = new(Int).Abs(b)
+
+ extended := x != nil || y != nil
+
+ if extended {
+ // Ua (Ub) tracks how many times input a has been accumulated into A (B).
+ Ua = new(Int).SetInt64(1)
+ Ub = new(Int)
+ }
+
+ // temp variables for multiprecision update
+ q := new(Int)
+ r := new(Int)
+ s := new(Int)
+ t := new(Int)
+
+ // ensure A >= B
+ if A.abs.cmp(B.abs) < 0 {
+ A, B = B, A
+ Ub, Ua = Ua, Ub
+ }
+
+ // loop invariant A >= B
+ for len(B.abs) > 1 {
+ // Attempt to calculate in single-precision using leading words of A and B.
+ u0, u1, v0, v1, even := lehmerSimulate(A, B)
+
+ // multiprecision Step
+ if v0 != 0 {
+ // Simulate the effect of the single-precision steps using the cosequences.
+ // A = u0*A + v0*B
+ // B = u1*A + v1*B
+ lehmerUpdate(A, B, q, r, s, t, u0, u1, v0, v1, even)
+
+ if extended {
+ // Ua = u0*Ua + v0*Ub
+ // Ub = u1*Ua + v1*Ub
+ lehmerUpdate(Ua, Ub, q, r, s, t, u0, u1, v0, v1, even)
+ }
+
+ } else {
+ // Single-digit calculations failed to simulate any quotients.
+ // Do a standard Euclidean step.
+ euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
+ }
+ }
+
+ if len(B.abs) > 0 {
+ // extended Euclidean algorithm base case if B is a single Word
+ if len(A.abs) > 1 {
+ // A is longer than a single Word, so one update is needed.
+ euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
+ }
+ if len(B.abs) > 0 {
+ // A and B are both a single Word.
+ aWord, bWord := A.abs[0], B.abs[0]
+ if extended {
+ var ua, ub, va, vb Word
+ ua, ub = 1, 0
+ va, vb = 0, 1
+ even := true
+ for bWord != 0 {
+ q, r := aWord/bWord, aWord%bWord
+ aWord, bWord = bWord, r
+ ua, ub = ub, ua+q*ub
+ va, vb = vb, va+q*vb
+ even = !even
+ }
+
+ t.abs = t.abs.setWord(ua)
+ s.abs = s.abs.setWord(va)
+ t.neg = !even
+ s.neg = even
+
+ t.Mul(Ua, t)
+ s.Mul(Ub, s)
+
+ Ua.Add(t, s)
+ } else {
+ for bWord != 0 {
+ aWord, bWord = bWord, aWord%bWord
+ }
+ }
+ A.abs[0] = aWord
+ }
+ }
+ negA := a.neg
+ if y != nil {
+ // avoid aliasing b needed in the division below
+ if y == b {
+ B.Set(b)
+ } else {
+ B = b
+ }
+ // y = (z - a*x)/b
+ y.Mul(a, Ua) // y can safely alias a
+ if negA {
+ y.neg = !y.neg
+ }
+ y.Sub(A, y)
+ y.Div(y, B)
+ }
+
+ if x != nil {
+ *x = *Ua
+ if negA {
+ x.neg = !x.neg
+ }
+ }
+
+ *z = *A
+
+ return z
+}
+
+// Rand sets z to a pseudo-random number in [0, n) and returns z.
+//
+// As this uses the [math/rand] package, it must not be used for
+// security-sensitive work. Use [crypto/rand.Int] instead.
+func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
+ // z.neg is not modified before the if check, because z and n might alias.
+ if n.neg || len(n.abs) == 0 {
+ z.neg = false
+ z.abs = nil
+ return z
+ }
+ z.neg = false
+ z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
+ return z
+}
+
+// ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
+// and returns z. If g and n are not relatively prime, g has no multiplicative
+// inverse in the ring ℤ/nℤ. In this case, z is unchanged and the return value
+// is nil. If n == 0, a division-by-zero run-time panic occurs.
+func (z *Int) ModInverse(g, n *Int) *Int {
+ // GCD expects parameters a and b to be > 0.
+ if n.neg {
+ var n2 Int
+ n = n2.Neg(n)
+ }
+ if g.neg {
+ var g2 Int
+ g = g2.Mod(g, n)
+ }
+ var d, x Int
+ d.GCD(&x, nil, g, n)
+
+ // if and only if d==1, g and n are relatively prime
+ if d.Cmp(intOne) != 0 {
+ return nil
+ }
+
+ // x and y are such that g*x + n*y = 1, therefore x is the inverse element,
+ // but it may be negative, so convert to the range 0 <= z < |n|
+ if x.neg {
+ z.Add(&x, n)
+ } else {
+ z.Set(&x)
+ }
+ return z
+}
+
+func (z nat) modInverse(g, n nat) nat {
+ // TODO(rsc): ModInverse should be implemented in terms of this function.
+ return (&Int{abs: z}).ModInverse(&Int{abs: g}, &Int{abs: n}).abs
+}
+
+// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
+// The y argument must be an odd integer.
+func Jacobi(x, y *Int) int {
+ if len(y.abs) == 0 || y.abs[0]&1 == 0 {
+ panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y.String()))
+ }
+
+ // We use the formulation described in chapter 2, section 2.4,
+ // "The Yacas Book of Algorithms":
+ // http://yacas.sourceforge.net/Algo.book.pdf
+
+ var a, b, c Int
+ a.Set(x)
+ b.Set(y)
+ j := 1
+
+ if b.neg {
+ if a.neg {
+ j = -1
+ }
+ b.neg = false
+ }
+
+ for {
+ if b.Cmp(intOne) == 0 {
+ return j
+ }
+ if len(a.abs) == 0 {
+ return 0
+ }
+ a.Mod(&a, &b)
+ if len(a.abs) == 0 {
+ return 0
+ }
+ // a > 0
+
+ // handle factors of 2 in 'a'
+ s := a.abs.trailingZeroBits()
+ if s&1 != 0 {
+ bmod8 := b.abs[0] & 7
+ if bmod8 == 3 || bmod8 == 5 {
+ j = -j
+ }
+ }
+ c.Rsh(&a, s) // a = 2^s*c
+
+ // swap numerator and denominator
+ if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 {
+ j = -j
+ }
+ a.Set(&b)
+ b.Set(&c)
+ }
+}
+
+// modSqrt3Mod4 uses the identity
+//
+// (a^((p+1)/4))^2 mod p
+// == u^(p+1) mod p
+// == u^2 mod p
+//
+// to calculate the square root of any quadratic residue mod p quickly for 3
+// mod 4 primes.
+func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {
+ e := new(Int).Add(p, intOne) // e = p + 1
+ e.Rsh(e, 2) // e = (p + 1) / 4
+ z.Exp(x, e, p) // z = x^e mod p
+ return z
+}
+
+// modSqrt5Mod8Prime uses Atkin's observation that 2 is not a square mod p
+//
+// alpha == (2*a)^((p-5)/8) mod p
+// beta == 2*a*alpha^2 mod p is a square root of -1
+// b == a*alpha*(beta-1) mod p is a square root of a
+//
+// to calculate the square root of any quadratic residue mod p quickly for 5
+// mod 8 primes.
+func (z *Int) modSqrt5Mod8Prime(x, p *Int) *Int {
+ // p == 5 mod 8 implies p = e*8 + 5
+ // e is the quotient and 5 the remainder on division by 8
+ e := new(Int).Rsh(p, 3) // e = (p - 5) / 8
+ tx := new(Int).Lsh(x, 1) // tx = 2*x
+ alpha := new(Int).Exp(tx, e, p)
+ beta := new(Int).Mul(alpha, alpha)
+ beta.Mod(beta, p)
+ beta.Mul(beta, tx)
+ beta.Mod(beta, p)
+ beta.Sub(beta, intOne)
+ beta.Mul(beta, x)
+ beta.Mod(beta, p)
+ beta.Mul(beta, alpha)
+ z.Mod(beta, p)
+ return z
+}
+
+// modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square
+// root of a quadratic residue modulo any prime.
+func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {
+ // Break p-1 into s*2^e such that s is odd.
+ var s Int
+ s.Sub(p, intOne)
+ e := s.abs.trailingZeroBits()
+ s.Rsh(&s, e)
+
+ // find some non-square n
+ var n Int
+ n.SetInt64(2)
+ for Jacobi(&n, p) != -1 {
+ n.Add(&n, intOne)
+ }
+
+ // Core of the Tonelli-Shanks algorithm. Follows the description in
+ // section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra
+ // Brown:
+ // https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
+ var y, b, g, t Int
+ y.Add(&s, intOne)
+ y.Rsh(&y, 1)
+ y.Exp(x, &y, p) // y = x^((s+1)/2)
+ b.Exp(x, &s, p) // b = x^s
+ g.Exp(&n, &s, p) // g = n^s
+ r := e
+ for {
+ // find the least m such that ord_p(b) = 2^m
+ var m uint
+ t.Set(&b)
+ for t.Cmp(intOne) != 0 {
+ t.Mul(&t, &t).Mod(&t, p)
+ m++
+ }
+
+ if m == 0 {
+ return z.Set(&y)
+ }
+
+ t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)
+ // t = g^(2^(r-m-1)) mod p
+ g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
+ y.Mul(&y, &t).Mod(&y, p)
+ b.Mul(&b, &g).Mod(&b, p)
+ r = m
+ }
+}
+
+// ModSqrt sets z to a square root of x mod p if such a square root exists, and
+// returns z. The modulus p must be an odd prime. If x is not a square mod p,
+// ModSqrt leaves z unchanged and returns nil. This function panics if p is
+// not an odd integer, its behavior is undefined if p is odd but not prime.
+func (z *Int) ModSqrt(x, p *Int) *Int {
+ switch Jacobi(x, p) {
+ case -1:
+ return nil // x is not a square mod p
+ case 0:
+ return z.SetInt64(0) // sqrt(0) mod p = 0
+ case 1:
+ break
+ }
+ if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
+ x = new(Int).Mod(x, p)
+ }
+
+ switch {
+ case p.abs[0]%4 == 3:
+ // Check whether p is 3 mod 4, and if so, use the faster algorithm.
+ return z.modSqrt3Mod4Prime(x, p)
+ case p.abs[0]%8 == 5:
+ // Check whether p is 5 mod 8, use Atkin's algorithm.
+ return z.modSqrt5Mod8Prime(x, p)
+ default:
+ // Otherwise, use Tonelli-Shanks.
+ return z.modSqrtTonelliShanks(x, p)
+ }
+}
+
+// Lsh sets z = x << n and returns z.
+func (z *Int) Lsh(x *Int, n uint) *Int {
+ z.abs = z.abs.shl(x.abs, n)
+ z.neg = x.neg
+ return z
+}
+
+// Rsh sets z = x >> n and returns z.
+func (z *Int) Rsh(x *Int, n uint) *Int {
+ if x.neg {
+ // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
+ t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
+ t = t.shr(t, n)
+ z.abs = t.add(t, natOne)
+ z.neg = true // z cannot be zero if x is negative
+ return z
+ }
+
+ z.abs = z.abs.shr(x.abs, n)
+ z.neg = false
+ return z
+}
+
+// Bit returns the value of the i'th bit of x. That is, it
+// returns (x>>i)&1. The bit index i must be >= 0.
+func (x *Int) Bit(i int) uint {
+ if i == 0 {
+ // optimization for common case: odd/even test of x
+ if len(x.abs) > 0 {
+ return uint(x.abs[0] & 1) // bit 0 is same for -x
+ }
+ return 0
+ }
+ if i < 0 {
+ panic("negative bit index")
+ }
+ if x.neg {
+ t := nat(nil).sub(x.abs, natOne)
+ return t.bit(uint(i)) ^ 1
+ }
+
+ return x.abs.bit(uint(i))
+}
+
+// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
+// That is, if b is 1 SetBit sets z = x | (1 << i);
+// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
+// SetBit will panic.
+func (z *Int) SetBit(x *Int, i int, b uint) *Int {
+ if i < 0 {
+ panic("negative bit index")
+ }
+ if x.neg {
+ t := z.abs.sub(x.abs, natOne)
+ t = t.setBit(t, uint(i), b^1)
+ z.abs = t.add(t, natOne)
+ z.neg = len(z.abs) > 0
+ return z
+ }
+ z.abs = z.abs.setBit(x.abs, uint(i), b)
+ z.neg = false
+ return z
+}
+
+// And sets z = x & y and returns z.
+func (z *Int) And(x, y *Int) *Int {
+ if x.neg == y.neg {
+ if x.neg {
+ // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
+ z.neg = true // z cannot be zero if x and y are negative
+ return z
+ }
+
+ // x & y == x & y
+ z.abs = z.abs.and(x.abs, y.abs)
+ z.neg = false
+ return z
+ }
+
+ // x.neg != y.neg
+ if x.neg {
+ x, y = y, x // & is symmetric
+ }
+
+ // x & (-y) == x & ^(y-1) == x &^ (y-1)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.andNot(x.abs, y1)
+ z.neg = false
+ return z
+}
+
+// AndNot sets z = x &^ y and returns z.
+func (z *Int) AndNot(x, y *Int) *Int {
+ if x.neg == y.neg {
+ if x.neg {
+ // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.andNot(y1, x1)
+ z.neg = false
+ return z
+ }
+
+ // x &^ y == x &^ y
+ z.abs = z.abs.andNot(x.abs, y.abs)
+ z.neg = false
+ return z
+ }
+
+ if x.neg {
+ // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
+ z.neg = true // z cannot be zero if x is negative and y is positive
+ return z
+ }
+
+ // x &^ (-y) == x &^ ^(y-1) == x & (y-1)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.and(x.abs, y1)
+ z.neg = false
+ return z
+}
+
+// Or sets z = x | y and returns z.
+func (z *Int) Or(x, y *Int) *Int {
+ if x.neg == y.neg {
+ if x.neg {
+ // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
+ z.neg = true // z cannot be zero if x and y are negative
+ return z
+ }
+
+ // x | y == x | y
+ z.abs = z.abs.or(x.abs, y.abs)
+ z.neg = false
+ return z
+ }
+
+ // x.neg != y.neg
+ if x.neg {
+ x, y = y, x // | is symmetric
+ }
+
+ // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
+ z.neg = true // z cannot be zero if one of x or y is negative
+ return z
+}
+
+// Xor sets z = x ^ y and returns z.
+func (z *Int) Xor(x, y *Int) *Int {
+ if x.neg == y.neg {
+ if x.neg {
+ // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.xor(x1, y1)
+ z.neg = false
+ return z
+ }
+
+ // x ^ y == x ^ y
+ z.abs = z.abs.xor(x.abs, y.abs)
+ z.neg = false
+ return z
+ }
+
+ // x.neg != y.neg
+ if x.neg {
+ x, y = y, x // ^ is symmetric
+ }
+
+ // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
+ z.neg = true // z cannot be zero if only one of x or y is negative
+ return z
+}
+
+// Not sets z = ^x and returns z.
+func (z *Int) Not(x *Int) *Int {
+ if x.neg {
+ // ^(-x) == ^(^(x-1)) == x-1
+ z.abs = z.abs.sub(x.abs, natOne)
+ z.neg = false
+ return z
+ }
+
+ // ^x == -x-1 == -(x+1)
+ z.abs = z.abs.add(x.abs, natOne)
+ z.neg = true // z cannot be zero if x is positive
+ return z
+}
+
+// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
+// It panics if x is negative.
+func (z *Int) Sqrt(x *Int) *Int {
+ if x.neg {
+ panic("square root of negative number")
+ }
+ z.neg = false
+ z.abs = z.abs.sqrt(x.abs)
+ return z
+}
diff --git a/src/math/big/int_test.go b/src/math/big/int_test.go
new file mode 100644
index 0000000..088bce0
--- /dev/null
+++ b/src/math/big/int_test.go
@@ -0,0 +1,2012 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "bytes"
+ "encoding/hex"
+ "fmt"
+ "internal/testenv"
+ "math"
+ "math/rand"
+ "strconv"
+ "strings"
+ "testing"
+ "testing/quick"
+)
+
+func isNormalized(x *Int) bool {
+ if len(x.abs) == 0 {
+ return !x.neg
+ }
+ // len(x.abs) > 0
+ return x.abs[len(x.abs)-1] != 0
+}
+
+type funZZ func(z, x, y *Int) *Int
+type argZZ struct {
+ z, x, y *Int
+}
+
+var sumZZ = []argZZ{
+ {NewInt(0), NewInt(0), NewInt(0)},
+ {NewInt(1), NewInt(1), NewInt(0)},
+ {NewInt(1111111110), NewInt(123456789), NewInt(987654321)},
+ {NewInt(-1), NewInt(-1), NewInt(0)},
+ {NewInt(864197532), NewInt(-123456789), NewInt(987654321)},
+ {NewInt(-1111111110), NewInt(-123456789), NewInt(-987654321)},
+}
+
+var prodZZ = []argZZ{
+ {NewInt(0), NewInt(0), NewInt(0)},
+ {NewInt(0), NewInt(1), NewInt(0)},
+ {NewInt(1), NewInt(1), NewInt(1)},
+ {NewInt(-991 * 991), NewInt(991), NewInt(-991)},
+ // TODO(gri) add larger products
+}
+
+func TestSignZ(t *testing.T) {
+ var zero Int
+ for _, a := range sumZZ {
+ s := a.z.Sign()
+ e := a.z.Cmp(&zero)
+ if s != e {
+ t.Errorf("got %d; want %d for z = %v", s, e, a.z)
+ }
+ }
+}
+
+func TestSetZ(t *testing.T) {
+ for _, a := range sumZZ {
+ var z Int
+ z.Set(a.z)
+ if !isNormalized(&z) {
+ t.Errorf("%v is not normalized", z)
+ }
+ if (&z).Cmp(a.z) != 0 {
+ t.Errorf("got z = %v; want %v", z, a.z)
+ }
+ }
+}
+
+func TestAbsZ(t *testing.T) {
+ var zero Int
+ for _, a := range sumZZ {
+ var z Int
+ z.Abs(a.z)
+ var e Int
+ e.Set(a.z)
+ if e.Cmp(&zero) < 0 {
+ e.Sub(&zero, &e)
+ }
+ if z.Cmp(&e) != 0 {
+ t.Errorf("got z = %v; want %v", z, e)
+ }
+ }
+}
+
+func testFunZZ(t *testing.T, msg string, f funZZ, a argZZ) {
+ var z Int
+ f(&z, a.x, a.y)
+ if !isNormalized(&z) {
+ t.Errorf("%s%v is not normalized", msg, z)
+ }
+ if (&z).Cmp(a.z) != 0 {
+ t.Errorf("%v %s %v\n\tgot z = %v; want %v", a.x, msg, a.y, &z, a.z)
+ }
+}
+
+func TestSumZZ(t *testing.T) {
+ AddZZ := func(z, x, y *Int) *Int { return z.Add(x, y) }
+ SubZZ := func(z, x, y *Int) *Int { return z.Sub(x, y) }
+ for _, a := range sumZZ {
+ arg := a
+ testFunZZ(t, "AddZZ", AddZZ, arg)
+
+ arg = argZZ{a.z, a.y, a.x}
+ testFunZZ(t, "AddZZ symmetric", AddZZ, arg)
+
+ arg = argZZ{a.x, a.z, a.y}
+ testFunZZ(t, "SubZZ", SubZZ, arg)
+
+ arg = argZZ{a.y, a.z, a.x}
+ testFunZZ(t, "SubZZ symmetric", SubZZ, arg)
+ }
+}
+
+func TestProdZZ(t *testing.T) {
+ MulZZ := func(z, x, y *Int) *Int { return z.Mul(x, y) }
+ for _, a := range prodZZ {
+ arg := a
+ testFunZZ(t, "MulZZ", MulZZ, arg)
+
+ arg = argZZ{a.z, a.y, a.x}
+ testFunZZ(t, "MulZZ symmetric", MulZZ, arg)
+ }
+}
+
+// mulBytes returns x*y via grade school multiplication. Both inputs
+// and the result are assumed to be in big-endian representation (to
+// match the semantics of Int.Bytes and Int.SetBytes).
+func mulBytes(x, y []byte) []byte {
+ z := make([]byte, len(x)+len(y))
+
+ // multiply
+ k0 := len(z) - 1
+ for j := len(y) - 1; j >= 0; j-- {
+ d := int(y[j])
+ if d != 0 {
+ k := k0
+ carry := 0
+ for i := len(x) - 1; i >= 0; i-- {
+ t := int(z[k]) + int(x[i])*d + carry
+ z[k], carry = byte(t), t>>8
+ k--
+ }
+ z[k] = byte(carry)
+ }
+ k0--
+ }
+
+ // normalize (remove leading 0's)
+ i := 0
+ for i < len(z) && z[i] == 0 {
+ i++
+ }
+
+ return z[i:]
+}
+
+func checkMul(a, b []byte) bool {
+ var x, y, z1 Int
+ x.SetBytes(a)
+ y.SetBytes(b)
+ z1.Mul(&x, &y)
+
+ var z2 Int
+ z2.SetBytes(mulBytes(a, b))
+
+ return z1.Cmp(&z2) == 0
+}
+
+func TestMul(t *testing.T) {
+ if err := quick.Check(checkMul, nil); err != nil {
+ t.Error(err)
+ }
+}
+
+var mulRangesZ = []struct {
+ a, b int64
+ prod string
+}{
+ // entirely positive ranges are covered by mulRangesN
+ {-1, 1, "0"},
+ {-2, -1, "2"},
+ {-3, -2, "6"},
+ {-3, -1, "-6"},
+ {1, 3, "6"},
+ {-10, -10, "-10"},
+ {0, -1, "1"}, // empty range
+ {-1, -100, "1"}, // empty range
+ {-1, 1, "0"}, // range includes 0
+ {-1e9, 0, "0"}, // range includes 0
+ {-1e9, 1e9, "0"}, // range includes 0
+ {-10, -1, "3628800"}, // 10!
+ {-20, -2, "-2432902008176640000"}, // -20!
+ {-99, -1,
+ "-933262154439441526816992388562667004907159682643816214685929" +
+ "638952175999932299156089414639761565182862536979208272237582" +
+ "511852109168640000000000000000000000", // -99!
+ },
+
+ // overflow situations
+ {math.MaxInt64 - 0, math.MaxInt64, "9223372036854775807"},
+ {math.MaxInt64 - 1, math.MaxInt64, "85070591730234615838173535747377725442"},
+ {math.MaxInt64 - 2, math.MaxInt64, "784637716923335094969050127519550606919189611815754530810"},
+ {math.MaxInt64 - 3, math.MaxInt64, "7237005577332262206126809393809643289012107973151163787181513908099760521240"},
+}
+
+func TestMulRangeZ(t *testing.T) {
+ var tmp Int
+ // test entirely positive ranges
+ for i, r := range mulRangesN {
+ // skip mulRangesN entries that overflow int64
+ if int64(r.a) < 0 || int64(r.b) < 0 {
+ continue
+ }
+ prod := tmp.MulRange(int64(r.a), int64(r.b)).String()
+ if prod != r.prod {
+ t.Errorf("#%da: got %s; want %s", i, prod, r.prod)
+ }
+ }
+ // test other ranges
+ for i, r := range mulRangesZ {
+ prod := tmp.MulRange(r.a, r.b).String()
+ if prod != r.prod {
+ t.Errorf("#%db: got %s; want %s", i, prod, r.prod)
+ }
+ }
+}
+
+func TestBinomial(t *testing.T) {
+ var z Int
+ for _, test := range []struct {
+ n, k int64
+ want string
+ }{
+ {0, 0, "1"},
+ {0, 1, "0"},
+ {1, 0, "1"},
+ {1, 1, "1"},
+ {1, 10, "0"},
+ {4, 0, "1"},
+ {4, 1, "4"},
+ {4, 2, "6"},
+ {4, 3, "4"},
+ {4, 4, "1"},
+ {10, 1, "10"},
+ {10, 9, "10"},
+ {10, 5, "252"},
+ {11, 5, "462"},
+ {11, 6, "462"},
+ {100, 10, "17310309456440"},
+ {100, 90, "17310309456440"},
+ {1000, 10, "263409560461970212832400"},
+ {1000, 990, "263409560461970212832400"},
+ } {
+ if got := z.Binomial(test.n, test.k).String(); got != test.want {
+ t.Errorf("Binomial(%d, %d) = %s; want %s", test.n, test.k, got, test.want)
+ }
+ }
+}
+
+func BenchmarkBinomial(b *testing.B) {
+ var z Int
+ for i := 0; i < b.N; i++ {
+ z.Binomial(1000, 990)
+ }
+}
+
+// Examples from the Go Language Spec, section "Arithmetic operators"
+var divisionSignsTests = []struct {
+ x, y int64
+ q, r int64 // T-division
+ d, m int64 // Euclidean division
+}{
+ {5, 3, 1, 2, 1, 2},
+ {-5, 3, -1, -2, -2, 1},
+ {5, -3, -1, 2, -1, 2},
+ {-5, -3, 1, -2, 2, 1},
+ {1, 2, 0, 1, 0, 1},
+ {8, 4, 2, 0, 2, 0},
+}
+
+func TestDivisionSigns(t *testing.T) {
+ for i, test := range divisionSignsTests {
+ x := NewInt(test.x)
+ y := NewInt(test.y)
+ q := NewInt(test.q)
+ r := NewInt(test.r)
+ d := NewInt(test.d)
+ m := NewInt(test.m)
+
+ q1 := new(Int).Quo(x, y)
+ r1 := new(Int).Rem(x, y)
+ if !isNormalized(q1) {
+ t.Errorf("#%d Quo: %v is not normalized", i, *q1)
+ }
+ if !isNormalized(r1) {
+ t.Errorf("#%d Rem: %v is not normalized", i, *r1)
+ }
+ if q1.Cmp(q) != 0 || r1.Cmp(r) != 0 {
+ t.Errorf("#%d QuoRem: got (%s, %s), want (%s, %s)", i, q1, r1, q, r)
+ }
+
+ q2, r2 := new(Int).QuoRem(x, y, new(Int))
+ if !isNormalized(q2) {
+ t.Errorf("#%d Quo: %v is not normalized", i, *q2)
+ }
+ if !isNormalized(r2) {
+ t.Errorf("#%d Rem: %v is not normalized", i, *r2)
+ }
+ if q2.Cmp(q) != 0 || r2.Cmp(r) != 0 {
+ t.Errorf("#%d QuoRem: got (%s, %s), want (%s, %s)", i, q2, r2, q, r)
+ }
+
+ d1 := new(Int).Div(x, y)
+ m1 := new(Int).Mod(x, y)
+ if !isNormalized(d1) {
+ t.Errorf("#%d Div: %v is not normalized", i, *d1)
+ }
+ if !isNormalized(m1) {
+ t.Errorf("#%d Mod: %v is not normalized", i, *m1)
+ }
+ if d1.Cmp(d) != 0 || m1.Cmp(m) != 0 {
+ t.Errorf("#%d DivMod: got (%s, %s), want (%s, %s)", i, d1, m1, d, m)
+ }
+
+ d2, m2 := new(Int).DivMod(x, y, new(Int))
+ if !isNormalized(d2) {
+ t.Errorf("#%d Div: %v is not normalized", i, *d2)
+ }
+ if !isNormalized(m2) {
+ t.Errorf("#%d Mod: %v is not normalized", i, *m2)
+ }
+ if d2.Cmp(d) != 0 || m2.Cmp(m) != 0 {
+ t.Errorf("#%d DivMod: got (%s, %s), want (%s, %s)", i, d2, m2, d, m)
+ }
+ }
+}
+
+func norm(x nat) nat {
+ i := len(x)
+ for i > 0 && x[i-1] == 0 {
+ i--
+ }
+ return x[:i]
+}
+
+func TestBits(t *testing.T) {
+ for _, test := range []nat{
+ nil,
+ {0},
+ {1},
+ {0, 1, 2, 3, 4},
+ {4, 3, 2, 1, 0},
+ {4, 3, 2, 1, 0, 0, 0, 0},
+ } {
+ var z Int
+ z.neg = true
+ got := z.SetBits(test)
+ want := norm(test)
+ if got.abs.cmp(want) != 0 {
+ t.Errorf("SetBits(%v) = %v; want %v", test, got.abs, want)
+ }
+
+ if got.neg {
+ t.Errorf("SetBits(%v): got negative result", test)
+ }
+
+ bits := nat(z.Bits())
+ if bits.cmp(want) != 0 {
+ t.Errorf("%v.Bits() = %v; want %v", z.abs, bits, want)
+ }
+ }
+}
+
+func checkSetBytes(b []byte) bool {
+ hex1 := hex.EncodeToString(new(Int).SetBytes(b).Bytes())
+ hex2 := hex.EncodeToString(b)
+
+ for len(hex1) < len(hex2) {
+ hex1 = "0" + hex1
+ }
+
+ for len(hex1) > len(hex2) {
+ hex2 = "0" + hex2
+ }
+
+ return hex1 == hex2
+}
+
+func TestSetBytes(t *testing.T) {
+ if err := quick.Check(checkSetBytes, nil); err != nil {
+ t.Error(err)
+ }
+}
+
+func checkBytes(b []byte) bool {
+ // trim leading zero bytes since Bytes() won't return them
+ // (was issue 12231)
+ for len(b) > 0 && b[0] == 0 {
+ b = b[1:]
+ }
+ b2 := new(Int).SetBytes(b).Bytes()
+ return bytes.Equal(b, b2)
+}
+
+func TestBytes(t *testing.T) {
+ if err := quick.Check(checkBytes, nil); err != nil {
+ t.Error(err)
+ }
+}
+
+func checkQuo(x, y []byte) bool {
+ u := new(Int).SetBytes(x)
+ v := new(Int).SetBytes(y)
+
+ if len(v.abs) == 0 {
+ return true
+ }
+
+ r := new(Int)
+ q, r := new(Int).QuoRem(u, v, r)
+
+ if r.Cmp(v) >= 0 {
+ return false
+ }
+
+ uprime := new(Int).Set(q)
+ uprime.Mul(uprime, v)
+ uprime.Add(uprime, r)
+
+ return uprime.Cmp(u) == 0
+}
+
+var quoTests = []struct {
+ x, y string
+ q, r string
+}{
+ {
+ "476217953993950760840509444250624797097991362735329973741718102894495832294430498335824897858659711275234906400899559094370964723884706254265559534144986498357",
+ "9353930466774385905609975137998169297361893554149986716853295022578535724979483772383667534691121982974895531435241089241440253066816724367338287092081996",
+ "50911",
+ "1",
+ },
+ {
+ "11510768301994997771168",
+ "1328165573307167369775",
+ "8",
+ "885443715537658812968",
+ },
+}
+
+func TestQuo(t *testing.T) {
+ if err := quick.Check(checkQuo, nil); err != nil {
+ t.Error(err)
+ }
+
+ for i, test := range quoTests {
+ x, _ := new(Int).SetString(test.x, 10)
+ y, _ := new(Int).SetString(test.y, 10)
+ expectedQ, _ := new(Int).SetString(test.q, 10)
+ expectedR, _ := new(Int).SetString(test.r, 10)
+
+ r := new(Int)
+ q, r := new(Int).QuoRem(x, y, r)
+
+ if q.Cmp(expectedQ) != 0 || r.Cmp(expectedR) != 0 {
+ t.Errorf("#%d got (%s, %s) want (%s, %s)", i, q, r, expectedQ, expectedR)
+ }
+ }
+}
+
+func TestQuoStepD6(t *testing.T) {
+ // See Knuth, Volume 2, section 4.3.1, exercise 21. This code exercises
+ // a code path which only triggers 1 in 10^{-19} cases.
+
+ u := &Int{false, nat{0, 0, 1 + 1<<(_W-1), _M ^ (1 << (_W - 1))}}
+ v := &Int{false, nat{5, 2 + 1<<(_W-1), 1 << (_W - 1)}}
+
+ r := new(Int)
+ q, r := new(Int).QuoRem(u, v, r)
+ const expectedQ64 = "18446744073709551613"
+ const expectedR64 = "3138550867693340382088035895064302439801311770021610913807"
+ const expectedQ32 = "4294967293"
+ const expectedR32 = "39614081266355540837921718287"
+ if q.String() != expectedQ64 && q.String() != expectedQ32 ||
+ r.String() != expectedR64 && r.String() != expectedR32 {
+ t.Errorf("got (%s, %s) want (%s, %s) or (%s, %s)", q, r, expectedQ64, expectedR64, expectedQ32, expectedR32)
+ }
+}
+
+func BenchmarkQuoRem(b *testing.B) {
+ x, _ := new(Int).SetString("153980389784927331788354528594524332344709972855165340650588877572729725338415474372475094155672066328274535240275856844648695200875763869073572078279316458648124537905600131008790701752441155668003033945258023841165089852359980273279085783159654751552359397986180318708491098942831252291841441726305535546071", 0)
+ y, _ := new(Int).SetString("7746362281539803897849273317883545285945243323447099728551653406505888775727297253384154743724750941556720663282745352402758568446486952008757638690735720782793164586481245379056001310087907017524411556680030339452580238411650898523599802732790857831596547515523593979861803187084910989428312522918414417263055355460715745539358014631136245887418412633787074173796862711588221766398229333338511838891484974940633857861775630560092874987828057333663969469797013996401149696897591265769095952887917296740109742927689053276850469671231961384715398038978492733178835452859452433234470997285516534065058887757272972533841547437247509415567206632827453524027585684464869520087576386907357207827931645864812453790560013100879070175244115566800303394525802384116508985235998027327908578315965475155235939798618031870849109894283125229184144172630553554607112725169432413343763989564437170644270643461665184965150423819594083121075825", 0)
+ q := new(Int)
+ r := new(Int)
+
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ q.QuoRem(y, x, r)
+ }
+}
+
+var bitLenTests = []struct {
+ in string
+ out int
+}{
+ {"-1", 1},
+ {"0", 0},
+ {"1", 1},
+ {"2", 2},
+ {"4", 3},
+ {"0xabc", 12},
+ {"0x8000", 16},
+ {"0x80000000", 32},
+ {"0x800000000000", 48},
+ {"0x8000000000000000", 64},
+ {"0x80000000000000000000", 80},
+ {"-0x4000000000000000000000", 87},
+}
+
+func TestBitLen(t *testing.T) {
+ for i, test := range bitLenTests {
+ x, ok := new(Int).SetString(test.in, 0)
+ if !ok {
+ t.Errorf("#%d test input invalid: %s", i, test.in)
+ continue
+ }
+
+ if n := x.BitLen(); n != test.out {
+ t.Errorf("#%d got %d want %d", i, n, test.out)
+ }
+ }
+}
+
+var expTests = []struct {
+ x, y, m string
+ out string
+}{
+ // y <= 0
+ {"0", "0", "", "1"},
+ {"1", "0", "", "1"},
+ {"-10", "0", "", "1"},
+ {"1234", "-1", "", "1"},
+ {"1234", "-1", "0", "1"},
+ {"17", "-100", "1234", "865"},
+ {"2", "-100", "1234", ""},
+
+ // m == 1
+ {"0", "0", "1", "0"},
+ {"1", "0", "1", "0"},
+ {"-10", "0", "1", "0"},
+ {"1234", "-1", "1", "0"},
+
+ // misc
+ {"5", "1", "3", "2"},
+ {"5", "-7", "", "1"},
+ {"-5", "-7", "", "1"},
+ {"5", "0", "", "1"},
+ {"-5", "0", "", "1"},
+ {"5", "1", "", "5"},
+ {"-5", "1", "", "-5"},
+ {"-5", "1", "7", "2"},
+ {"-2", "3", "2", "0"},
+ {"5", "2", "", "25"},
+ {"1", "65537", "2", "1"},
+ {"0x8000000000000000", "2", "", "0x40000000000000000000000000000000"},
+ {"0x8000000000000000", "2", "6719", "4944"},
+ {"0x8000000000000000", "3", "6719", "5447"},
+ {"0x8000000000000000", "1000", "6719", "1603"},
+ {"0x8000000000000000", "1000000", "6719", "3199"},
+ {"0x8000000000000000", "-1000000", "6719", "3663"}, // 3663 = ModInverse(3199, 6719) Issue #25865
+
+ {"0xffffffffffffffffffffffffffffffff", "0x12345678123456781234567812345678123456789", "0x01112222333344445555666677778889", "0x36168FA1DB3AAE6C8CE647E137F97A"},
+
+ {
+ "2938462938472983472983659726349017249287491026512746239764525612965293865296239471239874193284792387498274256129746192347",
+ "298472983472983471903246121093472394872319615612417471234712061",
+ "29834729834729834729347290846729561262544958723956495615629569234729836259263598127342374289365912465901365498236492183464",
+ "23537740700184054162508175125554701713153216681790245129157191391322321508055833908509185839069455749219131480588829346291",
+ },
+ // test case for issue 8822
+ {
+ "11001289118363089646017359372117963499250546375269047542777928006103246876688756735760905680604646624353196869572752623285140408755420374049317646428185270079555372763503115646054602867593662923894140940837479507194934267532831694565516466765025434902348314525627418515646588160955862839022051353653052947073136084780742729727874803457643848197499548297570026926927502505634297079527299004267769780768565695459945235586892627059178884998772989397505061206395455591503771677500931269477503508150175717121828518985901959919560700853226255420793148986854391552859459511723547532575574664944815966793196961286234040892865",
+ "0xB08FFB20760FFED58FADA86DFEF71AD72AA0FA763219618FE022C197E54708BB1191C66470250FCE8879487507CEE41381CA4D932F81C2B3F1AB20B539D50DCD",
+ "0xAC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC3192943DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310DCD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FBD5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF747359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E7303CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB694B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F9E4AFF73",
+ "21484252197776302499639938883777710321993113097987201050501182909581359357618579566746556372589385361683610524730509041328855066514963385522570894839035884713051640171474186548713546686476761306436434146475140156284389181808675016576845833340494848283681088886584219750554408060556769486628029028720727393293111678826356480455433909233520504112074401376133077150471237549474149190242010469539006449596611576612573955754349042329130631128234637924786466585703488460540228477440853493392086251021228087076124706778899179648655221663765993962724699135217212118535057766739392069738618682722216712319320435674779146070442",
+ },
+ {
+ "-0x1BCE04427D8032319A89E5C4136456671AC620883F2C4139E57F91307C485AD2D6204F4F87A58262652DB5DBBAC72B0613E51B835E7153BEC6068F5C8D696B74DBD18FEC316AEF73985CF0475663208EB46B4F17DD9DA55367B03323E5491A70997B90C059FB34809E6EE55BCFBD5F2F52233BFE62E6AA9E4E26A1D4C2439883D14F2633D55D8AA66A1ACD5595E778AC3A280517F1157989E70C1A437B849F1877B779CC3CDDEDE2DAA6594A6C66D181A00A5F777EE60596D8773998F6E988DEAE4CCA60E4DDCF9590543C89F74F603259FCAD71660D30294FBBE6490300F78A9D63FA660DC9417B8B9DDA28BEB3977B621B988E23D4D954F322C3540541BC649ABD504C50FADFD9F0987D58A2BF689313A285E773FF02899A6EF887D1D4A0D2",
+ "0xB08FFB20760FFED58FADA86DFEF71AD72AA0FA763219618FE022C197E54708BB1191C66470250FCE8879487507CEE41381CA4D932F81C2B3F1AB20B539D50DCD",
+ "0xAC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC3192943DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310DCD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FBD5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF747359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E7303CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB694B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F9E4AFF73",
+ "21484252197776302499639938883777710321993113097987201050501182909581359357618579566746556372589385361683610524730509041328855066514963385522570894839035884713051640171474186548713546686476761306436434146475140156284389181808675016576845833340494848283681088886584219750554408060556769486628029028720727393293111678826356480455433909233520504112074401376133077150471237549474149190242010469539006449596611576612573955754349042329130631128234637924786466585703488460540228477440853493392086251021228087076124706778899179648655221663765993962724699135217212118535057766739392069738618682722216712319320435674779146070442",
+ },
+
+ // test cases for issue 13907
+ {"0xffffffff00000001", "0xffffffff00000001", "0xffffffff00000001", "0"},
+ {"0xffffffffffffffff00000001", "0xffffffffffffffff00000001", "0xffffffffffffffff00000001", "0"},
+ {"0xffffffffffffffffffffffff00000001", "0xffffffffffffffffffffffff00000001", "0xffffffffffffffffffffffff00000001", "0"},
+ {"0xffffffffffffffffffffffffffffffff00000001", "0xffffffffffffffffffffffffffffffff00000001", "0xffffffffffffffffffffffffffffffff00000001", "0"},
+
+ {
+ "2",
+ "0xB08FFB20760FFED58FADA86DFEF71AD72AA0FA763219618FE022C197E54708BB1191C66470250FCE8879487507CEE41381CA4D932F81C2B3F1AB20B539D50DCD",
+ "0xAC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC3192943DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310DCD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FBD5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF747359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E7303CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB694B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F9E4AFF73", // odd
+ "0x6AADD3E3E424D5B713FCAA8D8945B1E055166132038C57BBD2D51C833F0C5EA2007A2324CE514F8E8C2F008A2F36F44005A4039CB55830986F734C93DAF0EB4BAB54A6A8C7081864F44346E9BC6F0A3EB9F2C0146A00C6A05187D0C101E1F2D038CDB70CB5E9E05A2D188AB6CBB46286624D4415E7D4DBFAD3BCC6009D915C406EED38F468B940F41E6BEDC0430DD78E6F19A7DA3A27498A4181E24D738B0072D8F6ADB8C9809A5B033A09785814FD9919F6EF9F83EEA519BEC593855C4C10CBEEC582D4AE0792158823B0275E6AEC35242740468FAF3D5C60FD1E376362B6322F78B7ED0CA1C5BBCD2B49734A56C0967A1D01A100932C837B91D592CE08ABFF",
+ },
+ {
+ "2",
+ "0xB08FFB20760FFED58FADA86DFEF71AD72AA0FA763219618FE022C197E54708BB1191C66470250FCE8879487507CEE41381CA4D932F81C2B3F1AB20B539D50DCD",
+ "0xAC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC3192943DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310DCD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FBD5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF747359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E7303CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB694B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F9E4AFF72", // even
+ "0x7858794B5897C29F4ED0B40913416AB6C48588484E6A45F2ED3E26C941D878E923575AAC434EE2750E6439A6976F9BB4D64CEDB2A53CE8D04DD48CADCDF8E46F22747C6B81C6CEA86C0D873FBF7CEF262BAAC43A522BD7F32F3CDAC52B9337C77B3DCFB3DB3EDD80476331E82F4B1DF8EFDC1220C92656DFC9197BDC1877804E28D928A2A284B8DED506CBA304435C9D0133C246C98A7D890D1DE60CBC53A024361DA83A9B8775019083D22AC6820ED7C3C68F8E801DD4EC779EE0A05C6EB682EF9840D285B838369BA7E148FA27691D524FAEAF7C6ECE2A4B99A294B9F2C241857B5B90CC8BFFCFCF18DFA7D676131D5CD3855A5A3E8EBFA0CDFADB4D198B4A",
+ },
+}
+
+func TestExp(t *testing.T) {
+ for i, test := range expTests {
+ x, ok1 := new(Int).SetString(test.x, 0)
+ y, ok2 := new(Int).SetString(test.y, 0)
+
+ var ok3, ok4 bool
+ var out, m *Int
+
+ if len(test.out) == 0 {
+ out, ok3 = nil, true
+ } else {
+ out, ok3 = new(Int).SetString(test.out, 0)
+ }
+
+ if len(test.m) == 0 {
+ m, ok4 = nil, true
+ } else {
+ m, ok4 = new(Int).SetString(test.m, 0)
+ }
+
+ if !ok1 || !ok2 || !ok3 || !ok4 {
+ t.Errorf("#%d: error in input", i)
+ continue
+ }
+
+ z1 := new(Int).Exp(x, y, m)
+ if z1 != nil && !isNormalized(z1) {
+ t.Errorf("#%d: %v is not normalized", i, *z1)
+ }
+ if !(z1 == nil && out == nil || z1.Cmp(out) == 0) {
+ t.Errorf("#%d: got %x want %x", i, z1, out)
+ }
+
+ if m == nil {
+ // The result should be the same as for m == 0;
+ // specifically, there should be no div-zero panic.
+ m = &Int{abs: nat{}} // m != nil && len(m.abs) == 0
+ z2 := new(Int).Exp(x, y, m)
+ if z2.Cmp(z1) != 0 {
+ t.Errorf("#%d: got %x want %x", i, z2, z1)
+ }
+ }
+ }
+}
+
+func BenchmarkExp(b *testing.B) {
+ x, _ := new(Int).SetString("11001289118363089646017359372117963499250546375269047542777928006103246876688756735760905680604646624353196869572752623285140408755420374049317646428185270079555372763503115646054602867593662923894140940837479507194934267532831694565516466765025434902348314525627418515646588160955862839022051353653052947073136084780742729727874803457643848197499548297570026926927502505634297079527299004267769780768565695459945235586892627059178884998772989397505061206395455591503771677500931269477503508150175717121828518985901959919560700853226255420793148986854391552859459511723547532575574664944815966793196961286234040892865", 0)
+ y, _ := new(Int).SetString("0xAC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC3192943DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310DCD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FBD5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF747359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E7303CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB694B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F9E4AFF72", 0)
+ n, _ := new(Int).SetString("0xAC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC3192943DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310DCD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FBD5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF747359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E7303CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB694B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F9E4AFF73", 0)
+ out := new(Int)
+ for i := 0; i < b.N; i++ {
+ out.Exp(x, y, n)
+ }
+}
+
+func BenchmarkExpMont(b *testing.B) {
+ x, _ := new(Int).SetString("297778224889315382157302278696111964193", 0)
+ y, _ := new(Int).SetString("2548977943381019743024248146923164919440527843026415174732254534318292492375775985739511369575861449426580651447974311336267954477239437734832604782764979371984246675241012538135715981292390886872929238062252506842498360562303324154310849745753254532852868768268023732398278338025070694508489163836616810661033068070127919590264734220833816416141878688318329193389865030063416339367925710474801991305827284114894677717927892032165200876093838921477120036402410731159852999623461591709308405270748511350289172153076023215", 0)
+ var mods = []struct {
+ name string
+ val string
+ }{
+ {"Odd", "0x82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281FF"},
+ {"Even1", "0x82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281FE"},
+ {"Even2", "0x82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281FC"},
+ {"Even3", "0x82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281F8"},
+ {"Even4", "0x82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281F0"},
+ {"Even8", "0x82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B21828100"},
+ {"Even32", "0x82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B00000000"},
+ {"Even64", "0x82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281FF82828282828200FF0000000000000000"},
+ {"Even96", "0x82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281FF82828283000000000000000000000000"},
+ {"Even128", "0x82828282828200FFFF28FF2B218281FF82828282828200FFFF28FF2B218281FF00000000000000000000000000000000"},
+ {"Even255", "0x82828282828200FFFF28FF2B218281FF8000000000000000000000000000000000000000000000000000000000000000"},
+ {"SmallEven1", "0x7E"},
+ {"SmallEven2", "0x7C"},
+ {"SmallEven3", "0x78"},
+ {"SmallEven4", "0x70"},
+ }
+ for _, mod := range mods {
+ n, _ := new(Int).SetString(mod.val, 0)
+ out := new(Int)
+ b.Run(mod.name, func(b *testing.B) {
+ b.ReportAllocs()
+ for i := 0; i < b.N; i++ {
+ out.Exp(x, y, n)
+ }
+ })
+ }
+}
+
+func BenchmarkExp2(b *testing.B) {
+ x, _ := new(Int).SetString("2", 0)
+ y, _ := new(Int).SetString("0xAC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC3192943DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310DCD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FBD5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF747359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E7303CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB694B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F9E4AFF72", 0)
+ n, _ := new(Int).SetString("0xAC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC3192943DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310DCD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FBD5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF747359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E7303CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB694B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F9E4AFF73", 0)
+ out := new(Int)
+ for i := 0; i < b.N; i++ {
+ out.Exp(x, y, n)
+ }
+}
+
+func checkGcd(aBytes, bBytes []byte) bool {
+ x := new(Int)
+ y := new(Int)
+ a := new(Int).SetBytes(aBytes)
+ b := new(Int).SetBytes(bBytes)
+
+ d := new(Int).GCD(x, y, a, b)
+ x.Mul(x, a)
+ y.Mul(y, b)
+ x.Add(x, y)
+
+ return x.Cmp(d) == 0
+}
+
+// euclidExtGCD is a reference implementation of Euclid's
+// extended GCD algorithm for testing against optimized algorithms.
+// Requirements: a, b > 0
+func euclidExtGCD(a, b *Int) (g, x, y *Int) {
+ A := new(Int).Set(a)
+ B := new(Int).Set(b)
+
+ // A = Ua*a + Va*b
+ // B = Ub*a + Vb*b
+ Ua := new(Int).SetInt64(1)
+ Va := new(Int)
+
+ Ub := new(Int)
+ Vb := new(Int).SetInt64(1)
+
+ q := new(Int)
+ temp := new(Int)
+
+ r := new(Int)
+ for len(B.abs) > 0 {
+ q, r = q.QuoRem(A, B, r)
+
+ A, B, r = B, r, A
+
+ // Ua, Ub = Ub, Ua-q*Ub
+ temp.Set(Ub)
+ Ub.Mul(Ub, q)
+ Ub.Sub(Ua, Ub)
+ Ua.Set(temp)
+
+ // Va, Vb = Vb, Va-q*Vb
+ temp.Set(Vb)
+ Vb.Mul(Vb, q)
+ Vb.Sub(Va, Vb)
+ Va.Set(temp)
+ }
+ return A, Ua, Va
+}
+
+func checkLehmerGcd(aBytes, bBytes []byte) bool {
+ a := new(Int).SetBytes(aBytes)
+ b := new(Int).SetBytes(bBytes)
+
+ if a.Sign() <= 0 || b.Sign() <= 0 {
+ return true // can only test positive arguments
+ }
+
+ d := new(Int).lehmerGCD(nil, nil, a, b)
+ d0, _, _ := euclidExtGCD(a, b)
+
+ return d.Cmp(d0) == 0
+}
+
+func checkLehmerExtGcd(aBytes, bBytes []byte) bool {
+ a := new(Int).SetBytes(aBytes)
+ b := new(Int).SetBytes(bBytes)
+ x := new(Int)
+ y := new(Int)
+
+ if a.Sign() <= 0 || b.Sign() <= 0 {
+ return true // can only test positive arguments
+ }
+
+ d := new(Int).lehmerGCD(x, y, a, b)
+ d0, x0, y0 := euclidExtGCD(a, b)
+
+ return d.Cmp(d0) == 0 && x.Cmp(x0) == 0 && y.Cmp(y0) == 0
+}
+
+var gcdTests = []struct {
+ d, x, y, a, b string
+}{
+ // a <= 0 || b <= 0
+ {"0", "0", "0", "0", "0"},
+ {"7", "0", "1", "0", "7"},
+ {"7", "0", "-1", "0", "-7"},
+ {"11", "1", "0", "11", "0"},
+ {"7", "-1", "-2", "-77", "35"},
+ {"935", "-3", "8", "64515", "24310"},
+ {"935", "-3", "-8", "64515", "-24310"},
+ {"935", "3", "-8", "-64515", "-24310"},
+
+ {"1", "-9", "47", "120", "23"},
+ {"7", "1", "-2", "77", "35"},
+ {"935", "-3", "8", "64515", "24310"},
+ {"935000000000000000", "-3", "8", "64515000000000000000", "24310000000000000000"},
+ {"1", "-221", "22059940471369027483332068679400581064239780177629666810348940098015901108344", "98920366548084643601728869055592650835572950932266967461790948584315647051443", "991"},
+}
+
+func testGcd(t *testing.T, d, x, y, a, b *Int) {
+ var X *Int
+ if x != nil {
+ X = new(Int)
+ }
+ var Y *Int
+ if y != nil {
+ Y = new(Int)
+ }
+
+ D := new(Int).GCD(X, Y, a, b)
+ if D.Cmp(d) != 0 {
+ t.Errorf("GCD(%s, %s, %s, %s): got d = %s, want %s", x, y, a, b, D, d)
+ }
+ if x != nil && X.Cmp(x) != 0 {
+ t.Errorf("GCD(%s, %s, %s, %s): got x = %s, want %s", x, y, a, b, X, x)
+ }
+ if y != nil && Y.Cmp(y) != 0 {
+ t.Errorf("GCD(%s, %s, %s, %s): got y = %s, want %s", x, y, a, b, Y, y)
+ }
+
+ // check results in presence of aliasing (issue #11284)
+ a2 := new(Int).Set(a)
+ b2 := new(Int).Set(b)
+ a2.GCD(X, Y, a2, b2) // result is same as 1st argument
+ if a2.Cmp(d) != 0 {
+ t.Errorf("aliased z = a GCD(%s, %s, %s, %s): got d = %s, want %s", x, y, a, b, a2, d)
+ }
+ if x != nil && X.Cmp(x) != 0 {
+ t.Errorf("aliased z = a GCD(%s, %s, %s, %s): got x = %s, want %s", x, y, a, b, X, x)
+ }
+ if y != nil && Y.Cmp(y) != 0 {
+ t.Errorf("aliased z = a GCD(%s, %s, %s, %s): got y = %s, want %s", x, y, a, b, Y, y)
+ }
+
+ a2 = new(Int).Set(a)
+ b2 = new(Int).Set(b)
+ b2.GCD(X, Y, a2, b2) // result is same as 2nd argument
+ if b2.Cmp(d) != 0 {
+ t.Errorf("aliased z = b GCD(%s, %s, %s, %s): got d = %s, want %s", x, y, a, b, b2, d)
+ }
+ if x != nil && X.Cmp(x) != 0 {
+ t.Errorf("aliased z = b GCD(%s, %s, %s, %s): got x = %s, want %s", x, y, a, b, X, x)
+ }
+ if y != nil && Y.Cmp(y) != 0 {
+ t.Errorf("aliased z = b GCD(%s, %s, %s, %s): got y = %s, want %s", x, y, a, b, Y, y)
+ }
+
+ a2 = new(Int).Set(a)
+ b2 = new(Int).Set(b)
+ D = new(Int).GCD(a2, b2, a2, b2) // x = a, y = b
+ if D.Cmp(d) != 0 {
+ t.Errorf("aliased x = a, y = b GCD(%s, %s, %s, %s): got d = %s, want %s", x, y, a, b, D, d)
+ }
+ if x != nil && a2.Cmp(x) != 0 {
+ t.Errorf("aliased x = a, y = b GCD(%s, %s, %s, %s): got x = %s, want %s", x, y, a, b, a2, x)
+ }
+ if y != nil && b2.Cmp(y) != 0 {
+ t.Errorf("aliased x = a, y = b GCD(%s, %s, %s, %s): got y = %s, want %s", x, y, a, b, b2, y)
+ }
+
+ a2 = new(Int).Set(a)
+ b2 = new(Int).Set(b)
+ D = new(Int).GCD(b2, a2, a2, b2) // x = b, y = a
+ if D.Cmp(d) != 0 {
+ t.Errorf("aliased x = b, y = a GCD(%s, %s, %s, %s): got d = %s, want %s", x, y, a, b, D, d)
+ }
+ if x != nil && b2.Cmp(x) != 0 {
+ t.Errorf("aliased x = b, y = a GCD(%s, %s, %s, %s): got x = %s, want %s", x, y, a, b, b2, x)
+ }
+ if y != nil && a2.Cmp(y) != 0 {
+ t.Errorf("aliased x = b, y = a GCD(%s, %s, %s, %s): got y = %s, want %s", x, y, a, b, a2, y)
+ }
+}
+
+func TestGcd(t *testing.T) {
+ for _, test := range gcdTests {
+ d, _ := new(Int).SetString(test.d, 0)
+ x, _ := new(Int).SetString(test.x, 0)
+ y, _ := new(Int).SetString(test.y, 0)
+ a, _ := new(Int).SetString(test.a, 0)
+ b, _ := new(Int).SetString(test.b, 0)
+
+ testGcd(t, d, nil, nil, a, b)
+ testGcd(t, d, x, nil, a, b)
+ testGcd(t, d, nil, y, a, b)
+ testGcd(t, d, x, y, a, b)
+ }
+
+ if err := quick.Check(checkGcd, nil); err != nil {
+ t.Error(err)
+ }
+
+ if err := quick.Check(checkLehmerGcd, nil); err != nil {
+ t.Error(err)
+ }
+
+ if err := quick.Check(checkLehmerExtGcd, nil); err != nil {
+ t.Error(err)
+ }
+}
+
+type intShiftTest struct {
+ in string
+ shift uint
+ out string
+}
+
+var rshTests = []intShiftTest{
+ {"0", 0, "0"},
+ {"-0", 0, "0"},
+ {"0", 1, "0"},
+ {"0", 2, "0"},
+ {"1", 0, "1"},
+ {"1", 1, "0"},
+ {"1", 2, "0"},
+ {"2", 0, "2"},
+ {"2", 1, "1"},
+ {"-1", 0, "-1"},
+ {"-1", 1, "-1"},
+ {"-1", 10, "-1"},
+ {"-100", 2, "-25"},
+ {"-100", 3, "-13"},
+ {"-100", 100, "-1"},
+ {"4294967296", 0, "4294967296"},
+ {"4294967296", 1, "2147483648"},
+ {"4294967296", 2, "1073741824"},
+ {"18446744073709551616", 0, "18446744073709551616"},
+ {"18446744073709551616", 1, "9223372036854775808"},
+ {"18446744073709551616", 2, "4611686018427387904"},
+ {"18446744073709551616", 64, "1"},
+ {"340282366920938463463374607431768211456", 64, "18446744073709551616"},
+ {"340282366920938463463374607431768211456", 128, "1"},
+}
+
+func TestRsh(t *testing.T) {
+ for i, test := range rshTests {
+ in, _ := new(Int).SetString(test.in, 10)
+ expected, _ := new(Int).SetString(test.out, 10)
+ out := new(Int).Rsh(in, test.shift)
+
+ if !isNormalized(out) {
+ t.Errorf("#%d: %v is not normalized", i, *out)
+ }
+ if out.Cmp(expected) != 0 {
+ t.Errorf("#%d: got %s want %s", i, out, expected)
+ }
+ }
+}
+
+func TestRshSelf(t *testing.T) {
+ for i, test := range rshTests {
+ z, _ := new(Int).SetString(test.in, 10)
+ expected, _ := new(Int).SetString(test.out, 10)
+ z.Rsh(z, test.shift)
+
+ if !isNormalized(z) {
+ t.Errorf("#%d: %v is not normalized", i, *z)
+ }
+ if z.Cmp(expected) != 0 {
+ t.Errorf("#%d: got %s want %s", i, z, expected)
+ }
+ }
+}
+
+var lshTests = []intShiftTest{
+ {"0", 0, "0"},
+ {"0", 1, "0"},
+ {"0", 2, "0"},
+ {"1", 0, "1"},
+ {"1", 1, "2"},
+ {"1", 2, "4"},
+ {"2", 0, "2"},
+ {"2", 1, "4"},
+ {"2", 2, "8"},
+ {"-87", 1, "-174"},
+ {"4294967296", 0, "4294967296"},
+ {"4294967296", 1, "8589934592"},
+ {"4294967296", 2, "17179869184"},
+ {"18446744073709551616", 0, "18446744073709551616"},
+ {"9223372036854775808", 1, "18446744073709551616"},
+ {"4611686018427387904", 2, "18446744073709551616"},
+ {"1", 64, "18446744073709551616"},
+ {"18446744073709551616", 64, "340282366920938463463374607431768211456"},
+ {"1", 128, "340282366920938463463374607431768211456"},
+}
+
+func TestLsh(t *testing.T) {
+ for i, test := range lshTests {
+ in, _ := new(Int).SetString(test.in, 10)
+ expected, _ := new(Int).SetString(test.out, 10)
+ out := new(Int).Lsh(in, test.shift)
+
+ if !isNormalized(out) {
+ t.Errorf("#%d: %v is not normalized", i, *out)
+ }
+ if out.Cmp(expected) != 0 {
+ t.Errorf("#%d: got %s want %s", i, out, expected)
+ }
+ }
+}
+
+func TestLshSelf(t *testing.T) {
+ for i, test := range lshTests {
+ z, _ := new(Int).SetString(test.in, 10)
+ expected, _ := new(Int).SetString(test.out, 10)
+ z.Lsh(z, test.shift)
+
+ if !isNormalized(z) {
+ t.Errorf("#%d: %v is not normalized", i, *z)
+ }
+ if z.Cmp(expected) != 0 {
+ t.Errorf("#%d: got %s want %s", i, z, expected)
+ }
+ }
+}
+
+func TestLshRsh(t *testing.T) {
+ for i, test := range rshTests {
+ in, _ := new(Int).SetString(test.in, 10)
+ out := new(Int).Lsh(in, test.shift)
+ out = out.Rsh(out, test.shift)
+
+ if !isNormalized(out) {
+ t.Errorf("#%d: %v is not normalized", i, *out)
+ }
+ if in.Cmp(out) != 0 {
+ t.Errorf("#%d: got %s want %s", i, out, in)
+ }
+ }
+ for i, test := range lshTests {
+ in, _ := new(Int).SetString(test.in, 10)
+ out := new(Int).Lsh(in, test.shift)
+ out.Rsh(out, test.shift)
+
+ if !isNormalized(out) {
+ t.Errorf("#%d: %v is not normalized", i, *out)
+ }
+ if in.Cmp(out) != 0 {
+ t.Errorf("#%d: got %s want %s", i, out, in)
+ }
+ }
+}
+
+// Entries must be sorted by value in ascending order.
+var cmpAbsTests = []string{
+ "0",
+ "1",
+ "2",
+ "10",
+ "10000000",
+ "2783678367462374683678456387645876387564783686583485",
+ "2783678367462374683678456387645876387564783686583486",
+ "32957394867987420967976567076075976570670947609750670956097509670576075067076027578341538",
+}
+
+func TestCmpAbs(t *testing.T) {
+ values := make([]*Int, len(cmpAbsTests))
+ var prev *Int
+ for i, s := range cmpAbsTests {
+ x, ok := new(Int).SetString(s, 0)
+ if !ok {
+ t.Fatalf("SetString(%s, 0) failed", s)
+ }
+ if prev != nil && prev.Cmp(x) >= 0 {
+ t.Fatal("cmpAbsTests entries not sorted in ascending order")
+ }
+ values[i] = x
+ prev = x
+ }
+
+ for i, x := range values {
+ for j, y := range values {
+ // try all combinations of signs for x, y
+ for k := 0; k < 4; k++ {
+ var a, b Int
+ a.Set(x)
+ b.Set(y)
+ if k&1 != 0 {
+ a.Neg(&a)
+ }
+ if k&2 != 0 {
+ b.Neg(&b)
+ }
+
+ got := a.CmpAbs(&b)
+ want := 0
+ switch {
+ case i > j:
+ want = 1
+ case i < j:
+ want = -1
+ }
+ if got != want {
+ t.Errorf("absCmp |%s|, |%s|: got %d; want %d", &a, &b, got, want)
+ }
+ }
+ }
+ }
+}
+
+func TestIntCmpSelf(t *testing.T) {
+ for _, s := range cmpAbsTests {
+ x, ok := new(Int).SetString(s, 0)
+ if !ok {
+ t.Fatalf("SetString(%s, 0) failed", s)
+ }
+ got := x.Cmp(x)
+ want := 0
+ if got != want {
+ t.Errorf("x = %s: x.Cmp(x): got %d; want %d", x, got, want)
+ }
+ }
+}
+
+var int64Tests = []string{
+ // int64
+ "0",
+ "1",
+ "-1",
+ "4294967295",
+ "-4294967295",
+ "4294967296",
+ "-4294967296",
+ "9223372036854775807",
+ "-9223372036854775807",
+ "-9223372036854775808",
+
+ // not int64
+ "0x8000000000000000",
+ "-0x8000000000000001",
+ "38579843757496759476987459679745",
+ "-38579843757496759476987459679745",
+}
+
+func TestInt64(t *testing.T) {
+ for _, s := range int64Tests {
+ var x Int
+ _, ok := x.SetString(s, 0)
+ if !ok {
+ t.Errorf("SetString(%s, 0) failed", s)
+ continue
+ }
+
+ want, err := strconv.ParseInt(s, 0, 64)
+ if err != nil {
+ if err.(*strconv.NumError).Err == strconv.ErrRange {
+ if x.IsInt64() {
+ t.Errorf("IsInt64(%s) succeeded unexpectedly", s)
+ }
+ } else {
+ t.Errorf("ParseInt(%s) failed", s)
+ }
+ continue
+ }
+
+ if !x.IsInt64() {
+ t.Errorf("IsInt64(%s) failed unexpectedly", s)
+ }
+
+ got := x.Int64()
+ if got != want {
+ t.Errorf("Int64(%s) = %d; want %d", s, got, want)
+ }
+ }
+}
+
+var uint64Tests = []string{
+ // uint64
+ "0",
+ "1",
+ "4294967295",
+ "4294967296",
+ "8589934591",
+ "8589934592",
+ "9223372036854775807",
+ "9223372036854775808",
+ "0x08000000000000000",
+
+ // not uint64
+ "0x10000000000000000",
+ "-0x08000000000000000",
+ "-1",
+}
+
+func TestUint64(t *testing.T) {
+ for _, s := range uint64Tests {
+ var x Int
+ _, ok := x.SetString(s, 0)
+ if !ok {
+ t.Errorf("SetString(%s, 0) failed", s)
+ continue
+ }
+
+ want, err := strconv.ParseUint(s, 0, 64)
+ if err != nil {
+ // check for sign explicitly (ErrRange doesn't cover signed input)
+ if s[0] == '-' || err.(*strconv.NumError).Err == strconv.ErrRange {
+ if x.IsUint64() {
+ t.Errorf("IsUint64(%s) succeeded unexpectedly", s)
+ }
+ } else {
+ t.Errorf("ParseUint(%s) failed", s)
+ }
+ continue
+ }
+
+ if !x.IsUint64() {
+ t.Errorf("IsUint64(%s) failed unexpectedly", s)
+ }
+
+ got := x.Uint64()
+ if got != want {
+ t.Errorf("Uint64(%s) = %d; want %d", s, got, want)
+ }
+ }
+}
+
+var bitwiseTests = []struct {
+ x, y string
+ and, or, xor, andNot string
+}{
+ {"0x00", "0x00", "0x00", "0x00", "0x00", "0x00"},
+ {"0x00", "0x01", "0x00", "0x01", "0x01", "0x00"},
+ {"0x01", "0x00", "0x00", "0x01", "0x01", "0x01"},
+ {"-0x01", "0x00", "0x00", "-0x01", "-0x01", "-0x01"},
+ {"-0xaf", "-0x50", "-0xf0", "-0x0f", "0xe1", "0x41"},
+ {"0x00", "-0x01", "0x00", "-0x01", "-0x01", "0x00"},
+ {"0x01", "0x01", "0x01", "0x01", "0x00", "0x00"},
+ {"-0x01", "-0x01", "-0x01", "-0x01", "0x00", "0x00"},
+ {"0x07", "0x08", "0x00", "0x0f", "0x0f", "0x07"},
+ {"0x05", "0x0f", "0x05", "0x0f", "0x0a", "0x00"},
+ {"0xff", "-0x0a", "0xf6", "-0x01", "-0xf7", "0x09"},
+ {"0x013ff6", "0x9a4e", "0x1a46", "0x01bffe", "0x01a5b8", "0x0125b0"},
+ {"-0x013ff6", "0x9a4e", "0x800a", "-0x0125b2", "-0x01a5bc", "-0x01c000"},
+ {"-0x013ff6", "-0x9a4e", "-0x01bffe", "-0x1a46", "0x01a5b8", "0x8008"},
+ {
+ "0x1000009dc6e3d9822cba04129bcbe3401",
+ "0xb9bd7d543685789d57cb918e833af352559021483cdb05cc21fd",
+ "0x1000001186210100001000009048c2001",
+ "0xb9bd7d543685789d57cb918e8bfeff7fddb2ebe87dfbbdfe35fd",
+ "0xb9bd7d543685789d57ca918e8ae69d6fcdb2eae87df2b97215fc",
+ "0x8c40c2d8822caa04120b8321400",
+ },
+ {
+ "0x1000009dc6e3d9822cba04129bcbe3401",
+ "-0xb9bd7d543685789d57cb918e833af352559021483cdb05cc21fd",
+ "0x8c40c2d8822caa04120b8321401",
+ "-0xb9bd7d543685789d57ca918e82229142459020483cd2014001fd",
+ "-0xb9bd7d543685789d57ca918e8ae69d6fcdb2eae87df2b97215fe",
+ "0x1000001186210100001000009048c2000",
+ },
+ {
+ "-0x1000009dc6e3d9822cba04129bcbe3401",
+ "-0xb9bd7d543685789d57cb918e833af352559021483cdb05cc21fd",
+ "-0xb9bd7d543685789d57cb918e8bfeff7fddb2ebe87dfbbdfe35fd",
+ "-0x1000001186210100001000009048c2001",
+ "0xb9bd7d543685789d57ca918e8ae69d6fcdb2eae87df2b97215fc",
+ "0xb9bd7d543685789d57ca918e82229142459020483cd2014001fc",
+ },
+}
+
+type bitFun func(z, x, y *Int) *Int
+
+func testBitFun(t *testing.T, msg string, f bitFun, x, y *Int, exp string) {
+ expected := new(Int)
+ expected.SetString(exp, 0)
+
+ out := f(new(Int), x, y)
+ if out.Cmp(expected) != 0 {
+ t.Errorf("%s: got %s want %s", msg, out, expected)
+ }
+}
+
+func testBitFunSelf(t *testing.T, msg string, f bitFun, x, y *Int, exp string) {
+ self := new(Int)
+ self.Set(x)
+ expected := new(Int)
+ expected.SetString(exp, 0)
+
+ self = f(self, self, y)
+ if self.Cmp(expected) != 0 {
+ t.Errorf("%s: got %s want %s", msg, self, expected)
+ }
+}
+
+func altBit(x *Int, i int) uint {
+ z := new(Int).Rsh(x, uint(i))
+ z = z.And(z, NewInt(1))
+ if z.Cmp(new(Int)) != 0 {
+ return 1
+ }
+ return 0
+}
+
+func altSetBit(z *Int, x *Int, i int, b uint) *Int {
+ one := NewInt(1)
+ m := one.Lsh(one, uint(i))
+ switch b {
+ case 1:
+ return z.Or(x, m)
+ case 0:
+ return z.AndNot(x, m)
+ }
+ panic("set bit is not 0 or 1")
+}
+
+func testBitset(t *testing.T, x *Int) {
+ n := x.BitLen()
+ z := new(Int).Set(x)
+ z1 := new(Int).Set(x)
+ for i := 0; i < n+10; i++ {
+ old := z.Bit(i)
+ old1 := altBit(z1, i)
+ if old != old1 {
+ t.Errorf("bitset: inconsistent value for Bit(%s, %d), got %v want %v", z1, i, old, old1)
+ }
+ z := new(Int).SetBit(z, i, 1)
+ z1 := altSetBit(new(Int), z1, i, 1)
+ if z.Bit(i) == 0 {
+ t.Errorf("bitset: bit %d of %s got 0 want 1", i, x)
+ }
+ if z.Cmp(z1) != 0 {
+ t.Errorf("bitset: inconsistent value after SetBit 1, got %s want %s", z, z1)
+ }
+ z.SetBit(z, i, 0)
+ altSetBit(z1, z1, i, 0)
+ if z.Bit(i) != 0 {
+ t.Errorf("bitset: bit %d of %s got 1 want 0", i, x)
+ }
+ if z.Cmp(z1) != 0 {
+ t.Errorf("bitset: inconsistent value after SetBit 0, got %s want %s", z, z1)
+ }
+ altSetBit(z1, z1, i, old)
+ z.SetBit(z, i, old)
+ if z.Cmp(z1) != 0 {
+ t.Errorf("bitset: inconsistent value after SetBit old, got %s want %s", z, z1)
+ }
+ }
+ if z.Cmp(x) != 0 {
+ t.Errorf("bitset: got %s want %s", z, x)
+ }
+}
+
+var bitsetTests = []struct {
+ x string
+ i int
+ b uint
+}{
+ {"0", 0, 0},
+ {"0", 200, 0},
+ {"1", 0, 1},
+ {"1", 1, 0},
+ {"-1", 0, 1},
+ {"-1", 200, 1},
+ {"0x2000000000000000000000000000", 108, 0},
+ {"0x2000000000000000000000000000", 109, 1},
+ {"0x2000000000000000000000000000", 110, 0},
+ {"-0x2000000000000000000000000001", 108, 1},
+ {"-0x2000000000000000000000000001", 109, 0},
+ {"-0x2000000000000000000000000001", 110, 1},
+}
+
+func TestBitSet(t *testing.T) {
+ for _, test := range bitwiseTests {
+ x := new(Int)
+ x.SetString(test.x, 0)
+ testBitset(t, x)
+ x = new(Int)
+ x.SetString(test.y, 0)
+ testBitset(t, x)
+ }
+ for i, test := range bitsetTests {
+ x := new(Int)
+ x.SetString(test.x, 0)
+ b := x.Bit(test.i)
+ if b != test.b {
+ t.Errorf("#%d got %v want %v", i, b, test.b)
+ }
+ }
+ z := NewInt(1)
+ z.SetBit(NewInt(0), 2, 1)
+ if z.Cmp(NewInt(4)) != 0 {
+ t.Errorf("destination leaked into result; got %s want 4", z)
+ }
+}
+
+var tzbTests = []struct {
+ in string
+ out uint
+}{
+ {"0", 0},
+ {"1", 0},
+ {"-1", 0},
+ {"4", 2},
+ {"-8", 3},
+ {"0x4000000000000000000", 74},
+ {"-0x8000000000000000000", 75},
+}
+
+func TestTrailingZeroBits(t *testing.T) {
+ for i, test := range tzbTests {
+ in, _ := new(Int).SetString(test.in, 0)
+ want := test.out
+ got := in.TrailingZeroBits()
+
+ if got != want {
+ t.Errorf("#%d: got %v want %v", i, got, want)
+ }
+ }
+}
+
+func BenchmarkBitset(b *testing.B) {
+ z := new(Int)
+ z.SetBit(z, 512, 1)
+ b.ResetTimer()
+ for i := b.N - 1; i >= 0; i-- {
+ z.SetBit(z, i&512, 1)
+ }
+}
+
+func BenchmarkBitsetNeg(b *testing.B) {
+ z := NewInt(-1)
+ z.SetBit(z, 512, 0)
+ b.ResetTimer()
+ for i := b.N - 1; i >= 0; i-- {
+ z.SetBit(z, i&512, 0)
+ }
+}
+
+func BenchmarkBitsetOrig(b *testing.B) {
+ z := new(Int)
+ altSetBit(z, z, 512, 1)
+ b.ResetTimer()
+ for i := b.N - 1; i >= 0; i-- {
+ altSetBit(z, z, i&512, 1)
+ }
+}
+
+func BenchmarkBitsetNegOrig(b *testing.B) {
+ z := NewInt(-1)
+ altSetBit(z, z, 512, 0)
+ b.ResetTimer()
+ for i := b.N - 1; i >= 0; i-- {
+ altSetBit(z, z, i&512, 0)
+ }
+}
+
+// tri generates the trinomial 2**(n*2) - 2**n - 1, which is always 3 mod 4 and
+// 7 mod 8, so that 2 is always a quadratic residue.
+func tri(n uint) *Int {
+ x := NewInt(1)
+ x.Lsh(x, n)
+ x2 := new(Int).Lsh(x, n)
+ x2.Sub(x2, x)
+ x2.Sub(x2, intOne)
+ return x2
+}
+
+func BenchmarkModSqrt225_Tonelli(b *testing.B) {
+ p := tri(225)
+ x := NewInt(2)
+ for i := 0; i < b.N; i++ {
+ x.SetUint64(2)
+ x.modSqrtTonelliShanks(x, p)
+ }
+}
+
+func BenchmarkModSqrt225_3Mod4(b *testing.B) {
+ p := tri(225)
+ x := new(Int).SetUint64(2)
+ for i := 0; i < b.N; i++ {
+ x.SetUint64(2)
+ x.modSqrt3Mod4Prime(x, p)
+ }
+}
+
+func BenchmarkModSqrt231_Tonelli(b *testing.B) {
+ p := tri(231)
+ p.Sub(p, intOne)
+ p.Sub(p, intOne) // tri(231) - 2 is a prime == 5 mod 8
+ x := new(Int).SetUint64(7)
+ for i := 0; i < b.N; i++ {
+ x.SetUint64(7)
+ x.modSqrtTonelliShanks(x, p)
+ }
+}
+
+func BenchmarkModSqrt231_5Mod8(b *testing.B) {
+ p := tri(231)
+ p.Sub(p, intOne)
+ p.Sub(p, intOne) // tri(231) - 2 is a prime == 5 mod 8
+ x := new(Int).SetUint64(7)
+ for i := 0; i < b.N; i++ {
+ x.SetUint64(7)
+ x.modSqrt5Mod8Prime(x, p)
+ }
+}
+
+func TestBitwise(t *testing.T) {
+ x := new(Int)
+ y := new(Int)
+ for _, test := range bitwiseTests {
+ x.SetString(test.x, 0)
+ y.SetString(test.y, 0)
+
+ testBitFun(t, "and", (*Int).And, x, y, test.and)
+ testBitFunSelf(t, "and", (*Int).And, x, y, test.and)
+ testBitFun(t, "andNot", (*Int).AndNot, x, y, test.andNot)
+ testBitFunSelf(t, "andNot", (*Int).AndNot, x, y, test.andNot)
+ testBitFun(t, "or", (*Int).Or, x, y, test.or)
+ testBitFunSelf(t, "or", (*Int).Or, x, y, test.or)
+ testBitFun(t, "xor", (*Int).Xor, x, y, test.xor)
+ testBitFunSelf(t, "xor", (*Int).Xor, x, y, test.xor)
+ }
+}
+
+var notTests = []struct {
+ in string
+ out string
+}{
+ {"0", "-1"},
+ {"1", "-2"},
+ {"7", "-8"},
+ {"0", "-1"},
+ {"-81910", "81909"},
+ {
+ "298472983472983471903246121093472394872319615612417471234712061",
+ "-298472983472983471903246121093472394872319615612417471234712062",
+ },
+}
+
+func TestNot(t *testing.T) {
+ in := new(Int)
+ out := new(Int)
+ expected := new(Int)
+ for i, test := range notTests {
+ in.SetString(test.in, 10)
+ expected.SetString(test.out, 10)
+ out = out.Not(in)
+ if out.Cmp(expected) != 0 {
+ t.Errorf("#%d: got %s want %s", i, out, expected)
+ }
+ out = out.Not(out)
+ if out.Cmp(in) != 0 {
+ t.Errorf("#%d: got %s want %s", i, out, in)
+ }
+ }
+}
+
+var modInverseTests = []struct {
+ element string
+ modulus string
+}{
+ {"1234567", "458948883992"},
+ {"239487239847", "2410312426921032588552076022197566074856950548502459942654116941958108831682612228890093858261341614673227141477904012196503648957050582631942730706805009223062734745341073406696246014589361659774041027169249453200378729434170325843778659198143763193776859869524088940195577346119843545301547043747207749969763750084308926339295559968882457872412993810129130294592999947926365264059284647209730384947211681434464714438488520940127459844288859336526896320919633919"},
+ {"-10", "13"}, // issue #16984
+ {"10", "-13"},
+ {"-17", "-13"},
+}
+
+func TestModInverse(t *testing.T) {
+ var element, modulus, gcd, inverse Int
+ one := NewInt(1)
+ for _, test := range modInverseTests {
+ (&element).SetString(test.element, 10)
+ (&modulus).SetString(test.modulus, 10)
+ (&inverse).ModInverse(&element, &modulus)
+ (&inverse).Mul(&inverse, &element)
+ (&inverse).Mod(&inverse, &modulus)
+ if (&inverse).Cmp(one) != 0 {
+ t.Errorf("ModInverse(%d,%d)*%d%%%d=%d, not 1", &element, &modulus, &element, &modulus, &inverse)
+ }
+ }
+ // exhaustive test for small values
+ for n := 2; n < 100; n++ {
+ (&modulus).SetInt64(int64(n))
+ for x := 1; x < n; x++ {
+ (&element).SetInt64(int64(x))
+ (&gcd).GCD(nil, nil, &element, &modulus)
+ if (&gcd).Cmp(one) != 0 {
+ continue
+ }
+ (&inverse).ModInverse(&element, &modulus)
+ (&inverse).Mul(&inverse, &element)
+ (&inverse).Mod(&inverse, &modulus)
+ if (&inverse).Cmp(one) != 0 {
+ t.Errorf("ModInverse(%d,%d)*%d%%%d=%d, not 1", &element, &modulus, &element, &modulus, &inverse)
+ }
+ }
+ }
+}
+
+func BenchmarkModInverse(b *testing.B) {
+ p := new(Int).SetInt64(1) // Mersenne prime 2**1279 -1
+ p.abs = p.abs.shl(p.abs, 1279)
+ p.Sub(p, intOne)
+ x := new(Int).Sub(p, intOne)
+ z := new(Int)
+ for i := 0; i < b.N; i++ {
+ z.ModInverse(x, p)
+ }
+}
+
+// testModSqrt is a helper for TestModSqrt,
+// which checks that ModSqrt can compute a square-root of elt^2.
+func testModSqrt(t *testing.T, elt, mod, sq, sqrt *Int) bool {
+ var sqChk, sqrtChk, sqrtsq Int
+ sq.Mul(elt, elt)
+ sq.Mod(sq, mod)
+ z := sqrt.ModSqrt(sq, mod)
+ if z != sqrt {
+ t.Errorf("ModSqrt returned wrong value %s", z)
+ }
+
+ // test ModSqrt arguments outside the range [0,mod)
+ sqChk.Add(sq, mod)
+ z = sqrtChk.ModSqrt(&sqChk, mod)
+ if z != &sqrtChk || z.Cmp(sqrt) != 0 {
+ t.Errorf("ModSqrt returned inconsistent value %s", z)
+ }
+ sqChk.Sub(sq, mod)
+ z = sqrtChk.ModSqrt(&sqChk, mod)
+ if z != &sqrtChk || z.Cmp(sqrt) != 0 {
+ t.Errorf("ModSqrt returned inconsistent value %s", z)
+ }
+
+ // test x aliasing z
+ z = sqrtChk.ModSqrt(sqrtChk.Set(sq), mod)
+ if z != &sqrtChk || z.Cmp(sqrt) != 0 {
+ t.Errorf("ModSqrt returned inconsistent value %s", z)
+ }
+
+ // make sure we actually got a square root
+ if sqrt.Cmp(elt) == 0 {
+ return true // we found the "desired" square root
+ }
+ sqrtsq.Mul(sqrt, sqrt) // make sure we found the "other" one
+ sqrtsq.Mod(&sqrtsq, mod)
+ return sq.Cmp(&sqrtsq) == 0
+}
+
+func TestModSqrt(t *testing.T) {
+ var elt, mod, modx4, sq, sqrt Int
+ r := rand.New(rand.NewSource(9))
+ for i, s := range primes[1:] { // skip 2, use only odd primes
+ mod.SetString(s, 10)
+ modx4.Lsh(&mod, 2)
+
+ // test a few random elements per prime
+ for x := 1; x < 5; x++ {
+ elt.Rand(r, &modx4)
+ elt.Sub(&elt, &mod) // test range [-mod, 3*mod)
+ if !testModSqrt(t, &elt, &mod, &sq, &sqrt) {
+ t.Errorf("#%d: failed (sqrt(e) = %s)", i, &sqrt)
+ }
+ }
+
+ if testing.Short() && i > 2 {
+ break
+ }
+ }
+
+ if testing.Short() {
+ return
+ }
+
+ // exhaustive test for small values
+ for n := 3; n < 100; n++ {
+ mod.SetInt64(int64(n))
+ if !mod.ProbablyPrime(10) {
+ continue
+ }
+ isSquare := make([]bool, n)
+
+ // test all the squares
+ for x := 1; x < n; x++ {
+ elt.SetInt64(int64(x))
+ if !testModSqrt(t, &elt, &mod, &sq, &sqrt) {
+ t.Errorf("#%d: failed (sqrt(%d,%d) = %s)", x, &elt, &mod, &sqrt)
+ }
+ isSquare[sq.Uint64()] = true
+ }
+
+ // test all non-squares
+ for x := 1; x < n; x++ {
+ sq.SetInt64(int64(x))
+ z := sqrt.ModSqrt(&sq, &mod)
+ if !isSquare[x] && z != nil {
+ t.Errorf("#%d: failed (sqrt(%d,%d) = nil)", x, &sqrt, &mod)
+ }
+ }
+ }
+}
+
+func TestJacobi(t *testing.T) {
+ testCases := []struct {
+ x, y int64
+ result int
+ }{
+ {0, 1, 1},
+ {0, -1, 1},
+ {1, 1, 1},
+ {1, -1, 1},
+ {0, 5, 0},
+ {1, 5, 1},
+ {2, 5, -1},
+ {-2, 5, -1},
+ {2, -5, -1},
+ {-2, -5, 1},
+ {3, 5, -1},
+ {5, 5, 0},
+ {-5, 5, 0},
+ {6, 5, 1},
+ {6, -5, 1},
+ {-6, 5, 1},
+ {-6, -5, -1},
+ }
+
+ var x, y Int
+
+ for i, test := range testCases {
+ x.SetInt64(test.x)
+ y.SetInt64(test.y)
+ expected := test.result
+ actual := Jacobi(&x, &y)
+ if actual != expected {
+ t.Errorf("#%d: Jacobi(%d, %d) = %d, but expected %d", i, test.x, test.y, actual, expected)
+ }
+ }
+}
+
+func TestJacobiPanic(t *testing.T) {
+ const failureMsg = "test failure"
+ defer func() {
+ msg := recover()
+ if msg == nil || msg == failureMsg {
+ panic(msg)
+ }
+ t.Log(msg)
+ }()
+ x := NewInt(1)
+ y := NewInt(2)
+ // Jacobi should panic when the second argument is even.
+ Jacobi(x, y)
+ panic(failureMsg)
+}
+
+func TestIssue2607(t *testing.T) {
+ // This code sequence used to hang.
+ n := NewInt(10)
+ n.Rand(rand.New(rand.NewSource(9)), n)
+}
+
+func TestSqrt(t *testing.T) {
+ root := 0
+ r := new(Int)
+ for i := 0; i < 10000; i++ {
+ if (root+1)*(root+1) <= i {
+ root++
+ }
+ n := NewInt(int64(i))
+ r.SetInt64(-2)
+ r.Sqrt(n)
+ if r.Cmp(NewInt(int64(root))) != 0 {
+ t.Errorf("Sqrt(%v) = %v, want %v", n, r, root)
+ }
+ }
+
+ for i := 0; i < 1000; i += 10 {
+ n, _ := new(Int).SetString("1"+strings.Repeat("0", i), 10)
+ r := new(Int).Sqrt(n)
+ root, _ := new(Int).SetString("1"+strings.Repeat("0", i/2), 10)
+ if r.Cmp(root) != 0 {
+ t.Errorf("Sqrt(1e%d) = %v, want 1e%d", i, r, i/2)
+ }
+ }
+
+ // Test aliasing.
+ r.SetInt64(100)
+ r.Sqrt(r)
+ if r.Int64() != 10 {
+ t.Errorf("Sqrt(100) = %v, want 10 (aliased output)", r.Int64())
+ }
+}
+
+// We can't test this together with the other Exp tests above because
+// it requires a different receiver setup.
+func TestIssue22830(t *testing.T) {
+ one := new(Int).SetInt64(1)
+ base, _ := new(Int).SetString("84555555300000000000", 10)
+ mod, _ := new(Int).SetString("66666670001111111111", 10)
+ want, _ := new(Int).SetString("17888885298888888889", 10)
+
+ var tests = []int64{
+ 0, 1, -1,
+ }
+
+ for _, n := range tests {
+ m := NewInt(n)
+ if got := m.Exp(base, one, mod); got.Cmp(want) != 0 {
+ t.Errorf("(%v).Exp(%s, 1, %s) = %s, want %s", n, base, mod, got, want)
+ }
+ }
+}
+
+func BenchmarkSqrt(b *testing.B) {
+ n, _ := new(Int).SetString("1"+strings.Repeat("0", 1001), 10)
+ b.ResetTimer()
+ t := new(Int)
+ for i := 0; i < b.N; i++ {
+ t.Sqrt(n)
+ }
+}
+
+func benchmarkIntSqr(b *testing.B, nwords int) {
+ x := new(Int)
+ x.abs = rndNat(nwords)
+ t := new(Int)
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ t.Mul(x, x)
+ }
+}
+
+func BenchmarkIntSqr(b *testing.B) {
+ for _, n := range sqrBenchSizes {
+ if isRaceBuilder && n > 1e3 {
+ continue
+ }
+ b.Run(fmt.Sprintf("%d", n), func(b *testing.B) {
+ benchmarkIntSqr(b, n)
+ })
+ }
+}
+
+func benchmarkDiv(b *testing.B, aSize, bSize int) {
+ var r = rand.New(rand.NewSource(1234))
+ aa := randInt(r, uint(aSize))
+ bb := randInt(r, uint(bSize))
+ if aa.Cmp(bb) < 0 {
+ aa, bb = bb, aa
+ }
+ x := new(Int)
+ y := new(Int)
+
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ x.DivMod(aa, bb, y)
+ }
+}
+
+func BenchmarkDiv(b *testing.B) {
+ sizes := []int{
+ 10, 20, 50, 100, 200, 500, 1000,
+ 1e4, 1e5, 1e6, 1e7,
+ }
+ for _, i := range sizes {
+ j := 2 * i
+ b.Run(fmt.Sprintf("%d/%d", j, i), func(b *testing.B) {
+ benchmarkDiv(b, j, i)
+ })
+ }
+}
+
+func TestFillBytes(t *testing.T) {
+ checkResult := func(t *testing.T, buf []byte, want *Int) {
+ t.Helper()
+ got := new(Int).SetBytes(buf)
+ if got.CmpAbs(want) != 0 {
+ t.Errorf("got 0x%x, want 0x%x: %x", got, want, buf)
+ }
+ }
+ panics := func(f func()) (panic bool) {
+ defer func() { panic = recover() != nil }()
+ f()
+ return
+ }
+
+ for _, n := range []string{
+ "0",
+ "1000",
+ "0xffffffff",
+ "-0xffffffff",
+ "0xffffffffffffffff",
+ "0x10000000000000000",
+ "0xabababababababababababababababababababababababababa",
+ "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
+ } {
+ t.Run(n, func(t *testing.T) {
+ t.Logf(n)
+ x, ok := new(Int).SetString(n, 0)
+ if !ok {
+ panic("invalid test entry")
+ }
+
+ // Perfectly sized buffer.
+ byteLen := (x.BitLen() + 7) / 8
+ buf := make([]byte, byteLen)
+ checkResult(t, x.FillBytes(buf), x)
+
+ // Way larger, checking all bytes get zeroed.
+ buf = make([]byte, 100)
+ for i := range buf {
+ buf[i] = 0xff
+ }
+ checkResult(t, x.FillBytes(buf), x)
+
+ // Too small.
+ if byteLen > 0 {
+ buf = make([]byte, byteLen-1)
+ if !panics(func() { x.FillBytes(buf) }) {
+ t.Errorf("expected panic for small buffer and value %x", x)
+ }
+ }
+ })
+ }
+}
+
+func TestNewIntMinInt64(t *testing.T) {
+ // Test for uint64 cast in NewInt.
+ want := int64(math.MinInt64)
+ if got := NewInt(want).Int64(); got != want {
+ t.Fatalf("wanted %d, got %d", want, got)
+ }
+}
+
+func TestNewIntAllocs(t *testing.T) {
+ testenv.SkipIfOptimizationOff(t)
+ for _, n := range []int64{0, 7, -7, 1 << 30, -1 << 30, 1 << 50, -1 << 50} {
+ x := NewInt(3)
+ got := testing.AllocsPerRun(100, func() {
+ // NewInt should inline, and all its allocations
+ // can happen on the stack. Passing the result of NewInt
+ // to Add should not cause any of those allocations to escape.
+ x.Add(x, NewInt(n))
+ })
+ if got != 0 {
+ t.Errorf("x.Add(x, NewInt(%d)), wanted 0 allocations, got %f", n, got)
+ }
+ }
+}
+
+func TestFloat64(t *testing.T) {
+ for _, test := range []struct {
+ istr string
+ f float64
+ acc Accuracy
+ }{
+ {"-1000000000000000000000000000000000000000000000000000000", -1000000000000000078291540404596243842305360299886116864.000000, Below},
+ {"-9223372036854775809", math.MinInt64, Above},
+ {"-9223372036854775808", -9223372036854775808, Exact}, // -2^63
+ {"-9223372036854775807", -9223372036854775807, Below},
+ {"-18014398509481985", -18014398509481984.000000, Above},
+ {"-18014398509481984", -18014398509481984.000000, Exact}, // -2^54
+ {"-18014398509481983", -18014398509481984.000000, Below},
+ {"-9007199254740993", -9007199254740992.000000, Above},
+ {"-9007199254740992", -9007199254740992.000000, Exact}, // -2^53
+ {"-9007199254740991", -9007199254740991.000000, Exact},
+ {"-4503599627370497", -4503599627370497.000000, Exact},
+ {"-4503599627370496", -4503599627370496.000000, Exact}, // -2^52
+ {"-4503599627370495", -4503599627370495.000000, Exact},
+ {"-12345", -12345, Exact},
+ {"-1", -1, Exact},
+ {"0", 0, Exact},
+ {"1", 1, Exact},
+ {"12345", 12345, Exact},
+ {"0x1010000000000000", 0x1010000000000000, Exact}, // >2^53 but exact nonetheless
+ {"9223372036854775807", 9223372036854775808, Above},
+ {"9223372036854775808", 9223372036854775808, Exact}, // +2^63
+ {"1000000000000000000000000000000000000000000000000000000", 1000000000000000078291540404596243842305360299886116864.000000, Above},
+ } {
+ i, ok := new(Int).SetString(test.istr, 0)
+ if !ok {
+ t.Errorf("SetString(%s) failed", test.istr)
+ continue
+ }
+
+ // Test against expectation.
+ f, acc := i.Float64()
+ if f != test.f || acc != test.acc {
+ t.Errorf("%s: got %f (%s); want %f (%s)", test.istr, f, acc, test.f, test.acc)
+ }
+
+ // Cross-check the fast path against the big.Float implementation.
+ f2, acc2 := new(Float).SetInt(i).Float64()
+ if f != f2 || acc != acc2 {
+ t.Errorf("%s: got %f (%s); Float.Float64 gives %f (%s)", test.istr, f, acc, f2, acc2)
+ }
+ }
+}
diff --git a/src/math/big/intconv.go b/src/math/big/intconv.go
new file mode 100644
index 0000000..51e75ff
--- /dev/null
+++ b/src/math/big/intconv.go
@@ -0,0 +1,255 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements int-to-string conversion functions.
+
+package big
+
+import (
+ "errors"
+ "fmt"
+ "io"
+)
+
+// Text returns the string representation of x in the given base.
+// Base must be between 2 and 62, inclusive. The result uses the
+// lower-case letters 'a' to 'z' for digit values 10 to 35, and
+// the upper-case letters 'A' to 'Z' for digit values 36 to 61.
+// No prefix (such as "0x") is added to the string. If x is a nil
+// pointer it returns "<nil>".
+func (x *Int) Text(base int) string {
+ if x == nil {
+ return "<nil>"
+ }
+ return string(x.abs.itoa(x.neg, base))
+}
+
+// Append appends the string representation of x, as generated by
+// x.Text(base), to buf and returns the extended buffer.
+func (x *Int) Append(buf []byte, base int) []byte {
+ if x == nil {
+ return append(buf, "<nil>"...)
+ }
+ return append(buf, x.abs.itoa(x.neg, base)...)
+}
+
+// String returns the decimal representation of x as generated by
+// x.Text(10).
+func (x *Int) String() string {
+ return x.Text(10)
+}
+
+// write count copies of text to s.
+func writeMultiple(s fmt.State, text string, count int) {
+ if len(text) > 0 {
+ b := []byte(text)
+ for ; count > 0; count-- {
+ s.Write(b)
+ }
+ }
+}
+
+var _ fmt.Formatter = intOne // *Int must implement fmt.Formatter
+
+// Format implements [fmt.Formatter]. It accepts the formats
+// 'b' (binary), 'o' (octal with 0 prefix), 'O' (octal with 0o prefix),
+// 'd' (decimal), 'x' (lowercase hexadecimal), and
+// 'X' (uppercase hexadecimal).
+// Also supported are the full suite of package fmt's format
+// flags for integral types, including '+' and ' ' for sign
+// control, '#' for leading zero in octal and for hexadecimal,
+// a leading "0x" or "0X" for "%#x" and "%#X" respectively,
+// specification of minimum digits precision, output field
+// width, space or zero padding, and '-' for left or right
+// justification.
+func (x *Int) Format(s fmt.State, ch rune) {
+ // determine base
+ var base int
+ switch ch {
+ case 'b':
+ base = 2
+ case 'o', 'O':
+ base = 8
+ case 'd', 's', 'v':
+ base = 10
+ case 'x', 'X':
+ base = 16
+ default:
+ // unknown format
+ fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String())
+ return
+ }
+
+ if x == nil {
+ fmt.Fprint(s, "<nil>")
+ return
+ }
+
+ // determine sign character
+ sign := ""
+ switch {
+ case x.neg:
+ sign = "-"
+ case s.Flag('+'): // supersedes ' ' when both specified
+ sign = "+"
+ case s.Flag(' '):
+ sign = " "
+ }
+
+ // determine prefix characters for indicating output base
+ prefix := ""
+ if s.Flag('#') {
+ switch ch {
+ case 'b': // binary
+ prefix = "0b"
+ case 'o': // octal
+ prefix = "0"
+ case 'x': // hexadecimal
+ prefix = "0x"
+ case 'X':
+ prefix = "0X"
+ }
+ }
+ if ch == 'O' {
+ prefix = "0o"
+ }
+
+ digits := x.abs.utoa(base)
+ if ch == 'X' {
+ // faster than bytes.ToUpper
+ for i, d := range digits {
+ if 'a' <= d && d <= 'z' {
+ digits[i] = 'A' + (d - 'a')
+ }
+ }
+ }
+
+ // number of characters for the three classes of number padding
+ var left int // space characters to left of digits for right justification ("%8d")
+ var zeros int // zero characters (actually cs[0]) as left-most digits ("%.8d")
+ var right int // space characters to right of digits for left justification ("%-8d")
+
+ // determine number padding from precision: the least number of digits to output
+ precision, precisionSet := s.Precision()
+ if precisionSet {
+ switch {
+ case len(digits) < precision:
+ zeros = precision - len(digits) // count of zero padding
+ case len(digits) == 1 && digits[0] == '0' && precision == 0:
+ return // print nothing if zero value (x == 0) and zero precision ("." or ".0")
+ }
+ }
+
+ // determine field pad from width: the least number of characters to output
+ length := len(sign) + len(prefix) + zeros + len(digits)
+ if width, widthSet := s.Width(); widthSet && length < width { // pad as specified
+ switch d := width - length; {
+ case s.Flag('-'):
+ // pad on the right with spaces; supersedes '0' when both specified
+ right = d
+ case s.Flag('0') && !precisionSet:
+ // pad with zeros unless precision also specified
+ zeros = d
+ default:
+ // pad on the left with spaces
+ left = d
+ }
+ }
+
+ // print number as [left pad][sign][prefix][zero pad][digits][right pad]
+ writeMultiple(s, " ", left)
+ writeMultiple(s, sign, 1)
+ writeMultiple(s, prefix, 1)
+ writeMultiple(s, "0", zeros)
+ s.Write(digits)
+ writeMultiple(s, " ", right)
+}
+
+// scan sets z to the integer value corresponding to the longest possible prefix
+// read from r representing a signed integer number in a given conversion base.
+// It returns z, the actual conversion base used, and an error, if any. In the
+// error case, the value of z is undefined but the returned value is nil. The
+// syntax follows the syntax of integer literals in Go.
+//
+// The base argument must be 0 or a value from 2 through MaxBase. If the base
+// is 0, the string prefix determines the actual conversion base. A prefix of
+// “0b” or “0B” selects base 2; a “0”, “0o”, or “0O” prefix selects
+// base 8, and a “0x” or “0X” prefix selects base 16. Otherwise the selected
+// base is 10.
+func (z *Int) scan(r io.ByteScanner, base int) (*Int, int, error) {
+ // determine sign
+ neg, err := scanSign(r)
+ if err != nil {
+ return nil, 0, err
+ }
+
+ // determine mantissa
+ z.abs, base, _, err = z.abs.scan(r, base, false)
+ if err != nil {
+ return nil, base, err
+ }
+ z.neg = len(z.abs) > 0 && neg // 0 has no sign
+
+ return z, base, nil
+}
+
+func scanSign(r io.ByteScanner) (neg bool, err error) {
+ var ch byte
+ if ch, err = r.ReadByte(); err != nil {
+ return false, err
+ }
+ switch ch {
+ case '-':
+ neg = true
+ case '+':
+ // nothing to do
+ default:
+ r.UnreadByte()
+ }
+ return
+}
+
+// byteReader is a local wrapper around fmt.ScanState;
+// it implements the ByteReader interface.
+type byteReader struct {
+ fmt.ScanState
+}
+
+func (r byteReader) ReadByte() (byte, error) {
+ ch, size, err := r.ReadRune()
+ if size != 1 && err == nil {
+ err = fmt.Errorf("invalid rune %#U", ch)
+ }
+ return byte(ch), err
+}
+
+func (r byteReader) UnreadByte() error {
+ return r.UnreadRune()
+}
+
+var _ fmt.Scanner = intOne // *Int must implement fmt.Scanner
+
+// Scan is a support routine for [fmt.Scanner]; it sets z to the value of
+// the scanned number. It accepts the formats 'b' (binary), 'o' (octal),
+// 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
+func (z *Int) Scan(s fmt.ScanState, ch rune) error {
+ s.SkipSpace() // skip leading space characters
+ base := 0
+ switch ch {
+ case 'b':
+ base = 2
+ case 'o':
+ base = 8
+ case 'd':
+ base = 10
+ case 'x', 'X':
+ base = 16
+ case 's', 'v':
+ // let scan determine the base
+ default:
+ return errors.New("Int.Scan: invalid verb")
+ }
+ _, _, err := z.scan(byteReader{s}, base)
+ return err
+}
diff --git a/src/math/big/intconv_test.go b/src/math/big/intconv_test.go
new file mode 100644
index 0000000..5ba2926
--- /dev/null
+++ b/src/math/big/intconv_test.go
@@ -0,0 +1,431 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "bytes"
+ "fmt"
+ "testing"
+)
+
+var stringTests = []struct {
+ in string
+ out string
+ base int
+ val int64
+ ok bool
+}{
+ // invalid inputs
+ {in: ""},
+ {in: "a"},
+ {in: "z"},
+ {in: "+"},
+ {in: "-"},
+ {in: "0b"},
+ {in: "0o"},
+ {in: "0x"},
+ {in: "0y"},
+ {in: "2", base: 2},
+ {in: "0b2", base: 0},
+ {in: "08"},
+ {in: "8", base: 8},
+ {in: "0xg", base: 0},
+ {in: "g", base: 16},
+
+ // invalid inputs with separators
+ // (smoke tests only - a comprehensive set of tests is in natconv_test.go)
+ {in: "_"},
+ {in: "0_"},
+ {in: "_0"},
+ {in: "-1__0"},
+ {in: "0x10_"},
+ {in: "1_000", base: 10}, // separators are not permitted for bases != 0
+ {in: "d_e_a_d", base: 16},
+
+ // valid inputs
+ {"0", "0", 0, 0, true},
+ {"0", "0", 10, 0, true},
+ {"0", "0", 16, 0, true},
+ {"+0", "0", 0, 0, true},
+ {"-0", "0", 0, 0, true},
+ {"10", "10", 0, 10, true},
+ {"10", "10", 10, 10, true},
+ {"10", "10", 16, 16, true},
+ {"-10", "-10", 16, -16, true},
+ {"+10", "10", 16, 16, true},
+ {"0b10", "2", 0, 2, true},
+ {"0o10", "8", 0, 8, true},
+ {"0x10", "16", 0, 16, true},
+ {in: "0x10", base: 16},
+ {"-0x10", "-16", 0, -16, true},
+ {"+0x10", "16", 0, 16, true},
+ {"00", "0", 0, 0, true},
+ {"0", "0", 8, 0, true},
+ {"07", "7", 0, 7, true},
+ {"7", "7", 8, 7, true},
+ {"023", "19", 0, 19, true},
+ {"23", "23", 8, 19, true},
+ {"cafebabe", "cafebabe", 16, 0xcafebabe, true},
+ {"0b0", "0", 0, 0, true},
+ {"-111", "-111", 2, -7, true},
+ {"-0b111", "-7", 0, -7, true},
+ {"0b1001010111", "599", 0, 0x257, true},
+ {"1001010111", "1001010111", 2, 0x257, true},
+ {"A", "a", 36, 10, true},
+ {"A", "A", 37, 36, true},
+ {"ABCXYZ", "abcxyz", 36, 623741435, true},
+ {"ABCXYZ", "ABCXYZ", 62, 33536793425, true},
+
+ // valid input with separators
+ // (smoke tests only - a comprehensive set of tests is in natconv_test.go)
+ {"1_000", "1000", 0, 1000, true},
+ {"0b_1010", "10", 0, 10, true},
+ {"+0o_660", "432", 0, 0660, true},
+ {"-0xF00D_1E", "-15731998", 0, -0xf00d1e, true},
+}
+
+func TestIntText(t *testing.T) {
+ z := new(Int)
+ for _, test := range stringTests {
+ if !test.ok {
+ continue
+ }
+
+ _, ok := z.SetString(test.in, test.base)
+ if !ok {
+ t.Errorf("%v: failed to parse", test)
+ continue
+ }
+
+ base := test.base
+ if base == 0 {
+ base = 10
+ }
+
+ if got := z.Text(base); got != test.out {
+ t.Errorf("%v: got %s; want %s", test, got, test.out)
+ }
+ }
+}
+
+func TestAppendText(t *testing.T) {
+ z := new(Int)
+ var buf []byte
+ for _, test := range stringTests {
+ if !test.ok {
+ continue
+ }
+
+ _, ok := z.SetString(test.in, test.base)
+ if !ok {
+ t.Errorf("%v: failed to parse", test)
+ continue
+ }
+
+ base := test.base
+ if base == 0 {
+ base = 10
+ }
+
+ i := len(buf)
+ buf = z.Append(buf, base)
+ if got := string(buf[i:]); got != test.out {
+ t.Errorf("%v: got %s; want %s", test, got, test.out)
+ }
+ }
+}
+
+func format(base int) string {
+ switch base {
+ case 2:
+ return "%b"
+ case 8:
+ return "%o"
+ case 16:
+ return "%x"
+ }
+ return "%d"
+}
+
+func TestGetString(t *testing.T) {
+ z := new(Int)
+ for i, test := range stringTests {
+ if !test.ok {
+ continue
+ }
+ z.SetInt64(test.val)
+
+ if test.base == 10 {
+ if got := z.String(); got != test.out {
+ t.Errorf("#%da got %s; want %s", i, got, test.out)
+ }
+ }
+
+ f := format(test.base)
+ got := fmt.Sprintf(f, z)
+ if f == "%d" {
+ if got != fmt.Sprintf("%d", test.val) {
+ t.Errorf("#%db got %s; want %d", i, got, test.val)
+ }
+ } else {
+ if got != test.out {
+ t.Errorf("#%dc got %s; want %s", i, got, test.out)
+ }
+ }
+ }
+}
+
+func TestSetString(t *testing.T) {
+ tmp := new(Int)
+ for i, test := range stringTests {
+ // initialize to a non-zero value so that issues with parsing
+ // 0 are detected
+ tmp.SetInt64(1234567890)
+ n1, ok1 := new(Int).SetString(test.in, test.base)
+ n2, ok2 := tmp.SetString(test.in, test.base)
+ expected := NewInt(test.val)
+ if ok1 != test.ok || ok2 != test.ok {
+ t.Errorf("#%d (input '%s') ok incorrect (should be %t)", i, test.in, test.ok)
+ continue
+ }
+ if !ok1 {
+ if n1 != nil {
+ t.Errorf("#%d (input '%s') n1 != nil", i, test.in)
+ }
+ continue
+ }
+ if !ok2 {
+ if n2 != nil {
+ t.Errorf("#%d (input '%s') n2 != nil", i, test.in)
+ }
+ continue
+ }
+
+ if ok1 && !isNormalized(n1) {
+ t.Errorf("#%d (input '%s'): %v is not normalized", i, test.in, *n1)
+ }
+ if ok2 && !isNormalized(n2) {
+ t.Errorf("#%d (input '%s'): %v is not normalized", i, test.in, *n2)
+ }
+
+ if n1.Cmp(expected) != 0 {
+ t.Errorf("#%d (input '%s') got: %s want: %d", i, test.in, n1, test.val)
+ }
+ if n2.Cmp(expected) != 0 {
+ t.Errorf("#%d (input '%s') got: %s want: %d", i, test.in, n2, test.val)
+ }
+ }
+}
+
+var formatTests = []struct {
+ input string
+ format string
+ output string
+}{
+ {"<nil>", "%x", "<nil>"},
+ {"<nil>", "%#x", "<nil>"},
+ {"<nil>", "%#y", "%!y(big.Int=<nil>)"},
+
+ {"10", "%b", "1010"},
+ {"10", "%o", "12"},
+ {"10", "%d", "10"},
+ {"10", "%v", "10"},
+ {"10", "%x", "a"},
+ {"10", "%X", "A"},
+ {"-10", "%X", "-A"},
+ {"10", "%y", "%!y(big.Int=10)"},
+ {"-10", "%y", "%!y(big.Int=-10)"},
+
+ {"10", "%#b", "0b1010"},
+ {"10", "%#o", "012"},
+ {"10", "%O", "0o12"},
+ {"-10", "%#b", "-0b1010"},
+ {"-10", "%#o", "-012"},
+ {"-10", "%O", "-0o12"},
+ {"10", "%#d", "10"},
+ {"10", "%#v", "10"},
+ {"10", "%#x", "0xa"},
+ {"10", "%#X", "0XA"},
+ {"-10", "%#X", "-0XA"},
+ {"10", "%#y", "%!y(big.Int=10)"},
+ {"-10", "%#y", "%!y(big.Int=-10)"},
+
+ {"1234", "%d", "1234"},
+ {"1234", "%3d", "1234"},
+ {"1234", "%4d", "1234"},
+ {"-1234", "%d", "-1234"},
+ {"1234", "% 5d", " 1234"},
+ {"1234", "%+5d", "+1234"},
+ {"1234", "%-5d", "1234 "},
+ {"1234", "%x", "4d2"},
+ {"1234", "%X", "4D2"},
+ {"-1234", "%3x", "-4d2"},
+ {"-1234", "%4x", "-4d2"},
+ {"-1234", "%5x", " -4d2"},
+ {"-1234", "%-5x", "-4d2 "},
+ {"1234", "%03d", "1234"},
+ {"1234", "%04d", "1234"},
+ {"1234", "%05d", "01234"},
+ {"1234", "%06d", "001234"},
+ {"-1234", "%06d", "-01234"},
+ {"1234", "%+06d", "+01234"},
+ {"1234", "% 06d", " 01234"},
+ {"1234", "%-6d", "1234 "},
+ {"1234", "%-06d", "1234 "},
+ {"-1234", "%-06d", "-1234 "},
+
+ {"1234", "%.3d", "1234"},
+ {"1234", "%.4d", "1234"},
+ {"1234", "%.5d", "01234"},
+ {"1234", "%.6d", "001234"},
+ {"-1234", "%.3d", "-1234"},
+ {"-1234", "%.4d", "-1234"},
+ {"-1234", "%.5d", "-01234"},
+ {"-1234", "%.6d", "-001234"},
+
+ {"1234", "%8.3d", " 1234"},
+ {"1234", "%8.4d", " 1234"},
+ {"1234", "%8.5d", " 01234"},
+ {"1234", "%8.6d", " 001234"},
+ {"-1234", "%8.3d", " -1234"},
+ {"-1234", "%8.4d", " -1234"},
+ {"-1234", "%8.5d", " -01234"},
+ {"-1234", "%8.6d", " -001234"},
+
+ {"1234", "%+8.3d", " +1234"},
+ {"1234", "%+8.4d", " +1234"},
+ {"1234", "%+8.5d", " +01234"},
+ {"1234", "%+8.6d", " +001234"},
+ {"-1234", "%+8.3d", " -1234"},
+ {"-1234", "%+8.4d", " -1234"},
+ {"-1234", "%+8.5d", " -01234"},
+ {"-1234", "%+8.6d", " -001234"},
+
+ {"1234", "% 8.3d", " 1234"},
+ {"1234", "% 8.4d", " 1234"},
+ {"1234", "% 8.5d", " 01234"},
+ {"1234", "% 8.6d", " 001234"},
+ {"-1234", "% 8.3d", " -1234"},
+ {"-1234", "% 8.4d", " -1234"},
+ {"-1234", "% 8.5d", " -01234"},
+ {"-1234", "% 8.6d", " -001234"},
+
+ {"1234", "%.3x", "4d2"},
+ {"1234", "%.4x", "04d2"},
+ {"1234", "%.5x", "004d2"},
+ {"1234", "%.6x", "0004d2"},
+ {"-1234", "%.3x", "-4d2"},
+ {"-1234", "%.4x", "-04d2"},
+ {"-1234", "%.5x", "-004d2"},
+ {"-1234", "%.6x", "-0004d2"},
+
+ {"1234", "%8.3x", " 4d2"},
+ {"1234", "%8.4x", " 04d2"},
+ {"1234", "%8.5x", " 004d2"},
+ {"1234", "%8.6x", " 0004d2"},
+ {"-1234", "%8.3x", " -4d2"},
+ {"-1234", "%8.4x", " -04d2"},
+ {"-1234", "%8.5x", " -004d2"},
+ {"-1234", "%8.6x", " -0004d2"},
+
+ {"1234", "%+8.3x", " +4d2"},
+ {"1234", "%+8.4x", " +04d2"},
+ {"1234", "%+8.5x", " +004d2"},
+ {"1234", "%+8.6x", " +0004d2"},
+ {"-1234", "%+8.3x", " -4d2"},
+ {"-1234", "%+8.4x", " -04d2"},
+ {"-1234", "%+8.5x", " -004d2"},
+ {"-1234", "%+8.6x", " -0004d2"},
+
+ {"1234", "% 8.3x", " 4d2"},
+ {"1234", "% 8.4x", " 04d2"},
+ {"1234", "% 8.5x", " 004d2"},
+ {"1234", "% 8.6x", " 0004d2"},
+ {"1234", "% 8.7x", " 00004d2"},
+ {"1234", "% 8.8x", " 000004d2"},
+ {"-1234", "% 8.3x", " -4d2"},
+ {"-1234", "% 8.4x", " -04d2"},
+ {"-1234", "% 8.5x", " -004d2"},
+ {"-1234", "% 8.6x", " -0004d2"},
+ {"-1234", "% 8.7x", "-00004d2"},
+ {"-1234", "% 8.8x", "-000004d2"},
+
+ {"1234", "%-8.3d", "1234 "},
+ {"1234", "%-8.4d", "1234 "},
+ {"1234", "%-8.5d", "01234 "},
+ {"1234", "%-8.6d", "001234 "},
+ {"1234", "%-8.7d", "0001234 "},
+ {"1234", "%-8.8d", "00001234"},
+ {"-1234", "%-8.3d", "-1234 "},
+ {"-1234", "%-8.4d", "-1234 "},
+ {"-1234", "%-8.5d", "-01234 "},
+ {"-1234", "%-8.6d", "-001234 "},
+ {"-1234", "%-8.7d", "-0001234"},
+ {"-1234", "%-8.8d", "-00001234"},
+
+ {"16777215", "%b", "111111111111111111111111"}, // 2**24 - 1
+
+ {"0", "%.d", ""},
+ {"0", "%.0d", ""},
+ {"0", "%3.d", ""},
+}
+
+func TestFormat(t *testing.T) {
+ for i, test := range formatTests {
+ var x *Int
+ if test.input != "<nil>" {
+ var ok bool
+ x, ok = new(Int).SetString(test.input, 0)
+ if !ok {
+ t.Errorf("#%d failed reading input %s", i, test.input)
+ }
+ }
+ output := fmt.Sprintf(test.format, x)
+ if output != test.output {
+ t.Errorf("#%d got %q; want %q, {%q, %q, %q}", i, output, test.output, test.input, test.format, test.output)
+ }
+ }
+}
+
+var scanTests = []struct {
+ input string
+ format string
+ output string
+ remaining int
+}{
+ {"1010", "%b", "10", 0},
+ {"0b1010", "%v", "10", 0},
+ {"12", "%o", "10", 0},
+ {"012", "%v", "10", 0},
+ {"10", "%d", "10", 0},
+ {"10", "%v", "10", 0},
+ {"a", "%x", "10", 0},
+ {"0xa", "%v", "10", 0},
+ {"A", "%X", "10", 0},
+ {"-A", "%X", "-10", 0},
+ {"+0b1011001", "%v", "89", 0},
+ {"0xA", "%v", "10", 0},
+ {"0 ", "%v", "0", 1},
+ {"2+3", "%v", "2", 2},
+ {"0XABC 12", "%v", "2748", 3},
+}
+
+func TestScan(t *testing.T) {
+ var buf bytes.Buffer
+ for i, test := range scanTests {
+ x := new(Int)
+ buf.Reset()
+ buf.WriteString(test.input)
+ if _, err := fmt.Fscanf(&buf, test.format, x); err != nil {
+ t.Errorf("#%d error: %s", i, err)
+ }
+ if x.String() != test.output {
+ t.Errorf("#%d got %s; want %s", i, x.String(), test.output)
+ }
+ if buf.Len() != test.remaining {
+ t.Errorf("#%d got %d bytes remaining; want %d", i, buf.Len(), test.remaining)
+ }
+ }
+}
diff --git a/src/math/big/intmarsh.go b/src/math/big/intmarsh.go
new file mode 100644
index 0000000..56eeefb
--- /dev/null
+++ b/src/math/big/intmarsh.go
@@ -0,0 +1,83 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements encoding/decoding of Ints.
+
+package big
+
+import (
+ "bytes"
+ "fmt"
+)
+
+// Gob codec version. Permits backward-compatible changes to the encoding.
+const intGobVersion byte = 1
+
+// GobEncode implements the [encoding/gob.GobEncoder] interface.
+func (x *Int) GobEncode() ([]byte, error) {
+ if x == nil {
+ return nil, nil
+ }
+ buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign bit
+ i := x.abs.bytes(buf) - 1 // i >= 0
+ b := intGobVersion << 1 // make space for sign bit
+ if x.neg {
+ b |= 1
+ }
+ buf[i] = b
+ return buf[i:], nil
+}
+
+// GobDecode implements the [encoding/gob.GobDecoder] interface.
+func (z *Int) GobDecode(buf []byte) error {
+ if len(buf) == 0 {
+ // Other side sent a nil or default value.
+ *z = Int{}
+ return nil
+ }
+ b := buf[0]
+ if b>>1 != intGobVersion {
+ return fmt.Errorf("Int.GobDecode: encoding version %d not supported", b>>1)
+ }
+ z.neg = b&1 != 0
+ z.abs = z.abs.setBytes(buf[1:])
+ return nil
+}
+
+// MarshalText implements the [encoding.TextMarshaler] interface.
+func (x *Int) MarshalText() (text []byte, err error) {
+ if x == nil {
+ return []byte("<nil>"), nil
+ }
+ return x.abs.itoa(x.neg, 10), nil
+}
+
+// UnmarshalText implements the [encoding.TextUnmarshaler] interface.
+func (z *Int) UnmarshalText(text []byte) error {
+ if _, ok := z.setFromScanner(bytes.NewReader(text), 0); !ok {
+ return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text)
+ }
+ return nil
+}
+
+// The JSON marshalers are only here for API backward compatibility
+// (programs that explicitly look for these two methods). JSON works
+// fine with the TextMarshaler only.
+
+// MarshalJSON implements the [encoding/json.Marshaler] interface.
+func (x *Int) MarshalJSON() ([]byte, error) {
+ if x == nil {
+ return []byte("null"), nil
+ }
+ return x.abs.itoa(x.neg, 10), nil
+}
+
+// UnmarshalJSON implements the [encoding/json.Unmarshaler] interface.
+func (z *Int) UnmarshalJSON(text []byte) error {
+ // Ignore null, like in the main JSON package.
+ if string(text) == "null" {
+ return nil
+ }
+ return z.UnmarshalText(text)
+}
diff --git a/src/math/big/intmarsh_test.go b/src/math/big/intmarsh_test.go
new file mode 100644
index 0000000..8e7d29f
--- /dev/null
+++ b/src/math/big/intmarsh_test.go
@@ -0,0 +1,134 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "bytes"
+ "encoding/gob"
+ "encoding/json"
+ "encoding/xml"
+ "testing"
+)
+
+var encodingTests = []string{
+ "0",
+ "1",
+ "2",
+ "10",
+ "1000",
+ "1234567890",
+ "298472983472983471903246121093472394872319615612417471234712061",
+}
+
+func TestIntGobEncoding(t *testing.T) {
+ var medium bytes.Buffer
+ enc := gob.NewEncoder(&medium)
+ dec := gob.NewDecoder(&medium)
+ for _, test := range encodingTests {
+ for _, sign := range []string{"", "+", "-"} {
+ x := sign + test
+ medium.Reset() // empty buffer for each test case (in case of failures)
+ var tx Int
+ tx.SetString(x, 10)
+ if err := enc.Encode(&tx); err != nil {
+ t.Errorf("encoding of %s failed: %s", &tx, err)
+ continue
+ }
+ var rx Int
+ if err := dec.Decode(&rx); err != nil {
+ t.Errorf("decoding of %s failed: %s", &tx, err)
+ continue
+ }
+ if rx.Cmp(&tx) != 0 {
+ t.Errorf("transmission of %s failed: got %s want %s", &tx, &rx, &tx)
+ }
+ }
+ }
+}
+
+// Sending a nil Int pointer (inside a slice) on a round trip through gob should yield a zero.
+// TODO: top-level nils.
+func TestGobEncodingNilIntInSlice(t *testing.T) {
+ buf := new(bytes.Buffer)
+ enc := gob.NewEncoder(buf)
+ dec := gob.NewDecoder(buf)
+
+ var in = make([]*Int, 1)
+ err := enc.Encode(&in)
+ if err != nil {
+ t.Errorf("gob encode failed: %q", err)
+ }
+ var out []*Int
+ err = dec.Decode(&out)
+ if err != nil {
+ t.Fatalf("gob decode failed: %q", err)
+ }
+ if len(out) != 1 {
+ t.Fatalf("wrong len; want 1 got %d", len(out))
+ }
+ var zero Int
+ if out[0].Cmp(&zero) != 0 {
+ t.Fatalf("transmission of (*Int)(nil) failed: got %s want 0", out)
+ }
+}
+
+func TestIntJSONEncoding(t *testing.T) {
+ for _, test := range encodingTests {
+ for _, sign := range []string{"", "+", "-"} {
+ x := sign + test
+ var tx Int
+ tx.SetString(x, 10)
+ b, err := json.Marshal(&tx)
+ if err != nil {
+ t.Errorf("marshaling of %s failed: %s", &tx, err)
+ continue
+ }
+ var rx Int
+ if err := json.Unmarshal(b, &rx); err != nil {
+ t.Errorf("unmarshaling of %s failed: %s", &tx, err)
+ continue
+ }
+ if rx.Cmp(&tx) != 0 {
+ t.Errorf("JSON encoding of %s failed: got %s want %s", &tx, &rx, &tx)
+ }
+ }
+ }
+}
+
+func TestIntJSONEncodingNil(t *testing.T) {
+ var x *Int
+ b, err := x.MarshalJSON()
+ if err != nil {
+ t.Fatalf("marshaling of nil failed: %s", err)
+ }
+ got := string(b)
+ want := "null"
+ if got != want {
+ t.Fatalf("marshaling of nil failed: got %s want %s", got, want)
+ }
+}
+
+func TestIntXMLEncoding(t *testing.T) {
+ for _, test := range encodingTests {
+ for _, sign := range []string{"", "+", "-"} {
+ x := sign + test
+ var tx Int
+ tx.SetString(x, 0)
+ b, err := xml.Marshal(&tx)
+ if err != nil {
+ t.Errorf("marshaling of %s failed: %s", &tx, err)
+ continue
+ }
+ var rx Int
+ if err := xml.Unmarshal(b, &rx); err != nil {
+ t.Errorf("unmarshaling of %s failed: %s", &tx, err)
+ continue
+ }
+ if rx.Cmp(&tx) != 0 {
+ t.Errorf("XML encoding of %s failed: got %s want %s", &tx, &rx, &tx)
+ }
+ }
+ }
+}
diff --git a/src/math/big/link_test.go b/src/math/big/link_test.go
new file mode 100644
index 0000000..6e33aa5
--- /dev/null
+++ b/src/math/big/link_test.go
@@ -0,0 +1,63 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "bytes"
+ "internal/testenv"
+ "os"
+ "os/exec"
+ "path/filepath"
+ "testing"
+)
+
+// Tests that the linker is able to remove references to Float, Rat,
+// and Int if unused (notably, not used by init).
+func TestLinkerGC(t *testing.T) {
+ if testing.Short() {
+ t.Skip("skipping in short mode")
+ }
+ t.Parallel()
+ tmp := t.TempDir()
+ goBin := testenv.GoToolPath(t)
+ goFile := filepath.Join(tmp, "x.go")
+ file := []byte(`package main
+import _ "math/big"
+func main() {}
+`)
+ if err := os.WriteFile(goFile, file, 0644); err != nil {
+ t.Fatal(err)
+ }
+ cmd := exec.Command(goBin, "build", "-o", "x.exe", "x.go")
+ cmd.Dir = tmp
+ if out, err := cmd.CombinedOutput(); err != nil {
+ t.Fatalf("compile: %v, %s", err, out)
+ }
+
+ cmd = exec.Command(goBin, "tool", "nm", "x.exe")
+ cmd.Dir = tmp
+ nm, err := cmd.CombinedOutput()
+ if err != nil {
+ t.Fatalf("nm: %v, %s", err, nm)
+ }
+ const want = "runtime.main"
+ if !bytes.Contains(nm, []byte(want)) {
+ // Test the test.
+ t.Errorf("expected symbol %q not found", want)
+ }
+ bad := []string{
+ "math/big.(*Float)",
+ "math/big.(*Rat)",
+ "math/big.(*Int)",
+ }
+ for _, sym := range bad {
+ if bytes.Contains(nm, []byte(sym)) {
+ t.Errorf("unexpected symbol %q found", sym)
+ }
+ }
+ if t.Failed() {
+ t.Logf("Got: %s", nm)
+ }
+}
diff --git a/src/math/big/nat.go b/src/math/big/nat.go
new file mode 100644
index 0000000..ecb7d36
--- /dev/null
+++ b/src/math/big/nat.go
@@ -0,0 +1,1422 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements unsigned multi-precision integers (natural
+// numbers). They are the building blocks for the implementation
+// of signed integers, rationals, and floating-point numbers.
+//
+// Caution: This implementation relies on the function "alias"
+// which assumes that (nat) slice capacities are never
+// changed (no 3-operand slice expressions). If that
+// changes, alias needs to be updated for correctness.
+
+package big
+
+import (
+ "encoding/binary"
+ "math/bits"
+ "math/rand"
+ "sync"
+)
+
+// An unsigned integer x of the form
+//
+// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
+//
+// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
+// with the digits x[i] as the slice elements.
+//
+// A number is normalized if the slice contains no leading 0 digits.
+// During arithmetic operations, denormalized values may occur but are
+// always normalized before returning the final result. The normalized
+// representation of 0 is the empty or nil slice (length = 0).
+type nat []Word
+
+var (
+ natOne = nat{1}
+ natTwo = nat{2}
+ natFive = nat{5}
+ natTen = nat{10}
+)
+
+func (z nat) String() string {
+ return "0x" + string(z.itoa(false, 16))
+}
+
+func (z nat) clear() {
+ for i := range z {
+ z[i] = 0
+ }
+}
+
+func (z nat) norm() nat {
+ i := len(z)
+ for i > 0 && z[i-1] == 0 {
+ i--
+ }
+ return z[0:i]
+}
+
+func (z nat) make(n int) nat {
+ if n <= cap(z) {
+ return z[:n] // reuse z
+ }
+ if n == 1 {
+ // Most nats start small and stay that way; don't over-allocate.
+ return make(nat, 1)
+ }
+ // Choosing a good value for e has significant performance impact
+ // because it increases the chance that a value can be reused.
+ const e = 4 // extra capacity
+ return make(nat, n, n+e)
+}
+
+func (z nat) setWord(x Word) nat {
+ if x == 0 {
+ return z[:0]
+ }
+ z = z.make(1)
+ z[0] = x
+ return z
+}
+
+func (z nat) setUint64(x uint64) nat {
+ // single-word value
+ if w := Word(x); uint64(w) == x {
+ return z.setWord(w)
+ }
+ // 2-word value
+ z = z.make(2)
+ z[1] = Word(x >> 32)
+ z[0] = Word(x)
+ return z
+}
+
+func (z nat) set(x nat) nat {
+ z = z.make(len(x))
+ copy(z, x)
+ return z
+}
+
+func (z nat) add(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+
+ switch {
+ case m < n:
+ return z.add(y, x)
+ case m == 0:
+ // n == 0 because m >= n; result is 0
+ return z[:0]
+ case n == 0:
+ // result is x
+ return z.set(x)
+ }
+ // m > 0
+
+ z = z.make(m + 1)
+ c := addVV(z[0:n], x, y)
+ if m > n {
+ c = addVW(z[n:m], x[n:], c)
+ }
+ z[m] = c
+
+ return z.norm()
+}
+
+func (z nat) sub(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+
+ switch {
+ case m < n:
+ panic("underflow")
+ case m == 0:
+ // n == 0 because m >= n; result is 0
+ return z[:0]
+ case n == 0:
+ // result is x
+ return z.set(x)
+ }
+ // m > 0
+
+ z = z.make(m)
+ c := subVV(z[0:n], x, y)
+ if m > n {
+ c = subVW(z[n:], x[n:], c)
+ }
+ if c != 0 {
+ panic("underflow")
+ }
+
+ return z.norm()
+}
+
+func (x nat) cmp(y nat) (r int) {
+ m := len(x)
+ n := len(y)
+ if m != n || m == 0 {
+ switch {
+ case m < n:
+ r = -1
+ case m > n:
+ r = 1
+ }
+ return
+ }
+
+ i := m - 1
+ for i > 0 && x[i] == y[i] {
+ i--
+ }
+
+ switch {
+ case x[i] < y[i]:
+ r = -1
+ case x[i] > y[i]:
+ r = 1
+ }
+ return
+}
+
+func (z nat) mulAddWW(x nat, y, r Word) nat {
+ m := len(x)
+ if m == 0 || y == 0 {
+ return z.setWord(r) // result is r
+ }
+ // m > 0
+
+ z = z.make(m + 1)
+ z[m] = mulAddVWW(z[0:m], x, y, r)
+
+ return z.norm()
+}
+
+// basicMul multiplies x and y and leaves the result in z.
+// The (non-normalized) result is placed in z[0 : len(x) + len(y)].
+func basicMul(z, x, y nat) {
+ z[0 : len(x)+len(y)].clear() // initialize z
+ for i, d := range y {
+ if d != 0 {
+ z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
+ }
+ }
+}
+
+// montgomery computes z mod m = x*y*2**(-n*_W) mod m,
+// assuming k = -1/m mod 2**_W.
+// z is used for storing the result which is returned;
+// z must not alias x, y or m.
+// See Gueron, "Efficient Software Implementations of Modular Exponentiation".
+// https://eprint.iacr.org/2011/239.pdf
+// In the terminology of that paper, this is an "Almost Montgomery Multiplication":
+// x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result
+// z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m.
+func (z nat) montgomery(x, y, m nat, k Word, n int) nat {
+ // This code assumes x, y, m are all the same length, n.
+ // (required by addMulVVW and the for loop).
+ // It also assumes that x, y are already reduced mod m,
+ // or else the result will not be properly reduced.
+ if len(x) != n || len(y) != n || len(m) != n {
+ panic("math/big: mismatched montgomery number lengths")
+ }
+ z = z.make(n * 2)
+ z.clear()
+ var c Word
+ for i := 0; i < n; i++ {
+ d := y[i]
+ c2 := addMulVVW(z[i:n+i], x, d)
+ t := z[i] * k
+ c3 := addMulVVW(z[i:n+i], m, t)
+ cx := c + c2
+ cy := cx + c3
+ z[n+i] = cy
+ if cx < c2 || cy < c3 {
+ c = 1
+ } else {
+ c = 0
+ }
+ }
+ if c != 0 {
+ subVV(z[:n], z[n:], m)
+ } else {
+ copy(z[:n], z[n:])
+ }
+ return z[:n]
+}
+
+// Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks.
+// Factored out for readability - do not use outside karatsuba.
+func karatsubaAdd(z, x nat, n int) {
+ if c := addVV(z[0:n], z, x); c != 0 {
+ addVW(z[n:n+n>>1], z[n:], c)
+ }
+}
+
+// Like karatsubaAdd, but does subtract.
+func karatsubaSub(z, x nat, n int) {
+ if c := subVV(z[0:n], z, x); c != 0 {
+ subVW(z[n:n+n>>1], z[n:], c)
+ }
+}
+
+// Operands that are shorter than karatsubaThreshold are multiplied using
+// "grade school" multiplication; for longer operands the Karatsuba algorithm
+// is used.
+var karatsubaThreshold = 40 // computed by calibrate_test.go
+
+// karatsuba multiplies x and y and leaves the result in z.
+// Both x and y must have the same length n and n must be a
+// power of 2. The result vector z must have len(z) >= 6*n.
+// The (non-normalized) result is placed in z[0 : 2*n].
+func karatsuba(z, x, y nat) {
+ n := len(y)
+
+ // Switch to basic multiplication if numbers are odd or small.
+ // (n is always even if karatsubaThreshold is even, but be
+ // conservative)
+ if n&1 != 0 || n < karatsubaThreshold || n < 2 {
+ basicMul(z, x, y)
+ return
+ }
+ // n&1 == 0 && n >= karatsubaThreshold && n >= 2
+
+ // Karatsuba multiplication is based on the observation that
+ // for two numbers x and y with:
+ //
+ // x = x1*b + x0
+ // y = y1*b + y0
+ //
+ // the product x*y can be obtained with 3 products z2, z1, z0
+ // instead of 4:
+ //
+ // x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0
+ // = z2*b*b + z1*b + z0
+ //
+ // with:
+ //
+ // xd = x1 - x0
+ // yd = y0 - y1
+ //
+ // z1 = xd*yd + z2 + z0
+ // = (x1-x0)*(y0 - y1) + z2 + z0
+ // = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0
+ // = x1*y0 - z2 - z0 + x0*y1 + z2 + z0
+ // = x1*y0 + x0*y1
+
+ // split x, y into "digits"
+ n2 := n >> 1 // n2 >= 1
+ x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0
+ y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0
+
+ // z is used for the result and temporary storage:
+ //
+ // 6*n 5*n 4*n 3*n 2*n 1*n 0*n
+ // z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ]
+ //
+ // For each recursive call of karatsuba, an unused slice of
+ // z is passed in that has (at least) half the length of the
+ // caller's z.
+
+ // compute z0 and z2 with the result "in place" in z
+ karatsuba(z, x0, y0) // z0 = x0*y0
+ karatsuba(z[n:], x1, y1) // z2 = x1*y1
+
+ // compute xd (or the negative value if underflow occurs)
+ s := 1 // sign of product xd*yd
+ xd := z[2*n : 2*n+n2]
+ if subVV(xd, x1, x0) != 0 { // x1-x0
+ s = -s
+ subVV(xd, x0, x1) // x0-x1
+ }
+
+ // compute yd (or the negative value if underflow occurs)
+ yd := z[2*n+n2 : 3*n]
+ if subVV(yd, y0, y1) != 0 { // y0-y1
+ s = -s
+ subVV(yd, y1, y0) // y1-y0
+ }
+
+ // p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0
+ // p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0
+ p := z[n*3:]
+ karatsuba(p, xd, yd)
+
+ // save original z2:z0
+ // (ok to use upper half of z since we're done recurring)
+ r := z[n*4:]
+ copy(r, z[:n*2])
+
+ // add up all partial products
+ //
+ // 2*n n 0
+ // z = [ z2 | z0 ]
+ // + [ z0 ]
+ // + [ z2 ]
+ // + [ p ]
+ //
+ karatsubaAdd(z[n2:], r, n)
+ karatsubaAdd(z[n2:], r[n:], n)
+ if s > 0 {
+ karatsubaAdd(z[n2:], p, n)
+ } else {
+ karatsubaSub(z[n2:], p, n)
+ }
+}
+
+// alias reports whether x and y share the same base array.
+//
+// Note: alias assumes that the capacity of underlying arrays
+// is never changed for nat values; i.e. that there are
+// no 3-operand slice expressions in this code (or worse,
+// reflect-based operations to the same effect).
+func alias(x, y nat) bool {
+ return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]
+}
+
+// addAt implements z += x<<(_W*i); z must be long enough.
+// (we don't use nat.add because we need z to stay the same
+// slice, and we don't need to normalize z after each addition)
+func addAt(z, x nat, i int) {
+ if n := len(x); n > 0 {
+ if c := addVV(z[i:i+n], z[i:], x); c != 0 {
+ j := i + n
+ if j < len(z) {
+ addVW(z[j:], z[j:], c)
+ }
+ }
+ }
+}
+
+// karatsubaLen computes an approximation to the maximum k <= n such that
+// k = p<<i for a number p <= threshold and an i >= 0. Thus, the
+// result is the largest number that can be divided repeatedly by 2 before
+// becoming about the value of threshold.
+func karatsubaLen(n, threshold int) int {
+ i := uint(0)
+ for n > threshold {
+ n >>= 1
+ i++
+ }
+ return n << i
+}
+
+func (z nat) mul(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+
+ switch {
+ case m < n:
+ return z.mul(y, x)
+ case m == 0 || n == 0:
+ return z[:0]
+ case n == 1:
+ return z.mulAddWW(x, y[0], 0)
+ }
+ // m >= n > 1
+
+ // determine if z can be reused
+ if alias(z, x) || alias(z, y) {
+ z = nil // z is an alias for x or y - cannot reuse
+ }
+
+ // use basic multiplication if the numbers are small
+ if n < karatsubaThreshold {
+ z = z.make(m + n)
+ basicMul(z, x, y)
+ return z.norm()
+ }
+ // m >= n && n >= karatsubaThreshold && n >= 2
+
+ // determine Karatsuba length k such that
+ //
+ // x = xh*b + x0 (0 <= x0 < b)
+ // y = yh*b + y0 (0 <= y0 < b)
+ // b = 1<<(_W*k) ("base" of digits xi, yi)
+ //
+ k := karatsubaLen(n, karatsubaThreshold)
+ // k <= n
+
+ // multiply x0 and y0 via Karatsuba
+ x0 := x[0:k] // x0 is not normalized
+ y0 := y[0:k] // y0 is not normalized
+ z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y
+ karatsuba(z, x0, y0)
+ z = z[0 : m+n] // z has final length but may be incomplete
+ z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m)
+
+ // If xh != 0 or yh != 0, add the missing terms to z. For
+ //
+ // xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b)
+ // yh = y1*b (0 <= y1 < b)
+ //
+ // the missing terms are
+ //
+ // x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0
+ //
+ // since all the yi for i > 1 are 0 by choice of k: If any of them
+ // were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would
+ // be a larger valid threshold contradicting the assumption about k.
+ //
+ if k < n || m != n {
+ tp := getNat(3 * k)
+ t := *tp
+
+ // add x0*y1*b
+ x0 := x0.norm()
+ y1 := y[k:] // y1 is normalized because y is
+ t = t.mul(x0, y1) // update t so we don't lose t's underlying array
+ addAt(z, t, k)
+
+ // add xi*y0<<i, xi*y1*b<<(i+k)
+ y0 := y0.norm()
+ for i := k; i < len(x); i += k {
+ xi := x[i:]
+ if len(xi) > k {
+ xi = xi[:k]
+ }
+ xi = xi.norm()
+ t = t.mul(xi, y0)
+ addAt(z, t, i)
+ t = t.mul(xi, y1)
+ addAt(z, t, i+k)
+ }
+
+ putNat(tp)
+ }
+
+ return z.norm()
+}
+
+// basicSqr sets z = x*x and is asymptotically faster than basicMul
+// by about a factor of 2, but slower for small arguments due to overhead.
+// Requirements: len(x) > 0, len(z) == 2*len(x)
+// The (non-normalized) result is placed in z.
+func basicSqr(z, x nat) {
+ n := len(x)
+ tp := getNat(2 * n)
+ t := *tp // temporary variable to hold the products
+ t.clear()
+ z[1], z[0] = mulWW(x[0], x[0]) // the initial square
+ for i := 1; i < n; i++ {
+ d := x[i]
+ // z collects the squares x[i] * x[i]
+ z[2*i+1], z[2*i] = mulWW(d, d)
+ // t collects the products x[i] * x[j] where j < i
+ t[2*i] = addMulVVW(t[i:2*i], x[0:i], d)
+ }
+ t[2*n-1] = shlVU(t[1:2*n-1], t[1:2*n-1], 1) // double the j < i products
+ addVV(z, z, t) // combine the result
+ putNat(tp)
+}
+
+// karatsubaSqr squares x and leaves the result in z.
+// len(x) must be a power of 2 and len(z) >= 6*len(x).
+// The (non-normalized) result is placed in z[0 : 2*len(x)].
+//
+// The algorithm and the layout of z are the same as for karatsuba.
+func karatsubaSqr(z, x nat) {
+ n := len(x)
+
+ if n&1 != 0 || n < karatsubaSqrThreshold || n < 2 {
+ basicSqr(z[:2*n], x)
+ return
+ }
+
+ n2 := n >> 1
+ x1, x0 := x[n2:], x[0:n2]
+
+ karatsubaSqr(z, x0)
+ karatsubaSqr(z[n:], x1)
+
+ // s = sign(xd*yd) == -1 for xd != 0; s == 1 for xd == 0
+ xd := z[2*n : 2*n+n2]
+ if subVV(xd, x1, x0) != 0 {
+ subVV(xd, x0, x1)
+ }
+
+ p := z[n*3:]
+ karatsubaSqr(p, xd)
+
+ r := z[n*4:]
+ copy(r, z[:n*2])
+
+ karatsubaAdd(z[n2:], r, n)
+ karatsubaAdd(z[n2:], r[n:], n)
+ karatsubaSub(z[n2:], p, n) // s == -1 for p != 0; s == 1 for p == 0
+}
+
+// Operands that are shorter than basicSqrThreshold are squared using
+// "grade school" multiplication; for operands longer than karatsubaSqrThreshold
+// we use the Karatsuba algorithm optimized for x == y.
+var basicSqrThreshold = 20 // computed by calibrate_test.go
+var karatsubaSqrThreshold = 260 // computed by calibrate_test.go
+
+// z = x*x
+func (z nat) sqr(x nat) nat {
+ n := len(x)
+ switch {
+ case n == 0:
+ return z[:0]
+ case n == 1:
+ d := x[0]
+ z = z.make(2)
+ z[1], z[0] = mulWW(d, d)
+ return z.norm()
+ }
+
+ if alias(z, x) {
+ z = nil // z is an alias for x - cannot reuse
+ }
+
+ if n < basicSqrThreshold {
+ z = z.make(2 * n)
+ basicMul(z, x, x)
+ return z.norm()
+ }
+ if n < karatsubaSqrThreshold {
+ z = z.make(2 * n)
+ basicSqr(z, x)
+ return z.norm()
+ }
+
+ // Use Karatsuba multiplication optimized for x == y.
+ // The algorithm and layout of z are the same as for mul.
+
+ // z = (x1*b + x0)^2 = x1^2*b^2 + 2*x1*x0*b + x0^2
+
+ k := karatsubaLen(n, karatsubaSqrThreshold)
+
+ x0 := x[0:k]
+ z = z.make(max(6*k, 2*n))
+ karatsubaSqr(z, x0) // z = x0^2
+ z = z[0 : 2*n]
+ z[2*k:].clear()
+
+ if k < n {
+ tp := getNat(2 * k)
+ t := *tp
+ x0 := x0.norm()
+ x1 := x[k:]
+ t = t.mul(x0, x1)
+ addAt(z, t, k)
+ addAt(z, t, k) // z = 2*x1*x0*b + x0^2
+ t = t.sqr(x1)
+ addAt(z, t, 2*k) // z = x1^2*b^2 + 2*x1*x0*b + x0^2
+ putNat(tp)
+ }
+
+ return z.norm()
+}
+
+// mulRange computes the product of all the unsigned integers in the
+// range [a, b] inclusively. If a > b (empty range), the result is 1.
+func (z nat) mulRange(a, b uint64) nat {
+ switch {
+ case a == 0:
+ // cut long ranges short (optimization)
+ return z.setUint64(0)
+ case a > b:
+ return z.setUint64(1)
+ case a == b:
+ return z.setUint64(a)
+ case a+1 == b:
+ return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b))
+ }
+ m := a + (b-a)/2 // avoid overflow
+ return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b))
+}
+
+// getNat returns a *nat of len n. The contents may not be zero.
+// The pool holds *nat to avoid allocation when converting to interface{}.
+func getNat(n int) *nat {
+ var z *nat
+ if v := natPool.Get(); v != nil {
+ z = v.(*nat)
+ }
+ if z == nil {
+ z = new(nat)
+ }
+ *z = z.make(n)
+ if n > 0 {
+ (*z)[0] = 0xfedcb // break code expecting zero
+ }
+ return z
+}
+
+func putNat(x *nat) {
+ natPool.Put(x)
+}
+
+var natPool sync.Pool
+
+// bitLen returns the length of x in bits.
+// Unlike most methods, it works even if x is not normalized.
+func (x nat) bitLen() int {
+ // This function is used in cryptographic operations. It must not leak
+ // anything but the Int's sign and bit size through side-channels. Any
+ // changes must be reviewed by a security expert.
+ if i := len(x) - 1; i >= 0 {
+ // bits.Len uses a lookup table for the low-order bits on some
+ // architectures. Neutralize any input-dependent behavior by setting all
+ // bits after the first one bit.
+ top := uint(x[i])
+ top |= top >> 1
+ top |= top >> 2
+ top |= top >> 4
+ top |= top >> 8
+ top |= top >> 16
+ top |= top >> 16 >> 16 // ">> 32" doesn't compile on 32-bit architectures
+ return i*_W + bits.Len(top)
+ }
+ return 0
+}
+
+// trailingZeroBits returns the number of consecutive least significant zero
+// bits of x.
+func (x nat) trailingZeroBits() uint {
+ if len(x) == 0 {
+ return 0
+ }
+ var i uint
+ for x[i] == 0 {
+ i++
+ }
+ // x[i] != 0
+ return i*_W + uint(bits.TrailingZeros(uint(x[i])))
+}
+
+// isPow2 returns i, true when x == 2**i and 0, false otherwise.
+func (x nat) isPow2() (uint, bool) {
+ var i uint
+ for x[i] == 0 {
+ i++
+ }
+ if i == uint(len(x))-1 && x[i]&(x[i]-1) == 0 {
+ return i*_W + uint(bits.TrailingZeros(uint(x[i]))), true
+ }
+ return 0, false
+}
+
+func same(x, y nat) bool {
+ return len(x) == len(y) && len(x) > 0 && &x[0] == &y[0]
+}
+
+// z = x << s
+func (z nat) shl(x nat, s uint) nat {
+ if s == 0 {
+ if same(z, x) {
+ return z
+ }
+ if !alias(z, x) {
+ return z.set(x)
+ }
+ }
+
+ m := len(x)
+ if m == 0 {
+ return z[:0]
+ }
+ // m > 0
+
+ n := m + int(s/_W)
+ z = z.make(n + 1)
+ z[n] = shlVU(z[n-m:n], x, s%_W)
+ z[0 : n-m].clear()
+
+ return z.norm()
+}
+
+// z = x >> s
+func (z nat) shr(x nat, s uint) nat {
+ if s == 0 {
+ if same(z, x) {
+ return z
+ }
+ if !alias(z, x) {
+ return z.set(x)
+ }
+ }
+
+ m := len(x)
+ n := m - int(s/_W)
+ if n <= 0 {
+ return z[:0]
+ }
+ // n > 0
+
+ z = z.make(n)
+ shrVU(z, x[m-n:], s%_W)
+
+ return z.norm()
+}
+
+func (z nat) setBit(x nat, i uint, b uint) nat {
+ j := int(i / _W)
+ m := Word(1) << (i % _W)
+ n := len(x)
+ switch b {
+ case 0:
+ z = z.make(n)
+ copy(z, x)
+ if j >= n {
+ // no need to grow
+ return z
+ }
+ z[j] &^= m
+ return z.norm()
+ case 1:
+ if j >= n {
+ z = z.make(j + 1)
+ z[n:].clear()
+ } else {
+ z = z.make(n)
+ }
+ copy(z, x)
+ z[j] |= m
+ // no need to normalize
+ return z
+ }
+ panic("set bit is not 0 or 1")
+}
+
+// bit returns the value of the i'th bit, with lsb == bit 0.
+func (x nat) bit(i uint) uint {
+ j := i / _W
+ if j >= uint(len(x)) {
+ return 0
+ }
+ // 0 <= j < len(x)
+ return uint(x[j] >> (i % _W) & 1)
+}
+
+// sticky returns 1 if there's a 1 bit within the
+// i least significant bits, otherwise it returns 0.
+func (x nat) sticky(i uint) uint {
+ j := i / _W
+ if j >= uint(len(x)) {
+ if len(x) == 0 {
+ return 0
+ }
+ return 1
+ }
+ // 0 <= j < len(x)
+ for _, x := range x[:j] {
+ if x != 0 {
+ return 1
+ }
+ }
+ if x[j]<<(_W-i%_W) != 0 {
+ return 1
+ }
+ return 0
+}
+
+func (z nat) and(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+ if m > n {
+ m = n
+ }
+ // m <= n
+
+ z = z.make(m)
+ for i := 0; i < m; i++ {
+ z[i] = x[i] & y[i]
+ }
+
+ return z.norm()
+}
+
+// trunc returns z = x mod 2ⁿ.
+func (z nat) trunc(x nat, n uint) nat {
+ w := (n + _W - 1) / _W
+ if uint(len(x)) < w {
+ return z.set(x)
+ }
+ z = z.make(int(w))
+ copy(z, x)
+ if n%_W != 0 {
+ z[len(z)-1] &= 1<<(n%_W) - 1
+ }
+ return z.norm()
+}
+
+func (z nat) andNot(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+ if n > m {
+ n = m
+ }
+ // m >= n
+
+ z = z.make(m)
+ for i := 0; i < n; i++ {
+ z[i] = x[i] &^ y[i]
+ }
+ copy(z[n:m], x[n:m])
+
+ return z.norm()
+}
+
+func (z nat) or(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+ s := x
+ if m < n {
+ n, m = m, n
+ s = y
+ }
+ // m >= n
+
+ z = z.make(m)
+ for i := 0; i < n; i++ {
+ z[i] = x[i] | y[i]
+ }
+ copy(z[n:m], s[n:m])
+
+ return z.norm()
+}
+
+func (z nat) xor(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+ s := x
+ if m < n {
+ n, m = m, n
+ s = y
+ }
+ // m >= n
+
+ z = z.make(m)
+ for i := 0; i < n; i++ {
+ z[i] = x[i] ^ y[i]
+ }
+ copy(z[n:m], s[n:m])
+
+ return z.norm()
+}
+
+// random creates a random integer in [0..limit), using the space in z if
+// possible. n is the bit length of limit.
+func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
+ if alias(z, limit) {
+ z = nil // z is an alias for limit - cannot reuse
+ }
+ z = z.make(len(limit))
+
+ bitLengthOfMSW := uint(n % _W)
+ if bitLengthOfMSW == 0 {
+ bitLengthOfMSW = _W
+ }
+ mask := Word((1 << bitLengthOfMSW) - 1)
+
+ for {
+ switch _W {
+ case 32:
+ for i := range z {
+ z[i] = Word(rand.Uint32())
+ }
+ case 64:
+ for i := range z {
+ z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
+ }
+ default:
+ panic("unknown word size")
+ }
+ z[len(limit)-1] &= mask
+ if z.cmp(limit) < 0 {
+ break
+ }
+ }
+
+ return z.norm()
+}
+
+// If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m;
+// otherwise it sets z to x**y. The result is the value of z.
+func (z nat) expNN(x, y, m nat, slow bool) nat {
+ if alias(z, x) || alias(z, y) {
+ // We cannot allow in-place modification of x or y.
+ z = nil
+ }
+
+ // x**y mod 1 == 0
+ if len(m) == 1 && m[0] == 1 {
+ return z.setWord(0)
+ }
+ // m == 0 || m > 1
+
+ // x**0 == 1
+ if len(y) == 0 {
+ return z.setWord(1)
+ }
+ // y > 0
+
+ // 0**y = 0
+ if len(x) == 0 {
+ return z.setWord(0)
+ }
+ // x > 0
+
+ // 1**y = 1
+ if len(x) == 1 && x[0] == 1 {
+ return z.setWord(1)
+ }
+ // x > 1
+
+ // x**1 == x
+ if len(y) == 1 && y[0] == 1 {
+ if len(m) != 0 {
+ return z.rem(x, m)
+ }
+ return z.set(x)
+ }
+ // y > 1
+
+ if len(m) != 0 {
+ // We likely end up being as long as the modulus.
+ z = z.make(len(m))
+
+ // If the exponent is large, we use the Montgomery method for odd values,
+ // and a 4-bit, windowed exponentiation for powers of two,
+ // and a CRT-decomposed Montgomery method for the remaining values
+ // (even values times non-trivial odd values, which decompose into one
+ // instance of each of the first two cases).
+ if len(y) > 1 && !slow {
+ if m[0]&1 == 1 {
+ return z.expNNMontgomery(x, y, m)
+ }
+ if logM, ok := m.isPow2(); ok {
+ return z.expNNWindowed(x, y, logM)
+ }
+ return z.expNNMontgomeryEven(x, y, m)
+ }
+ }
+
+ z = z.set(x)
+ v := y[len(y)-1] // v > 0 because y is normalized and y > 0
+ shift := nlz(v) + 1
+ v <<= shift
+ var q nat
+
+ const mask = 1 << (_W - 1)
+
+ // We walk through the bits of the exponent one by one. Each time we
+ // see a bit, we square, thus doubling the power. If the bit is a one,
+ // we also multiply by x, thus adding one to the power.
+
+ w := _W - int(shift)
+ // zz and r are used to avoid allocating in mul and div as
+ // otherwise the arguments would alias.
+ var zz, r nat
+ for j := 0; j < w; j++ {
+ zz = zz.sqr(z)
+ zz, z = z, zz
+
+ if v&mask != 0 {
+ zz = zz.mul(z, x)
+ zz, z = z, zz
+ }
+
+ if len(m) != 0 {
+ zz, r = zz.div(r, z, m)
+ zz, r, q, z = q, z, zz, r
+ }
+
+ v <<= 1
+ }
+
+ for i := len(y) - 2; i >= 0; i-- {
+ v = y[i]
+
+ for j := 0; j < _W; j++ {
+ zz = zz.sqr(z)
+ zz, z = z, zz
+
+ if v&mask != 0 {
+ zz = zz.mul(z, x)
+ zz, z = z, zz
+ }
+
+ if len(m) != 0 {
+ zz, r = zz.div(r, z, m)
+ zz, r, q, z = q, z, zz, r
+ }
+
+ v <<= 1
+ }
+ }
+
+ return z.norm()
+}
+
+// expNNMontgomeryEven calculates x**y mod m where m = m1 × m2 for m1 = 2ⁿ and m2 odd.
+// It uses two recursive calls to expNN for x**y mod m1 and x**y mod m2
+// and then uses the Chinese Remainder Theorem to combine the results.
+// The recursive call using m1 will use expNNWindowed,
+// while the recursive call using m2 will use expNNMontgomery.
+// For more details, see Ç. K. Koç, “Montgomery Reduction with Even Modulus”,
+// IEE Proceedings: Computers and Digital Techniques, 141(5) 314-316, September 1994.
+// http://www.people.vcu.edu/~jwang3/CMSC691/j34monex.pdf
+func (z nat) expNNMontgomeryEven(x, y, m nat) nat {
+ // Split m = m₁ × m₂ where m₁ = 2ⁿ
+ n := m.trailingZeroBits()
+ m1 := nat(nil).shl(natOne, n)
+ m2 := nat(nil).shr(m, n)
+
+ // We want z = x**y mod m.
+ // z₁ = x**y mod m1 = (x**y mod m) mod m1 = z mod m1
+ // z₂ = x**y mod m2 = (x**y mod m) mod m2 = z mod m2
+ // (We are using the math/big convention for names here,
+ // where the computation is z = x**y mod m, so its parts are z1 and z2.
+ // The paper is computing x = a**e mod n; it refers to these as x2 and z1.)
+ z1 := nat(nil).expNN(x, y, m1, false)
+ z2 := nat(nil).expNN(x, y, m2, false)
+
+ // Reconstruct z from z₁, z₂ using CRT, using algorithm from paper,
+ // which uses only a single modInverse (and an easy one at that).
+ // p = (z₁ - z₂) × m₂⁻¹ (mod m₁)
+ // z = z₂ + p × m₂
+ // The final addition is in range because:
+ // z = z₂ + p × m₂
+ // ≤ z₂ + (m₁-1) × m₂
+ // < m₂ + (m₁-1) × m₂
+ // = m₁ × m₂
+ // = m.
+ z = z.set(z2)
+
+ // Compute (z₁ - z₂) mod m1 [m1 == 2**n] into z1.
+ z1 = z1.subMod2N(z1, z2, n)
+
+ // Reuse z2 for p = (z₁ - z₂) [in z1] * m2⁻¹ (mod m₁ [= 2ⁿ]).
+ m2inv := nat(nil).modInverse(m2, m1)
+ z2 = z2.mul(z1, m2inv)
+ z2 = z2.trunc(z2, n)
+
+ // Reuse z1 for p * m2.
+ z = z.add(z, z1.mul(z2, m2))
+
+ return z
+}
+
+// expNNWindowed calculates x**y mod m using a fixed, 4-bit window,
+// where m = 2**logM.
+func (z nat) expNNWindowed(x, y nat, logM uint) nat {
+ if len(y) <= 1 {
+ panic("big: misuse of expNNWindowed")
+ }
+ if x[0]&1 == 0 {
+ // len(y) > 1, so y > logM.
+ // x is even, so x**y is a multiple of 2**y which is a multiple of 2**logM.
+ return z.setWord(0)
+ }
+ if logM == 1 {
+ return z.setWord(1)
+ }
+
+ // zz is used to avoid allocating in mul as otherwise
+ // the arguments would alias.
+ w := int((logM + _W - 1) / _W)
+ zzp := getNat(w)
+ zz := *zzp
+
+ const n = 4
+ // powers[i] contains x^i.
+ var powers [1 << n]*nat
+ for i := range powers {
+ powers[i] = getNat(w)
+ }
+ *powers[0] = powers[0].set(natOne)
+ *powers[1] = powers[1].trunc(x, logM)
+ for i := 2; i < 1<<n; i += 2 {
+ p2, p, p1 := powers[i/2], powers[i], powers[i+1]
+ *p = p.sqr(*p2)
+ *p = p.trunc(*p, logM)
+ *p1 = p1.mul(*p, x)
+ *p1 = p1.trunc(*p1, logM)
+ }
+
+ // Because phi(2**logM) = 2**(logM-1), x**(2**(logM-1)) = 1,
+ // so we can compute x**(y mod 2**(logM-1)) instead of x**y.
+ // That is, we can throw away all but the bottom logM-1 bits of y.
+ // Instead of allocating a new y, we start reading y at the right word
+ // and truncate it appropriately at the start of the loop.
+ i := len(y) - 1
+ mtop := int((logM - 2) / _W) // -2 because the top word of N bits is the (N-1)/W'th word.
+ mmask := ^Word(0)
+ if mbits := (logM - 1) & (_W - 1); mbits != 0 {
+ mmask = (1 << mbits) - 1
+ }
+ if i > mtop {
+ i = mtop
+ }
+ advance := false
+ z = z.setWord(1)
+ for ; i >= 0; i-- {
+ yi := y[i]
+ if i == mtop {
+ yi &= mmask
+ }
+ for j := 0; j < _W; j += n {
+ if advance {
+ // Account for use of 4 bits in previous iteration.
+ // Unrolled loop for significant performance
+ // gain. Use go test -bench=".*" in crypto/rsa
+ // to check performance before making changes.
+ zz = zz.sqr(z)
+ zz, z = z, zz
+ z = z.trunc(z, logM)
+
+ zz = zz.sqr(z)
+ zz, z = z, zz
+ z = z.trunc(z, logM)
+
+ zz = zz.sqr(z)
+ zz, z = z, zz
+ z = z.trunc(z, logM)
+
+ zz = zz.sqr(z)
+ zz, z = z, zz
+ z = z.trunc(z, logM)
+ }
+
+ zz = zz.mul(z, *powers[yi>>(_W-n)])
+ zz, z = z, zz
+ z = z.trunc(z, logM)
+
+ yi <<= n
+ advance = true
+ }
+ }
+
+ *zzp = zz
+ putNat(zzp)
+ for i := range powers {
+ putNat(powers[i])
+ }
+
+ return z.norm()
+}
+
+// expNNMontgomery calculates x**y mod m using a fixed, 4-bit window.
+// Uses Montgomery representation.
+func (z nat) expNNMontgomery(x, y, m nat) nat {
+ numWords := len(m)
+
+ // We want the lengths of x and m to be equal.
+ // It is OK if x >= m as long as len(x) == len(m).
+ if len(x) > numWords {
+ _, x = nat(nil).div(nil, x, m)
+ // Note: now len(x) <= numWords, not guaranteed ==.
+ }
+ if len(x) < numWords {
+ rr := make(nat, numWords)
+ copy(rr, x)
+ x = rr
+ }
+
+ // Ideally the precomputations would be performed outside, and reused
+ // k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On Newton–Raphson
+ // Iteration for Multiplicative Inverses Modulo Prime Powers".
+ k0 := 2 - m[0]
+ t := m[0] - 1
+ for i := 1; i < _W; i <<= 1 {
+ t *= t
+ k0 *= (t + 1)
+ }
+ k0 = -k0
+
+ // RR = 2**(2*_W*len(m)) mod m
+ RR := nat(nil).setWord(1)
+ zz := nat(nil).shl(RR, uint(2*numWords*_W))
+ _, RR = nat(nil).div(RR, zz, m)
+ if len(RR) < numWords {
+ zz = zz.make(numWords)
+ copy(zz, RR)
+ RR = zz
+ }
+ // one = 1, with equal length to that of m
+ one := make(nat, numWords)
+ one[0] = 1
+
+ const n = 4
+ // powers[i] contains x^i
+ var powers [1 << n]nat
+ powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
+ powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
+ for i := 2; i < 1<<n; i++ {
+ powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
+ }
+
+ // initialize z = 1 (Montgomery 1)
+ z = z.make(numWords)
+ copy(z, powers[0])
+
+ zz = zz.make(numWords)
+
+ // same windowed exponent, but with Montgomery multiplications
+ for i := len(y) - 1; i >= 0; i-- {
+ yi := y[i]
+ for j := 0; j < _W; j += n {
+ if i != len(y)-1 || j != 0 {
+ zz = zz.montgomery(z, z, m, k0, numWords)
+ z = z.montgomery(zz, zz, m, k0, numWords)
+ zz = zz.montgomery(z, z, m, k0, numWords)
+ z = z.montgomery(zz, zz, m, k0, numWords)
+ }
+ zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords)
+ z, zz = zz, z
+ yi <<= n
+ }
+ }
+ // convert to regular number
+ zz = zz.montgomery(z, one, m, k0, numWords)
+
+ // One last reduction, just in case.
+ // See golang.org/issue/13907.
+ if zz.cmp(m) >= 0 {
+ // Common case is m has high bit set; in that case,
+ // since zz is the same length as m, there can be just
+ // one multiple of m to remove. Just subtract.
+ // We think that the subtract should be sufficient in general,
+ // so do that unconditionally, but double-check,
+ // in case our beliefs are wrong.
+ // The div is not expected to be reached.
+ zz = zz.sub(zz, m)
+ if zz.cmp(m) >= 0 {
+ _, zz = nat(nil).div(nil, zz, m)
+ }
+ }
+
+ return zz.norm()
+}
+
+// bytes writes the value of z into buf using big-endian encoding.
+// The value of z is encoded in the slice buf[i:]. If the value of z
+// cannot be represented in buf, bytes panics. The number i of unused
+// bytes at the beginning of buf is returned as result.
+func (z nat) bytes(buf []byte) (i int) {
+ // This function is used in cryptographic operations. It must not leak
+ // anything but the Int's sign and bit size through side-channels. Any
+ // changes must be reviewed by a security expert.
+ i = len(buf)
+ for _, d := range z {
+ for j := 0; j < _S; j++ {
+ i--
+ if i >= 0 {
+ buf[i] = byte(d)
+ } else if byte(d) != 0 {
+ panic("math/big: buffer too small to fit value")
+ }
+ d >>= 8
+ }
+ }
+
+ if i < 0 {
+ i = 0
+ }
+ for i < len(buf) && buf[i] == 0 {
+ i++
+ }
+
+ return
+}
+
+// bigEndianWord returns the contents of buf interpreted as a big-endian encoded Word value.
+func bigEndianWord(buf []byte) Word {
+ if _W == 64 {
+ return Word(binary.BigEndian.Uint64(buf))
+ }
+ return Word(binary.BigEndian.Uint32(buf))
+}
+
+// setBytes interprets buf as the bytes of a big-endian unsigned
+// integer, sets z to that value, and returns z.
+func (z nat) setBytes(buf []byte) nat {
+ z = z.make((len(buf) + _S - 1) / _S)
+
+ i := len(buf)
+ for k := 0; i >= _S; k++ {
+ z[k] = bigEndianWord(buf[i-_S : i])
+ i -= _S
+ }
+ if i > 0 {
+ var d Word
+ for s := uint(0); i > 0; s += 8 {
+ d |= Word(buf[i-1]) << s
+ i--
+ }
+ z[len(z)-1] = d
+ }
+
+ return z.norm()
+}
+
+// sqrt sets z = ⌊√x⌋
+func (z nat) sqrt(x nat) nat {
+ if x.cmp(natOne) <= 0 {
+ return z.set(x)
+ }
+ if alias(z, x) {
+ z = nil
+ }
+
+ // Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller.
+ // See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt).
+ // https://members.loria.fr/PZimmermann/mca/pub226.html
+ // If x is one less than a perfect square, the sequence oscillates between the correct z and z+1;
+ // otherwise it converges to the correct z and stays there.
+ var z1, z2 nat
+ z1 = z
+ z1 = z1.setUint64(1)
+ z1 = z1.shl(z1, uint(x.bitLen()+1)/2) // must be ≥ √x
+ for n := 0; ; n++ {
+ z2, _ = z2.div(nil, x, z1)
+ z2 = z2.add(z2, z1)
+ z2 = z2.shr(z2, 1)
+ if z2.cmp(z1) >= 0 {
+ // z1 is answer.
+ // Figure out whether z1 or z2 is currently aliased to z by looking at loop count.
+ if n&1 == 0 {
+ return z1
+ }
+ return z.set(z1)
+ }
+ z1, z2 = z2, z1
+ }
+}
+
+// subMod2N returns z = (x - y) mod 2ⁿ.
+func (z nat) subMod2N(x, y nat, n uint) nat {
+ if uint(x.bitLen()) > n {
+ if alias(z, x) {
+ // ok to overwrite x in place
+ x = x.trunc(x, n)
+ } else {
+ x = nat(nil).trunc(x, n)
+ }
+ }
+ if uint(y.bitLen()) > n {
+ if alias(z, y) {
+ // ok to overwrite y in place
+ y = y.trunc(y, n)
+ } else {
+ y = nat(nil).trunc(y, n)
+ }
+ }
+ if x.cmp(y) >= 0 {
+ return z.sub(x, y)
+ }
+ // x - y < 0; x - y mod 2ⁿ = x - y + 2ⁿ = 2ⁿ - (y - x) = 1 + 2ⁿ-1 - (y - x) = 1 + ^(y - x).
+ z = z.sub(y, x)
+ for uint(len(z))*_W < n {
+ z = append(z, 0)
+ }
+ for i := range z {
+ z[i] = ^z[i]
+ }
+ z = z.trunc(z, n)
+ return z.add(z, natOne)
+}
diff --git a/src/math/big/nat_test.go b/src/math/big/nat_test.go
new file mode 100644
index 0000000..4722548
--- /dev/null
+++ b/src/math/big/nat_test.go
@@ -0,0 +1,891 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "fmt"
+ "math"
+ "runtime"
+ "strings"
+ "testing"
+)
+
+var cmpTests = []struct {
+ x, y nat
+ r int
+}{
+ {nil, nil, 0},
+ {nil, nat(nil), 0},
+ {nat(nil), nil, 0},
+ {nat(nil), nat(nil), 0},
+ {nat{0}, nat{0}, 0},
+ {nat{0}, nat{1}, -1},
+ {nat{1}, nat{0}, 1},
+ {nat{1}, nat{1}, 0},
+ {nat{0, _M}, nat{1}, 1},
+ {nat{1}, nat{0, _M}, -1},
+ {nat{1, _M}, nat{0, _M}, 1},
+ {nat{0, _M}, nat{1, _M}, -1},
+ {nat{16, 571956, 8794, 68}, nat{837, 9146, 1, 754489}, -1},
+ {nat{34986, 41, 105, 1957}, nat{56, 7458, 104, 1957}, 1},
+}
+
+func TestCmp(t *testing.T) {
+ for i, a := range cmpTests {
+ r := a.x.cmp(a.y)
+ if r != a.r {
+ t.Errorf("#%d got r = %v; want %v", i, r, a.r)
+ }
+ }
+}
+
+type funNN func(z, x, y nat) nat
+type argNN struct {
+ z, x, y nat
+}
+
+var sumNN = []argNN{
+ {},
+ {nat{1}, nil, nat{1}},
+ {nat{1111111110}, nat{123456789}, nat{987654321}},
+ {nat{0, 0, 0, 1}, nil, nat{0, 0, 0, 1}},
+ {nat{0, 0, 0, 1111111110}, nat{0, 0, 0, 123456789}, nat{0, 0, 0, 987654321}},
+ {nat{0, 0, 0, 1}, nat{0, 0, _M}, nat{0, 0, 1}},
+}
+
+var prodNN = []argNN{
+ {},
+ {nil, nil, nil},
+ {nil, nat{991}, nil},
+ {nat{991}, nat{991}, nat{1}},
+ {nat{991 * 991}, nat{991}, nat{991}},
+ {nat{0, 0, 991 * 991}, nat{0, 991}, nat{0, 991}},
+ {nat{1 * 991, 2 * 991, 3 * 991, 4 * 991}, nat{1, 2, 3, 4}, nat{991}},
+ {nat{4, 11, 20, 30, 20, 11, 4}, nat{1, 2, 3, 4}, nat{4, 3, 2, 1}},
+ // 3^100 * 3^28 = 3^128
+ {
+ natFromString("11790184577738583171520872861412518665678211592275841109096961"),
+ natFromString("515377520732011331036461129765621272702107522001"),
+ natFromString("22876792454961"),
+ },
+ // z = 111....1 (70000 digits)
+ // x = 10^(99*700) + ... + 10^1400 + 10^700 + 1
+ // y = 111....1 (700 digits, larger than Karatsuba threshold on 32-bit and 64-bit)
+ {
+ natFromString(strings.Repeat("1", 70000)),
+ natFromString("1" + strings.Repeat(strings.Repeat("0", 699)+"1", 99)),
+ natFromString(strings.Repeat("1", 700)),
+ },
+ // z = 111....1 (20000 digits)
+ // x = 10^10000 + 1
+ // y = 111....1 (10000 digits)
+ {
+ natFromString(strings.Repeat("1", 20000)),
+ natFromString("1" + strings.Repeat("0", 9999) + "1"),
+ natFromString(strings.Repeat("1", 10000)),
+ },
+}
+
+func natFromString(s string) nat {
+ x, _, _, err := nat(nil).scan(strings.NewReader(s), 0, false)
+ if err != nil {
+ panic(err)
+ }
+ return x
+}
+
+func TestSet(t *testing.T) {
+ for _, a := range sumNN {
+ z := nat(nil).set(a.z)
+ if z.cmp(a.z) != 0 {
+ t.Errorf("got z = %v; want %v", z, a.z)
+ }
+ }
+}
+
+func testFunNN(t *testing.T, msg string, f funNN, a argNN) {
+ z := f(nil, a.x, a.y)
+ if z.cmp(a.z) != 0 {
+ t.Errorf("%s%+v\n\tgot z = %v; want %v", msg, a, z, a.z)
+ }
+}
+
+func TestFunNN(t *testing.T) {
+ for _, a := range sumNN {
+ arg := a
+ testFunNN(t, "add", nat.add, arg)
+
+ arg = argNN{a.z, a.y, a.x}
+ testFunNN(t, "add symmetric", nat.add, arg)
+
+ arg = argNN{a.x, a.z, a.y}
+ testFunNN(t, "sub", nat.sub, arg)
+
+ arg = argNN{a.y, a.z, a.x}
+ testFunNN(t, "sub symmetric", nat.sub, arg)
+ }
+
+ for _, a := range prodNN {
+ arg := a
+ testFunNN(t, "mul", nat.mul, arg)
+
+ arg = argNN{a.z, a.y, a.x}
+ testFunNN(t, "mul symmetric", nat.mul, arg)
+ }
+}
+
+var mulRangesN = []struct {
+ a, b uint64
+ prod string
+}{
+ {0, 0, "0"},
+ {1, 1, "1"},
+ {1, 2, "2"},
+ {1, 3, "6"},
+ {10, 10, "10"},
+ {0, 100, "0"},
+ {0, 1e9, "0"},
+ {1, 0, "1"}, // empty range
+ {100, 1, "1"}, // empty range
+ {1, 10, "3628800"}, // 10!
+ {1, 20, "2432902008176640000"}, // 20!
+ {1, 100,
+ "933262154439441526816992388562667004907159682643816214685929" +
+ "638952175999932299156089414639761565182862536979208272237582" +
+ "51185210916864000000000000000000000000", // 100!
+ },
+ {math.MaxUint64 - 0, math.MaxUint64, "18446744073709551615"},
+ {math.MaxUint64 - 1, math.MaxUint64, "340282366920938463408034375210639556610"},
+ {math.MaxUint64 - 2, math.MaxUint64, "6277101735386680761794095221682035635525021984684230311930"},
+ {math.MaxUint64 - 3, math.MaxUint64, "115792089237316195360799967654821100226821973275796746098729803619699194331160"},
+}
+
+func TestMulRangeN(t *testing.T) {
+ for i, r := range mulRangesN {
+ prod := string(nat(nil).mulRange(r.a, r.b).utoa(10))
+ if prod != r.prod {
+ t.Errorf("#%d: got %s; want %s", i, prod, r.prod)
+ }
+ }
+}
+
+// allocBytes returns the number of bytes allocated by invoking f.
+func allocBytes(f func()) uint64 {
+ var stats runtime.MemStats
+ runtime.ReadMemStats(&stats)
+ t := stats.TotalAlloc
+ f()
+ runtime.ReadMemStats(&stats)
+ return stats.TotalAlloc - t
+}
+
+// TestMulUnbalanced tests that multiplying numbers of different lengths
+// does not cause deep recursion and in turn allocate too much memory.
+// Test case for issue 3807.
+func TestMulUnbalanced(t *testing.T) {
+ defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(1))
+ x := rndNat(50000)
+ y := rndNat(40)
+ allocSize := allocBytes(func() {
+ nat(nil).mul(x, y)
+ })
+ inputSize := uint64(len(x)+len(y)) * _S
+ if ratio := allocSize / uint64(inputSize); ratio > 10 {
+ t.Errorf("multiplication uses too much memory (%d > %d times the size of inputs)", allocSize, ratio)
+ }
+}
+
+// rndNat returns a random nat value >= 0 of (usually) n words in length.
+// In extremely unlikely cases it may be smaller than n words if the top-
+// most words are 0.
+func rndNat(n int) nat {
+ return nat(rndV(n)).norm()
+}
+
+// rndNat1 is like rndNat but the result is guaranteed to be > 0.
+func rndNat1(n int) nat {
+ x := nat(rndV(n)).norm()
+ if len(x) == 0 {
+ x.setWord(1)
+ }
+ return x
+}
+
+func BenchmarkMul(b *testing.B) {
+ mulx := rndNat(1e4)
+ muly := rndNat(1e4)
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ var z nat
+ z.mul(mulx, muly)
+ }
+}
+
+func benchmarkNatMul(b *testing.B, nwords int) {
+ x := rndNat(nwords)
+ y := rndNat(nwords)
+ var z nat
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ z.mul(x, y)
+ }
+}
+
+var mulBenchSizes = []int{10, 100, 1000, 10000, 100000}
+
+func BenchmarkNatMul(b *testing.B) {
+ for _, n := range mulBenchSizes {
+ if isRaceBuilder && n > 1e3 {
+ continue
+ }
+ b.Run(fmt.Sprintf("%d", n), func(b *testing.B) {
+ benchmarkNatMul(b, n)
+ })
+ }
+}
+
+func TestNLZ(t *testing.T) {
+ var x Word = _B >> 1
+ for i := 0; i <= _W; i++ {
+ if int(nlz(x)) != i {
+ t.Errorf("failed at %x: got %d want %d", x, nlz(x), i)
+ }
+ x >>= 1
+ }
+}
+
+type shiftTest struct {
+ in nat
+ shift uint
+ out nat
+}
+
+var leftShiftTests = []shiftTest{
+ {nil, 0, nil},
+ {nil, 1, nil},
+ {natOne, 0, natOne},
+ {natOne, 1, natTwo},
+ {nat{1 << (_W - 1)}, 1, nat{0}},
+ {nat{1 << (_W - 1), 0}, 1, nat{0, 1}},
+}
+
+func TestShiftLeft(t *testing.T) {
+ for i, test := range leftShiftTests {
+ var z nat
+ z = z.shl(test.in, test.shift)
+ for j, d := range test.out {
+ if j >= len(z) || z[j] != d {
+ t.Errorf("#%d: got: %v want: %v", i, z, test.out)
+ break
+ }
+ }
+ }
+}
+
+var rightShiftTests = []shiftTest{
+ {nil, 0, nil},
+ {nil, 1, nil},
+ {natOne, 0, natOne},
+ {natOne, 1, nil},
+ {natTwo, 1, natOne},
+ {nat{0, 1}, 1, nat{1 << (_W - 1)}},
+ {nat{2, 1, 1}, 1, nat{1<<(_W-1) + 1, 1 << (_W - 1)}},
+}
+
+func TestShiftRight(t *testing.T) {
+ for i, test := range rightShiftTests {
+ var z nat
+ z = z.shr(test.in, test.shift)
+ for j, d := range test.out {
+ if j >= len(z) || z[j] != d {
+ t.Errorf("#%d: got: %v want: %v", i, z, test.out)
+ break
+ }
+ }
+ }
+}
+
+func BenchmarkZeroShifts(b *testing.B) {
+ x := rndNat(800)
+
+ b.Run("Shl", func(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ var z nat
+ z.shl(x, 0)
+ }
+ })
+ b.Run("ShlSame", func(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ x.shl(x, 0)
+ }
+ })
+
+ b.Run("Shr", func(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ var z nat
+ z.shr(x, 0)
+ }
+ })
+ b.Run("ShrSame", func(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ x.shr(x, 0)
+ }
+ })
+}
+
+type modWTest struct {
+ in string
+ dividend string
+ out string
+}
+
+var modWTests32 = []modWTest{
+ {"23492635982634928349238759823742", "252341", "220170"},
+}
+
+var modWTests64 = []modWTest{
+ {"6527895462947293856291561095690465243862946", "524326975699234", "375066989628668"},
+}
+
+func runModWTests(t *testing.T, tests []modWTest) {
+ for i, test := range tests {
+ in, _ := new(Int).SetString(test.in, 10)
+ d, _ := new(Int).SetString(test.dividend, 10)
+ out, _ := new(Int).SetString(test.out, 10)
+
+ r := in.abs.modW(d.abs[0])
+ if r != out.abs[0] {
+ t.Errorf("#%d failed: got %d want %s", i, r, out)
+ }
+ }
+}
+
+func TestModW(t *testing.T) {
+ if _W >= 32 {
+ runModWTests(t, modWTests32)
+ }
+ if _W >= 64 {
+ runModWTests(t, modWTests64)
+ }
+}
+
+var montgomeryTests = []struct {
+ x, y, m string
+ k0 uint64
+ out32, out64 string
+}{
+ {
+ "0xffffffffffffffffffffffffffffffffffffffffffffffffe",
+ "0xffffffffffffffffffffffffffffffffffffffffffffffffe",
+ "0xfffffffffffffffffffffffffffffffffffffffffffffffff",
+ 1,
+ "0x1000000000000000000000000000000000000000000",
+ "0x10000000000000000000000000000000000",
+ },
+ {
+ "0x000000000ffffff5",
+ "0x000000000ffffff0",
+ "0x0000000010000001",
+ 0xff0000000fffffff,
+ "0x000000000bfffff4",
+ "0x0000000003400001",
+ },
+ {
+ "0x0000000080000000",
+ "0x00000000ffffffff",
+ "0x1000000000000001",
+ 0xfffffffffffffff,
+ "0x0800000008000001",
+ "0x0800000008000001",
+ },
+ {
+ "0x0000000080000000",
+ "0x0000000080000000",
+ "0xffffffff00000001",
+ 0xfffffffeffffffff,
+ "0xbfffffff40000001",
+ "0xbfffffff40000001",
+ },
+ {
+ "0x0000000080000000",
+ "0x0000000080000000",
+ "0x00ffffff00000001",
+ 0xfffffeffffffff,
+ "0xbfffff40000001",
+ "0xbfffff40000001",
+ },
+ {
+ "0x0000000080000000",
+ "0x0000000080000000",
+ "0x0000ffff00000001",
+ 0xfffeffffffff,
+ "0xbfff40000001",
+ "0xbfff40000001",
+ },
+ {
+ "0x3321ffffffffffffffffffffffffffff00000000000022222623333333332bbbb888c0",
+ "0x3321ffffffffffffffffffffffffffff00000000000022222623333333332bbbb888c0",
+ "0x33377fffffffffffffffffffffffffffffffffffffffffffff0000000000022222eee1",
+ 0xdecc8f1249812adf,
+ "0x04eb0e11d72329dc0915f86784820fc403275bf2f6620a20e0dd344c5cd0875e50deb5",
+ "0x0d7144739a7d8e11d72329dc0915f86784820fc403275bf2f61ed96f35dd34dbb3d6a0",
+ },
+ {
+ "0x10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffff00000000000022222223333333333444444444",
+ "0x10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffff999999999999999aaabbbbbbbbcccccccccccc",
+ "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff33377fffffffffffffffffffffffffffffffffffffffffffff0000000000022222eee1",
+ 0xdecc8f1249812adf,
+ "0x5c0d52f451aec609b15da8e5e5626c4eaa88723bdeac9d25ca9b961269400410ca208a16af9c2fb07d7a11c7772cba02c22f9711078d51a3797eb18e691295293284d988e349fa6deba46b25a4ecd9f715",
+ "0x92fcad4b5c0d52f451aec609b15da8e5e5626c4eaa88723bdeac9d25ca9b961269400410ca208a16af9c2fb07d799c32fe2f3cc5422f9711078d51a3797eb18e691295293284d8f5e69caf6decddfe1df6",
+ },
+}
+
+func TestMontgomery(t *testing.T) {
+ one := NewInt(1)
+ _B := new(Int).Lsh(one, _W)
+ for i, test := range montgomeryTests {
+ x := natFromString(test.x)
+ y := natFromString(test.y)
+ m := natFromString(test.m)
+ for len(x) < len(m) {
+ x = append(x, 0)
+ }
+ for len(y) < len(m) {
+ y = append(y, 0)
+ }
+
+ if x.cmp(m) > 0 {
+ _, r := nat(nil).div(nil, x, m)
+ t.Errorf("#%d: x > m (0x%s > 0x%s; use 0x%s)", i, x.utoa(16), m.utoa(16), r.utoa(16))
+ }
+ if y.cmp(m) > 0 {
+ _, r := nat(nil).div(nil, x, m)
+ t.Errorf("#%d: y > m (0x%s > 0x%s; use 0x%s)", i, y.utoa(16), m.utoa(16), r.utoa(16))
+ }
+
+ var out nat
+ if _W == 32 {
+ out = natFromString(test.out32)
+ } else {
+ out = natFromString(test.out64)
+ }
+
+ // t.Logf("#%d: len=%d\n", i, len(m))
+
+ // check output in table
+ xi := &Int{abs: x}
+ yi := &Int{abs: y}
+ mi := &Int{abs: m}
+ p := new(Int).Mod(new(Int).Mul(xi, new(Int).Mul(yi, new(Int).ModInverse(new(Int).Lsh(one, uint(len(m))*_W), mi))), mi)
+ if out.cmp(p.abs.norm()) != 0 {
+ t.Errorf("#%d: out in table=0x%s, computed=0x%s", i, out.utoa(16), p.abs.norm().utoa(16))
+ }
+
+ // check k0 in table
+ k := new(Int).Mod(&Int{abs: m}, _B)
+ k = new(Int).Sub(_B, k)
+ k = new(Int).Mod(k, _B)
+ k0 := Word(new(Int).ModInverse(k, _B).Uint64())
+ if k0 != Word(test.k0) {
+ t.Errorf("#%d: k0 in table=%#x, computed=%#x\n", i, test.k0, k0)
+ }
+
+ // check montgomery with correct k0 produces correct output
+ z := nat(nil).montgomery(x, y, m, k0, len(m))
+ z = z.norm()
+ if z.cmp(out) != 0 {
+ t.Errorf("#%d: got 0x%s want 0x%s", i, z.utoa(16), out.utoa(16))
+ }
+ }
+}
+
+var expNNTests = []struct {
+ x, y, m string
+ out string
+}{
+ {"0", "0", "0", "1"},
+ {"0", "0", "1", "0"},
+ {"1", "1", "1", "0"},
+ {"2", "1", "1", "0"},
+ {"2", "2", "1", "0"},
+ {"10", "100000000000", "1", "0"},
+ {"0x8000000000000000", "2", "", "0x40000000000000000000000000000000"},
+ {"0x8000000000000000", "2", "6719", "4944"},
+ {"0x8000000000000000", "3", "6719", "5447"},
+ {"0x8000000000000000", "1000", "6719", "1603"},
+ {"0x8000000000000000", "1000000", "6719", "3199"},
+ {
+ "2938462938472983472983659726349017249287491026512746239764525612965293865296239471239874193284792387498274256129746192347",
+ "298472983472983471903246121093472394872319615612417471234712061",
+ "29834729834729834729347290846729561262544958723956495615629569234729836259263598127342374289365912465901365498236492183464",
+ "23537740700184054162508175125554701713153216681790245129157191391322321508055833908509185839069455749219131480588829346291",
+ },
+ {
+ "11521922904531591643048817447554701904414021819823889996244743037378330903763518501116638828335352811871131385129455853417360623007349090150042001944696604737499160174391019030572483602867266711107136838523916077674888297896995042968746762200926853379",
+ "426343618817810911523",
+ "444747819283133684179",
+ "42",
+ },
+ {"375", "249", "388", "175"},
+ {"375", "18446744073709551801", "388", "175"},
+ {"0", "0x40000000000000", "0x200", "0"},
+ {"0xeffffff900002f00", "0x40000000000000", "0x200", "0"},
+ {"5", "1435700818", "72", "49"},
+ {"0xffff", "0x300030003000300030003000300030003000302a3000300030003000300030003000300030003000300030003000300030003030623066307f3030783062303430383064303630343036", "0x300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "0xa3f94c08b0b90e87af637cacc9383f7ea032352b8961fc036a52b659b6c9b33491b335ffd74c927f64ddd62cfca0001"},
+}
+
+func TestExpNN(t *testing.T) {
+ for i, test := range expNNTests {
+ x := natFromString(test.x)
+ y := natFromString(test.y)
+ out := natFromString(test.out)
+
+ var m nat
+ if len(test.m) > 0 {
+ m = natFromString(test.m)
+ }
+
+ z := nat(nil).expNN(x, y, m, false)
+ if z.cmp(out) != 0 {
+ t.Errorf("#%d got %s want %s", i, z.utoa(10), out.utoa(10))
+ }
+ }
+}
+
+func FuzzExpMont(f *testing.F) {
+ f.Fuzz(func(t *testing.T, x1, x2, x3, y1, y2, y3, m1, m2, m3 uint) {
+ if m1 == 0 && m2 == 0 && m3 == 0 {
+ return
+ }
+ x := new(Int).SetBits([]Word{Word(x1), Word(x2), Word(x3)})
+ y := new(Int).SetBits([]Word{Word(y1), Word(y2), Word(y3)})
+ m := new(Int).SetBits([]Word{Word(m1), Word(m2), Word(m3)})
+ out := new(Int).Exp(x, y, m)
+ want := new(Int).expSlow(x, y, m)
+ if out.Cmp(want) != 0 {
+ t.Errorf("x = %#x\ny=%#x\nz=%#x\nout=%#x\nwant=%#x\ndc: 16o 16i %X %X %X |p", x, y, m, out, want, x, y, m)
+ }
+ })
+}
+
+func BenchmarkExp3Power(b *testing.B) {
+ const x = 3
+ for _, y := range []Word{
+ 0x10, 0x40, 0x100, 0x400, 0x1000, 0x4000, 0x10000, 0x40000, 0x100000, 0x400000,
+ } {
+ b.Run(fmt.Sprintf("%#x", y), func(b *testing.B) {
+ var z nat
+ for i := 0; i < b.N; i++ {
+ z.expWW(x, y)
+ }
+ })
+ }
+}
+
+func fibo(n int) nat {
+ switch n {
+ case 0:
+ return nil
+ case 1:
+ return nat{1}
+ }
+ f0 := fibo(0)
+ f1 := fibo(1)
+ var f2 nat
+ for i := 1; i < n; i++ {
+ f2 = f2.add(f0, f1)
+ f0, f1, f2 = f1, f2, f0
+ }
+ return f1
+}
+
+var fiboNums = []string{
+ "0",
+ "55",
+ "6765",
+ "832040",
+ "102334155",
+ "12586269025",
+ "1548008755920",
+ "190392490709135",
+ "23416728348467685",
+ "2880067194370816120",
+ "354224848179261915075",
+}
+
+func TestFibo(t *testing.T) {
+ for i, want := range fiboNums {
+ n := i * 10
+ got := string(fibo(n).utoa(10))
+ if got != want {
+ t.Errorf("fibo(%d) failed: got %s want %s", n, got, want)
+ }
+ }
+}
+
+func BenchmarkFibo(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ fibo(1e0)
+ fibo(1e1)
+ fibo(1e2)
+ fibo(1e3)
+ fibo(1e4)
+ fibo(1e5)
+ }
+}
+
+var bitTests = []struct {
+ x string
+ i uint
+ want uint
+}{
+ {"0", 0, 0},
+ {"0", 1, 0},
+ {"0", 1000, 0},
+
+ {"0x1", 0, 1},
+ {"0x10", 0, 0},
+ {"0x10", 3, 0},
+ {"0x10", 4, 1},
+ {"0x10", 5, 0},
+
+ {"0x8000000000000000", 62, 0},
+ {"0x8000000000000000", 63, 1},
+ {"0x8000000000000000", 64, 0},
+
+ {"0x3" + strings.Repeat("0", 32), 127, 0},
+ {"0x3" + strings.Repeat("0", 32), 128, 1},
+ {"0x3" + strings.Repeat("0", 32), 129, 1},
+ {"0x3" + strings.Repeat("0", 32), 130, 0},
+}
+
+func TestBit(t *testing.T) {
+ for i, test := range bitTests {
+ x := natFromString(test.x)
+ if got := x.bit(test.i); got != test.want {
+ t.Errorf("#%d: %s.bit(%d) = %v; want %v", i, test.x, test.i, got, test.want)
+ }
+ }
+}
+
+var stickyTests = []struct {
+ x string
+ i uint
+ want uint
+}{
+ {"0", 0, 0},
+ {"0", 1, 0},
+ {"0", 1000, 0},
+
+ {"0x1", 0, 0},
+ {"0x1", 1, 1},
+
+ {"0x1350", 0, 0},
+ {"0x1350", 4, 0},
+ {"0x1350", 5, 1},
+
+ {"0x8000000000000000", 63, 0},
+ {"0x8000000000000000", 64, 1},
+
+ {"0x1" + strings.Repeat("0", 100), 400, 0},
+ {"0x1" + strings.Repeat("0", 100), 401, 1},
+}
+
+func TestSticky(t *testing.T) {
+ for i, test := range stickyTests {
+ x := natFromString(test.x)
+ if got := x.sticky(test.i); got != test.want {
+ t.Errorf("#%d: %s.sticky(%d) = %v; want %v", i, test.x, test.i, got, test.want)
+ }
+ if test.want == 1 {
+ // all subsequent i's should also return 1
+ for d := uint(1); d <= 3; d++ {
+ if got := x.sticky(test.i + d); got != 1 {
+ t.Errorf("#%d: %s.sticky(%d) = %v; want %v", i, test.x, test.i+d, got, 1)
+ }
+ }
+ }
+ }
+}
+
+func testSqr(t *testing.T, x nat) {
+ got := make(nat, 2*len(x))
+ want := make(nat, 2*len(x))
+ got = got.sqr(x)
+ want = want.mul(x, x)
+ if got.cmp(want) != 0 {
+ t.Errorf("basicSqr(%v), got %v, want %v", x, got, want)
+ }
+}
+
+func TestSqr(t *testing.T) {
+ for _, a := range prodNN {
+ if a.x != nil {
+ testSqr(t, a.x)
+ }
+ if a.y != nil {
+ testSqr(t, a.y)
+ }
+ if a.z != nil {
+ testSqr(t, a.z)
+ }
+ }
+}
+
+func benchmarkNatSqr(b *testing.B, nwords int) {
+ x := rndNat(nwords)
+ var z nat
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ z.sqr(x)
+ }
+}
+
+var sqrBenchSizes = []int{
+ 1, 2, 3, 5, 8, 10, 20, 30, 50, 80,
+ 100, 200, 300, 500, 800,
+ 1000, 10000, 100000,
+}
+
+func BenchmarkNatSqr(b *testing.B) {
+ for _, n := range sqrBenchSizes {
+ if isRaceBuilder && n > 1e3 {
+ continue
+ }
+ b.Run(fmt.Sprintf("%d", n), func(b *testing.B) {
+ benchmarkNatSqr(b, n)
+ })
+ }
+}
+
+var subMod2NTests = []struct {
+ x string
+ y string
+ n uint
+ z string
+}{
+ {"1", "2", 0, "0"},
+ {"1", "0", 1, "1"},
+ {"0", "1", 1, "1"},
+ {"3", "5", 3, "6"},
+ {"5", "3", 3, "2"},
+ // 2^65, 2^66-1, 2^65 - (2^66-1) + 2^67
+ {"36893488147419103232", "73786976294838206463", 67, "110680464442257309697"},
+ // 2^66-1, 2^65, 2^65-1
+ {"73786976294838206463", "36893488147419103232", 67, "36893488147419103231"},
+}
+
+func TestNatSubMod2N(t *testing.T) {
+ for _, mode := range []string{"noalias", "aliasX", "aliasY"} {
+ t.Run(mode, func(t *testing.T) {
+ for _, tt := range subMod2NTests {
+ x0 := natFromString(tt.x)
+ y0 := natFromString(tt.y)
+ want := natFromString(tt.z)
+ x := nat(nil).set(x0)
+ y := nat(nil).set(y0)
+ var z nat
+ switch mode {
+ case "aliasX":
+ z = x
+ case "aliasY":
+ z = y
+ }
+ z = z.subMod2N(x, y, tt.n)
+ if z.cmp(want) != 0 {
+ t.Fatalf("subMod2N(%d, %d, %d) = %d, want %d", x0, y0, tt.n, z, want)
+ }
+ if mode != "aliasX" && x.cmp(x0) != 0 {
+ t.Fatalf("subMod2N(%d, %d, %d) modified x", x0, y0, tt.n)
+ }
+ if mode != "aliasY" && y.cmp(y0) != 0 {
+ t.Fatalf("subMod2N(%d, %d, %d) modified y", x0, y0, tt.n)
+ }
+ }
+ })
+ }
+}
+
+func BenchmarkNatSetBytes(b *testing.B) {
+ const maxLength = 128
+ lengths := []int{
+ // No remainder:
+ 8, 24, maxLength,
+ // With remainder:
+ 7, 23, maxLength - 1,
+ }
+ n := make(nat, maxLength/_W) // ensure n doesn't need to grow during the test
+ buf := make([]byte, maxLength)
+ for _, l := range lengths {
+ b.Run(fmt.Sprint(l), func(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ n.setBytes(buf[:l])
+ }
+ })
+ }
+}
+
+func TestNatDiv(t *testing.T) {
+ sizes := []int{
+ 1, 2, 5, 8, 15, 25, 40, 65, 100,
+ 200, 500, 800, 1500, 2500, 4000, 6500, 10000,
+ }
+ for _, i := range sizes {
+ for _, j := range sizes {
+ a := rndNat1(i)
+ b := rndNat1(j)
+ // the test requires b >= 2
+ if len(b) == 1 && b[0] == 1 {
+ b[0] = 2
+ }
+ // choose a remainder c < b
+ c := rndNat1(len(b))
+ if len(c) == len(b) && c[len(c)-1] >= b[len(b)-1] {
+ c[len(c)-1] = 0
+ c = c.norm()
+ }
+ // compute x = a*b+c
+ x := nat(nil).mul(a, b)
+ x = x.add(x, c)
+
+ var q, r nat
+ q, r = q.div(r, x, b)
+ if q.cmp(a) != 0 {
+ t.Fatalf("wrong quotient: got %s; want %s for %s/%s", q.utoa(10), a.utoa(10), x.utoa(10), b.utoa(10))
+ }
+ if r.cmp(c) != 0 {
+ t.Fatalf("wrong remainder: got %s; want %s for %s/%s", r.utoa(10), c.utoa(10), x.utoa(10), b.utoa(10))
+ }
+ }
+ }
+}
+
+// TestIssue37499 triggers the edge case of divBasic where
+// the inaccurate estimate of the first word's quotient
+// happens at the very beginning of the loop.
+func TestIssue37499(t *testing.T) {
+ // Choose u and v such that v is slightly larger than u >> N.
+ // This tricks divBasic into choosing 1 as the first word
+ // of the quotient. This works in both 32-bit and 64-bit settings.
+ u := natFromString("0x2b6c385a05be027f5c22005b63c42a1165b79ff510e1706b39f8489c1d28e57bb5ba4ef9fd9387a3e344402c0a453381")
+ v := natFromString("0x2b6c385a05be027f5c22005b63c42a1165b79ff510e1706c")
+
+ q := nat(nil).make(8)
+ q.divBasic(u, v)
+ q = q.norm()
+ if s := string(q.utoa(16)); s != "fffffffffffffffffffffffffffffffffffffffffffffffb" {
+ t.Fatalf("incorrect quotient: %s", s)
+ }
+}
+
+// TestIssue42552 triggers an edge case of recursive division
+// where the first division loop is never entered, and correcting
+// the remainder takes exactly two iterations in the final loop.
+func TestIssue42552(t *testing.T) {
+ u := natFromString("0xc23b166884c3869092a520eceedeced2b00847bd256c9cf3b2c5e2227c15bd5e6ee7ef8a2f49236ad0eedf2c8a3b453cf6e0706f64285c526b372c4b1321245519d430540804a50b7ca8b6f1b34a2ec05cdbc24de7599af112d3e3c8db347e8799fe70f16e43c6566ba3aeb169463a3ecc486172deb2d9b80a3699c776e44fef20036bd946f1b4d054dd88a2c1aeb986199b0b2b7e58c42288824b74934d112fe1fc06e06b4d99fe1c5e725946b23210521e209cd507cce90b5f39a523f27e861f9e232aee50c3f585208b4573dcc0b897b6177f2ba20254fd5c50a033e849dee1b3a93bd2dc44ba8ca836cab2c2ae50e50b126284524fa0187af28628ff0face68d87709200329db1392852c8b8963fbe3d05fb1efe19f0ed5ca9fadc2f96f82187c24bb2512b2e85a66333a7e176605695211e1c8e0b9b9e82813e50654964945b1e1e66a90840396c7d10e23e47f364d2d3f660fa54598e18d1ca2ea4fe4f35a40a11f69f201c80b48eaee3e2e9b0eda63decf92bec08a70f731587d4ed0f218d5929285c8b2ccbc497e20db42de73885191fa453350335990184d8df805072f958d5354debda38f5421effaaafd6cb9b721ace74be0892d77679f62a4a126697cd35797f6858193da4ba1770c06aea2e5c59ec04b8ea26749e61b72ecdde403f3bc7e5e546cd799578cc939fa676dfd5e648576d4a06cbadb028adc2c0b461f145b2321f42e5e0f3b4fb898ecd461df07a6f5154067787bf74b5cc5c03704a1ce47494961931f0263b0aac32505102595957531a2de69dd71aac51f8a49902f81f21283dbe8e21e01e5d82517868826f86acf338d935aa6b4d5a25c8d540389b277dd9d64569d68baf0f71bd03dba45b92a7fc052601d1bd011a2fc6790a23f97c6fa5caeea040ab86841f268d39ce4f7caf01069df78bba098e04366492f0c2ac24f1bf16828752765fa523c9a4d42b71109d123e6be8c7b1ab3ccf8ea03404075fe1a9596f1bba1d267f9a7879ceece514818316c9c0583469d2367831fc42b517ea028a28df7c18d783d16ea2436cee2b15d52db68b5dfdee6b4d26f0905f9b030c911a04d078923a4136afea96eed6874462a482917353264cc9bee298f167ac65a6db4e4eda88044b39cc0b33183843eaa946564a00c3a0ab661f2c915e70bf0bb65bfbb6fa2eea20aed16bf2c1a1d00ec55fb4ff2f76b8e462ea70c19efa579c9ee78194b86708fdae66a9ce6e2cf3d366037798cfb50277ba6d2fd4866361022fd788ab7735b40b8b61d55e32243e06719e53992e9ac16c9c4b6e6933635c3c47c8f7e73e17dd54d0dd8aeba5d76de46894e7b3f9d3ec25ad78ee82297ba69905ea0fa094b8667faa2b8885e2187b3da80268aa1164761d7b0d6de206b676777348152b8ae1d4afed753bc63c739a5ca8ce7afb2b241a226bd9e502baba391b5b13f5054f070b65a9cf3a67063bfaa803ba390732cd03888f664023f888741d04d564e0b5674b0a183ace81452001b3fbb4214c77d42ca75376742c471e58f67307726d56a1032bd236610cbcbcd03d0d7a452900136897dc55bb3ce959d10d4e6a10fb635006bd8c41cd9ded2d3dfdd8f2e229590324a7370cb2124210b2330f4c56155caa09a2564932ceded8d92c79664dcdeb87faad7d3da006cc2ea267ee3df41e9677789cc5a8cc3b83add6491561b3047919e0648b1b2e97d7ad6f6c2aa80cab8e9ae10e1f75b1fdd0246151af709d259a6a0ed0b26bd711024965ecad7c41387de45443defce53f66612948694a6032279131c257119ed876a8e805dfb49576ef5c563574115ee87050d92d191bc761ef51d966918e2ef925639400069e3959d8fe19f36136e947ff430bf74e71da0aa5923b00000000")
+ v := natFromString("0x838332321d443a3d30373d47301d47073847473a383d3030f25b3d3d3e00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002e00000000000000000041603038331c3d32f5303441e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e01c0a5459bfc7b9be9fcbb9d2383840464319434707303030f43a32f53034411c0a5459413820878787878787878787878787878787878787878787878787878787878787878787870630303a3a30334036605b923a6101f83638413943413960204337602043323801526040523241846038414143015238604060328452413841413638523c0240384141364036605b923a6101f83638413943413960204334602043323801526040523241846038414143015238604060328452413841413638523c02403841413638433030f25a8b83838383838383838383838383838383837d838383ffffffffffffffff838383838383838383000000000000000000030000007d26e27c7c8b83838383838383838383838383838383837d838383ffffffffffffffff83838383838383838383838383838383838383838383435960f535073030f3343200000000000000011881301938343030fa398383300000002300000000000000000000f11af4600c845252904141364138383c60406032414443095238010241414303364443434132305b595a15434160b042385341ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff47476043410536613603593a6005411c437405fcfcfcfcfcfcfc0000000000005a3b075815054359000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000")
+ q := nat(nil).make(16)
+ q.div(q, u, v)
+}
diff --git a/src/math/big/natconv.go b/src/math/big/natconv.go
new file mode 100644
index 0000000..ce94f2c
--- /dev/null
+++ b/src/math/big/natconv.go
@@ -0,0 +1,511 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements nat-to-string conversion functions.
+
+package big
+
+import (
+ "errors"
+ "fmt"
+ "io"
+ "math"
+ "math/bits"
+ "sync"
+)
+
+const digits = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
+
+// Note: MaxBase = len(digits), but it must remain an untyped rune constant
+// for API compatibility.
+
+// MaxBase is the largest number base accepted for string conversions.
+const MaxBase = 10 + ('z' - 'a' + 1) + ('Z' - 'A' + 1)
+const maxBaseSmall = 10 + ('z' - 'a' + 1)
+
+// maxPow returns (b**n, n) such that b**n is the largest power b**n <= _M.
+// For instance maxPow(10) == (1e19, 19) for 19 decimal digits in a 64bit Word.
+// In other words, at most n digits in base b fit into a Word.
+// TODO(gri) replace this with a table, generated at build time.
+func maxPow(b Word) (p Word, n int) {
+ p, n = b, 1 // assuming b <= _M
+ for max := _M / b; p <= max; {
+ // p == b**n && p <= max
+ p *= b
+ n++
+ }
+ // p == b**n && p <= _M
+ return
+}
+
+// pow returns x**n for n > 0, and 1 otherwise.
+func pow(x Word, n int) (p Word) {
+ // n == sum of bi * 2**i, for 0 <= i < imax, and bi is 0 or 1
+ // thus x**n == product of x**(2**i) for all i where bi == 1
+ // (Russian Peasant Method for exponentiation)
+ p = 1
+ for n > 0 {
+ if n&1 != 0 {
+ p *= x
+ }
+ x *= x
+ n >>= 1
+ }
+ return
+}
+
+// scan errors
+var (
+ errNoDigits = errors.New("number has no digits")
+ errInvalSep = errors.New("'_' must separate successive digits")
+)
+
+// scan scans the number corresponding to the longest possible prefix
+// from r representing an unsigned number in a given conversion base.
+// scan returns the corresponding natural number res, the actual base b,
+// a digit count, and a read or syntax error err, if any.
+//
+// For base 0, an underscore character “_” may appear between a base
+// prefix and an adjacent digit, and between successive digits; such
+// underscores do not change the value of the number, or the returned
+// digit count. Incorrect placement of underscores is reported as an
+// error if there are no other errors. If base != 0, underscores are
+// not recognized and thus terminate scanning like any other character
+// that is not a valid radix point or digit.
+//
+// number = mantissa | prefix pmantissa .
+// prefix = "0" [ "b" | "B" | "o" | "O" | "x" | "X" ] .
+// mantissa = digits "." [ digits ] | digits | "." digits .
+// pmantissa = [ "_" ] digits "." [ digits ] | [ "_" ] digits | "." digits .
+// digits = digit { [ "_" ] digit } .
+// digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
+//
+// Unless fracOk is set, the base argument must be 0 or a value between
+// 2 and MaxBase. If fracOk is set, the base argument must be one of
+// 0, 2, 8, 10, or 16. Providing an invalid base argument leads to a run-
+// time panic.
+//
+// For base 0, the number prefix determines the actual base: A prefix of
+// “0b” or “0B” selects base 2, “0o” or “0O” selects base 8, and
+// “0x” or “0X” selects base 16. If fracOk is false, a “0” prefix
+// (immediately followed by digits) selects base 8 as well. Otherwise,
+// the selected base is 10 and no prefix is accepted.
+//
+// If fracOk is set, a period followed by a fractional part is permitted.
+// The result value is computed as if there were no period present; and
+// the count value is used to determine the fractional part.
+//
+// For bases <= 36, lower and upper case letters are considered the same:
+// The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
+// For bases > 36, the upper case letters 'A' to 'Z' represent the digit
+// values 36 to 61.
+//
+// A result digit count > 0 corresponds to the number of (non-prefix) digits
+// parsed. A digit count <= 0 indicates the presence of a period (if fracOk
+// is set, only), and -count is the number of fractional digits found.
+// In this case, the actual value of the scanned number is res * b**count.
+func (z nat) scan(r io.ByteScanner, base int, fracOk bool) (res nat, b, count int, err error) {
+ // reject invalid bases
+ baseOk := base == 0 ||
+ !fracOk && 2 <= base && base <= MaxBase ||
+ fracOk && (base == 2 || base == 8 || base == 10 || base == 16)
+ if !baseOk {
+ panic(fmt.Sprintf("invalid number base %d", base))
+ }
+
+ // prev encodes the previously seen char: it is one
+ // of '_', '0' (a digit), or '.' (anything else). A
+ // valid separator '_' may only occur after a digit
+ // and if base == 0.
+ prev := '.'
+ invalSep := false
+
+ // one char look-ahead
+ ch, err := r.ReadByte()
+
+ // determine actual base
+ b, prefix := base, 0
+ if base == 0 {
+ // actual base is 10 unless there's a base prefix
+ b = 10
+ if err == nil && ch == '0' {
+ prev = '0'
+ count = 1
+ ch, err = r.ReadByte()
+ if err == nil {
+ // possibly one of 0b, 0B, 0o, 0O, 0x, 0X
+ switch ch {
+ case 'b', 'B':
+ b, prefix = 2, 'b'
+ case 'o', 'O':
+ b, prefix = 8, 'o'
+ case 'x', 'X':
+ b, prefix = 16, 'x'
+ default:
+ if !fracOk {
+ b, prefix = 8, '0'
+ }
+ }
+ if prefix != 0 {
+ count = 0 // prefix is not counted
+ if prefix != '0' {
+ ch, err = r.ReadByte()
+ }
+ }
+ }
+ }
+ }
+
+ // convert string
+ // Algorithm: Collect digits in groups of at most n digits in di
+ // and then use mulAddWW for every such group to add them to the
+ // result.
+ z = z[:0]
+ b1 := Word(b)
+ bn, n := maxPow(b1) // at most n digits in base b1 fit into Word
+ di := Word(0) // 0 <= di < b1**i < bn
+ i := 0 // 0 <= i < n
+ dp := -1 // position of decimal point
+ for err == nil {
+ if ch == '.' && fracOk {
+ fracOk = false
+ if prev == '_' {
+ invalSep = true
+ }
+ prev = '.'
+ dp = count
+ } else if ch == '_' && base == 0 {
+ if prev != '0' {
+ invalSep = true
+ }
+ prev = '_'
+ } else {
+ // convert rune into digit value d1
+ var d1 Word
+ switch {
+ case '0' <= ch && ch <= '9':
+ d1 = Word(ch - '0')
+ case 'a' <= ch && ch <= 'z':
+ d1 = Word(ch - 'a' + 10)
+ case 'A' <= ch && ch <= 'Z':
+ if b <= maxBaseSmall {
+ d1 = Word(ch - 'A' + 10)
+ } else {
+ d1 = Word(ch - 'A' + maxBaseSmall)
+ }
+ default:
+ d1 = MaxBase + 1
+ }
+ if d1 >= b1 {
+ r.UnreadByte() // ch does not belong to number anymore
+ break
+ }
+ prev = '0'
+ count++
+
+ // collect d1 in di
+ di = di*b1 + d1
+ i++
+
+ // if di is "full", add it to the result
+ if i == n {
+ z = z.mulAddWW(z, bn, di)
+ di = 0
+ i = 0
+ }
+ }
+
+ ch, err = r.ReadByte()
+ }
+
+ if err == io.EOF {
+ err = nil
+ }
+
+ // other errors take precedence over invalid separators
+ if err == nil && (invalSep || prev == '_') {
+ err = errInvalSep
+ }
+
+ if count == 0 {
+ // no digits found
+ if prefix == '0' {
+ // there was only the octal prefix 0 (possibly followed by separators and digits > 7);
+ // interpret as decimal 0
+ return z[:0], 10, 1, err
+ }
+ err = errNoDigits // fall through; result will be 0
+ }
+
+ // add remaining digits to result
+ if i > 0 {
+ z = z.mulAddWW(z, pow(b1, i), di)
+ }
+ res = z.norm()
+
+ // adjust count for fraction, if any
+ if dp >= 0 {
+ // 0 <= dp <= count
+ count = dp - count
+ }
+
+ return
+}
+
+// utoa converts x to an ASCII representation in the given base;
+// base must be between 2 and MaxBase, inclusive.
+func (x nat) utoa(base int) []byte {
+ return x.itoa(false, base)
+}
+
+// itoa is like utoa but it prepends a '-' if neg && x != 0.
+func (x nat) itoa(neg bool, base int) []byte {
+ if base < 2 || base > MaxBase {
+ panic("invalid base")
+ }
+
+ // x == 0
+ if len(x) == 0 {
+ return []byte("0")
+ }
+ // len(x) > 0
+
+ // allocate buffer for conversion
+ i := int(float64(x.bitLen())/math.Log2(float64(base))) + 1 // off by 1 at most
+ if neg {
+ i++
+ }
+ s := make([]byte, i)
+
+ // convert power of two and non power of two bases separately
+ if b := Word(base); b == b&-b {
+ // shift is base b digit size in bits
+ shift := uint(bits.TrailingZeros(uint(b))) // shift > 0 because b >= 2
+ mask := Word(1<<shift - 1)
+ w := x[0] // current word
+ nbits := uint(_W) // number of unprocessed bits in w
+
+ // convert less-significant words (include leading zeros)
+ for k := 1; k < len(x); k++ {
+ // convert full digits
+ for nbits >= shift {
+ i--
+ s[i] = digits[w&mask]
+ w >>= shift
+ nbits -= shift
+ }
+
+ // convert any partial leading digit and advance to next word
+ if nbits == 0 {
+ // no partial digit remaining, just advance
+ w = x[k]
+ nbits = _W
+ } else {
+ // partial digit in current word w (== x[k-1]) and next word x[k]
+ w |= x[k] << nbits
+ i--
+ s[i] = digits[w&mask]
+
+ // advance
+ w = x[k] >> (shift - nbits)
+ nbits = _W - (shift - nbits)
+ }
+ }
+
+ // convert digits of most-significant word w (omit leading zeros)
+ for w != 0 {
+ i--
+ s[i] = digits[w&mask]
+ w >>= shift
+ }
+
+ } else {
+ bb, ndigits := maxPow(b)
+
+ // construct table of successive squares of bb*leafSize to use in subdivisions
+ // result (table != nil) <=> (len(x) > leafSize > 0)
+ table := divisors(len(x), b, ndigits, bb)
+
+ // preserve x, create local copy for use by convertWords
+ q := nat(nil).set(x)
+
+ // convert q to string s in base b
+ q.convertWords(s, b, ndigits, bb, table)
+
+ // strip leading zeros
+ // (x != 0; thus s must contain at least one non-zero digit
+ // and the loop will terminate)
+ i = 0
+ for s[i] == '0' {
+ i++
+ }
+ }
+
+ if neg {
+ i--
+ s[i] = '-'
+ }
+
+ return s[i:]
+}
+
+// Convert words of q to base b digits in s. If q is large, it is recursively "split in half"
+// by nat/nat division using tabulated divisors. Otherwise, it is converted iteratively using
+// repeated nat/Word division.
+//
+// The iterative method processes n Words by n divW() calls, each of which visits every Word in the
+// incrementally shortened q for a total of n + (n-1) + (n-2) ... + 2 + 1, or n(n+1)/2 divW()'s.
+// Recursive conversion divides q by its approximate square root, yielding two parts, each half
+// the size of q. Using the iterative method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s
+// plus the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and
+// is made better by splitting the subblocks recursively. Best is to split blocks until one more
+// split would take longer (because of the nat/nat div()) than the twice as many divW()'s of the
+// iterative approach. This threshold is represented by leafSize. Benchmarking of leafSize in the
+// range 2..64 shows that values of 8 and 16 work well, with a 4x speedup at medium lengths and
+// ~30x for 20000 digits. Use nat_test.go's BenchmarkLeafSize tests to optimize leafSize for
+// specific hardware.
+func (q nat) convertWords(s []byte, b Word, ndigits int, bb Word, table []divisor) {
+ // split larger blocks recursively
+ if table != nil {
+ // len(q) > leafSize > 0
+ var r nat
+ index := len(table) - 1
+ for len(q) > leafSize {
+ // find divisor close to sqrt(q) if possible, but in any case < q
+ maxLength := q.bitLen() // ~= log2 q, or at of least largest possible q of this bit length
+ minLength := maxLength >> 1 // ~= log2 sqrt(q)
+ for index > 0 && table[index-1].nbits > minLength {
+ index-- // desired
+ }
+ if table[index].nbits >= maxLength && table[index].bbb.cmp(q) >= 0 {
+ index--
+ if index < 0 {
+ panic("internal inconsistency")
+ }
+ }
+
+ // split q into the two digit number (q'*bbb + r) to form independent subblocks
+ q, r = q.div(r, q, table[index].bbb)
+
+ // convert subblocks and collect results in s[:h] and s[h:]
+ h := len(s) - table[index].ndigits
+ r.convertWords(s[h:], b, ndigits, bb, table[0:index])
+ s = s[:h] // == q.convertWords(s, b, ndigits, bb, table[0:index+1])
+ }
+ }
+
+ // having split any large blocks now process the remaining (small) block iteratively
+ i := len(s)
+ var r Word
+ if b == 10 {
+ // hard-coding for 10 here speeds this up by 1.25x (allows for / and % by constants)
+ for len(q) > 0 {
+ // extract least significant, base bb "digit"
+ q, r = q.divW(q, bb)
+ for j := 0; j < ndigits && i > 0; j++ {
+ i--
+ // avoid % computation since r%10 == r - int(r/10)*10;
+ // this appears to be faster for BenchmarkString10000Base10
+ // and smaller strings (but a bit slower for larger ones)
+ t := r / 10
+ s[i] = '0' + byte(r-t*10)
+ r = t
+ }
+ }
+ } else {
+ for len(q) > 0 {
+ // extract least significant, base bb "digit"
+ q, r = q.divW(q, bb)
+ for j := 0; j < ndigits && i > 0; j++ {
+ i--
+ s[i] = digits[r%b]
+ r /= b
+ }
+ }
+ }
+
+ // prepend high-order zeros
+ for i > 0 { // while need more leading zeros
+ i--
+ s[i] = '0'
+ }
+}
+
+// Split blocks greater than leafSize Words (or set to 0 to disable recursive conversion)
+// Benchmark and configure leafSize using: go test -bench="Leaf"
+//
+// 8 and 16 effective on 3.0 GHz Xeon "Clovertown" CPU (128 byte cache lines)
+// 8 and 16 effective on 2.66 GHz Core 2 Duo "Penryn" CPU
+var leafSize int = 8 // number of Word-size binary values treat as a monolithic block
+
+type divisor struct {
+ bbb nat // divisor
+ nbits int // bit length of divisor (discounting leading zeros) ~= log2(bbb)
+ ndigits int // digit length of divisor in terms of output base digits
+}
+
+var cacheBase10 struct {
+ sync.Mutex
+ table [64]divisor // cached divisors for base 10
+}
+
+// expWW computes x**y
+func (z nat) expWW(x, y Word) nat {
+ return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil, false)
+}
+
+// construct table of powers of bb*leafSize to use in subdivisions.
+func divisors(m int, b Word, ndigits int, bb Word) []divisor {
+ // only compute table when recursive conversion is enabled and x is large
+ if leafSize == 0 || m <= leafSize {
+ return nil
+ }
+
+ // determine k where (bb**leafSize)**(2**k) >= sqrt(x)
+ k := 1
+ for words := leafSize; words < m>>1 && k < len(cacheBase10.table); words <<= 1 {
+ k++
+ }
+
+ // reuse and extend existing table of divisors or create new table as appropriate
+ var table []divisor // for b == 10, table overlaps with cacheBase10.table
+ if b == 10 {
+ cacheBase10.Lock()
+ table = cacheBase10.table[0:k] // reuse old table for this conversion
+ } else {
+ table = make([]divisor, k) // create new table for this conversion
+ }
+
+ // extend table
+ if table[k-1].ndigits == 0 {
+ // add new entries as needed
+ var larger nat
+ for i := 0; i < k; i++ {
+ if table[i].ndigits == 0 {
+ if i == 0 {
+ table[0].bbb = nat(nil).expWW(bb, Word(leafSize))
+ table[0].ndigits = ndigits * leafSize
+ } else {
+ table[i].bbb = nat(nil).sqr(table[i-1].bbb)
+ table[i].ndigits = 2 * table[i-1].ndigits
+ }
+
+ // optimization: exploit aggregated extra bits in macro blocks
+ larger = nat(nil).set(table[i].bbb)
+ for mulAddVWW(larger, larger, b, 0) == 0 {
+ table[i].bbb = table[i].bbb.set(larger)
+ table[i].ndigits++
+ }
+
+ table[i].nbits = table[i].bbb.bitLen()
+ }
+ }
+ }
+
+ if b == 10 {
+ cacheBase10.Unlock()
+ }
+
+ return table
+}
diff --git a/src/math/big/natconv_test.go b/src/math/big/natconv_test.go
new file mode 100644
index 0000000..d390272
--- /dev/null
+++ b/src/math/big/natconv_test.go
@@ -0,0 +1,463 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "bytes"
+ "fmt"
+ "io"
+ "math/bits"
+ "strings"
+ "testing"
+)
+
+func TestMaxBase(t *testing.T) {
+ if MaxBase != len(digits) {
+ t.Fatalf("%d != %d", MaxBase, len(digits))
+ }
+}
+
+// log2 computes the integer binary logarithm of x.
+// The result is the integer n for which 2^n <= x < 2^(n+1).
+// If x == 0, the result is -1.
+func log2(x Word) int {
+ return bits.Len(uint(x)) - 1
+}
+
+func itoa(x nat, base int) []byte {
+ // special cases
+ switch {
+ case base < 2:
+ panic("illegal base")
+ case len(x) == 0:
+ return []byte("0")
+ }
+
+ // allocate buffer for conversion
+ i := x.bitLen()/log2(Word(base)) + 1 // +1: round up
+ s := make([]byte, i)
+
+ // don't destroy x
+ q := nat(nil).set(x)
+
+ // convert
+ for len(q) > 0 {
+ i--
+ var r Word
+ q, r = q.divW(q, Word(base))
+ s[i] = digits[r]
+ }
+
+ return s[i:]
+}
+
+var strTests = []struct {
+ x nat // nat value to be converted
+ b int // conversion base
+ s string // expected result
+}{
+ {nil, 2, "0"},
+ {nat{1}, 2, "1"},
+ {nat{0xc5}, 2, "11000101"},
+ {nat{03271}, 8, "3271"},
+ {nat{10}, 10, "10"},
+ {nat{1234567890}, 10, "1234567890"},
+ {nat{0xdeadbeef}, 16, "deadbeef"},
+ {nat{0x229be7}, 17, "1a2b3c"},
+ {nat{0x309663e6}, 32, "o9cov6"},
+ {nat{0x309663e6}, 62, "TakXI"},
+}
+
+func TestString(t *testing.T) {
+ // test invalid base explicitly
+ var panicStr string
+ func() {
+ defer func() {
+ panicStr = recover().(string)
+ }()
+ natOne.utoa(1)
+ }()
+ if panicStr != "invalid base" {
+ t.Errorf("expected panic for invalid base")
+ }
+
+ for _, a := range strTests {
+ s := string(a.x.utoa(a.b))
+ if s != a.s {
+ t.Errorf("string%+v\n\tgot s = %s; want %s", a, s, a.s)
+ }
+
+ x, b, _, err := nat(nil).scan(strings.NewReader(a.s), a.b, false)
+ if x.cmp(a.x) != 0 {
+ t.Errorf("scan%+v\n\tgot z = %v; want %v", a, x, a.x)
+ }
+ if b != a.b {
+ t.Errorf("scan%+v\n\tgot b = %d; want %d", a, b, a.b)
+ }
+ if err != nil {
+ t.Errorf("scan%+v\n\tgot error = %s", a, err)
+ }
+ }
+}
+
+var natScanTests = []struct {
+ s string // string to be scanned
+ base int // input base
+ frac bool // fraction ok
+ x nat // expected nat
+ b int // expected base
+ count int // expected digit count
+ err error // expected error
+ next rune // next character (or 0, if at EOF)
+}{
+ // invalid: no digits
+ {"", 0, false, nil, 10, 0, errNoDigits, 0},
+ {"_", 0, false, nil, 10, 0, errNoDigits, 0},
+ {"?", 0, false, nil, 10, 0, errNoDigits, '?'},
+ {"?", 10, false, nil, 10, 0, errNoDigits, '?'},
+ {"", 10, false, nil, 10, 0, errNoDigits, 0},
+ {"", 36, false, nil, 36, 0, errNoDigits, 0},
+ {"", 62, false, nil, 62, 0, errNoDigits, 0},
+ {"0b", 0, false, nil, 2, 0, errNoDigits, 0},
+ {"0o", 0, false, nil, 8, 0, errNoDigits, 0},
+ {"0x", 0, false, nil, 16, 0, errNoDigits, 0},
+ {"0x_", 0, false, nil, 16, 0, errNoDigits, 0},
+ {"0b2", 0, false, nil, 2, 0, errNoDigits, '2'},
+ {"0B2", 0, false, nil, 2, 0, errNoDigits, '2'},
+ {"0o8", 0, false, nil, 8, 0, errNoDigits, '8'},
+ {"0O8", 0, false, nil, 8, 0, errNoDigits, '8'},
+ {"0xg", 0, false, nil, 16, 0, errNoDigits, 'g'},
+ {"0Xg", 0, false, nil, 16, 0, errNoDigits, 'g'},
+ {"345", 2, false, nil, 2, 0, errNoDigits, '3'},
+
+ // invalid: incorrect use of decimal point
+ {"._", 0, true, nil, 10, 0, errNoDigits, 0},
+ {".0", 0, false, nil, 10, 0, errNoDigits, '.'},
+ {".0", 10, false, nil, 10, 0, errNoDigits, '.'},
+ {".", 0, true, nil, 10, 0, errNoDigits, 0},
+ {"0x.", 0, true, nil, 16, 0, errNoDigits, 0},
+ {"0x.g", 0, true, nil, 16, 0, errNoDigits, 'g'},
+ {"0x.0", 0, false, nil, 16, 0, errNoDigits, '.'},
+
+ // invalid: incorrect use of separators
+ {"_0", 0, false, nil, 10, 1, errInvalSep, 0},
+ {"0_", 0, false, nil, 10, 1, errInvalSep, 0},
+ {"0__0", 0, false, nil, 8, 1, errInvalSep, 0},
+ {"0x___0", 0, false, nil, 16, 1, errInvalSep, 0},
+ {"0_x", 0, false, nil, 10, 1, errInvalSep, 'x'},
+ {"0_8", 0, false, nil, 10, 1, errInvalSep, '8'},
+ {"123_.", 0, true, nat{123}, 10, 0, errInvalSep, 0},
+ {"._123", 0, true, nat{123}, 10, -3, errInvalSep, 0},
+ {"0b__1000", 0, false, nat{0x8}, 2, 4, errInvalSep, 0},
+ {"0o60___0", 0, false, nat{0600}, 8, 3, errInvalSep, 0},
+ {"0466_", 0, false, nat{0466}, 8, 3, errInvalSep, 0},
+ {"01234567_8", 0, false, nat{01234567}, 8, 7, errInvalSep, '8'},
+ {"1_.", 0, true, nat{1}, 10, 0, errInvalSep, 0},
+ {"0._1", 0, true, nat{1}, 10, -1, errInvalSep, 0},
+ {"2.7_", 0, true, nat{27}, 10, -1, errInvalSep, 0},
+ {"0x1.0_", 0, true, nat{0x10}, 16, -1, errInvalSep, 0},
+
+ // valid: separators are not accepted for base != 0
+ {"0_", 10, false, nil, 10, 1, nil, '_'},
+ {"1__0", 10, false, nat{1}, 10, 1, nil, '_'},
+ {"0__8", 10, false, nil, 10, 1, nil, '_'},
+ {"xy_z_", 36, false, nat{33*36 + 34}, 36, 2, nil, '_'},
+
+ // valid, no decimal point
+ {"0", 0, false, nil, 10, 1, nil, 0},
+ {"0", 36, false, nil, 36, 1, nil, 0},
+ {"0", 62, false, nil, 62, 1, nil, 0},
+ {"1", 0, false, nat{1}, 10, 1, nil, 0},
+ {"1", 10, false, nat{1}, 10, 1, nil, 0},
+ {"0 ", 0, false, nil, 10, 1, nil, ' '},
+ {"00 ", 0, false, nil, 8, 1, nil, ' '}, // octal 0
+ {"0b1", 0, false, nat{1}, 2, 1, nil, 0},
+ {"0B11000101", 0, false, nat{0xc5}, 2, 8, nil, 0},
+ {"0B110001012", 0, false, nat{0xc5}, 2, 8, nil, '2'},
+ {"07", 0, false, nat{7}, 8, 1, nil, 0},
+ {"08", 0, false, nil, 10, 1, nil, '8'},
+ {"08", 10, false, nat{8}, 10, 2, nil, 0},
+ {"018", 0, false, nat{1}, 8, 1, nil, '8'},
+ {"0o7", 0, false, nat{7}, 8, 1, nil, 0},
+ {"0o18", 0, false, nat{1}, 8, 1, nil, '8'},
+ {"0O17", 0, false, nat{017}, 8, 2, nil, 0},
+ {"03271", 0, false, nat{03271}, 8, 4, nil, 0},
+ {"10ab", 0, false, nat{10}, 10, 2, nil, 'a'},
+ {"1234567890", 0, false, nat{1234567890}, 10, 10, nil, 0},
+ {"A", 36, false, nat{10}, 36, 1, nil, 0},
+ {"A", 37, false, nat{36}, 37, 1, nil, 0},
+ {"xyz", 36, false, nat{(33*36+34)*36 + 35}, 36, 3, nil, 0},
+ {"XYZ?", 36, false, nat{(33*36+34)*36 + 35}, 36, 3, nil, '?'},
+ {"XYZ?", 62, false, nat{(59*62+60)*62 + 61}, 62, 3, nil, '?'},
+ {"0x", 16, false, nil, 16, 1, nil, 'x'},
+ {"0xdeadbeef", 0, false, nat{0xdeadbeef}, 16, 8, nil, 0},
+ {"0XDEADBEEF", 0, false, nat{0xdeadbeef}, 16, 8, nil, 0},
+
+ // valid, with decimal point
+ {"0.", 0, false, nil, 10, 1, nil, '.'},
+ {"0.", 10, true, nil, 10, 0, nil, 0},
+ {"0.1.2", 10, true, nat{1}, 10, -1, nil, '.'},
+ {".000", 10, true, nil, 10, -3, nil, 0},
+ {"12.3", 10, true, nat{123}, 10, -1, nil, 0},
+ {"012.345", 10, true, nat{12345}, 10, -3, nil, 0},
+ {"0.1", 0, true, nat{1}, 10, -1, nil, 0},
+ {"0.1", 2, true, nat{1}, 2, -1, nil, 0},
+ {"0.12", 2, true, nat{1}, 2, -1, nil, '2'},
+ {"0b0.1", 0, true, nat{1}, 2, -1, nil, 0},
+ {"0B0.12", 0, true, nat{1}, 2, -1, nil, '2'},
+ {"0o0.7", 0, true, nat{7}, 8, -1, nil, 0},
+ {"0O0.78", 0, true, nat{7}, 8, -1, nil, '8'},
+ {"0xdead.beef", 0, true, nat{0xdeadbeef}, 16, -4, nil, 0},
+
+ // valid, with separators
+ {"1_000", 0, false, nat{1000}, 10, 4, nil, 0},
+ {"0_466", 0, false, nat{0466}, 8, 3, nil, 0},
+ {"0o_600", 0, false, nat{0600}, 8, 3, nil, 0},
+ {"0x_f0_0d", 0, false, nat{0xf00d}, 16, 4, nil, 0},
+ {"0b1000_0001", 0, false, nat{0x81}, 2, 8, nil, 0},
+ {"1_000.000_1", 0, true, nat{10000001}, 10, -4, nil, 0},
+ {"0x_f00d.1e", 0, true, nat{0xf00d1e}, 16, -2, nil, 0},
+ {"0x_f00d.1E2", 0, true, nat{0xf00d1e2}, 16, -3, nil, 0},
+ {"0x_f00d.1eg", 0, true, nat{0xf00d1e}, 16, -2, nil, 'g'},
+}
+
+func TestScanBase(t *testing.T) {
+ for _, a := range natScanTests {
+ r := strings.NewReader(a.s)
+ x, b, count, err := nat(nil).scan(r, a.base, a.frac)
+ if err != a.err {
+ t.Errorf("scan%+v\n\tgot error = %v; want %v", a, err, a.err)
+ }
+ if x.cmp(a.x) != 0 {
+ t.Errorf("scan%+v\n\tgot z = %v; want %v", a, x, a.x)
+ }
+ if b != a.b {
+ t.Errorf("scan%+v\n\tgot b = %d; want %d", a, b, a.base)
+ }
+ if count != a.count {
+ t.Errorf("scan%+v\n\tgot count = %d; want %d", a, count, a.count)
+ }
+ next, _, err := r.ReadRune()
+ if err == io.EOF {
+ next = 0
+ err = nil
+ }
+ if err == nil && next != a.next {
+ t.Errorf("scan%+v\n\tgot next = %q; want %q", a, next, a.next)
+ }
+ }
+}
+
+var pi = "3" +
+ "14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651" +
+ "32823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461" +
+ "28475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920" +
+ "96282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179" +
+ "31051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798" +
+ "60943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901" +
+ "22495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837" +
+ "29780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083" +
+ "81420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909" +
+ "21642019893809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913151" +
+ "55748572424541506959508295331168617278558890750983817546374649393192550604009277016711390098488240128583616035" +
+ "63707660104710181942955596198946767837449448255379774726847104047534646208046684259069491293313677028989152104" +
+ "75216205696602405803815019351125338243003558764024749647326391419927260426992279678235478163600934172164121992" +
+ "45863150302861829745557067498385054945885869269956909272107975093029553211653449872027559602364806654991198818" +
+ "34797753566369807426542527862551818417574672890977772793800081647060016145249192173217214772350141441973568548" +
+ "16136115735255213347574184946843852332390739414333454776241686251898356948556209921922218427255025425688767179" +
+ "04946016534668049886272327917860857843838279679766814541009538837863609506800642251252051173929848960841284886" +
+ "26945604241965285022210661186306744278622039194945047123713786960956364371917287467764657573962413890865832645" +
+ "99581339047802759009946576407895126946839835259570982582262052248940772671947826848260147699090264013639443745" +
+ "53050682034962524517493996514314298091906592509372216964615157098583874105978859597729754989301617539284681382" +
+ "68683868942774155991855925245953959431049972524680845987273644695848653836736222626099124608051243884390451244" +
+ "13654976278079771569143599770012961608944169486855584840635342207222582848864815845602850601684273945226746767" +
+ "88952521385225499546667278239864565961163548862305774564980355936345681743241125150760694794510965960940252288" +
+ "79710893145669136867228748940560101503308617928680920874760917824938589009714909675985261365549781893129784821" +
+ "68299894872265880485756401427047755513237964145152374623436454285844479526586782105114135473573952311342716610" +
+ "21359695362314429524849371871101457654035902799344037420073105785390621983874478084784896833214457138687519435" +
+ "06430218453191048481005370614680674919278191197939952061419663428754440643745123718192179998391015919561814675" +
+ "14269123974894090718649423196156794520809514655022523160388193014209376213785595663893778708303906979207734672" +
+ "21825625996615014215030680384477345492026054146659252014974428507325186660021324340881907104863317346496514539" +
+ "05796268561005508106658796998163574736384052571459102897064140110971206280439039759515677157700420337869936007" +
+ "23055876317635942187312514712053292819182618612586732157919841484882916447060957527069572209175671167229109816" +
+ "90915280173506712748583222871835209353965725121083579151369882091444210067510334671103141267111369908658516398" +
+ "31501970165151168517143765761835155650884909989859982387345528331635507647918535893226185489632132933089857064" +
+ "20467525907091548141654985946163718027098199430992448895757128289059232332609729971208443357326548938239119325" +
+ "97463667305836041428138830320382490375898524374417029132765618093773444030707469211201913020330380197621101100" +
+ "44929321516084244485963766983895228684783123552658213144957685726243344189303968642624341077322697802807318915" +
+ "44110104468232527162010526522721116603966655730925471105578537634668206531098965269186205647693125705863566201" +
+ "85581007293606598764861179104533488503461136576867532494416680396265797877185560845529654126654085306143444318" +
+ "58676975145661406800700237877659134401712749470420562230538994561314071127000407854733269939081454664645880797" +
+ "27082668306343285878569830523580893306575740679545716377525420211495576158140025012622859413021647155097925923" +
+ "09907965473761255176567513575178296664547791745011299614890304639947132962107340437518957359614589019389713111" +
+ "79042978285647503203198691514028708085990480109412147221317947647772622414254854540332157185306142288137585043" +
+ "06332175182979866223717215916077166925474873898665494945011465406284336639379003976926567214638530673609657120" +
+ "91807638327166416274888800786925602902284721040317211860820419000422966171196377921337575114959501566049631862" +
+ "94726547364252308177036751590673502350728354056704038674351362222477158915049530984448933309634087807693259939" +
+ "78054193414473774418426312986080998886874132604721569516239658645730216315981931951673538129741677294786724229" +
+ "24654366800980676928238280689964004824354037014163149658979409243237896907069779422362508221688957383798623001" +
+ "59377647165122893578601588161755782973523344604281512627203734314653197777416031990665541876397929334419521541" +
+ "34189948544473456738316249934191318148092777710386387734317720754565453220777092120190516609628049092636019759" +
+ "88281613323166636528619326686336062735676303544776280350450777235547105859548702790814356240145171806246436267" +
+ "94561275318134078330336254232783944975382437205835311477119926063813346776879695970309833913077109870408591337"
+
+// Test case for BenchmarkScanPi.
+func TestScanPi(t *testing.T) {
+ var x nat
+ z, _, _, err := x.scan(strings.NewReader(pi), 10, false)
+ if err != nil {
+ t.Errorf("scanning pi: %s", err)
+ }
+ if s := string(z.utoa(10)); s != pi {
+ t.Errorf("scanning pi: got %s", s)
+ }
+}
+
+func TestScanPiParallel(t *testing.T) {
+ const n = 2
+ c := make(chan int)
+ for i := 0; i < n; i++ {
+ go func() {
+ TestScanPi(t)
+ c <- 0
+ }()
+ }
+ for i := 0; i < n; i++ {
+ <-c
+ }
+}
+
+func BenchmarkScanPi(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ var x nat
+ x.scan(strings.NewReader(pi), 10, false)
+ }
+}
+
+func BenchmarkStringPiParallel(b *testing.B) {
+ var x nat
+ x, _, _, _ = x.scan(strings.NewReader(pi), 0, false)
+ if string(x.utoa(10)) != pi {
+ panic("benchmark incorrect: conversion failed")
+ }
+ b.RunParallel(func(pb *testing.PB) {
+ for pb.Next() {
+ x.utoa(10)
+ }
+ })
+}
+
+func BenchmarkScan(b *testing.B) {
+ const x = 10
+ for _, base := range []int{2, 8, 10, 16} {
+ for _, y := range []Word{10, 100, 1000, 10000, 100000} {
+ if isRaceBuilder && y > 1000 {
+ continue
+ }
+ b.Run(fmt.Sprintf("%d/Base%d", y, base), func(b *testing.B) {
+ b.StopTimer()
+ var z nat
+ z = z.expWW(x, y)
+
+ s := z.utoa(base)
+ if t := itoa(z, base); !bytes.Equal(s, t) {
+ b.Fatalf("scanning: got %s; want %s", s, t)
+ }
+ b.StartTimer()
+
+ for i := 0; i < b.N; i++ {
+ z.scan(bytes.NewReader(s), base, false)
+ }
+ })
+ }
+ }
+}
+
+func BenchmarkString(b *testing.B) {
+ const x = 10
+ for _, base := range []int{2, 8, 10, 16} {
+ for _, y := range []Word{10, 100, 1000, 10000, 100000} {
+ if isRaceBuilder && y > 1000 {
+ continue
+ }
+ b.Run(fmt.Sprintf("%d/Base%d", y, base), func(b *testing.B) {
+ b.StopTimer()
+ var z nat
+ z = z.expWW(x, y)
+ z.utoa(base) // warm divisor cache
+ b.StartTimer()
+
+ for i := 0; i < b.N; i++ {
+ _ = z.utoa(base)
+ }
+ })
+ }
+ }
+}
+
+func BenchmarkLeafSize(b *testing.B) {
+ for n := 0; n <= 16; n++ {
+ b.Run(fmt.Sprint(n), func(b *testing.B) { LeafSizeHelper(b, 10, n) })
+ }
+ // Try some large lengths
+ for _, n := range []int{32, 64} {
+ b.Run(fmt.Sprint(n), func(b *testing.B) { LeafSizeHelper(b, 10, n) })
+ }
+}
+
+func LeafSizeHelper(b *testing.B, base, size int) {
+ b.StopTimer()
+ originalLeafSize := leafSize
+ resetTable(cacheBase10.table[:])
+ leafSize = size
+ b.StartTimer()
+
+ for d := 1; d <= 10000; d *= 10 {
+ b.StopTimer()
+ var z nat
+ z = z.expWW(Word(base), Word(d)) // build target number
+ _ = z.utoa(base) // warm divisor cache
+ b.StartTimer()
+
+ for i := 0; i < b.N; i++ {
+ _ = z.utoa(base)
+ }
+ }
+
+ b.StopTimer()
+ resetTable(cacheBase10.table[:])
+ leafSize = originalLeafSize
+ b.StartTimer()
+}
+
+func resetTable(table []divisor) {
+ if table != nil && table[0].bbb != nil {
+ for i := 0; i < len(table); i++ {
+ table[i].bbb = nil
+ table[i].nbits = 0
+ table[i].ndigits = 0
+ }
+ }
+}
+
+func TestStringPowers(t *testing.T) {
+ var p Word
+ for b := 2; b <= 16; b++ {
+ for p = 0; p <= 512; p++ {
+ if testing.Short() && p > 10 {
+ break
+ }
+ x := nat(nil).expWW(Word(b), p)
+ xs := x.utoa(b)
+ xs2 := itoa(x, b)
+ if !bytes.Equal(xs, xs2) {
+ t.Errorf("failed at %d ** %d in base %d: %s != %s", b, p, b, xs, xs2)
+ }
+ }
+ if b >= 3 && testing.Short() {
+ break
+ }
+ }
+}
diff --git a/src/math/big/natdiv.go b/src/math/big/natdiv.go
new file mode 100644
index 0000000..14233a2
--- /dev/null
+++ b/src/math/big/natdiv.go
@@ -0,0 +1,897 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+/*
+
+Multi-precision division. Here be dragons.
+
+Given u and v, where u is n+m digits, and v is n digits (with no leading zeros),
+the goal is to return quo, rem such that u = quo*v + rem, where 0 ≤ rem < v.
+That is, quo = ⌊u/v⌋ where ⌊x⌋ denotes the floor (truncation to integer) of x,
+and rem = u - quo·v.
+
+
+Long Division
+
+Division in a computer proceeds the same as long division in elementary school,
+but computers are not as good as schoolchildren at following vague directions,
+so we have to be much more precise about the actual steps and what can happen.
+
+We work from most to least significant digit of the quotient, doing:
+
+ • Guess a digit q, the number of v to subtract from the current
+ section of u to zero out the topmost digit.
+ • Check the guess by multiplying q·v and comparing it against
+ the current section of u, adjusting the guess as needed.
+ • Subtract q·v from the current section of u.
+ • Add q to the corresponding section of the result quo.
+
+When all digits have been processed, the final remainder is left in u
+and returned as rem.
+
+For example, here is a sketch of dividing 5 digits by 3 digits (n=3, m=2).
+
+ q₂ q₁ q₀
+ _________________
+ v₂ v₁ v₀ ) u₄ u₃ u₂ u₁ u₀
+ ↓ ↓ ↓ | |
+ [u₄ u₃ u₂]| |
+ - [ q₂·v ]| |
+ ----------- ↓ |
+ [ rem | u₁]|
+ - [ q₁·v ]|
+ ----------- ↓
+ [ rem | u₀]
+ - [ q₀·v ]
+ ------------
+ [ rem ]
+
+Instead of creating new storage for the remainders and copying digits from u
+as indicated by the arrows, we use u's storage directly as both the source
+and destination of the subtractions, so that the remainders overwrite
+successive overlapping sections of u as the division proceeds, using a slice
+of u to identify the current section. This avoids all the copying as well as
+shifting of remainders.
+
+Division of u with n+m digits by v with n digits (in base B) can in general
+produce at most m+1 digits, because:
+
+ • u < B^(n+m) [B^(n+m) has n+m+1 digits]
+ • v ≥ B^(n-1) [B^(n-1) is the smallest n-digit number]
+ • u/v < B^(n+m) / B^(n-1) [divide bounds for u, v]
+ • u/v < B^(m+1) [simplify]
+
+The first step is special: it takes the top n digits of u and divides them by
+the n digits of v, producing the first quotient digit and an n-digit remainder.
+In the example, q₂ = ⌊u₄u₃u₂ / v⌋.
+
+The first step divides n digits by n digits to ensure that it produces only a
+single digit.
+
+Each subsequent step appends the next digit from u to the remainder and divides
+those n+1 digits by the n digits of v, producing another quotient digit and a
+new n-digit remainder.
+
+Subsequent steps divide n+1 digits by n digits, an operation that in general
+might produce two digits. However, as used in the algorithm, that division is
+guaranteed to produce only a single digit. The dividend is of the form
+rem·B + d, where rem is a remainder from the previous step and d is a single
+digit, so:
+
+ • rem ≤ v - 1 [rem is a remainder from dividing by v]
+ • rem·B ≤ v·B - B [multiply by B]
+ • d ≤ B - 1 [d is a single digit]
+ • rem·B + d ≤ v·B - 1 [add]
+ • rem·B + d < v·B [change ≤ to <]
+ • (rem·B + d)/v < B [divide by v]
+
+
+Guess and Check
+
+At each step we need to divide n+1 digits by n digits, but this is for the
+implementation of division by n digits, so we can't just invoke a division
+routine: we _are_ the division routine. Instead, we guess at the answer and
+then check it using multiplication. If the guess is wrong, we correct it.
+
+How can this guessing possibly be efficient? It turns out that the following
+statement (let's call it the Good Guess Guarantee) is true.
+
+If
+
+ • q = ⌊u/v⌋ where u is n+1 digits and v is n digits,
+ • q < B, and
+ • the topmost digit of v = vₙ₋₁ ≥ B/2,
+
+then q̂ = ⌊uₙuₙ₋₁ / vₙ₋₁⌋ satisfies q ≤ q̂ ≤ q+2. (Proof below.)
+
+That is, if we know the answer has only a single digit and we guess an answer
+by ignoring the bottom n-1 digits of u and v, using a 2-by-1-digit division,
+then that guess is at least as large as the correct answer. It is also not
+too much larger: it is off by at most two from the correct answer.
+
+Note that in the first step of the overall division, which is an n-by-n-digit
+division, the 2-by-1 guess uses an implicit uₙ = 0.
+
+Note that using a 2-by-1-digit division here does not mean calling ourselves
+recursively. Instead, we use an efficient direct hardware implementation of
+that operation.
+
+Note that because q is u/v rounded down, q·v must not exceed u: u ≥ q·v.
+If a guess q̂ is too big, it will not satisfy this test. Viewed a different way,
+the remainder r̂ for a given q̂ is u - q̂·v, which must be positive. If it is
+negative, then the guess q̂ is too big.
+
+This gives us a way to compute q. First compute q̂ with 2-by-1-digit division.
+Then, while u < q̂·v, decrement q̂; this loop executes at most twice, because
+q̂ ≤ q+2.
+
+
+Scaling Inputs
+
+The Good Guess Guarantee requires that the top digit of v (vₙ₋₁) be at least B/2.
+For example in base 10, ⌊172/19⌋ = 9, but ⌊18/1⌋ = 18: the guess is wildly off
+because the first digit 1 is smaller than B/2 = 5.
+
+We can ensure that v has a large top digit by multiplying both u and v by the
+right amount. Continuing the example, if we multiply both 172 and 19 by 3, we
+now have ⌊516/57⌋, the leading digit of v is now ≥ 5, and sure enough
+⌊51/5⌋ = 10 is much closer to the correct answer 9. It would be easier here
+to multiply by 4, because that can be done with a shift. Specifically, we can
+always count the number of leading zeros i in the first digit of v and then
+shift both u and v left by i bits.
+
+Having scaled u and v, the value ⌊u/v⌋ is unchanged, but the remainder will
+be scaled: 172 mod 19 is 1, but 516 mod 57 is 3. We have to divide the remainder
+by the scaling factor (shifting right i bits) when we finish.
+
+Note that these shifts happen before and after the entire division algorithm,
+not at each step in the per-digit iteration.
+
+Note the effect of scaling inputs on the size of the possible quotient.
+In the scaled u/v, u can gain a digit from scaling; v never does, because we
+pick the scaling factor to make v's top digit larger but without overflowing.
+If u and v have n+m and n digits after scaling, then:
+
+ • u < B^(n+m) [B^(n+m) has n+m+1 digits]
+ • v ≥ B^n / 2 [vₙ₋₁ ≥ B/2, so vₙ₋₁·B^(n-1) ≥ B^n/2]
+ • u/v < B^(n+m) / (B^n / 2) [divide bounds for u, v]
+ • u/v < 2 B^m [simplify]
+
+The quotient can still have m+1 significant digits, but if so the top digit
+must be a 1. This provides a different way to handle the first digit of the
+result: compare the top n digits of u against v and fill in either a 0 or a 1.
+
+
+Refining Guesses
+
+Before we check whether u < q̂·v, we can adjust our guess to change it from
+q̂ = ⌊uₙuₙ₋₁ / vₙ₋₁⌋ into the refined guess ⌊uₙuₙ₋₁uₙ₋₂ / vₙ₋₁vₙ₋₂⌋.
+Although not mentioned above, the Good Guess Guarantee also promises that this
+3-by-2-digit division guess is more precise and at most one away from the real
+answer q. The improvement from the 2-by-1 to the 3-by-2 guess can also be done
+without n-digit math.
+
+If we have a guess q̂ = ⌊uₙuₙ₋₁ / vₙ₋₁⌋ and we want to see if it also equal to
+⌊uₙuₙ₋₁uₙ₋₂ / vₙ₋₁vₙ₋₂⌋, we can use the same check we would for the full division:
+if uₙuₙ₋₁uₙ₋₂ < q̂·vₙ₋₁vₙ₋₂, then the guess is too large and should be reduced.
+
+Checking uₙuₙ₋₁uₙ₋₂ < q̂·vₙ₋₁vₙ₋₂ is the same as uₙuₙ₋₁uₙ₋₂ - q̂·vₙ₋₁vₙ₋₂ < 0,
+and
+
+ uₙuₙ₋₁uₙ₋₂ - q̂·vₙ₋₁vₙ₋₂ = (uₙuₙ₋₁·B + uₙ₋₂) - q̂·(vₙ₋₁·B + vₙ₋₂)
+ [splitting off the bottom digit]
+ = (uₙuₙ₋₁ - q̂·vₙ₋₁)·B + uₙ₋₂ - q̂·vₙ₋₂
+ [regrouping]
+
+The expression (uₙuₙ₋₁ - q̂·vₙ₋₁) is the remainder of uₙuₙ₋₁ / vₙ₋₁.
+If the initial guess returns both q̂ and its remainder r̂, then checking
+whether uₙuₙ₋₁uₙ₋₂ < q̂·vₙ₋₁vₙ₋₂ is the same as checking r̂·B + uₙ₋₂ < q̂·vₙ₋₂.
+
+If we find that r̂·B + uₙ₋₂ < q̂·vₙ₋₂, then we can adjust the guess by
+decrementing q̂ and adding vₙ₋₁ to r̂. We repeat until r̂·B + uₙ₋₂ ≥ q̂·vₙ₋₂.
+(As before, this fixup is only needed at most twice.)
+
+Now that q̂ = ⌊uₙuₙ₋₁uₙ₋₂ / vₙ₋₁vₙ₋₂⌋, as mentioned above it is at most one
+away from the correct q, and we've avoided doing any n-digit math.
+(If we need the new remainder, it can be computed as r̂·B + uₙ₋₂ - q̂·vₙ₋₂.)
+
+The final check u < q̂·v and the possible fixup must be done at full precision.
+For random inputs, a fixup at this step is exceedingly rare: the 3-by-2 guess
+is not often wrong at all. But still we must do the check. Note that since the
+3-by-2 guess is off by at most 1, it can be convenient to perform the final
+u < q̂·v as part of the computation of the remainder r = u - q̂·v. If the
+subtraction underflows, decremeting q̂ and adding one v back to r is enough to
+arrive at the final q, r.
+
+That's the entirety of long division: scale the inputs, and then loop over
+each output position, guessing, checking, and correcting the next output digit.
+
+For a 2n-digit number divided by an n-digit number (the worst size-n case for
+division complexity), this algorithm uses n+1 iterations, each of which must do
+at least the 1-by-n-digit multiplication q̂·v. That's O(n) iterations of
+O(n) time each, so O(n²) time overall.
+
+
+Recursive Division
+
+For very large inputs, it is possible to improve on the O(n²) algorithm.
+Let's call a group of n/2 real digits a (very) “wide digit”. We can run the
+standard long division algorithm explained above over the wide digits instead of
+the actual digits. This will result in many fewer steps, but the math involved in
+each step is more work.
+
+Where basic long division uses a 2-by-1-digit division to guess the initial q̂,
+the new algorithm must use a 2-by-1-wide-digit division, which is of course
+really an n-by-n/2-digit division. That's OK: if we implement n-digit division
+in terms of n/2-digit division, the recursion will terminate when the divisor
+becomes small enough to handle with standard long division or even with the
+2-by-1 hardware instruction.
+
+For example, here is a sketch of dividing 10 digits by 4, proceeding with
+wide digits corresponding to two regular digits. The first step, still special,
+must leave off a (regular) digit, dividing 5 by 4 and producing a 4-digit
+remainder less than v. The middle steps divide 6 digits by 4, guaranteed to
+produce two output digits each (one wide digit) with 4-digit remainders.
+The final step must use what it has: the 4-digit remainder plus one more,
+5 digits to divide by 4.
+
+ q₆ q₅ q₄ q₃ q₂ q₁ q₀
+ _______________________________
+ v₃ v₂ v₁ v₀ ) u₉ u₈ u₇ u₆ u₅ u₄ u₃ u₂ u₁ u₀
+ ↓ ↓ ↓ ↓ ↓ | | | | |
+ [u₉ u₈ u₇ u₆ u₅]| | | | |
+ - [ q₆q₅·v ]| | | | |
+ ----------------- ↓ ↓ | | |
+ [ rem |u₄ u₃]| | |
+ - [ q₄q₃·v ]| | |
+ -------------------- ↓ ↓ |
+ [ rem |u₂ u₁]|
+ - [ q₂q₁·v ]|
+ -------------------- ↓
+ [ rem |u₀]
+ - [ q₀·v ]
+ ------------------
+ [ rem ]
+
+An alternative would be to look ahead to how well n/2 divides into n+m and
+adjust the first step to use fewer digits as needed, making the first step
+more special to make the last step not special at all. For example, using the
+same input, we could choose to use only 4 digits in the first step, leaving
+a full wide digit for the last step:
+
+ q₆ q₅ q₄ q₃ q₂ q₁ q₀
+ _______________________________
+ v₃ v₂ v₁ v₀ ) u₉ u₈ u₇ u₆ u₅ u₄ u₃ u₂ u₁ u₀
+ ↓ ↓ ↓ ↓ | | | | | |
+ [u₉ u₈ u₇ u₆]| | | | | |
+ - [ q₆·v ]| | | | | |
+ -------------- ↓ ↓ | | | |
+ [ rem |u₅ u₄]| | | |
+ - [ q₅q₄·v ]| | | |
+ -------------------- ↓ ↓ | |
+ [ rem |u₃ u₂]| |
+ - [ q₃q₂·v ]| |
+ -------------------- ↓ ↓
+ [ rem |u₁ u₀]
+ - [ q₁q₀·v ]
+ ---------------------
+ [ rem ]
+
+Today, the code in divRecursiveStep works like the first example. Perhaps in
+the future we will make it work like the alternative, to avoid a special case
+in the final iteration.
+
+Either way, each step is a 3-by-2-wide-digit division approximated first by
+a 2-by-1-wide-digit division, just as we did for regular digits in long division.
+Because the actual answer we want is a 3-by-2-wide-digit division, instead of
+multiplying q̂·v directly during the fixup, we can use the quick refinement
+from long division (an n/2-by-n/2 multiply) to correct q to its actual value
+and also compute the remainder (as mentioned above), and then stop after that,
+never doing a full n-by-n multiply.
+
+Instead of using an n-by-n/2-digit division to produce n/2 digits, we can add
+(not discard) one more real digit, doing an (n+1)-by-(n/2+1)-digit division that
+produces n/2+1 digits. That single extra digit tightens the Good Guess Guarantee
+to q ≤ q̂ ≤ q+1 and lets us drop long division's special treatment of the first
+digit. These benefits are discussed more after the Good Guess Guarantee proof
+below.
+
+
+How Fast is Recursive Division?
+
+For a 2n-by-n-digit division, this algorithm runs a 4-by-2 long division over
+wide digits, producing two wide digits plus a possible leading regular digit 1,
+which can be handled without a recursive call. That is, the algorithm uses two
+full iterations, each using an n-by-n/2-digit division and an n/2-by-n/2-digit
+multiplication, along with a few n-digit additions and subtractions. The standard
+n-by-n-digit multiplication algorithm requires O(n²) time, making the overall
+algorithm require time T(n) where
+
+ T(n) = 2T(n/2) + O(n) + O(n²)
+
+which, by the Bentley-Haken-Saxe theorem, ends up reducing to T(n) = O(n²).
+This is not an improvement over regular long division.
+
+When the number of digits n becomes large enough, Karatsuba's algorithm for
+multiplication can be used instead, which takes O(n^log₂3) = O(n^1.6) time.
+(Karatsuba multiplication is implemented in func karatsuba in nat.go.)
+That makes the overall recursive division algorithm take O(n^1.6) time as well,
+which is an improvement, but again only for large enough numbers.
+
+It is not critical to make sure that every recursion does only two recursive
+calls. While in general the number of recursive calls can change the time
+analysis, in this case doing three calls does not change the analysis:
+
+ T(n) = 3T(n/2) + O(n) + O(n^log₂3)
+
+ends up being T(n) = O(n^log₂3). Because the Karatsuba multiplication taking
+time O(n^log₂3) is itself doing 3 half-sized recursions, doing three for the
+division does not hurt the asymptotic performance. Of course, it is likely
+still faster in practice to do two.
+
+
+Proof of the Good Guess Guarantee
+
+Given numbers x, y, let us break them into the quotients and remainders when
+divided by some scaling factor S, with the added constraints that the quotient
+x/y and the high part of y are both less than some limit T, and that the high
+part of y is at least half as big as T.
+
+ x₁ = ⌊x/S⌋ y₁ = ⌊y/S⌋
+ x₀ = x mod S y₀ = y mod S
+
+ x = x₁·S + x₀ 0 ≤ x₀ < S x/y < T
+ y = y₁·S + y₀ 0 ≤ y₀ < S T/2 ≤ y₁ < T
+
+And consider the two truncated quotients:
+
+ q = ⌊x/y⌋
+ q̂ = ⌊x₁/y₁⌋
+
+We will prove that q ≤ q̂ ≤ q+2.
+
+The guarantee makes no real demands on the scaling factor S: it is simply the
+magnitude of the digits cut from both x and y to produce x₁ and y₁.
+The guarantee makes only limited demands on T: it must be large enough to hold
+the quotient x/y, and y₁ must have roughly the same size.
+
+To apply to the earlier discussion of 2-by-1 guesses in long division,
+we would choose:
+
+ S = Bⁿ⁻¹
+ T = B
+ x = u
+ x₁ = uₙuₙ₋₁
+ x₀ = uₙ₋₂...u₀
+ y = v
+ y₁ = vₙ₋₁
+ y₀ = vₙ₋₂...u₀
+
+These simpler variables avoid repeating those longer expressions in the proof.
+
+Note also that, by definition, truncating division ⌊x/y⌋ satisfies
+
+ x/y - 1 < ⌊x/y⌋ ≤ x/y.
+
+This fact will be used a few times in the proofs.
+
+Proof that q ≤ q̂:
+
+ q̂·y₁ = ⌊x₁/y₁⌋·y₁ [by definition, q̂ = ⌊x₁/y₁⌋]
+ > (x₁/y₁ - 1)·y₁ [x₁/y₁ - 1 < ⌊x₁/y₁⌋]
+ = x₁ - y₁ [distribute y₁]
+
+ So q̂·y₁ > x₁ - y₁.
+ Since q̂·y₁ is an integer, q̂·y₁ ≥ x₁ - y₁ + 1.
+
+ q̂ - q = q̂ - ⌊x/y⌋ [by definition, q = ⌊x/y⌋]
+ ≥ q̂ - x/y [⌊x/y⌋ < x/y]
+ = (1/y)·(q̂·y - x) [factor out 1/y]
+ ≥ (1/y)·(q̂·y₁·S - x) [y = y₁·S + y₀ ≥ y₁·S]
+ ≥ (1/y)·((x₁ - y₁ + 1)·S - x) [above: q̂·y₁ ≥ x₁ - y₁ + 1]
+ = (1/y)·(x₁·S - y₁·S + S - x) [distribute S]
+ = (1/y)·(S - x₀ - y₁·S) [-x = -x₁·S - x₀]
+ > -y₁·S / y [x₀ < S, so S - x₀ < 0; drop it]
+ ≥ -1 [y₁·S ≤ y]
+
+ So q̂ - q > -1.
+ Since q̂ - q is an integer, q̂ - q ≥ 0, or equivalently q ≤ q̂.
+
+Proof that q̂ ≤ q+2:
+
+ x₁/y₁ - x/y = x₁·S/y₁·S - x/y [multiply left term by S/S]
+ ≤ x/y₁·S - x/y [x₁S ≤ x]
+ = (x/y)·(y/y₁·S - 1) [factor out x/y]
+ = (x/y)·((y - y₁·S)/y₁·S) [move -1 into y/y₁·S fraction]
+ = (x/y)·(y₀/y₁·S) [y - y₁·S = y₀]
+ = (x/y)·(1/y₁)·(y₀/S) [factor out 1/y₁]
+ < (x/y)·(1/y₁) [y₀ < S, so y₀/S < 1]
+ ≤ (x/y)·(2/T) [y₁ ≥ T/2, so 1/y₁ ≤ 2/T]
+ < T·(2/T) [x/y < T]
+ = 2 [T·(2/T) = 2]
+
+ So x₁/y₁ - x/y < 2.
+
+ q̂ - q = ⌊x₁/y₁⌋ - q [by definition, q̂ = ⌊x₁/y₁⌋]
+ = ⌊x₁/y₁⌋ - ⌊x/y⌋ [by definition, q = ⌊x/y⌋]
+ ≤ x₁/y₁ - ⌊x/y⌋ [⌊x₁/y₁⌋ ≤ x₁/y₁]
+ < x₁/y₁ - (x/y - 1) [⌊x/y⌋ > x/y - 1]
+ = (x₁/y₁ - x/y) + 1 [regrouping]
+ < 2 + 1 [above: x₁/y₁ - x/y < 2]
+ = 3
+
+ So q̂ - q < 3.
+ Since q̂ - q is an integer, q̂ - q ≤ 2.
+
+Note that when x/y < T/2, the bounds tighten to x₁/y₁ - x/y < 1 and therefore
+q̂ - q ≤ 1.
+
+Note also that in the general case 2n-by-n division where we don't know that
+x/y < T, we do know that x/y < 2T, yielding the bound q̂ - q ≤ 4. So we could
+remove the special case first step of long division as long as we allow the
+first fixup loop to run up to four times. (Using a simple comparison to decide
+whether the first digit is 0 or 1 is still more efficient, though.)
+
+Finally, note that when dividing three leading base-B digits by two (scaled),
+we have T = B² and x/y < B = T/B, a much tighter bound than x/y < T.
+This in turn yields the much tighter bound x₁/y₁ - x/y < 2/B. This means that
+⌊x₁/y₁⌋ and ⌊x/y⌋ can only differ when x/y is less than 2/B greater than an
+integer. For random x and y, the chance of this is 2/B, or, for large B,
+approximately zero. This means that after we produce the 3-by-2 guess in the
+long division algorithm, the fixup loop essentially never runs.
+
+In the recursive algorithm, the extra digit in (2·⌊n/2⌋+1)-by-(⌊n/2⌋+1)-digit
+division has exactly the same effect: the probability of needing a fixup is the
+same 2/B. Even better, we can allow the general case x/y < 2T and the fixup
+probability only grows to 4/B, still essentially zero.
+
+
+References
+
+There are no great references for implementing long division; thus this comment.
+Here are some notes about what to expect from the obvious references.
+
+Knuth Volume 2 (Seminumerical Algorithms) section 4.3.1 is the usual canonical
+reference for long division, but that entire series is highly compressed, never
+repeating a necessary fact and leaving important insights to the exercises.
+For example, no rationale whatsoever is given for the calculation that extends
+q̂ from a 2-by-1 to a 3-by-2 guess, nor why it reduces the error bound.
+The proof that the calculation even has the desired effect is left to exercises.
+The solutions to those exercises provided at the back of the book are entirely
+calculations, still with no explanation as to what is going on or how you would
+arrive at the idea of doing those exact calculations. Nowhere is it mentioned
+that this test extends the 2-by-1 guess into a 3-by-2 guess. The proof of the
+Good Guess Guarantee is only for the 2-by-1 guess and argues by contradiction,
+making it difficult to understand how modifications like adding another digit
+or adjusting the quotient range affects the overall bound.
+
+All that said, Knuth remains the canonical reference. It is dense but packed
+full of information and references, and the proofs are simpler than many other
+presentations. The proofs above are reworkings of Knuth's to remove the
+arguments by contradiction and add explanations or steps that Knuth omitted.
+But beware of errors in older printings. Take the published errata with you.
+
+Brinch Hansen's “Multiple-length Division Revisited: a Tour of the Minefield”
+starts with a blunt critique of Knuth's presentation (among others) and then
+presents a more detailed and easier to follow treatment of long division,
+including an implementation in Pascal. But the algorithm and implementation
+work entirely in terms of 3-by-2 division, which is much less useful on modern
+hardware than an algorithm using 2-by-1 division. The proofs are a bit too
+focused on digit counting and seem needlessly complex, especially compared to
+the ones given above.
+
+Burnikel and Ziegler's “Fast Recursive Division” introduced the key insight of
+implementing division by an n-digit divisor using recursive calls to division
+by an n/2-digit divisor, relying on Karatsuba multiplication to yield a
+sub-quadratic run time. However, the presentation decisions are made almost
+entirely for the purpose of simplifying the run-time analysis, rather than
+simplifying the presentation. Instead of a single algorithm that loops over
+quotient digits, the paper presents two mutually-recursive algorithms, for
+2n-by-n and 3n-by-2n. The paper also does not present any general (n+m)-by-n
+algorithm.
+
+The proofs in the paper are remarkably complex, especially considering that
+the algorithm is at its core just long division on wide digits, so that the
+usual long division proofs apply essentially unaltered.
+*/
+
+package big
+
+import "math/bits"
+
+// rem returns r such that r = u%v.
+// It uses z as the storage for r.
+func (z nat) rem(u, v nat) (r nat) {
+ if alias(z, u) {
+ z = nil
+ }
+ qp := getNat(0)
+ q, r := qp.div(z, u, v)
+ *qp = q
+ putNat(qp)
+ return r
+}
+
+// div returns q, r such that q = ⌊u/v⌋ and r = u%v = u - q·v.
+// It uses z and z2 as the storage for q and r.
+func (z nat) div(z2, u, v nat) (q, r nat) {
+ if len(v) == 0 {
+ panic("division by zero")
+ }
+
+ if u.cmp(v) < 0 {
+ q = z[:0]
+ r = z2.set(u)
+ return
+ }
+
+ if len(v) == 1 {
+ // Short division: long optimized for a single-word divisor.
+ // In that case, the 2-by-1 guess is all we need at each step.
+ var r2 Word
+ q, r2 = z.divW(u, v[0])
+ r = z2.setWord(r2)
+ return
+ }
+
+ q, r = z.divLarge(z2, u, v)
+ return
+}
+
+// divW returns q, r such that q = ⌊x/y⌋ and r = x%y = x - q·y.
+// It uses z as the storage for q.
+// Note that y is a single digit (Word), not a big number.
+func (z nat) divW(x nat, y Word) (q nat, r Word) {
+ m := len(x)
+ switch {
+ case y == 0:
+ panic("division by zero")
+ case y == 1:
+ q = z.set(x) // result is x
+ return
+ case m == 0:
+ q = z[:0] // result is 0
+ return
+ }
+ // m > 0
+ z = z.make(m)
+ r = divWVW(z, 0, x, y)
+ q = z.norm()
+ return
+}
+
+// modW returns x % d.
+func (x nat) modW(d Word) (r Word) {
+ // TODO(agl): we don't actually need to store the q value.
+ var q nat
+ q = q.make(len(x))
+ return divWVW(q, 0, x, d)
+}
+
+// divWVW overwrites z with ⌊x/y⌋, returning the remainder r.
+// The caller must ensure that len(z) = len(x).
+func divWVW(z []Word, xn Word, x []Word, y Word) (r Word) {
+ r = xn
+ if len(x) == 1 {
+ qq, rr := bits.Div(uint(r), uint(x[0]), uint(y))
+ z[0] = Word(qq)
+ return Word(rr)
+ }
+ rec := reciprocalWord(y)
+ for i := len(z) - 1; i >= 0; i-- {
+ z[i], r = divWW(r, x[i], y, rec)
+ }
+ return r
+}
+
+// div returns q, r such that q = ⌊uIn/vIn⌋ and r = uIn%vIn = uIn - q·vIn.
+// It uses z and u as the storage for q and r.
+// The caller must ensure that len(vIn) ≥ 2 (use divW otherwise)
+// and that len(uIn) ≥ len(vIn) (the answer is 0, uIn otherwise).
+func (z nat) divLarge(u, uIn, vIn nat) (q, r nat) {
+ n := len(vIn)
+ m := len(uIn) - n
+
+ // Scale the inputs so vIn's top bit is 1 (see “Scaling Inputs” above).
+ // vIn is treated as a read-only input (it may be in use by another
+ // goroutine), so we must make a copy.
+ // uIn is copied to u.
+ shift := nlz(vIn[n-1])
+ vp := getNat(n)
+ v := *vp
+ shlVU(v, vIn, shift)
+ u = u.make(len(uIn) + 1)
+ u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift)
+
+ // The caller should not pass aliased z and u, since those are
+ // the two different outputs, but correct just in case.
+ if alias(z, u) {
+ z = nil
+ }
+ q = z.make(m + 1)
+
+ // Use basic or recursive long division depending on size.
+ if n < divRecursiveThreshold {
+ q.divBasic(u, v)
+ } else {
+ q.divRecursive(u, v)
+ }
+ putNat(vp)
+
+ q = q.norm()
+
+ // Undo scaling of remainder.
+ shrVU(u, u, shift)
+ r = u.norm()
+
+ return q, r
+}
+
+// divBasic implements long division as described above.
+// It overwrites q with ⌊u/v⌋ and overwrites u with the remainder r.
+// q must be large enough to hold ⌊u/v⌋.
+func (q nat) divBasic(u, v nat) {
+ n := len(v)
+ m := len(u) - n
+
+ qhatvp := getNat(n + 1)
+ qhatv := *qhatvp
+
+ // Set up for divWW below, precomputing reciprocal argument.
+ vn1 := v[n-1]
+ rec := reciprocalWord(vn1)
+
+ // Compute each digit of quotient.
+ for j := m; j >= 0; j-- {
+ // Compute the 2-by-1 guess q̂.
+ // The first iteration must invent a leading 0 for u.
+ qhat := Word(_M)
+ var ujn Word
+ if j+n < len(u) {
+ ujn = u[j+n]
+ }
+
+ // ujn ≤ vn1, or else q̂ would be more than one digit.
+ // For ujn == vn1, we set q̂ to the max digit M above.
+ // Otherwise, we compute the 2-by-1 guess.
+ if ujn != vn1 {
+ var rhat Word
+ qhat, rhat = divWW(ujn, u[j+n-1], vn1, rec)
+
+ // Refine q̂ to a 3-by-2 guess. See “Refining Guesses” above.
+ vn2 := v[n-2]
+ x1, x2 := mulWW(qhat, vn2)
+ ujn2 := u[j+n-2]
+ for greaterThan(x1, x2, rhat, ujn2) { // x1x2 > r̂ u[j+n-2]
+ qhat--
+ prevRhat := rhat
+ rhat += vn1
+ // If r̂ overflows, then
+ // r̂ u[j+n-2]v[n-1] is now definitely > x1 x2.
+ if rhat < prevRhat {
+ break
+ }
+ // TODO(rsc): No need for a full mulWW.
+ // x2 += vn2; if x2 overflows, x1++
+ x1, x2 = mulWW(qhat, vn2)
+ }
+ }
+
+ // Compute q̂·v.
+ qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0)
+ qhl := len(qhatv)
+ if j+qhl > len(u) && qhatv[n] == 0 {
+ qhl--
+ }
+
+ // Subtract q̂·v from the current section of u.
+ // If it underflows, q̂·v > u, which we fix up
+ // by decrementing q̂ and adding v back.
+ c := subVV(u[j:j+qhl], u[j:], qhatv)
+ if c != 0 {
+ c := addVV(u[j:j+n], u[j:], v)
+ // If n == qhl, the carry from subVV and the carry from addVV
+ // cancel out and don't affect u[j+n].
+ if n < qhl {
+ u[j+n] += c
+ }
+ qhat--
+ }
+
+ // Save quotient digit.
+ // Caller may know the top digit is zero and not leave room for it.
+ if j == m && m == len(q) && qhat == 0 {
+ continue
+ }
+ q[j] = qhat
+ }
+
+ putNat(qhatvp)
+}
+
+// greaterThan reports whether the two digit numbers x1 x2 > y1 y2.
+// TODO(rsc): In contradiction to most of this file, x1 is the high
+// digit and x2 is the low digit. This should be fixed.
+func greaterThan(x1, x2, y1, y2 Word) bool {
+ return x1 > y1 || x1 == y1 && x2 > y2
+}
+
+// divRecursiveThreshold is the number of divisor digits
+// at which point divRecursive is faster than divBasic.
+const divRecursiveThreshold = 100
+
+// divRecursive implements recursive division as described above.
+// It overwrites z with ⌊u/v⌋ and overwrites u with the remainder r.
+// z must be large enough to hold ⌊u/v⌋.
+// This function is just for allocating and freeing temporaries
+// around divRecursiveStep, the real implementation.
+func (z nat) divRecursive(u, v nat) {
+ // Recursion depth is (much) less than 2 log₂(len(v)).
+ // Allocate a slice of temporaries to be reused across recursion,
+ // plus one extra temporary not live across the recursion.
+ recDepth := 2 * bits.Len(uint(len(v)))
+ tmp := getNat(3 * len(v))
+ temps := make([]*nat, recDepth)
+
+ z.clear()
+ z.divRecursiveStep(u, v, 0, tmp, temps)
+
+ // Free temporaries.
+ for _, n := range temps {
+ if n != nil {
+ putNat(n)
+ }
+ }
+ putNat(tmp)
+}
+
+// divRecursiveStep is the actual implementation of recursive division.
+// It adds ⌊u/v⌋ to z and overwrites u with the remainder r.
+// z must be large enough to hold ⌊u/v⌋.
+// It uses temps[depth] (allocating if needed) as a temporary live across
+// the recursive call. It also uses tmp, but not live across the recursion.
+func (z nat) divRecursiveStep(u, v nat, depth int, tmp *nat, temps []*nat) {
+ // u is a subsection of the original and may have leading zeros.
+ // TODO(rsc): The v = v.norm() is useless and should be removed.
+ // We know (and require) that v's top digit is ≥ B/2.
+ u = u.norm()
+ v = v.norm()
+ if len(u) == 0 {
+ z.clear()
+ return
+ }
+
+ // Fall back to basic division if the problem is now small enough.
+ n := len(v)
+ if n < divRecursiveThreshold {
+ z.divBasic(u, v)
+ return
+ }
+
+ // Nothing to do if u is shorter than v (implies u < v).
+ m := len(u) - n
+ if m < 0 {
+ return
+ }
+
+ // We consider B digits in a row as a single wide digit.
+ // (See “Recursive Division” above.)
+ //
+ // TODO(rsc): rename B to Wide, to avoid confusion with _B,
+ // which is something entirely different.
+ // TODO(rsc): Look into whether using ⌈n/2⌉ is better than ⌊n/2⌋.
+ B := n / 2
+
+ // Allocate a nat for qhat below.
+ if temps[depth] == nil {
+ temps[depth] = getNat(n) // TODO(rsc): Can be just B+1.
+ } else {
+ *temps[depth] = temps[depth].make(B + 1)
+ }
+
+ // Compute each wide digit of the quotient.
+ //
+ // TODO(rsc): Change the loop to be
+ // for j := (m+B-1)/B*B; j > 0; j -= B {
+ // which will make the final step a regular step, letting us
+ // delete what amounts to an extra copy of the loop body below.
+ j := m
+ for j > B {
+ // Divide u[j-B:j+n] (3 wide digits) by v (2 wide digits).
+ // First make the 2-by-1-wide-digit guess using a recursive call.
+ // Then extend the guess to the full 3-by-2 (see “Refining Guesses”).
+ //
+ // For the 2-by-1-wide-digit guess, instead of doing 2B-by-B-digit,
+ // we use a (2B+1)-by-(B+1) digit, which handles the possibility that
+ // the result has an extra leading 1 digit as well as guaranteeing
+ // that the computed q̂ will be off by at most 1 instead of 2.
+
+ // s is the number of digits to drop from the 3B- and 2B-digit chunks.
+ // We drop B-1 to be left with 2B+1 and B+1.
+ s := (B - 1)
+
+ // uu is the up-to-3B-digit section of u we are working on.
+ uu := u[j-B:]
+
+ // Compute the 2-by-1 guess q̂, leaving r̂ in uu[s:B+n].
+ qhat := *temps[depth]
+ qhat.clear()
+ qhat.divRecursiveStep(uu[s:B+n], v[s:], depth+1, tmp, temps)
+ qhat = qhat.norm()
+
+ // Extend to a 3-by-2 quotient and remainder.
+ // Because divRecursiveStep overwrote the top part of uu with
+ // the remainder r̂, the full uu already contains the equivalent
+ // of r̂·B + uₙ₋₂ from the “Refining Guesses” discussion.
+ // Subtracting q̂·vₙ₋₂ from it will compute the full-length remainder.
+ // If that subtraction underflows, q̂·v > u, which we fix up
+ // by decrementing q̂ and adding v back, same as in long division.
+
+ // TODO(rsc): Instead of subtract and fix-up, this code is computing
+ // q̂·vₙ₋₂ and decrementing q̂ until that product is ≤ u.
+ // But we can do the subtraction directly, as in the comment above
+ // and in long division, because we know that q̂ is wrong by at most one.
+ qhatv := tmp.make(3 * n)
+ qhatv.clear()
+ qhatv = qhatv.mul(qhat, v[:s])
+ for i := 0; i < 2; i++ {
+ e := qhatv.cmp(uu.norm())
+ if e <= 0 {
+ break
+ }
+ subVW(qhat, qhat, 1)
+ c := subVV(qhatv[:s], qhatv[:s], v[:s])
+ if len(qhatv) > s {
+ subVW(qhatv[s:], qhatv[s:], c)
+ }
+ addAt(uu[s:], v[s:], 0)
+ }
+ if qhatv.cmp(uu.norm()) > 0 {
+ panic("impossible")
+ }
+ c := subVV(uu[:len(qhatv)], uu[:len(qhatv)], qhatv)
+ if c > 0 {
+ subVW(uu[len(qhatv):], uu[len(qhatv):], c)
+ }
+ addAt(z, qhat, j-B)
+ j -= B
+ }
+
+ // TODO(rsc): Rewrite loop as described above and delete all this code.
+
+ // Now u < (v<<B), compute lower bits in the same way.
+ // Choose shift = B-1 again.
+ s := B - 1
+ qhat := *temps[depth]
+ qhat.clear()
+ qhat.divRecursiveStep(u[s:].norm(), v[s:], depth+1, tmp, temps)
+ qhat = qhat.norm()
+ qhatv := tmp.make(3 * n)
+ qhatv.clear()
+ qhatv = qhatv.mul(qhat, v[:s])
+ // Set the correct remainder as before.
+ for i := 0; i < 2; i++ {
+ if e := qhatv.cmp(u.norm()); e > 0 {
+ subVW(qhat, qhat, 1)
+ c := subVV(qhatv[:s], qhatv[:s], v[:s])
+ if len(qhatv) > s {
+ subVW(qhatv[s:], qhatv[s:], c)
+ }
+ addAt(u[s:], v[s:], 0)
+ }
+ }
+ if qhatv.cmp(u.norm()) > 0 {
+ panic("impossible")
+ }
+ c := subVV(u[0:len(qhatv)], u[0:len(qhatv)], qhatv)
+ if c > 0 {
+ c = subVW(u[len(qhatv):], u[len(qhatv):], c)
+ }
+ if c > 0 {
+ panic("impossible")
+ }
+
+ // Done!
+ addAt(z, qhat.norm(), 0)
+}
diff --git a/src/math/big/prime.go b/src/math/big/prime.go
new file mode 100644
index 0000000..26688bb
--- /dev/null
+++ b/src/math/big/prime.go
@@ -0,0 +1,320 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import "math/rand"
+
+// ProbablyPrime reports whether x is probably prime,
+// applying the Miller-Rabin test with n pseudorandomly chosen bases
+// as well as a Baillie-PSW test.
+//
+// If x is prime, ProbablyPrime returns true.
+// If x is chosen randomly and not prime, ProbablyPrime probably returns false.
+// The probability of returning true for a randomly chosen non-prime is at most ¼ⁿ.
+//
+// ProbablyPrime is 100% accurate for inputs less than 2⁶⁴.
+// See Menezes et al., Handbook of Applied Cryptography, 1997, pp. 145-149,
+// and FIPS 186-4 Appendix F for further discussion of the error probabilities.
+//
+// ProbablyPrime is not suitable for judging primes that an adversary may
+// have crafted to fool the test.
+//
+// As of Go 1.8, ProbablyPrime(0) is allowed and applies only a Baillie-PSW test.
+// Before Go 1.8, ProbablyPrime applied only the Miller-Rabin tests, and ProbablyPrime(0) panicked.
+func (x *Int) ProbablyPrime(n int) bool {
+ // Note regarding the doc comment above:
+ // It would be more precise to say that the Baillie-PSW test uses the
+ // extra strong Lucas test as its Lucas test, but since no one knows
+ // how to tell any of the Lucas tests apart inside a Baillie-PSW test
+ // (they all work equally well empirically), that detail need not be
+ // documented or implicitly guaranteed.
+ // The comment does avoid saying "the" Baillie-PSW test
+ // because of this general ambiguity.
+
+ if n < 0 {
+ panic("negative n for ProbablyPrime")
+ }
+ if x.neg || len(x.abs) == 0 {
+ return false
+ }
+
+ // primeBitMask records the primes < 64.
+ const primeBitMask uint64 = 1<<2 | 1<<3 | 1<<5 | 1<<7 |
+ 1<<11 | 1<<13 | 1<<17 | 1<<19 | 1<<23 | 1<<29 | 1<<31 |
+ 1<<37 | 1<<41 | 1<<43 | 1<<47 | 1<<53 | 1<<59 | 1<<61
+
+ w := x.abs[0]
+ if len(x.abs) == 1 && w < 64 {
+ return primeBitMask&(1<<w) != 0
+ }
+
+ if w&1 == 0 {
+ return false // x is even
+ }
+
+ const primesA = 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 37
+ const primesB = 29 * 31 * 41 * 43 * 47 * 53
+
+ var rA, rB uint32
+ switch _W {
+ case 32:
+ rA = uint32(x.abs.modW(primesA))
+ rB = uint32(x.abs.modW(primesB))
+ case 64:
+ r := x.abs.modW((primesA * primesB) & _M)
+ rA = uint32(r % primesA)
+ rB = uint32(r % primesB)
+ default:
+ panic("math/big: invalid word size")
+ }
+
+ if rA%3 == 0 || rA%5 == 0 || rA%7 == 0 || rA%11 == 0 || rA%13 == 0 || rA%17 == 0 || rA%19 == 0 || rA%23 == 0 || rA%37 == 0 ||
+ rB%29 == 0 || rB%31 == 0 || rB%41 == 0 || rB%43 == 0 || rB%47 == 0 || rB%53 == 0 {
+ return false
+ }
+
+ return x.abs.probablyPrimeMillerRabin(n+1, true) && x.abs.probablyPrimeLucas()
+}
+
+// probablyPrimeMillerRabin reports whether n passes reps rounds of the
+// Miller-Rabin primality test, using pseudo-randomly chosen bases.
+// If force2 is true, one of the rounds is forced to use base 2.
+// See Handbook of Applied Cryptography, p. 139, Algorithm 4.24.
+// The number n is known to be non-zero.
+func (n nat) probablyPrimeMillerRabin(reps int, force2 bool) bool {
+ nm1 := nat(nil).sub(n, natOne)
+ // determine q, k such that nm1 = q << k
+ k := nm1.trailingZeroBits()
+ q := nat(nil).shr(nm1, k)
+
+ nm3 := nat(nil).sub(nm1, natTwo)
+ rand := rand.New(rand.NewSource(int64(n[0])))
+
+ var x, y, quotient nat
+ nm3Len := nm3.bitLen()
+
+NextRandom:
+ for i := 0; i < reps; i++ {
+ if i == reps-1 && force2 {
+ x = x.set(natTwo)
+ } else {
+ x = x.random(rand, nm3, nm3Len)
+ x = x.add(x, natTwo)
+ }
+ y = y.expNN(x, q, n, false)
+ if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {
+ continue
+ }
+ for j := uint(1); j < k; j++ {
+ y = y.sqr(y)
+ quotient, y = quotient.div(y, y, n)
+ if y.cmp(nm1) == 0 {
+ continue NextRandom
+ }
+ if y.cmp(natOne) == 0 {
+ return false
+ }
+ }
+ return false
+ }
+
+ return true
+}
+
+// probablyPrimeLucas reports whether n passes the "almost extra strong" Lucas probable prime test,
+// using Baillie-OEIS parameter selection. This corresponds to "AESLPSP" on Jacobsen's tables (link below).
+// The combination of this test and a Miller-Rabin/Fermat test with base 2 gives a Baillie-PSW test.
+//
+// References:
+//
+// Baillie and Wagstaff, "Lucas Pseudoprimes", Mathematics of Computation 35(152),
+// October 1980, pp. 1391-1417, especially page 1401.
+// https://www.ams.org/journals/mcom/1980-35-152/S0025-5718-1980-0583518-6/S0025-5718-1980-0583518-6.pdf
+//
+// Grantham, "Frobenius Pseudoprimes", Mathematics of Computation 70(234),
+// March 2000, pp. 873-891.
+// https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/S0025-5718-00-01197-2.pdf
+//
+// Baillie, "Extra strong Lucas pseudoprimes", OEIS A217719, https://oeis.org/A217719.
+//
+// Jacobsen, "Pseudoprime Statistics, Tables, and Data", http://ntheory.org/pseudoprimes.html.
+//
+// Nicely, "The Baillie-PSW Primality Test", https://web.archive.org/web/20191121062007/http://www.trnicely.net/misc/bpsw.html.
+// (Note that Nicely's definition of the "extra strong" test gives the wrong Jacobi condition,
+// as pointed out by Jacobsen.)
+//
+// Crandall and Pomerance, Prime Numbers: A Computational Perspective, 2nd ed.
+// Springer, 2005.
+func (n nat) probablyPrimeLucas() bool {
+ // Discard 0, 1.
+ if len(n) == 0 || n.cmp(natOne) == 0 {
+ return false
+ }
+ // Two is the only even prime.
+ // Already checked by caller, but here to allow testing in isolation.
+ if n[0]&1 == 0 {
+ return n.cmp(natTwo) == 0
+ }
+
+ // Baillie-OEIS "method C" for choosing D, P, Q,
+ // as in https://oeis.org/A217719/a217719.txt:
+ // try increasing P ≥ 3 such that D = P² - 4 (so Q = 1)
+ // until Jacobi(D, n) = -1.
+ // The search is expected to succeed for non-square n after just a few trials.
+ // After more than expected failures, check whether n is square
+ // (which would cause Jacobi(D, n) = 1 for all D not dividing n).
+ p := Word(3)
+ d := nat{1}
+ t1 := nat(nil) // temp
+ intD := &Int{abs: d}
+ intN := &Int{abs: n}
+ for ; ; p++ {
+ if p > 10000 {
+ // This is widely believed to be impossible.
+ // If we get a report, we'll want the exact number n.
+ panic("math/big: internal error: cannot find (D/n) = -1 for " + intN.String())
+ }
+ d[0] = p*p - 4
+ j := Jacobi(intD, intN)
+ if j == -1 {
+ break
+ }
+ if j == 0 {
+ // d = p²-4 = (p-2)(p+2).
+ // If (d/n) == 0 then d shares a prime factor with n.
+ // Since the loop proceeds in increasing p and starts with p-2==1,
+ // the shared prime factor must be p+2.
+ // If p+2 == n, then n is prime; otherwise p+2 is a proper factor of n.
+ return len(n) == 1 && n[0] == p+2
+ }
+ if p == 40 {
+ // We'll never find (d/n) = -1 if n is a square.
+ // If n is a non-square we expect to find a d in just a few attempts on average.
+ // After 40 attempts, take a moment to check if n is indeed a square.
+ t1 = t1.sqrt(n)
+ t1 = t1.sqr(t1)
+ if t1.cmp(n) == 0 {
+ return false
+ }
+ }
+ }
+
+ // Grantham definition of "extra strong Lucas pseudoprime", after Thm 2.3 on p. 876
+ // (D, P, Q above have become Δ, b, 1):
+ //
+ // Let U_n = U_n(b, 1), V_n = V_n(b, 1), and Δ = b²-4.
+ // An extra strong Lucas pseudoprime to base b is a composite n = 2^r s + Jacobi(Δ, n),
+ // where s is odd and gcd(n, 2*Δ) = 1, such that either (i) U_s ≡ 0 mod n and V_s ≡ ±2 mod n,
+ // or (ii) V_{2^t s} ≡ 0 mod n for some 0 ≤ t < r-1.
+ //
+ // We know gcd(n, Δ) = 1 or else we'd have found Jacobi(d, n) == 0 above.
+ // We know gcd(n, 2) = 1 because n is odd.
+ //
+ // Arrange s = (n - Jacobi(Δ, n)) / 2^r = (n+1) / 2^r.
+ s := nat(nil).add(n, natOne)
+ r := int(s.trailingZeroBits())
+ s = s.shr(s, uint(r))
+ nm2 := nat(nil).sub(n, natTwo) // n-2
+
+ // We apply the "almost extra strong" test, which checks the above conditions
+ // except for U_s ≡ 0 mod n, which allows us to avoid computing any U_k values.
+ // Jacobsen points out that maybe we should just do the full extra strong test:
+ // "It is also possible to recover U_n using Crandall and Pomerance equation 3.13:
+ // U_n = D^-1 (2V_{n+1} - PV_n) allowing us to run the full extra-strong test
+ // at the cost of a single modular inversion. This computation is easy and fast in GMP,
+ // so we can get the full extra-strong test at essentially the same performance as the
+ // almost extra strong test."
+
+ // Compute Lucas sequence V_s(b, 1), where:
+ //
+ // V(0) = 2
+ // V(1) = P
+ // V(k) = P V(k-1) - Q V(k-2).
+ //
+ // (Remember that due to method C above, P = b, Q = 1.)
+ //
+ // In general V(k) = α^k + β^k, where α and β are roots of x² - Px + Q.
+ // Crandall and Pomerance (p.147) observe that for 0 ≤ j ≤ k,
+ //
+ // V(j+k) = V(j)V(k) - V(k-j).
+ //
+ // So in particular, to quickly double the subscript:
+ //
+ // V(2k) = V(k)² - 2
+ // V(2k+1) = V(k) V(k+1) - P
+ //
+ // We can therefore start with k=0 and build up to k=s in log₂(s) steps.
+ natP := nat(nil).setWord(p)
+ vk := nat(nil).setWord(2)
+ vk1 := nat(nil).setWord(p)
+ t2 := nat(nil) // temp
+ for i := int(s.bitLen()); i >= 0; i-- {
+ if s.bit(uint(i)) != 0 {
+ // k' = 2k+1
+ // V(k') = V(2k+1) = V(k) V(k+1) - P.
+ t1 = t1.mul(vk, vk1)
+ t1 = t1.add(t1, n)
+ t1 = t1.sub(t1, natP)
+ t2, vk = t2.div(vk, t1, n)
+ // V(k'+1) = V(2k+2) = V(k+1)² - 2.
+ t1 = t1.sqr(vk1)
+ t1 = t1.add(t1, nm2)
+ t2, vk1 = t2.div(vk1, t1, n)
+ } else {
+ // k' = 2k
+ // V(k'+1) = V(2k+1) = V(k) V(k+1) - P.
+ t1 = t1.mul(vk, vk1)
+ t1 = t1.add(t1, n)
+ t1 = t1.sub(t1, natP)
+ t2, vk1 = t2.div(vk1, t1, n)
+ // V(k') = V(2k) = V(k)² - 2
+ t1 = t1.sqr(vk)
+ t1 = t1.add(t1, nm2)
+ t2, vk = t2.div(vk, t1, n)
+ }
+ }
+
+ // Now k=s, so vk = V(s). Check V(s) ≡ ±2 (mod n).
+ if vk.cmp(natTwo) == 0 || vk.cmp(nm2) == 0 {
+ // Check U(s) ≡ 0.
+ // As suggested by Jacobsen, apply Crandall and Pomerance equation 3.13:
+ //
+ // U(k) = D⁻¹ (2 V(k+1) - P V(k))
+ //
+ // Since we are checking for U(k) == 0 it suffices to check 2 V(k+1) == P V(k) mod n,
+ // or P V(k) - 2 V(k+1) == 0 mod n.
+ t1 := t1.mul(vk, natP)
+ t2 := t2.shl(vk1, 1)
+ if t1.cmp(t2) < 0 {
+ t1, t2 = t2, t1
+ }
+ t1 = t1.sub(t1, t2)
+ t3 := vk1 // steal vk1, no longer needed below
+ vk1 = nil
+ _ = vk1
+ t2, t3 = t2.div(t3, t1, n)
+ if len(t3) == 0 {
+ return true
+ }
+ }
+
+ // Check V(2^t s) ≡ 0 mod n for some 0 ≤ t < r-1.
+ for t := 0; t < r-1; t++ {
+ if len(vk) == 0 { // vk == 0
+ return true
+ }
+ // Optimization: V(k) = 2 is a fixed point for V(k') = V(k)² - 2,
+ // so if V(k) = 2, we can stop: we will never find a future V(k) == 0.
+ if len(vk) == 1 && vk[0] == 2 { // vk == 2
+ return false
+ }
+ // k' = 2k
+ // V(k') = V(2k) = V(k)² - 2
+ t1 = t1.sqr(vk)
+ t1 = t1.sub(t1, natTwo)
+ t2, vk = t2.div(vk, t1, n)
+ }
+ return false
+}
diff --git a/src/math/big/prime_test.go b/src/math/big/prime_test.go
new file mode 100644
index 0000000..8596e33
--- /dev/null
+++ b/src/math/big/prime_test.go
@@ -0,0 +1,222 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "fmt"
+ "strings"
+ "testing"
+ "unicode"
+)
+
+var primes = []string{
+ "2",
+ "3",
+ "5",
+ "7",
+ "11",
+
+ "13756265695458089029",
+ "13496181268022124907",
+ "10953742525620032441",
+ "17908251027575790097",
+
+ // https://golang.org/issue/638
+ "18699199384836356663",
+
+ "98920366548084643601728869055592650835572950932266967461790948584315647051443",
+ "94560208308847015747498523884063394671606671904944666360068158221458669711639",
+
+ // https://primes.utm.edu/lists/small/small3.html
+ "449417999055441493994709297093108513015373787049558499205492347871729927573118262811508386655998299074566974373711472560655026288668094291699357843464363003144674940345912431129144354948751003607115263071543163",
+ "230975859993204150666423538988557839555560243929065415434980904258310530753006723857139742334640122533598517597674807096648905501653461687601339782814316124971547968912893214002992086353183070342498989426570593",
+ "5521712099665906221540423207019333379125265462121169655563495403888449493493629943498064604536961775110765377745550377067893607246020694972959780839151452457728855382113555867743022746090187341871655890805971735385789993",
+ "203956878356401977405765866929034577280193993314348263094772646453283062722701277632936616063144088173312372882677123879538709400158306567338328279154499698366071906766440037074217117805690872792848149112022286332144876183376326512083574821647933992961249917319836219304274280243803104015000563790123",
+
+ // ECC primes: https://tools.ietf.org/html/draft-ladd-safecurves-02
+ "3618502788666131106986593281521497120414687020801267626233049500247285301239", // Curve1174: 2^251-9
+ "57896044618658097711785492504343953926634992332820282019728792003956564819949", // Curve25519: 2^255-19
+ "9850501549098619803069760025035903451269934817616361666987073351061430442874302652853566563721228910201656997576599", // E-382: 2^382-105
+ "42307582002575910332922579714097346549017899709713998034217522897561970639123926132812109468141778230245837569601494931472367", // Curve41417: 2^414-17
+ "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", // E-521: 2^521-1
+}
+
+var composites = []string{
+ "0",
+ "1",
+ "21284175091214687912771199898307297748211672914763848041968395774954376176754",
+ "6084766654921918907427900243509372380954290099172559290432744450051395395951",
+ "84594350493221918389213352992032324280367711247940675652888030554255915464401",
+ "82793403787388584738507275144194252681",
+
+ // Arnault, "Rabin-Miller Primality Test: Composite Numbers Which Pass It",
+ // Mathematics of Computation, 64(209) (January 1995), pp. 335-361.
+ "1195068768795265792518361315725116351898245581", // strong pseudoprime to prime bases 2 through 29
+ // strong pseudoprime to all prime bases up to 200
+ `
+ 80383745745363949125707961434194210813883768828755814583748891752229
+ 74273765333652186502336163960045457915042023603208766569966760987284
+ 0439654082329287387918508691668573282677617710293896977394701670823
+ 0428687109997439976544144845341155872450633409279022275296229414984
+ 2306881685404326457534018329786111298960644845216191652872597534901`,
+
+ // Extra-strong Lucas pseudoprimes. https://oeis.org/A217719
+ "989",
+ "3239",
+ "5777",
+ "10877",
+ "27971",
+ "29681",
+ "30739",
+ "31631",
+ "39059",
+ "72389",
+ "73919",
+ "75077",
+ "100127",
+ "113573",
+ "125249",
+ "137549",
+ "137801",
+ "153931",
+ "155819",
+ "161027",
+ "162133",
+ "189419",
+ "218321",
+ "231703",
+ "249331",
+ "370229",
+ "429479",
+ "430127",
+ "459191",
+ "473891",
+ "480689",
+ "600059",
+ "621781",
+ "632249",
+ "635627",
+
+ "3673744903",
+ "3281593591",
+ "2385076987",
+ "2738053141",
+ "2009621503",
+ "1502682721",
+ "255866131",
+ "117987841",
+ "587861",
+
+ "6368689",
+ "8725753",
+ "80579735209",
+ "105919633",
+}
+
+func cutSpace(r rune) rune {
+ if unicode.IsSpace(r) {
+ return -1
+ }
+ return r
+}
+
+func TestProbablyPrime(t *testing.T) {
+ nreps := 20
+ if testing.Short() {
+ nreps = 1
+ }
+ for i, s := range primes {
+ p, _ := new(Int).SetString(s, 10)
+ if !p.ProbablyPrime(nreps) || nreps != 1 && !p.ProbablyPrime(1) || !p.ProbablyPrime(0) {
+ t.Errorf("#%d prime found to be non-prime (%s)", i, s)
+ }
+ }
+
+ for i, s := range composites {
+ s = strings.Map(cutSpace, s)
+ c, _ := new(Int).SetString(s, 10)
+ if c.ProbablyPrime(nreps) || nreps != 1 && c.ProbablyPrime(1) || c.ProbablyPrime(0) {
+ t.Errorf("#%d composite found to be prime (%s)", i, s)
+ }
+ }
+
+ // check that ProbablyPrime panics if n <= 0
+ c := NewInt(11) // a prime
+ for _, n := range []int{-1, 0, 1} {
+ func() {
+ defer func() {
+ if n < 0 && recover() == nil {
+ t.Fatalf("expected panic from ProbablyPrime(%d)", n)
+ }
+ }()
+ if !c.ProbablyPrime(n) {
+ t.Fatalf("%v should be a prime", c)
+ }
+ }()
+ }
+}
+
+func BenchmarkProbablyPrime(b *testing.B) {
+ p, _ := new(Int).SetString("203956878356401977405765866929034577280193993314348263094772646453283062722701277632936616063144088173312372882677123879538709400158306567338328279154499698366071906766440037074217117805690872792848149112022286332144876183376326512083574821647933992961249917319836219304274280243803104015000563790123", 10)
+ for _, n := range []int{0, 1, 5, 10, 20} {
+ b.Run(fmt.Sprintf("n=%d", n), func(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ p.ProbablyPrime(n)
+ }
+ })
+ }
+
+ b.Run("Lucas", func(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ p.abs.probablyPrimeLucas()
+ }
+ })
+ b.Run("MillerRabinBase2", func(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ p.abs.probablyPrimeMillerRabin(1, true)
+ }
+ })
+}
+
+func TestMillerRabinPseudoprimes(t *testing.T) {
+ testPseudoprimes(t, "probablyPrimeMillerRabin",
+ func(n nat) bool { return n.probablyPrimeMillerRabin(1, true) && !n.probablyPrimeLucas() },
+ // https://oeis.org/A001262
+ []int{2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751})
+}
+
+func TestLucasPseudoprimes(t *testing.T) {
+ testPseudoprimes(t, "probablyPrimeLucas",
+ func(n nat) bool { return n.probablyPrimeLucas() && !n.probablyPrimeMillerRabin(1, true) },
+ // https://oeis.org/A217719
+ []int{989, 3239, 5777, 10877, 27971, 29681, 30739, 31631, 39059, 72389, 73919, 75077})
+}
+
+func testPseudoprimes(t *testing.T, name string, cond func(nat) bool, want []int) {
+ n := nat{1}
+ for i := 3; i < 100000; i += 2 {
+ if testing.Short() {
+ if len(want) == 0 {
+ break
+ }
+ if i < want[0]-2 {
+ i = want[0] - 2
+ }
+ }
+ n[0] = Word(i)
+ pseudo := cond(n)
+ if pseudo && (len(want) == 0 || i != want[0]) {
+ t.Errorf("%s(%v, base=2) = true, want false", name, i)
+ } else if !pseudo && len(want) >= 1 && i == want[0] {
+ t.Errorf("%s(%v, base=2) = false, want true", name, i)
+ }
+ if len(want) > 0 && i == want[0] {
+ want = want[1:]
+ }
+ }
+ if len(want) > 0 {
+ t.Fatalf("forgot to test %v", want)
+ }
+}
diff --git a/src/math/big/rat.go b/src/math/big/rat.go
new file mode 100644
index 0000000..cb32b78
--- /dev/null
+++ b/src/math/big/rat.go
@@ -0,0 +1,542 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements multi-precision rational numbers.
+
+package big
+
+import (
+ "fmt"
+ "math"
+)
+
+// A Rat represents a quotient a/b of arbitrary precision.
+// The zero value for a Rat represents the value 0.
+//
+// Operations always take pointer arguments (*Rat) rather
+// than Rat values, and each unique Rat value requires
+// its own unique *Rat pointer. To "copy" a Rat value,
+// an existing (or newly allocated) Rat must be set to
+// a new value using the [Rat.Set] method; shallow copies
+// of Rats are not supported and may lead to errors.
+type Rat struct {
+ // To make zero values for Rat work w/o initialization,
+ // a zero value of b (len(b) == 0) acts like b == 1. At
+ // the earliest opportunity (when an assignment to the Rat
+ // is made), such uninitialized denominators are set to 1.
+ // a.neg determines the sign of the Rat, b.neg is ignored.
+ a, b Int
+}
+
+// NewRat creates a new [Rat] with numerator a and denominator b.
+func NewRat(a, b int64) *Rat {
+ return new(Rat).SetFrac64(a, b)
+}
+
+// SetFloat64 sets z to exactly f and returns z.
+// If f is not finite, SetFloat returns nil.
+func (z *Rat) SetFloat64(f float64) *Rat {
+ const expMask = 1<<11 - 1
+ bits := math.Float64bits(f)
+ mantissa := bits & (1<<52 - 1)
+ exp := int((bits >> 52) & expMask)
+ switch exp {
+ case expMask: // non-finite
+ return nil
+ case 0: // denormal
+ exp -= 1022
+ default: // normal
+ mantissa |= 1 << 52
+ exp -= 1023
+ }
+
+ shift := 52 - exp
+
+ // Optimization (?): partially pre-normalise.
+ for mantissa&1 == 0 && shift > 0 {
+ mantissa >>= 1
+ shift--
+ }
+
+ z.a.SetUint64(mantissa)
+ z.a.neg = f < 0
+ z.b.Set(intOne)
+ if shift > 0 {
+ z.b.Lsh(&z.b, uint(shift))
+ } else {
+ z.a.Lsh(&z.a, uint(-shift))
+ }
+ return z.norm()
+}
+
+// quotToFloat32 returns the non-negative float32 value
+// nearest to the quotient a/b, using round-to-even in
+// halfway cases. It does not mutate its arguments.
+// Preconditions: b is non-zero; a and b have no common factors.
+func quotToFloat32(a, b nat) (f float32, exact bool) {
+ const (
+ // float size in bits
+ Fsize = 32
+
+ // mantissa
+ Msize = 23
+ Msize1 = Msize + 1 // incl. implicit 1
+ Msize2 = Msize1 + 1
+
+ // exponent
+ Esize = Fsize - Msize1
+ Ebias = 1<<(Esize-1) - 1
+ Emin = 1 - Ebias
+ Emax = Ebias
+ )
+
+ // TODO(adonovan): specialize common degenerate cases: 1.0, integers.
+ alen := a.bitLen()
+ if alen == 0 {
+ return 0, true
+ }
+ blen := b.bitLen()
+ if blen == 0 {
+ panic("division by zero")
+ }
+
+ // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
+ // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
+ // This is 2 or 3 more than the float32 mantissa field width of Msize:
+ // - the optional extra bit is shifted away in step 3 below.
+ // - the high-order 1 is omitted in "normal" representation;
+ // - the low-order 1 will be used during rounding then discarded.
+ exp := alen - blen
+ var a2, b2 nat
+ a2 = a2.set(a)
+ b2 = b2.set(b)
+ if shift := Msize2 - exp; shift > 0 {
+ a2 = a2.shl(a2, uint(shift))
+ } else if shift < 0 {
+ b2 = b2.shl(b2, uint(-shift))
+ }
+
+ // 2. Compute quotient and remainder (q, r). NB: due to the
+ // extra shift, the low-order bit of q is logically the
+ // high-order bit of r.
+ var q nat
+ q, r := q.div(a2, a2, b2) // (recycle a2)
+ mantissa := low32(q)
+ haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half
+
+ // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
+ // (in effect---we accomplish this incrementally).
+ if mantissa>>Msize2 == 1 {
+ if mantissa&1 == 1 {
+ haveRem = true
+ }
+ mantissa >>= 1
+ exp++
+ }
+ if mantissa>>Msize1 != 1 {
+ panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
+ }
+
+ // 4. Rounding.
+ if Emin-Msize <= exp && exp <= Emin {
+ // Denormal case; lose 'shift' bits of precision.
+ shift := uint(Emin - (exp - 1)) // [1..Esize1)
+ lostbits := mantissa & (1<<shift - 1)
+ haveRem = haveRem || lostbits != 0
+ mantissa >>= shift
+ exp = 2 - Ebias // == exp + shift
+ }
+ // Round q using round-half-to-even.
+ exact = !haveRem
+ if mantissa&1 != 0 {
+ exact = false
+ if haveRem || mantissa&2 != 0 {
+ if mantissa++; mantissa >= 1<<Msize2 {
+ // Complete rollover 11...1 => 100...0, so shift is safe
+ mantissa >>= 1
+ exp++
+ }
+ }
+ }
+ mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1.
+
+ f = float32(math.Ldexp(float64(mantissa), exp-Msize1))
+ if math.IsInf(float64(f), 0) {
+ exact = false
+ }
+ return
+}
+
+// quotToFloat64 returns the non-negative float64 value
+// nearest to the quotient a/b, using round-to-even in
+// halfway cases. It does not mutate its arguments.
+// Preconditions: b is non-zero; a and b have no common factors.
+func quotToFloat64(a, b nat) (f float64, exact bool) {
+ const (
+ // float size in bits
+ Fsize = 64
+
+ // mantissa
+ Msize = 52
+ Msize1 = Msize + 1 // incl. implicit 1
+ Msize2 = Msize1 + 1
+
+ // exponent
+ Esize = Fsize - Msize1
+ Ebias = 1<<(Esize-1) - 1
+ Emin = 1 - Ebias
+ Emax = Ebias
+ )
+
+ // TODO(adonovan): specialize common degenerate cases: 1.0, integers.
+ alen := a.bitLen()
+ if alen == 0 {
+ return 0, true
+ }
+ blen := b.bitLen()
+ if blen == 0 {
+ panic("division by zero")
+ }
+
+ // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
+ // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
+ // This is 2 or 3 more than the float64 mantissa field width of Msize:
+ // - the optional extra bit is shifted away in step 3 below.
+ // - the high-order 1 is omitted in "normal" representation;
+ // - the low-order 1 will be used during rounding then discarded.
+ exp := alen - blen
+ var a2, b2 nat
+ a2 = a2.set(a)
+ b2 = b2.set(b)
+ if shift := Msize2 - exp; shift > 0 {
+ a2 = a2.shl(a2, uint(shift))
+ } else if shift < 0 {
+ b2 = b2.shl(b2, uint(-shift))
+ }
+
+ // 2. Compute quotient and remainder (q, r). NB: due to the
+ // extra shift, the low-order bit of q is logically the
+ // high-order bit of r.
+ var q nat
+ q, r := q.div(a2, a2, b2) // (recycle a2)
+ mantissa := low64(q)
+ haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half
+
+ // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
+ // (in effect---we accomplish this incrementally).
+ if mantissa>>Msize2 == 1 {
+ if mantissa&1 == 1 {
+ haveRem = true
+ }
+ mantissa >>= 1
+ exp++
+ }
+ if mantissa>>Msize1 != 1 {
+ panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
+ }
+
+ // 4. Rounding.
+ if Emin-Msize <= exp && exp <= Emin {
+ // Denormal case; lose 'shift' bits of precision.
+ shift := uint(Emin - (exp - 1)) // [1..Esize1)
+ lostbits := mantissa & (1<<shift - 1)
+ haveRem = haveRem || lostbits != 0
+ mantissa >>= shift
+ exp = 2 - Ebias // == exp + shift
+ }
+ // Round q using round-half-to-even.
+ exact = !haveRem
+ if mantissa&1 != 0 {
+ exact = false
+ if haveRem || mantissa&2 != 0 {
+ if mantissa++; mantissa >= 1<<Msize2 {
+ // Complete rollover 11...1 => 100...0, so shift is safe
+ mantissa >>= 1
+ exp++
+ }
+ }
+ }
+ mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1.
+
+ f = math.Ldexp(float64(mantissa), exp-Msize1)
+ if math.IsInf(f, 0) {
+ exact = false
+ }
+ return
+}
+
+// Float32 returns the nearest float32 value for x and a bool indicating
+// whether f represents x exactly. If the magnitude of x is too large to
+// be represented by a float32, f is an infinity and exact is false.
+// The sign of f always matches the sign of x, even if f == 0.
+func (x *Rat) Float32() (f float32, exact bool) {
+ b := x.b.abs
+ if len(b) == 0 {
+ b = natOne
+ }
+ f, exact = quotToFloat32(x.a.abs, b)
+ if x.a.neg {
+ f = -f
+ }
+ return
+}
+
+// Float64 returns the nearest float64 value for x and a bool indicating
+// whether f represents x exactly. If the magnitude of x is too large to
+// be represented by a float64, f is an infinity and exact is false.
+// The sign of f always matches the sign of x, even if f == 0.
+func (x *Rat) Float64() (f float64, exact bool) {
+ b := x.b.abs
+ if len(b) == 0 {
+ b = natOne
+ }
+ f, exact = quotToFloat64(x.a.abs, b)
+ if x.a.neg {
+ f = -f
+ }
+ return
+}
+
+// SetFrac sets z to a/b and returns z.
+// If b == 0, SetFrac panics.
+func (z *Rat) SetFrac(a, b *Int) *Rat {
+ z.a.neg = a.neg != b.neg
+ babs := b.abs
+ if len(babs) == 0 {
+ panic("division by zero")
+ }
+ if &z.a == b || alias(z.a.abs, babs) {
+ babs = nat(nil).set(babs) // make a copy
+ }
+ z.a.abs = z.a.abs.set(a.abs)
+ z.b.abs = z.b.abs.set(babs)
+ return z.norm()
+}
+
+// SetFrac64 sets z to a/b and returns z.
+// If b == 0, SetFrac64 panics.
+func (z *Rat) SetFrac64(a, b int64) *Rat {
+ if b == 0 {
+ panic("division by zero")
+ }
+ z.a.SetInt64(a)
+ if b < 0 {
+ b = -b
+ z.a.neg = !z.a.neg
+ }
+ z.b.abs = z.b.abs.setUint64(uint64(b))
+ return z.norm()
+}
+
+// SetInt sets z to x (by making a copy of x) and returns z.
+func (z *Rat) SetInt(x *Int) *Rat {
+ z.a.Set(x)
+ z.b.abs = z.b.abs.setWord(1)
+ return z
+}
+
+// SetInt64 sets z to x and returns z.
+func (z *Rat) SetInt64(x int64) *Rat {
+ z.a.SetInt64(x)
+ z.b.abs = z.b.abs.setWord(1)
+ return z
+}
+
+// SetUint64 sets z to x and returns z.
+func (z *Rat) SetUint64(x uint64) *Rat {
+ z.a.SetUint64(x)
+ z.b.abs = z.b.abs.setWord(1)
+ return z
+}
+
+// Set sets z to x (by making a copy of x) and returns z.
+func (z *Rat) Set(x *Rat) *Rat {
+ if z != x {
+ z.a.Set(&x.a)
+ z.b.Set(&x.b)
+ }
+ if len(z.b.abs) == 0 {
+ z.b.abs = z.b.abs.setWord(1)
+ }
+ return z
+}
+
+// Abs sets z to |x| (the absolute value of x) and returns z.
+func (z *Rat) Abs(x *Rat) *Rat {
+ z.Set(x)
+ z.a.neg = false
+ return z
+}
+
+// Neg sets z to -x and returns z.
+func (z *Rat) Neg(x *Rat) *Rat {
+ z.Set(x)
+ z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign
+ return z
+}
+
+// Inv sets z to 1/x and returns z.
+// If x == 0, Inv panics.
+func (z *Rat) Inv(x *Rat) *Rat {
+ if len(x.a.abs) == 0 {
+ panic("division by zero")
+ }
+ z.Set(x)
+ z.a.abs, z.b.abs = z.b.abs, z.a.abs
+ return z
+}
+
+// Sign returns:
+//
+// -1 if x < 0
+// 0 if x == 0
+// +1 if x > 0
+func (x *Rat) Sign() int {
+ return x.a.Sign()
+}
+
+// IsInt reports whether the denominator of x is 1.
+func (x *Rat) IsInt() bool {
+ return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0
+}
+
+// Num returns the numerator of x; it may be <= 0.
+// The result is a reference to x's numerator; it
+// may change if a new value is assigned to x, and vice versa.
+// The sign of the numerator corresponds to the sign of x.
+func (x *Rat) Num() *Int {
+ return &x.a
+}
+
+// Denom returns the denominator of x; it is always > 0.
+// The result is a reference to x's denominator, unless
+// x is an uninitialized (zero value) [Rat], in which case
+// the result is a new [Int] of value 1. (To initialize x,
+// any operation that sets x will do, including x.Set(x).)
+// If the result is a reference to x's denominator it
+// may change if a new value is assigned to x, and vice versa.
+func (x *Rat) Denom() *Int {
+ // Note that x.b.neg is guaranteed false.
+ if len(x.b.abs) == 0 {
+ // Note: If this proves problematic, we could
+ // panic instead and require the Rat to
+ // be explicitly initialized.
+ return &Int{abs: nat{1}}
+ }
+ return &x.b
+}
+
+func (z *Rat) norm() *Rat {
+ switch {
+ case len(z.a.abs) == 0:
+ // z == 0; normalize sign and denominator
+ z.a.neg = false
+ fallthrough
+ case len(z.b.abs) == 0:
+ // z is integer; normalize denominator
+ z.b.abs = z.b.abs.setWord(1)
+ default:
+ // z is fraction; normalize numerator and denominator
+ neg := z.a.neg
+ z.a.neg = false
+ z.b.neg = false
+ if f := NewInt(0).lehmerGCD(nil, nil, &z.a, &z.b); f.Cmp(intOne) != 0 {
+ z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs)
+ z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs)
+ }
+ z.a.neg = neg
+ }
+ return z
+}
+
+// mulDenom sets z to the denominator product x*y (by taking into
+// account that 0 values for x or y must be interpreted as 1) and
+// returns z.
+func mulDenom(z, x, y nat) nat {
+ switch {
+ case len(x) == 0 && len(y) == 0:
+ return z.setWord(1)
+ case len(x) == 0:
+ return z.set(y)
+ case len(y) == 0:
+ return z.set(x)
+ }
+ return z.mul(x, y)
+}
+
+// scaleDenom sets z to the product x*f.
+// If f == 0 (zero value of denominator), z is set to (a copy of) x.
+func (z *Int) scaleDenom(x *Int, f nat) {
+ if len(f) == 0 {
+ z.Set(x)
+ return
+ }
+ z.abs = z.abs.mul(x.abs, f)
+ z.neg = x.neg
+}
+
+// Cmp compares x and y and returns:
+//
+// -1 if x < y
+// 0 if x == y
+// +1 if x > y
+func (x *Rat) Cmp(y *Rat) int {
+ var a, b Int
+ a.scaleDenom(&x.a, y.b.abs)
+ b.scaleDenom(&y.a, x.b.abs)
+ return a.Cmp(&b)
+}
+
+// Add sets z to the sum x+y and returns z.
+func (z *Rat) Add(x, y *Rat) *Rat {
+ var a1, a2 Int
+ a1.scaleDenom(&x.a, y.b.abs)
+ a2.scaleDenom(&y.a, x.b.abs)
+ z.a.Add(&a1, &a2)
+ z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
+ return z.norm()
+}
+
+// Sub sets z to the difference x-y and returns z.
+func (z *Rat) Sub(x, y *Rat) *Rat {
+ var a1, a2 Int
+ a1.scaleDenom(&x.a, y.b.abs)
+ a2.scaleDenom(&y.a, x.b.abs)
+ z.a.Sub(&a1, &a2)
+ z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
+ return z.norm()
+}
+
+// Mul sets z to the product x*y and returns z.
+func (z *Rat) Mul(x, y *Rat) *Rat {
+ if x == y {
+ // a squared Rat is positive and can't be reduced (no need to call norm())
+ z.a.neg = false
+ z.a.abs = z.a.abs.sqr(x.a.abs)
+ if len(x.b.abs) == 0 {
+ z.b.abs = z.b.abs.setWord(1)
+ } else {
+ z.b.abs = z.b.abs.sqr(x.b.abs)
+ }
+ return z
+ }
+ z.a.Mul(&x.a, &y.a)
+ z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
+ return z.norm()
+}
+
+// Quo sets z to the quotient x/y and returns z.
+// If y == 0, Quo panics.
+func (z *Rat) Quo(x, y *Rat) *Rat {
+ if len(y.a.abs) == 0 {
+ panic("division by zero")
+ }
+ var a, b Int
+ a.scaleDenom(&x.a, y.b.abs)
+ b.scaleDenom(&y.a, x.b.abs)
+ z.a.abs = a.abs
+ z.b.abs = b.abs
+ z.a.neg = a.neg != b.neg
+ return z.norm()
+}
diff --git a/src/math/big/rat_test.go b/src/math/big/rat_test.go
new file mode 100644
index 0000000..d98c89b
--- /dev/null
+++ b/src/math/big/rat_test.go
@@ -0,0 +1,746 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "math"
+ "testing"
+)
+
+func TestZeroRat(t *testing.T) {
+ var x, y, z Rat
+ y.SetFrac64(0, 42)
+
+ if x.Cmp(&y) != 0 {
+ t.Errorf("x and y should be both equal and zero")
+ }
+
+ if s := x.String(); s != "0/1" {
+ t.Errorf("got x = %s, want 0/1", s)
+ }
+
+ if s := x.RatString(); s != "0" {
+ t.Errorf("got x = %s, want 0", s)
+ }
+
+ z.Add(&x, &y)
+ if s := z.RatString(); s != "0" {
+ t.Errorf("got x+y = %s, want 0", s)
+ }
+
+ z.Sub(&x, &y)
+ if s := z.RatString(); s != "0" {
+ t.Errorf("got x-y = %s, want 0", s)
+ }
+
+ z.Mul(&x, &y)
+ if s := z.RatString(); s != "0" {
+ t.Errorf("got x*y = %s, want 0", s)
+ }
+
+ // check for division by zero
+ defer func() {
+ if s := recover(); s == nil || s.(string) != "division by zero" {
+ panic(s)
+ }
+ }()
+ z.Quo(&x, &y)
+}
+
+func TestRatSign(t *testing.T) {
+ zero := NewRat(0, 1)
+ for _, a := range setStringTests {
+ x, ok := new(Rat).SetString(a.in)
+ if !ok {
+ continue
+ }
+ s := x.Sign()
+ e := x.Cmp(zero)
+ if s != e {
+ t.Errorf("got %d; want %d for z = %v", s, e, &x)
+ }
+ }
+}
+
+var ratCmpTests = []struct {
+ rat1, rat2 string
+ out int
+}{
+ {"0", "0/1", 0},
+ {"1/1", "1", 0},
+ {"-1", "-2/2", 0},
+ {"1", "0", 1},
+ {"0/1", "1/1", -1},
+ {"-5/1434770811533343057144", "-5/1434770811533343057145", -1},
+ {"49832350382626108453/8964749413", "49832350382626108454/8964749413", -1},
+ {"-37414950961700930/7204075375675961", "37414950961700930/7204075375675961", -1},
+ {"37414950961700930/7204075375675961", "74829901923401860/14408150751351922", 0},
+}
+
+func TestRatCmp(t *testing.T) {
+ for i, test := range ratCmpTests {
+ x, _ := new(Rat).SetString(test.rat1)
+ y, _ := new(Rat).SetString(test.rat2)
+
+ out := x.Cmp(y)
+ if out != test.out {
+ t.Errorf("#%d got out = %v; want %v", i, out, test.out)
+ }
+ }
+}
+
+func TestIsInt(t *testing.T) {
+ one := NewInt(1)
+ for _, a := range setStringTests {
+ x, ok := new(Rat).SetString(a.in)
+ if !ok {
+ continue
+ }
+ i := x.IsInt()
+ e := x.Denom().Cmp(one) == 0
+ if i != e {
+ t.Errorf("got IsInt(%v) == %v; want %v", x, i, e)
+ }
+ }
+}
+
+func TestRatAbs(t *testing.T) {
+ zero := new(Rat)
+ for _, a := range setStringTests {
+ x, ok := new(Rat).SetString(a.in)
+ if !ok {
+ continue
+ }
+ e := new(Rat).Set(x)
+ if e.Cmp(zero) < 0 {
+ e.Sub(zero, e)
+ }
+ z := new(Rat).Abs(x)
+ if z.Cmp(e) != 0 {
+ t.Errorf("got Abs(%v) = %v; want %v", x, z, e)
+ }
+ }
+}
+
+func TestRatNeg(t *testing.T) {
+ zero := new(Rat)
+ for _, a := range setStringTests {
+ x, ok := new(Rat).SetString(a.in)
+ if !ok {
+ continue
+ }
+ e := new(Rat).Sub(zero, x)
+ z := new(Rat).Neg(x)
+ if z.Cmp(e) != 0 {
+ t.Errorf("got Neg(%v) = %v; want %v", x, z, e)
+ }
+ }
+}
+
+func TestRatInv(t *testing.T) {
+ zero := new(Rat)
+ for _, a := range setStringTests {
+ x, ok := new(Rat).SetString(a.in)
+ if !ok {
+ continue
+ }
+ if x.Cmp(zero) == 0 {
+ continue // avoid division by zero
+ }
+ e := new(Rat).SetFrac(x.Denom(), x.Num())
+ z := new(Rat).Inv(x)
+ if z.Cmp(e) != 0 {
+ t.Errorf("got Inv(%v) = %v; want %v", x, z, e)
+ }
+ }
+}
+
+type ratBinFun func(z, x, y *Rat) *Rat
+type ratBinArg struct {
+ x, y, z string
+}
+
+func testRatBin(t *testing.T, i int, name string, f ratBinFun, a ratBinArg) {
+ x, _ := new(Rat).SetString(a.x)
+ y, _ := new(Rat).SetString(a.y)
+ z, _ := new(Rat).SetString(a.z)
+ out := f(new(Rat), x, y)
+
+ if out.Cmp(z) != 0 {
+ t.Errorf("%s #%d got %s want %s", name, i, out, z)
+ }
+}
+
+var ratBinTests = []struct {
+ x, y string
+ sum, prod string
+}{
+ {"0", "0", "0", "0"},
+ {"0", "1", "1", "0"},
+ {"-1", "0", "-1", "0"},
+ {"-1", "1", "0", "-1"},
+ {"1", "1", "2", "1"},
+ {"1/2", "1/2", "1", "1/4"},
+ {"1/4", "1/3", "7/12", "1/12"},
+ {"2/5", "-14/3", "-64/15", "-28/15"},
+ {"4707/49292519774798173060", "-3367/70976135186689855734", "84058377121001851123459/1749296273614329067191168098769082663020", "-1760941/388732505247628681598037355282018369560"},
+ {"-61204110018146728334/3", "-31052192278051565633/2", "-215564796870448153567/6", "950260896245257153059642991192710872711/3"},
+ {"-854857841473707320655/4237645934602118692642972629634714039", "-18/31750379913563777419", "-27/133467566250814981", "15387441146526731771790/134546868362786310073779084329032722548987800600710485341"},
+ {"618575745270541348005638912139/19198433543745179392300736", "-19948846211000086/637313996471", "27674141753240653/30123979153216", "-6169936206128396568797607742807090270137721977/6117715203873571641674006593837351328"},
+ {"-3/26206484091896184128", "5/2848423294177090248", "15310893822118706237/9330894968229805033368778458685147968", "-5/24882386581946146755650075889827061248"},
+ {"26946729/330400702820", "41563965/225583428284", "1238218672302860271/4658307703098666660055", "224002580204097/14906584649915733312176"},
+ {"-8259900599013409474/7", "-84829337473700364773/56707961321161574960", "-468402123685491748914621885145127724451/396955729248131024720", "350340947706464153265156004876107029701/198477864624065512360"},
+ {"575775209696864/1320203974639986246357", "29/712593081308", "410331716733912717985762465/940768218243776489278275419794956", "808/45524274987585732633"},
+ {"1786597389946320496771/2066653520653241", "6269770/1992362624741777", "3559549865190272133656109052308126637/4117523232840525481453983149257", "8967230/3296219033"},
+ {"-36459180403360509753/32150500941194292113930", "9381566963714/9633539", "301622077145533298008420642898530153/309723104686531919656937098270", "-3784609207827/3426986245"},
+}
+
+func TestRatBin(t *testing.T) {
+ for i, test := range ratBinTests {
+ arg := ratBinArg{test.x, test.y, test.sum}
+ testRatBin(t, i, "Add", (*Rat).Add, arg)
+
+ arg = ratBinArg{test.y, test.x, test.sum}
+ testRatBin(t, i, "Add symmetric", (*Rat).Add, arg)
+
+ arg = ratBinArg{test.sum, test.x, test.y}
+ testRatBin(t, i, "Sub", (*Rat).Sub, arg)
+
+ arg = ratBinArg{test.sum, test.y, test.x}
+ testRatBin(t, i, "Sub symmetric", (*Rat).Sub, arg)
+
+ arg = ratBinArg{test.x, test.y, test.prod}
+ testRatBin(t, i, "Mul", (*Rat).Mul, arg)
+
+ arg = ratBinArg{test.y, test.x, test.prod}
+ testRatBin(t, i, "Mul symmetric", (*Rat).Mul, arg)
+
+ if test.x != "0" {
+ arg = ratBinArg{test.prod, test.x, test.y}
+ testRatBin(t, i, "Quo", (*Rat).Quo, arg)
+ }
+
+ if test.y != "0" {
+ arg = ratBinArg{test.prod, test.y, test.x}
+ testRatBin(t, i, "Quo symmetric", (*Rat).Quo, arg)
+ }
+ }
+}
+
+func TestIssue820(t *testing.T) {
+ x := NewRat(3, 1)
+ y := NewRat(2, 1)
+ z := y.Quo(x, y)
+ q := NewRat(3, 2)
+ if z.Cmp(q) != 0 {
+ t.Errorf("got %s want %s", z, q)
+ }
+
+ y = NewRat(3, 1)
+ x = NewRat(2, 1)
+ z = y.Quo(x, y)
+ q = NewRat(2, 3)
+ if z.Cmp(q) != 0 {
+ t.Errorf("got %s want %s", z, q)
+ }
+
+ x = NewRat(3, 1)
+ z = x.Quo(x, x)
+ q = NewRat(3, 3)
+ if z.Cmp(q) != 0 {
+ t.Errorf("got %s want %s", z, q)
+ }
+}
+
+var setFrac64Tests = []struct {
+ a, b int64
+ out string
+}{
+ {0, 1, "0"},
+ {0, -1, "0"},
+ {1, 1, "1"},
+ {-1, 1, "-1"},
+ {1, -1, "-1"},
+ {-1, -1, "1"},
+ {-9223372036854775808, -9223372036854775808, "1"},
+}
+
+func TestRatSetFrac64Rat(t *testing.T) {
+ for i, test := range setFrac64Tests {
+ x := new(Rat).SetFrac64(test.a, test.b)
+ if x.RatString() != test.out {
+ t.Errorf("#%d got %s want %s", i, x.RatString(), test.out)
+ }
+ }
+}
+
+func TestIssue2379(t *testing.T) {
+ // 1) no aliasing
+ q := NewRat(3, 2)
+ x := new(Rat)
+ x.SetFrac(NewInt(3), NewInt(2))
+ if x.Cmp(q) != 0 {
+ t.Errorf("1) got %s want %s", x, q)
+ }
+
+ // 2) aliasing of numerator
+ x = NewRat(2, 3)
+ x.SetFrac(NewInt(3), x.Num())
+ if x.Cmp(q) != 0 {
+ t.Errorf("2) got %s want %s", x, q)
+ }
+
+ // 3) aliasing of denominator
+ x = NewRat(2, 3)
+ x.SetFrac(x.Denom(), NewInt(2))
+ if x.Cmp(q) != 0 {
+ t.Errorf("3) got %s want %s", x, q)
+ }
+
+ // 4) aliasing of numerator and denominator
+ x = NewRat(2, 3)
+ x.SetFrac(x.Denom(), x.Num())
+ if x.Cmp(q) != 0 {
+ t.Errorf("4) got %s want %s", x, q)
+ }
+
+ // 5) numerator and denominator are the same
+ q = NewRat(1, 1)
+ x = new(Rat)
+ n := NewInt(7)
+ x.SetFrac(n, n)
+ if x.Cmp(q) != 0 {
+ t.Errorf("5) got %s want %s", x, q)
+ }
+}
+
+func TestIssue3521(t *testing.T) {
+ a := new(Int)
+ b := new(Int)
+ a.SetString("64375784358435883458348587", 0)
+ b.SetString("4789759874531", 0)
+
+ // 0) a raw zero value has 1 as denominator
+ zero := new(Rat)
+ one := NewInt(1)
+ if zero.Denom().Cmp(one) != 0 {
+ t.Errorf("0) got %s want %s", zero.Denom(), one)
+ }
+
+ // 1a) the denominator of an (uninitialized) zero value is not shared with the value
+ s := &zero.b
+ d := zero.Denom()
+ if d == s {
+ t.Errorf("1a) got %s (%p) == %s (%p) want different *Int values", d, d, s, s)
+ }
+
+ // 1b) the denominator of an (uninitialized) value is a new 1 each time
+ d1 := zero.Denom()
+ d2 := zero.Denom()
+ if d1 == d2 {
+ t.Errorf("1b) got %s (%p) == %s (%p) want different *Int values", d1, d1, d2, d2)
+ }
+
+ // 1c) the denominator of an initialized zero value is shared with the value
+ x := new(Rat)
+ x.Set(x) // initialize x (any operation that sets x explicitly will do)
+ s = &x.b
+ d = x.Denom()
+ if d != s {
+ t.Errorf("1c) got %s (%p) != %s (%p) want identical *Int values", d, d, s, s)
+ }
+
+ // 1d) a zero value remains zero independent of denominator
+ x.Denom().Set(new(Int).Neg(b))
+ if x.Cmp(zero) != 0 {
+ t.Errorf("1d) got %s want %s", x, zero)
+ }
+
+ // 1e) a zero value may have a denominator != 0 and != 1
+ x.Num().Set(a)
+ qab := new(Rat).SetFrac(a, b)
+ if x.Cmp(qab) != 0 {
+ t.Errorf("1e) got %s want %s", x, qab)
+ }
+
+ // 2a) an integral value becomes a fraction depending on denominator
+ x.SetFrac64(10, 2)
+ x.Denom().SetInt64(3)
+ q53 := NewRat(5, 3)
+ if x.Cmp(q53) != 0 {
+ t.Errorf("2a) got %s want %s", x, q53)
+ }
+
+ // 2b) an integral value becomes a fraction depending on denominator
+ x = NewRat(10, 2)
+ x.Denom().SetInt64(3)
+ if x.Cmp(q53) != 0 {
+ t.Errorf("2b) got %s want %s", x, q53)
+ }
+
+ // 3) changing the numerator/denominator of a Rat changes the Rat
+ x.SetFrac(a, b)
+ a = x.Num()
+ b = x.Denom()
+ a.SetInt64(5)
+ b.SetInt64(3)
+ if x.Cmp(q53) != 0 {
+ t.Errorf("3) got %s want %s", x, q53)
+ }
+}
+
+func TestFloat32Distribution(t *testing.T) {
+ // Generate a distribution of (sign, mantissa, exp) values
+ // broader than the float32 range, and check Rat.Float32()
+ // always picks the closest float32 approximation.
+ var add = []int64{
+ 0,
+ 1,
+ 3,
+ 5,
+ 7,
+ 9,
+ 11,
+ }
+ var winc, einc = uint64(5), 15 // quick test (~60ms on x86-64)
+ if *long {
+ winc, einc = uint64(1), 1 // soak test (~1.5s on x86-64)
+ }
+
+ for _, sign := range "+-" {
+ for _, a := range add {
+ for wid := uint64(0); wid < 30; wid += winc {
+ b := 1<<wid + a
+ if sign == '-' {
+ b = -b
+ }
+ for exp := -150; exp < 150; exp += einc {
+ num, den := NewInt(b), NewInt(1)
+ if exp > 0 {
+ num.Lsh(num, uint(exp))
+ } else {
+ den.Lsh(den, uint(-exp))
+ }
+ r := new(Rat).SetFrac(num, den)
+ f, _ := r.Float32()
+
+ if !checkIsBestApprox32(t, f, r) {
+ // Append context information.
+ t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)",
+ b, exp, f, f, math.Ldexp(float64(b), exp), r)
+ }
+
+ checkNonLossyRoundtrip32(t, f)
+ }
+ }
+ }
+ }
+}
+
+func TestFloat64Distribution(t *testing.T) {
+ // Generate a distribution of (sign, mantissa, exp) values
+ // broader than the float64 range, and check Rat.Float64()
+ // always picks the closest float64 approximation.
+ var add = []int64{
+ 0,
+ 1,
+ 3,
+ 5,
+ 7,
+ 9,
+ 11,
+ }
+ var winc, einc = uint64(10), 500 // quick test (~12ms on x86-64)
+ if *long {
+ winc, einc = uint64(1), 1 // soak test (~75s on x86-64)
+ }
+
+ for _, sign := range "+-" {
+ for _, a := range add {
+ for wid := uint64(0); wid < 60; wid += winc {
+ b := 1<<wid + a
+ if sign == '-' {
+ b = -b
+ }
+ for exp := -1100; exp < 1100; exp += einc {
+ num, den := NewInt(b), NewInt(1)
+ if exp > 0 {
+ num.Lsh(num, uint(exp))
+ } else {
+ den.Lsh(den, uint(-exp))
+ }
+ r := new(Rat).SetFrac(num, den)
+ f, _ := r.Float64()
+
+ if !checkIsBestApprox64(t, f, r) {
+ // Append context information.
+ t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)",
+ b, exp, f, f, math.Ldexp(float64(b), exp), r)
+ }
+
+ checkNonLossyRoundtrip64(t, f)
+ }
+ }
+ }
+ }
+}
+
+// TestSetFloat64NonFinite checks that SetFloat64 of a non-finite value
+// returns nil.
+func TestSetFloat64NonFinite(t *testing.T) {
+ for _, f := range []float64{math.NaN(), math.Inf(+1), math.Inf(-1)} {
+ var r Rat
+ if r2 := r.SetFloat64(f); r2 != nil {
+ t.Errorf("SetFloat64(%g) was %v, want nil", f, r2)
+ }
+ }
+}
+
+// checkNonLossyRoundtrip32 checks that a float->Rat->float roundtrip is
+// non-lossy for finite f.
+func checkNonLossyRoundtrip32(t *testing.T, f float32) {
+ if !isFinite(float64(f)) {
+ return
+ }
+ r := new(Rat).SetFloat64(float64(f))
+ if r == nil {
+ t.Errorf("Rat.SetFloat64(float64(%g) (%b)) == nil", f, f)
+ return
+ }
+ f2, exact := r.Float32()
+ if f != f2 || !exact {
+ t.Errorf("Rat.SetFloat64(float64(%g)).Float32() = %g (%b), %v, want %g (%b), %v; delta = %b",
+ f, f2, f2, exact, f, f, true, f2-f)
+ }
+}
+
+// checkNonLossyRoundtrip64 checks that a float->Rat->float roundtrip is
+// non-lossy for finite f.
+func checkNonLossyRoundtrip64(t *testing.T, f float64) {
+ if !isFinite(f) {
+ return
+ }
+ r := new(Rat).SetFloat64(f)
+ if r == nil {
+ t.Errorf("Rat.SetFloat64(%g (%b)) == nil", f, f)
+ return
+ }
+ f2, exact := r.Float64()
+ if f != f2 || !exact {
+ t.Errorf("Rat.SetFloat64(%g).Float64() = %g (%b), %v, want %g (%b), %v; delta = %b",
+ f, f2, f2, exact, f, f, true, f2-f)
+ }
+}
+
+// delta returns the absolute difference between r and f.
+func delta(r *Rat, f float64) *Rat {
+ d := new(Rat).Sub(r, new(Rat).SetFloat64(f))
+ return d.Abs(d)
+}
+
+// checkIsBestApprox32 checks that f is the best possible float32
+// approximation of r.
+// Returns true on success.
+func checkIsBestApprox32(t *testing.T, f float32, r *Rat) bool {
+ if math.Abs(float64(f)) >= math.MaxFloat32 {
+ // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat32).
+ // But we have tests for these special cases.
+ return true
+ }
+
+ // r must be strictly between f0 and f1, the floats bracketing f.
+ f0 := math.Nextafter32(f, float32(math.Inf(-1)))
+ f1 := math.Nextafter32(f, float32(math.Inf(+1)))
+
+ // For f to be correct, r must be closer to f than to f0 or f1.
+ df := delta(r, float64(f))
+ df0 := delta(r, float64(f0))
+ df1 := delta(r, float64(f1))
+ if df.Cmp(df0) > 0 {
+ t.Errorf("Rat(%v).Float32() = %g (%b), but previous float32 %g (%b) is closer", r, f, f, f0, f0)
+ return false
+ }
+ if df.Cmp(df1) > 0 {
+ t.Errorf("Rat(%v).Float32() = %g (%b), but next float32 %g (%b) is closer", r, f, f, f1, f1)
+ return false
+ }
+ if df.Cmp(df0) == 0 && !isEven32(f) {
+ t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0)
+ return false
+ }
+ if df.Cmp(df1) == 0 && !isEven32(f) {
+ t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1)
+ return false
+ }
+ return true
+}
+
+// checkIsBestApprox64 checks that f is the best possible float64
+// approximation of r.
+// Returns true on success.
+func checkIsBestApprox64(t *testing.T, f float64, r *Rat) bool {
+ if math.Abs(f) >= math.MaxFloat64 {
+ // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat64).
+ // But we have tests for these special cases.
+ return true
+ }
+
+ // r must be strictly between f0 and f1, the floats bracketing f.
+ f0 := math.Nextafter(f, math.Inf(-1))
+ f1 := math.Nextafter(f, math.Inf(+1))
+
+ // For f to be correct, r must be closer to f than to f0 or f1.
+ df := delta(r, f)
+ df0 := delta(r, f0)
+ df1 := delta(r, f1)
+ if df.Cmp(df0) > 0 {
+ t.Errorf("Rat(%v).Float64() = %g (%b), but previous float64 %g (%b) is closer", r, f, f, f0, f0)
+ return false
+ }
+ if df.Cmp(df1) > 0 {
+ t.Errorf("Rat(%v).Float64() = %g (%b), but next float64 %g (%b) is closer", r, f, f, f1, f1)
+ return false
+ }
+ if df.Cmp(df0) == 0 && !isEven64(f) {
+ t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0)
+ return false
+ }
+ if df.Cmp(df1) == 0 && !isEven64(f) {
+ t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1)
+ return false
+ }
+ return true
+}
+
+func isEven32(f float32) bool { return math.Float32bits(f)&1 == 0 }
+func isEven64(f float64) bool { return math.Float64bits(f)&1 == 0 }
+
+func TestIsFinite(t *testing.T) {
+ finites := []float64{
+ 1.0 / 3,
+ 4891559871276714924261e+222,
+ math.MaxFloat64,
+ math.SmallestNonzeroFloat64,
+ -math.MaxFloat64,
+ -math.SmallestNonzeroFloat64,
+ }
+ for _, f := range finites {
+ if !isFinite(f) {
+ t.Errorf("!IsFinite(%g (%b))", f, f)
+ }
+ }
+ nonfinites := []float64{
+ math.NaN(),
+ math.Inf(-1),
+ math.Inf(+1),
+ }
+ for _, f := range nonfinites {
+ if isFinite(f) {
+ t.Errorf("IsFinite(%g, (%b))", f, f)
+ }
+ }
+}
+
+func TestRatSetInt64(t *testing.T) {
+ var testCases = []int64{
+ 0,
+ 1,
+ -1,
+ 12345,
+ -98765,
+ math.MaxInt64,
+ math.MinInt64,
+ }
+ var r = new(Rat)
+ for i, want := range testCases {
+ r.SetInt64(want)
+ if !r.IsInt() {
+ t.Errorf("#%d: Rat.SetInt64(%d) is not an integer", i, want)
+ }
+ num := r.Num()
+ if !num.IsInt64() {
+ t.Errorf("#%d: Rat.SetInt64(%d) numerator is not an int64", i, want)
+ }
+ got := num.Int64()
+ if got != want {
+ t.Errorf("#%d: Rat.SetInt64(%d) = %d, but expected %d", i, want, got, want)
+ }
+ }
+}
+
+func TestRatSetUint64(t *testing.T) {
+ var testCases = []uint64{
+ 0,
+ 1,
+ 12345,
+ ^uint64(0),
+ }
+ var r = new(Rat)
+ for i, want := range testCases {
+ r.SetUint64(want)
+ if !r.IsInt() {
+ t.Errorf("#%d: Rat.SetUint64(%d) is not an integer", i, want)
+ }
+ num := r.Num()
+ if !num.IsUint64() {
+ t.Errorf("#%d: Rat.SetUint64(%d) numerator is not a uint64", i, want)
+ }
+ got := num.Uint64()
+ if got != want {
+ t.Errorf("#%d: Rat.SetUint64(%d) = %d, but expected %d", i, want, got, want)
+ }
+ }
+}
+
+func BenchmarkRatCmp(b *testing.B) {
+ x, y := NewRat(4, 1), NewRat(7, 2)
+ for i := 0; i < b.N; i++ {
+ x.Cmp(y)
+ }
+}
+
+// TestIssue34919 verifies that a Rat's denominator is not modified
+// when simply accessing the Rat value.
+func TestIssue34919(t *testing.T) {
+ for _, acc := range []struct {
+ name string
+ f func(*Rat)
+ }{
+ {"Float32", func(x *Rat) { x.Float32() }},
+ {"Float64", func(x *Rat) { x.Float64() }},
+ {"Inv", func(x *Rat) { new(Rat).Inv(x) }},
+ {"Sign", func(x *Rat) { x.Sign() }},
+ {"IsInt", func(x *Rat) { x.IsInt() }},
+ {"Num", func(x *Rat) { x.Num() }},
+ // {"Denom", func(x *Rat) { x.Denom() }}, TODO(gri) should we change the API? See issue #33792.
+ } {
+ // A denominator of length 0 is interpreted as 1. Make sure that
+ // "materialization" of the denominator doesn't lead to setting
+ // the underlying array element 0 to 1.
+ r := &Rat{Int{abs: nat{991}}, Int{abs: make(nat, 0, 1)}}
+ acc.f(r)
+ if d := r.b.abs[:1][0]; d != 0 {
+ t.Errorf("%s modified denominator: got %d, want 0", acc.name, d)
+ }
+ }
+}
+
+func TestDenomRace(t *testing.T) {
+ x := NewRat(1, 2)
+ const N = 3
+ c := make(chan bool, N)
+ for i := 0; i < N; i++ {
+ go func() {
+ // Denom (also used by Float.SetRat) used to mutate x unnecessarily,
+ // provoking race reports when run in the race detector.
+ x.Denom()
+ new(Float).SetRat(x)
+ c <- true
+ }()
+ }
+ for i := 0; i < N; i++ {
+ <-c
+ }
+}
diff --git a/src/math/big/ratconv.go b/src/math/big/ratconv.go
new file mode 100644
index 0000000..dd99aec
--- /dev/null
+++ b/src/math/big/ratconv.go
@@ -0,0 +1,459 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements rat-to-string conversion functions.
+
+package big
+
+import (
+ "errors"
+ "fmt"
+ "io"
+ "strconv"
+ "strings"
+)
+
+func ratTok(ch rune) bool {
+ return strings.ContainsRune("+-/0123456789.eE", ch)
+}
+
+var ratZero Rat
+var _ fmt.Scanner = &ratZero // *Rat must implement fmt.Scanner
+
+// Scan is a support routine for fmt.Scanner. It accepts the formats
+// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent.
+func (z *Rat) Scan(s fmt.ScanState, ch rune) error {
+ tok, err := s.Token(true, ratTok)
+ if err != nil {
+ return err
+ }
+ if !strings.ContainsRune("efgEFGv", ch) {
+ return errors.New("Rat.Scan: invalid verb")
+ }
+ if _, ok := z.SetString(string(tok)); !ok {
+ return errors.New("Rat.Scan: invalid syntax")
+ }
+ return nil
+}
+
+// SetString sets z to the value of s and returns z and a boolean indicating
+// success. s can be given as a (possibly signed) fraction "a/b", or as a
+// floating-point number optionally followed by an exponent.
+// If a fraction is provided, both the dividend and the divisor may be a
+// decimal integer or independently use a prefix of “0b”, “0” or “0o”,
+// or “0x” (or their upper-case variants) to denote a binary, octal, or
+// hexadecimal integer, respectively. The divisor may not be signed.
+// If a floating-point number is provided, it may be in decimal form or
+// use any of the same prefixes as above but for “0” to denote a non-decimal
+// mantissa. A leading “0” is considered a decimal leading 0; it does not
+// indicate octal representation in this case.
+// An optional base-10 “e” or base-2 “p” (or their upper-case variants)
+// exponent may be provided as well, except for hexadecimal floats which
+// only accept an (optional) “p” exponent (because an “e” or “E” cannot
+// be distinguished from a mantissa digit). If the exponent's absolute value
+// is too large, the operation may fail.
+// The entire string, not just a prefix, must be valid for success. If the
+// operation failed, the value of z is undefined but the returned value is nil.
+func (z *Rat) SetString(s string) (*Rat, bool) {
+ if len(s) == 0 {
+ return nil, false
+ }
+ // len(s) > 0
+
+ // parse fraction a/b, if any
+ if sep := strings.Index(s, "/"); sep >= 0 {
+ if _, ok := z.a.SetString(s[:sep], 0); !ok {
+ return nil, false
+ }
+ r := strings.NewReader(s[sep+1:])
+ var err error
+ if z.b.abs, _, _, err = z.b.abs.scan(r, 0, false); err != nil {
+ return nil, false
+ }
+ // entire string must have been consumed
+ if _, err = r.ReadByte(); err != io.EOF {
+ return nil, false
+ }
+ if len(z.b.abs) == 0 {
+ return nil, false
+ }
+ return z.norm(), true
+ }
+
+ // parse floating-point number
+ r := strings.NewReader(s)
+
+ // sign
+ neg, err := scanSign(r)
+ if err != nil {
+ return nil, false
+ }
+
+ // mantissa
+ var base int
+ var fcount int // fractional digit count; valid if <= 0
+ z.a.abs, base, fcount, err = z.a.abs.scan(r, 0, true)
+ if err != nil {
+ return nil, false
+ }
+
+ // exponent
+ var exp int64
+ var ebase int
+ exp, ebase, err = scanExponent(r, true, true)
+ if err != nil {
+ return nil, false
+ }
+
+ // there should be no unread characters left
+ if _, err = r.ReadByte(); err != io.EOF {
+ return nil, false
+ }
+
+ // special-case 0 (see also issue #16176)
+ if len(z.a.abs) == 0 {
+ return z.norm(), true
+ }
+ // len(z.a.abs) > 0
+
+ // The mantissa may have a radix point (fcount <= 0) and there
+ // may be a nonzero exponent exp. The radix point amounts to a
+ // division by base**(-fcount), which equals a multiplication by
+ // base**fcount. An exponent means multiplication by ebase**exp.
+ // Multiplications are commutative, so we can apply them in any
+ // order. We only have powers of 2 and 10, and we split powers
+ // of 10 into the product of the same powers of 2 and 5. This
+ // may reduce the size of shift/multiplication factors or
+ // divisors required to create the final fraction, depending
+ // on the actual floating-point value.
+
+ // determine binary or decimal exponent contribution of radix point
+ var exp2, exp5 int64
+ if fcount < 0 {
+ // The mantissa has a radix point ddd.dddd; and
+ // -fcount is the number of digits to the right
+ // of '.'. Adjust relevant exponent accordingly.
+ d := int64(fcount)
+ switch base {
+ case 10:
+ exp5 = d
+ fallthrough // 10**e == 5**e * 2**e
+ case 2:
+ exp2 = d
+ case 8:
+ exp2 = d * 3 // octal digits are 3 bits each
+ case 16:
+ exp2 = d * 4 // hexadecimal digits are 4 bits each
+ default:
+ panic("unexpected mantissa base")
+ }
+ // fcount consumed - not needed anymore
+ }
+
+ // take actual exponent into account
+ switch ebase {
+ case 10:
+ exp5 += exp
+ fallthrough // see fallthrough above
+ case 2:
+ exp2 += exp
+ default:
+ panic("unexpected exponent base")
+ }
+ // exp consumed - not needed anymore
+
+ // apply exp5 contributions
+ // (start with exp5 so the numbers to multiply are smaller)
+ if exp5 != 0 {
+ n := exp5
+ if n < 0 {
+ n = -n
+ if n < 0 {
+ // This can occur if -n overflows. -(-1 << 63) would become
+ // -1 << 63, which is still negative.
+ return nil, false
+ }
+ }
+ if n > 1e6 {
+ return nil, false // avoid excessively large exponents
+ }
+ pow5 := z.b.abs.expNN(natFive, nat(nil).setWord(Word(n)), nil, false) // use underlying array of z.b.abs
+ if exp5 > 0 {
+ z.a.abs = z.a.abs.mul(z.a.abs, pow5)
+ z.b.abs = z.b.abs.setWord(1)
+ } else {
+ z.b.abs = pow5
+ }
+ } else {
+ z.b.abs = z.b.abs.setWord(1)
+ }
+
+ // apply exp2 contributions
+ if exp2 < -1e7 || exp2 > 1e7 {
+ return nil, false // avoid excessively large exponents
+ }
+ if exp2 > 0 {
+ z.a.abs = z.a.abs.shl(z.a.abs, uint(exp2))
+ } else if exp2 < 0 {
+ z.b.abs = z.b.abs.shl(z.b.abs, uint(-exp2))
+ }
+
+ z.a.neg = neg && len(z.a.abs) > 0 // 0 has no sign
+
+ return z.norm(), true
+}
+
+// scanExponent scans the longest possible prefix of r representing a base 10
+// (“e”, “E”) or a base 2 (“p”, “P”) exponent, if any. It returns the
+// exponent, the exponent base (10 or 2), or a read or syntax error, if any.
+//
+// If sepOk is set, an underscore character “_” may appear between successive
+// exponent digits; such underscores do not change the value of the exponent.
+// Incorrect placement of underscores is reported as an error if there are no
+// other errors. If sepOk is not set, underscores are not recognized and thus
+// terminate scanning like any other character that is not a valid digit.
+//
+// exponent = ( "e" | "E" | "p" | "P" ) [ sign ] digits .
+// sign = "+" | "-" .
+// digits = digit { [ '_' ] digit } .
+// digit = "0" ... "9" .
+//
+// A base 2 exponent is only permitted if base2ok is set.
+func scanExponent(r io.ByteScanner, base2ok, sepOk bool) (exp int64, base int, err error) {
+ // one char look-ahead
+ ch, err := r.ReadByte()
+ if err != nil {
+ if err == io.EOF {
+ err = nil
+ }
+ return 0, 10, err
+ }
+
+ // exponent char
+ switch ch {
+ case 'e', 'E':
+ base = 10
+ case 'p', 'P':
+ if base2ok {
+ base = 2
+ break // ok
+ }
+ fallthrough // binary exponent not permitted
+ default:
+ r.UnreadByte() // ch does not belong to exponent anymore
+ return 0, 10, nil
+ }
+
+ // sign
+ var digits []byte
+ ch, err = r.ReadByte()
+ if err == nil && (ch == '+' || ch == '-') {
+ if ch == '-' {
+ digits = append(digits, '-')
+ }
+ ch, err = r.ReadByte()
+ }
+
+ // prev encodes the previously seen char: it is one
+ // of '_', '0' (a digit), or '.' (anything else). A
+ // valid separator '_' may only occur after a digit.
+ prev := '.'
+ invalSep := false
+
+ // exponent value
+ hasDigits := false
+ for err == nil {
+ if '0' <= ch && ch <= '9' {
+ digits = append(digits, ch)
+ prev = '0'
+ hasDigits = true
+ } else if ch == '_' && sepOk {
+ if prev != '0' {
+ invalSep = true
+ }
+ prev = '_'
+ } else {
+ r.UnreadByte() // ch does not belong to number anymore
+ break
+ }
+ ch, err = r.ReadByte()
+ }
+
+ if err == io.EOF {
+ err = nil
+ }
+ if err == nil && !hasDigits {
+ err = errNoDigits
+ }
+ if err == nil {
+ exp, err = strconv.ParseInt(string(digits), 10, 64)
+ }
+ // other errors take precedence over invalid separators
+ if err == nil && (invalSep || prev == '_') {
+ err = errInvalSep
+ }
+
+ return
+}
+
+// String returns a string representation of x in the form "a/b" (even if b == 1).
+func (x *Rat) String() string {
+ return string(x.marshal())
+}
+
+// marshal implements String returning a slice of bytes
+func (x *Rat) marshal() []byte {
+ var buf []byte
+ buf = x.a.Append(buf, 10)
+ buf = append(buf, '/')
+ if len(x.b.abs) != 0 {
+ buf = x.b.Append(buf, 10)
+ } else {
+ buf = append(buf, '1')
+ }
+ return buf
+}
+
+// RatString returns a string representation of x in the form "a/b" if b != 1,
+// and in the form "a" if b == 1.
+func (x *Rat) RatString() string {
+ if x.IsInt() {
+ return x.a.String()
+ }
+ return x.String()
+}
+
+// FloatString returns a string representation of x in decimal form with prec
+// digits of precision after the radix point. The last digit is rounded to
+// nearest, with halves rounded away from zero.
+func (x *Rat) FloatString(prec int) string {
+ var buf []byte
+
+ if x.IsInt() {
+ buf = x.a.Append(buf, 10)
+ if prec > 0 {
+ buf = append(buf, '.')
+ for i := prec; i > 0; i-- {
+ buf = append(buf, '0')
+ }
+ }
+ return string(buf)
+ }
+ // x.b.abs != 0
+
+ q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)
+
+ p := natOne
+ if prec > 0 {
+ p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil, false)
+ }
+
+ r = r.mul(r, p)
+ r, r2 := r.div(nat(nil), r, x.b.abs)
+
+ // see if we need to round up
+ r2 = r2.add(r2, r2)
+ if x.b.abs.cmp(r2) <= 0 {
+ r = r.add(r, natOne)
+ if r.cmp(p) >= 0 {
+ q = nat(nil).add(q, natOne)
+ r = nat(nil).sub(r, p)
+ }
+ }
+
+ if x.a.neg {
+ buf = append(buf, '-')
+ }
+ buf = append(buf, q.utoa(10)...) // itoa ignores sign if q == 0
+
+ if prec > 0 {
+ buf = append(buf, '.')
+ rs := r.utoa(10)
+ for i := prec - len(rs); i > 0; i-- {
+ buf = append(buf, '0')
+ }
+ buf = append(buf, rs...)
+ }
+
+ return string(buf)
+}
+
+// Note: FloatPrec (below) is in this file rather than rat.go because
+// its results are relevant for decimal representation/printing.
+
+// FloatPrec returns the number n of non-repeating digits immediately
+// following the decimal point of the decimal representation of x.
+// The boolean result indicates whether a decimal representation of x
+// with that many fractional digits is exact or rounded.
+//
+// Examples:
+//
+// x n exact decimal representation n fractional digits
+// 0 0 true 0
+// 1 0 true 1
+// 1/2 1 true 0.5
+// 1/3 0 false 0 (0.333... rounded)
+// 1/4 2 true 0.25
+// 1/6 1 false 0.2 (0.166... rounded)
+func (x *Rat) FloatPrec() (n int, exact bool) {
+ // Determine q and largest p2, p5 such that d = q·2^p2·5^p5.
+ // The results n, exact are:
+ //
+ // n = max(p2, p5)
+ // exact = q == 1
+ //
+ // For details see:
+ // https://en.wikipedia.org/wiki/Repeating_decimal#Reciprocals_of_integers_not_coprime_to_10
+ d := x.Denom().abs // d >= 1
+
+ // Determine p2 by counting factors of 2.
+ // p2 corresponds to the trailing zero bits in d.
+ // Do this first to reduce q as much as possible.
+ var q nat
+ p2 := d.trailingZeroBits()
+ q = q.shr(d, p2)
+
+ // Determine p5 by counting factors of 5.
+ // Build a table starting with an initial power of 5,
+ // and use repeated squaring until the factor doesn't
+ // divide q anymore. Then use the table to determine
+ // the power of 5 in q.
+ const fp = 13 // f == 5^fp
+ var tab []nat // tab[i] == (5^fp)^(2^i) == 5^(fp·2^i)
+ f := nat{1220703125} // == 5^fp (must fit into a uint32 Word)
+ var t, r nat // temporaries
+ for {
+ if _, r = t.div(r, q, f); len(r) != 0 {
+ break // f doesn't divide q evenly
+ }
+ tab = append(tab, f)
+ f = nat(nil).sqr(f) // nat(nil) to ensure a new f for each table entry
+ }
+
+ // Factor q using the table entries, if any.
+ // We start with the largest factor f = tab[len(tab)-1]
+ // that evenly divides q. It does so at most once because
+ // otherwise f·f would also divide q. That can't be true
+ // because f·f is the next higher table entry, contradicting
+ // how f was chosen in the first place.
+ // The same reasoning applies to the subsequent factors.
+ var p5 uint
+ for i := len(tab) - 1; i >= 0; i-- {
+ if t, r = t.div(r, q, tab[i]); len(r) == 0 {
+ p5 += fp * (1 << i) // tab[i] == 5^(fp·2^i)
+ q = q.set(t)
+ }
+ }
+
+ // If fp != 1, we may still have multiples of 5 left.
+ for {
+ if t, r = t.div(r, q, natFive); len(r) != 0 {
+ break
+ }
+ p5++
+ q = q.set(t)
+ }
+
+ return int(max(p2, p5)), q.cmp(natOne) == 0
+}
diff --git a/src/math/big/ratconv_test.go b/src/math/big/ratconv_test.go
new file mode 100644
index 0000000..93e89ad
--- /dev/null
+++ b/src/math/big/ratconv_test.go
@@ -0,0 +1,765 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "bytes"
+ "fmt"
+ "io"
+ "math"
+ "reflect"
+ "strconv"
+ "strings"
+ "testing"
+)
+
+var exponentTests = []struct {
+ s string // string to be scanned
+ base2ok bool // true if 'p'/'P' exponents are accepted
+ sepOk bool // true if '_' separators are accepted
+ x int64 // expected exponent
+ b int // expected exponent base
+ err error // expected error
+ next rune // next character (or 0, if at EOF)
+}{
+ // valid, without separators
+ {"", false, false, 0, 10, nil, 0},
+ {"1", false, false, 0, 10, nil, '1'},
+ {"e0", false, false, 0, 10, nil, 0},
+ {"E1", false, false, 1, 10, nil, 0},
+ {"e+10", false, false, 10, 10, nil, 0},
+ {"e-10", false, false, -10, 10, nil, 0},
+ {"e123456789a", false, false, 123456789, 10, nil, 'a'},
+ {"p", false, false, 0, 10, nil, 'p'},
+ {"P+100", false, false, 0, 10, nil, 'P'},
+ {"p0", true, false, 0, 2, nil, 0},
+ {"P-123", true, false, -123, 2, nil, 0},
+ {"p+0a", true, false, 0, 2, nil, 'a'},
+ {"p+123__", true, false, 123, 2, nil, '_'}, // '_' is not part of the number anymore
+
+ // valid, with separators
+ {"e+1_0", false, true, 10, 10, nil, 0},
+ {"e-1_0", false, true, -10, 10, nil, 0},
+ {"e123_456_789a", false, true, 123456789, 10, nil, 'a'},
+ {"P+1_00", false, true, 0, 10, nil, 'P'},
+ {"p-1_2_3", true, true, -123, 2, nil, 0},
+
+ // invalid: no digits
+ {"e", false, false, 0, 10, errNoDigits, 0},
+ {"ef", false, false, 0, 10, errNoDigits, 'f'},
+ {"e+", false, false, 0, 10, errNoDigits, 0},
+ {"E-x", false, false, 0, 10, errNoDigits, 'x'},
+ {"p", true, false, 0, 2, errNoDigits, 0},
+ {"P-", true, false, 0, 2, errNoDigits, 0},
+ {"p+e", true, false, 0, 2, errNoDigits, 'e'},
+ {"e+_x", false, true, 0, 10, errNoDigits, 'x'},
+
+ // invalid: incorrect use of separator
+ {"e0_", false, true, 0, 10, errInvalSep, 0},
+ {"e_0", false, true, 0, 10, errInvalSep, 0},
+ {"e-1_2__3", false, true, -123, 10, errInvalSep, 0},
+}
+
+func TestScanExponent(t *testing.T) {
+ for _, a := range exponentTests {
+ r := strings.NewReader(a.s)
+ x, b, err := scanExponent(r, a.base2ok, a.sepOk)
+ if err != a.err {
+ t.Errorf("scanExponent%+v\n\tgot error = %v; want %v", a, err, a.err)
+ }
+ if x != a.x {
+ t.Errorf("scanExponent%+v\n\tgot z = %v; want %v", a, x, a.x)
+ }
+ if b != a.b {
+ t.Errorf("scanExponent%+v\n\tgot b = %d; want %d", a, b, a.b)
+ }
+ next, _, err := r.ReadRune()
+ if err == io.EOF {
+ next = 0
+ err = nil
+ }
+ if err == nil && next != a.next {
+ t.Errorf("scanExponent%+v\n\tgot next = %q; want %q", a, next, a.next)
+ }
+ }
+}
+
+type StringTest struct {
+ in, out string
+ ok bool
+}
+
+var setStringTests = []StringTest{
+ // invalid
+ {in: "1e"},
+ {in: "1.e"},
+ {in: "1e+14e-5"},
+ {in: "1e4.5"},
+ {in: "r"},
+ {in: "a/b"},
+ {in: "a.b"},
+ {in: "1/0"},
+ {in: "4/3/2"}, // issue 17001
+ {in: "4/3/"},
+ {in: "4/3."},
+ {in: "4/"},
+ {in: "13e-9223372036854775808"}, // CVE-2022-23772
+
+ // valid
+ {"0", "0", true},
+ {"-0", "0", true},
+ {"1", "1", true},
+ {"-1", "-1", true},
+ {"1.", "1", true},
+ {"1e0", "1", true},
+ {"1.e1", "10", true},
+ {"-0.1", "-1/10", true},
+ {"-.1", "-1/10", true},
+ {"2/4", "1/2", true},
+ {".25", "1/4", true},
+ {"-1/5", "-1/5", true},
+ {"8129567.7690E14", "812956776900000000000", true},
+ {"78189e+4", "781890000", true},
+ {"553019.8935e+8", "55301989350000", true},
+ {"98765432109876543210987654321e-10", "98765432109876543210987654321/10000000000", true},
+ {"9877861857500000E-7", "3951144743/4", true},
+ {"2169378.417e-3", "2169378417/1000000", true},
+ {"884243222337379604041632732738665534", "884243222337379604041632732738665534", true},
+ {"53/70893980658822810696", "53/70893980658822810696", true},
+ {"106/141787961317645621392", "53/70893980658822810696", true},
+ {"204211327800791583.81095", "4084226556015831676219/20000", true},
+ {"0e9999999999", "0", true}, // issue #16176
+}
+
+// These are not supported by fmt.Fscanf.
+var setStringTests2 = []StringTest{
+ // invalid
+ {in: "4/3x"},
+ {in: "0/-1"},
+ {in: "-1/-1"},
+
+ // invalid with separators
+ // (smoke tests only - a comprehensive set of tests is in natconv_test.go)
+ {in: "10_/1"},
+ {in: "_10/1"},
+ {in: "1/1__0"},
+
+ // valid
+ {"0b1000/3", "8/3", true},
+ {"0B1000/0x8", "1", true},
+ {"-010/1", "-8", true}, // 0-prefix indicates octal in this case
+ {"-010.0", "-10", true},
+ {"-0o10/1", "-8", true},
+ {"0x10/1", "16", true},
+ {"0x10/0x20", "1/2", true},
+
+ {"0010", "10", true}, // 0-prefix is ignored in this case (not a fraction)
+ {"0x10.0", "16", true},
+ {"0x1.8", "3/2", true},
+ {"0X1.8p4", "24", true},
+ {"0x1.1E2", "2289/2048", true}, // E is part of hex mantissa, not exponent
+ {"0b1.1E2", "150", true},
+ {"0B1.1P3", "12", true},
+ {"0o10e-2", "2/25", true},
+ {"0O10p-3", "1", true},
+
+ // valid with separators
+ // (smoke tests only - a comprehensive set of tests is in natconv_test.go)
+ {"0b_1000/3", "8/3", true},
+ {"0B_10_00/0x8", "1", true},
+ {"0xdead/0B1101_1110_1010_1101", "1", true},
+ {"0B1101_1110_1010_1101/0XD_E_A_D", "1", true},
+ {"1_000.0", "1000", true},
+
+ {"0x_10.0", "16", true},
+ {"0x1_0.0", "16", true},
+ {"0x1.8_0", "3/2", true},
+ {"0X1.8p0_4", "24", true},
+ {"0b1.1_0E2", "150", true},
+ {"0o1_0e-2", "2/25", true},
+ {"0O_10p-3", "1", true},
+}
+
+func TestRatSetString(t *testing.T) {
+ var tests []StringTest
+ tests = append(tests, setStringTests...)
+ tests = append(tests, setStringTests2...)
+
+ for i, test := range tests {
+ x, ok := new(Rat).SetString(test.in)
+
+ if ok {
+ if !test.ok {
+ t.Errorf("#%d SetString(%q) expected failure", i, test.in)
+ } else if x.RatString() != test.out {
+ t.Errorf("#%d SetString(%q) got %s want %s", i, test.in, x.RatString(), test.out)
+ }
+ } else {
+ if test.ok {
+ t.Errorf("#%d SetString(%q) expected success", i, test.in)
+ } else if x != nil {
+ t.Errorf("#%d SetString(%q) got %p want nil", i, test.in, x)
+ }
+ }
+ }
+}
+
+func TestRatSetStringZero(t *testing.T) {
+ got, _ := new(Rat).SetString("0")
+ want := new(Rat).SetInt64(0)
+ if !reflect.DeepEqual(got, want) {
+ t.Errorf("got %#+v, want %#+v", got, want)
+ }
+}
+
+func TestRatScan(t *testing.T) {
+ var buf bytes.Buffer
+ for i, test := range setStringTests {
+ x := new(Rat)
+ buf.Reset()
+ buf.WriteString(test.in)
+
+ _, err := fmt.Fscanf(&buf, "%v", x)
+ if err == nil != test.ok {
+ if test.ok {
+ t.Errorf("#%d (%s) error: %s", i, test.in, err)
+ } else {
+ t.Errorf("#%d (%s) expected error", i, test.in)
+ }
+ continue
+ }
+ if err == nil && x.RatString() != test.out {
+ t.Errorf("#%d got %s want %s", i, x.RatString(), test.out)
+ }
+ }
+}
+
+var floatStringTests = []struct {
+ in string
+ prec int
+ out string
+}{
+ {"0", 0, "0"},
+ {"0", 4, "0.0000"},
+ {"1", 0, "1"},
+ {"1", 2, "1.00"},
+ {"-1", 0, "-1"},
+ {"0.05", 1, "0.1"},
+ {"-0.05", 1, "-0.1"},
+ {".25", 2, "0.25"},
+ {".25", 1, "0.3"},
+ {".25", 3, "0.250"},
+ {"-1/3", 3, "-0.333"},
+ {"-2/3", 4, "-0.6667"},
+ {"0.96", 1, "1.0"},
+ {"0.999", 2, "1.00"},
+ {"0.9", 0, "1"},
+ {".25", -1, "0"},
+ {".55", -1, "1"},
+}
+
+func TestFloatString(t *testing.T) {
+ for i, test := range floatStringTests {
+ x, _ := new(Rat).SetString(test.in)
+
+ if x.FloatString(test.prec) != test.out {
+ t.Errorf("#%d got %s want %s", i, x.FloatString(test.prec), test.out)
+ }
+ }
+}
+
+// Test inputs to Rat.SetString. The prefix "long:" causes the test
+// to be skipped except in -long mode. (The threshold is about 500us.)
+var float64inputs = []string{
+ // Constants plundered from strconv/testfp.txt.
+
+ // Table 1: Stress Inputs for Conversion to 53-bit Binary, < 1/2 ULP
+ "5e+125",
+ "69e+267",
+ "999e-026",
+ "7861e-034",
+ "75569e-254",
+ "928609e-261",
+ "9210917e+080",
+ "84863171e+114",
+ "653777767e+273",
+ "5232604057e-298",
+ "27235667517e-109",
+ "653532977297e-123",
+ "3142213164987e-294",
+ "46202199371337e-072",
+ "231010996856685e-073",
+ "9324754620109615e+212",
+ "78459735791271921e+049",
+ "272104041512242479e+200",
+ "6802601037806061975e+198",
+ "20505426358836677347e-221",
+ "836168422905420598437e-234",
+ "4891559871276714924261e+222",
+
+ // Table 2: Stress Inputs for Conversion to 53-bit Binary, > 1/2 ULP
+ "9e-265",
+ "85e-037",
+ "623e+100",
+ "3571e+263",
+ "81661e+153",
+ "920657e-023",
+ "4603285e-024",
+ "87575437e-309",
+ "245540327e+122",
+ "6138508175e+120",
+ "83356057653e+193",
+ "619534293513e+124",
+ "2335141086879e+218",
+ "36167929443327e-159",
+ "609610927149051e-255",
+ "3743626360493413e-165",
+ "94080055902682397e-242",
+ "899810892172646163e+283",
+ "7120190517612959703e+120",
+ "25188282901709339043e-252",
+ "308984926168550152811e-052",
+ "6372891218502368041059e+064",
+
+ // Table 14: Stress Inputs for Conversion to 24-bit Binary, <1/2 ULP
+ "5e-20",
+ "67e+14",
+ "985e+15",
+ "7693e-42",
+ "55895e-16",
+ "996622e-44",
+ "7038531e-32",
+ "60419369e-46",
+ "702990899e-20",
+ "6930161142e-48",
+ "25933168707e+13",
+ "596428896559e+20",
+
+ // Table 15: Stress Inputs for Conversion to 24-bit Binary, >1/2 ULP
+ "3e-23",
+ "57e+18",
+ "789e-35",
+ "2539e-18",
+ "76173e+28",
+ "887745e-11",
+ "5382571e-37",
+ "82381273e-35",
+ "750486563e-38",
+ "3752432815e-39",
+ "75224575729e-45",
+ "459926601011e+15",
+
+ // Constants plundered from strconv/atof_test.go.
+
+ "0",
+ "1",
+ "+1",
+ "1e23",
+ "1E23",
+ "100000000000000000000000",
+ "1e-100",
+ "123456700",
+ "99999999999999974834176",
+ "100000000000000000000001",
+ "100000000000000008388608",
+ "100000000000000016777215",
+ "100000000000000016777216",
+ "-1",
+ "-0.1",
+ "-0", // NB: exception made for this input
+ "1e-20",
+ "625e-3",
+
+ // largest float64
+ "1.7976931348623157e308",
+ "-1.7976931348623157e308",
+ // next float64 - too large
+ "1.7976931348623159e308",
+ "-1.7976931348623159e308",
+ // the border is ...158079
+ // borderline - okay
+ "1.7976931348623158e308",
+ "-1.7976931348623158e308",
+ // borderline - too large
+ "1.797693134862315808e308",
+ "-1.797693134862315808e308",
+
+ // a little too large
+ "1e308",
+ "2e308",
+ "1e309",
+
+ // way too large
+ "1e310",
+ "-1e310",
+ "1e400",
+ "-1e400",
+ "long:1e400000",
+ "long:-1e400000",
+
+ // denormalized
+ "1e-305",
+ "1e-306",
+ "1e-307",
+ "1e-308",
+ "1e-309",
+ "1e-310",
+ "1e-322",
+ // smallest denormal
+ "5e-324",
+ "4e-324",
+ "3e-324",
+ // too small
+ "2e-324",
+ // way too small
+ "1e-350",
+ "long:1e-400000",
+ // way too small, negative
+ "-1e-350",
+ "long:-1e-400000",
+
+ // try to overflow exponent
+ // [Disabled: too slow and memory-hungry with rationals.]
+ // "1e-4294967296",
+ // "1e+4294967296",
+ // "1e-18446744073709551616",
+ // "1e+18446744073709551616",
+
+ // https://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
+ "2.2250738585072012e-308",
+ // https://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
+ "2.2250738585072011e-308",
+
+ // A very large number (initially wrongly parsed by the fast algorithm).
+ "4.630813248087435e+307",
+
+ // A different kind of very large number.
+ "22.222222222222222",
+ "long:2." + strings.Repeat("2", 4000) + "e+1",
+
+ // Exactly halfway between 1 and math.Nextafter(1, 2).
+ // Round to even (down).
+ "1.00000000000000011102230246251565404236316680908203125",
+ // Slightly lower; still round down.
+ "1.00000000000000011102230246251565404236316680908203124",
+ // Slightly higher; round up.
+ "1.00000000000000011102230246251565404236316680908203126",
+ // Slightly higher, but you have to read all the way to the end.
+ "long:1.00000000000000011102230246251565404236316680908203125" + strings.Repeat("0", 10000) + "1",
+
+ // Smallest denormal, 2^(-1022-52)
+ "4.940656458412465441765687928682213723651e-324",
+ // Half of smallest denormal, 2^(-1022-53)
+ "2.470328229206232720882843964341106861825e-324",
+ // A little more than the exact half of smallest denormal
+ // 2^-1075 + 2^-1100. (Rounds to 1p-1074.)
+ "2.470328302827751011111470718709768633275e-324",
+ // The exact halfway between smallest normal and largest denormal:
+ // 2^-1022 - 2^-1075. (Rounds to 2^-1022.)
+ "2.225073858507201136057409796709131975935e-308",
+
+ "1152921504606846975", // 1<<60 - 1
+ "-1152921504606846975", // -(1<<60 - 1)
+ "1152921504606846977", // 1<<60 + 1
+ "-1152921504606846977", // -(1<<60 + 1)
+
+ "1/3",
+}
+
+// isFinite reports whether f represents a finite rational value.
+// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0).
+func isFinite(f float64) bool {
+ return math.Abs(f) <= math.MaxFloat64
+}
+
+func TestFloat32SpecialCases(t *testing.T) {
+ for _, input := range float64inputs {
+ if strings.HasPrefix(input, "long:") {
+ if !*long {
+ continue
+ }
+ input = input[len("long:"):]
+ }
+
+ r, ok := new(Rat).SetString(input)
+ if !ok {
+ t.Errorf("Rat.SetString(%q) failed", input)
+ continue
+ }
+ f, exact := r.Float32()
+
+ // 1. Check string -> Rat -> float32 conversions are
+ // consistent with strconv.ParseFloat.
+ // Skip this check if the input uses "a/b" rational syntax.
+ if !strings.Contains(input, "/") {
+ e64, _ := strconv.ParseFloat(input, 32)
+ e := float32(e64)
+
+ // Careful: negative Rats too small for
+ // float64 become -0, but Rat obviously cannot
+ // preserve the sign from SetString("-0").
+ switch {
+ case math.Float32bits(e) == math.Float32bits(f):
+ // Ok: bitwise equal.
+ case f == 0 && r.Num().BitLen() == 0:
+ // Ok: Rat(0) is equivalent to both +/- float64(0).
+ default:
+ t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e)
+ }
+ }
+
+ if !isFinite(float64(f)) {
+ continue
+ }
+
+ // 2. Check f is best approximation to r.
+ if !checkIsBestApprox32(t, f, r) {
+ // Append context information.
+ t.Errorf("(input was %q)", input)
+ }
+
+ // 3. Check f->R->f roundtrip is non-lossy.
+ checkNonLossyRoundtrip32(t, f)
+
+ // 4. Check exactness using slow algorithm.
+ if wasExact := new(Rat).SetFloat64(float64(f)).Cmp(r) == 0; wasExact != exact {
+ t.Errorf("Rat.SetString(%q).Float32().exact = %t, want %t", input, exact, wasExact)
+ }
+ }
+}
+
+func TestFloat64SpecialCases(t *testing.T) {
+ for _, input := range float64inputs {
+ if strings.HasPrefix(input, "long:") {
+ if !*long {
+ continue
+ }
+ input = input[len("long:"):]
+ }
+
+ r, ok := new(Rat).SetString(input)
+ if !ok {
+ t.Errorf("Rat.SetString(%q) failed", input)
+ continue
+ }
+ f, exact := r.Float64()
+
+ // 1. Check string -> Rat -> float64 conversions are
+ // consistent with strconv.ParseFloat.
+ // Skip this check if the input uses "a/b" rational syntax.
+ if !strings.Contains(input, "/") {
+ e, _ := strconv.ParseFloat(input, 64)
+
+ // Careful: negative Rats too small for
+ // float64 become -0, but Rat obviously cannot
+ // preserve the sign from SetString("-0").
+ switch {
+ case math.Float64bits(e) == math.Float64bits(f):
+ // Ok: bitwise equal.
+ case f == 0 && r.Num().BitLen() == 0:
+ // Ok: Rat(0) is equivalent to both +/- float64(0).
+ default:
+ t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e)
+ }
+ }
+
+ if !isFinite(f) {
+ continue
+ }
+
+ // 2. Check f is best approximation to r.
+ if !checkIsBestApprox64(t, f, r) {
+ // Append context information.
+ t.Errorf("(input was %q)", input)
+ }
+
+ // 3. Check f->R->f roundtrip is non-lossy.
+ checkNonLossyRoundtrip64(t, f)
+
+ // 4. Check exactness using slow algorithm.
+ if wasExact := new(Rat).SetFloat64(f).Cmp(r) == 0; wasExact != exact {
+ t.Errorf("Rat.SetString(%q).Float64().exact = %t, want %t", input, exact, wasExact)
+ }
+ }
+}
+
+func TestIssue31184(t *testing.T) {
+ var x Rat
+ for _, want := range []string{
+ "-213.090",
+ "8.192",
+ "16.000",
+ } {
+ x.SetString(want)
+ got := x.FloatString(3)
+ if got != want {
+ t.Errorf("got %s, want %s", got, want)
+ }
+ }
+}
+
+func TestIssue45910(t *testing.T) {
+ var x Rat
+ for _, test := range []struct {
+ input string
+ want bool
+ }{
+ {"1e-1000001", false},
+ {"1e-1000000", true},
+ {"1e+1000000", true},
+ {"1e+1000001", false},
+
+ {"0p1000000000000", true},
+ {"1p-10000001", false},
+ {"1p-10000000", true},
+ {"1p+10000000", true},
+ {"1p+10000001", false},
+ {"1.770p02041010010011001001", false}, // test case from issue
+ } {
+ _, got := x.SetString(test.input)
+ if got != test.want {
+ t.Errorf("SetString(%s) got ok = %v; want %v", test.input, got, test.want)
+ }
+ }
+}
+func TestFloatPrec(t *testing.T) {
+ var tests = []struct {
+ f string
+ prec int
+ ok bool
+ fdec string
+ }{
+ // examples from the issue #50489
+ {"10/100", 1, true, "0.1"},
+ {"3/100", 2, true, "0.03"},
+ {"10", 0, true, "10"},
+
+ // more examples
+ {"zero", 0, true, "0"}, // test uninitialized zero value for Rat
+ {"0", 0, true, "0"}, // 0
+ {"1", 0, true, "1"}, // 1
+ {"1/2", 1, true, "0.5"}, // 0.5
+ {"1/3", 0, false, "0"}, // 0.(3)
+ {"1/4", 2, true, "0.25"}, // 0.25
+ {"1/5", 1, true, "0.2"}, // 0.2
+ {"1/6", 1, false, "0.2"}, // 0.1(6)
+ {"1/7", 0, false, "0"}, // 0.(142857)
+ {"1/8", 3, true, "0.125"}, // 0.125
+ {"1/9", 0, false, "0"}, // 0.(1)
+ {"1/10", 1, true, "0.1"}, // 0.1
+ {"1/11", 0, false, "0"}, // 0.(09)
+ {"1/12", 2, false, "0.08"}, // 0.08(3)
+ {"1/13", 0, false, "0"}, // 0.(076923)
+ {"1/14", 1, false, "0.1"}, // 0.0(714285)
+ {"1/15", 1, false, "0.1"}, // 0.0(6)
+ {"1/16", 4, true, "0.0625"}, // 0.0625
+
+ {"10/2", 0, true, "5"}, // 5
+ {"10/3", 0, false, "3"}, // 3.(3)
+ {"10/6", 0, false, "2"}, // 1.(6)
+ {"1/10000000", 7, true, "0.0000001"}, // 0.0000001
+ {"1/3125", 5, true, "0.00032"}, // "0.00032"
+ {"1/1024", 10, true, "0.0009765625"}, // 0.0009765625
+ {"1/304000", 7, false, "0.0000033"}, // 0.0000032(894736842105263157)
+ {"1/48828125", 11, true, "0.00000002048"}, // 0.00000002048
+ }
+
+ for _, test := range tests {
+ var f Rat
+
+ // check uninitialized zero value
+ if test.f != "zero" {
+ _, ok := f.SetString(test.f)
+ if !ok {
+ t.Fatalf("invalid test case: f = %s", test.f)
+ }
+ }
+
+ // results for f and -f must be the same
+ fdec := test.fdec
+ for i := 0; i < 2; i++ {
+ prec, ok := f.FloatPrec()
+ if prec != test.prec || ok != test.ok {
+ t.Errorf("%s: FloatPrec(%s): got prec, ok = %d, %v; want %d, %v", test.f, &f, prec, ok, test.prec, test.ok)
+ }
+ s := f.FloatString(test.prec)
+ if s != fdec {
+ t.Errorf("%s: FloatString(%s, %d): got %s; want %s", test.f, &f, prec, s, fdec)
+ }
+ // proceed with -f but don't add a "-" before a "0"
+ if f.Sign() > 0 {
+ f.Neg(&f)
+ fdec = "-" + fdec
+ }
+ }
+ }
+}
+
+func BenchmarkFloatPrecExact(b *testing.B) {
+ for _, n := range []int{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6} {
+ // d := 5^n
+ d := NewInt(5)
+ p := NewInt(int64(n))
+ d.Exp(d, p, nil)
+
+ // r := 1/d
+ var r Rat
+ r.SetFrac(NewInt(1), d)
+
+ b.Run(fmt.Sprint(n), func(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ prec, ok := r.FloatPrec()
+ if prec != n || !ok {
+ b.Fatalf("got exact, ok = %d, %v; want %d, %v", prec, ok, uint64(n), true)
+ }
+ }
+ })
+ }
+}
+
+func BenchmarkFloatPrecMixed(b *testing.B) {
+ for _, n := range []int{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6} {
+ // d := (3·5·7·11)^n
+ d := NewInt(3 * 5 * 7 * 11)
+ p := NewInt(int64(n))
+ d.Exp(d, p, nil)
+
+ // r := 1/d
+ var r Rat
+ r.SetFrac(NewInt(1), d)
+
+ b.Run(fmt.Sprint(n), func(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ prec, ok := r.FloatPrec()
+ if prec != n || ok {
+ b.Fatalf("got exact, ok = %d, %v; want %d, %v", prec, ok, uint64(n), false)
+ }
+ }
+ })
+ }
+}
+
+func BenchmarkFloatPrecInexact(b *testing.B) {
+ for _, n := range []int{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6} {
+ // d := 5^n + 1
+ d := NewInt(5)
+ p := NewInt(int64(n))
+ d.Exp(d, p, nil)
+ d.Add(d, NewInt(1))
+
+ // r := 1/d
+ var r Rat
+ r.SetFrac(NewInt(1), d)
+
+ b.Run(fmt.Sprint(n), func(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ _, ok := r.FloatPrec()
+ if ok {
+ b.Fatalf("got unexpected ok")
+ }
+ }
+ })
+ }
+}
diff --git a/src/math/big/ratmarsh.go b/src/math/big/ratmarsh.go
new file mode 100644
index 0000000..033fb44
--- /dev/null
+++ b/src/math/big/ratmarsh.go
@@ -0,0 +1,86 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements encoding/decoding of Rats.
+
+package big
+
+import (
+ "encoding/binary"
+ "errors"
+ "fmt"
+ "math"
+)
+
+// Gob codec version. Permits backward-compatible changes to the encoding.
+const ratGobVersion byte = 1
+
+// GobEncode implements the [encoding/gob.GobEncoder] interface.
+func (x *Rat) GobEncode() ([]byte, error) {
+ if x == nil {
+ return nil, nil
+ }
+ buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
+ i := x.b.abs.bytes(buf)
+ j := x.a.abs.bytes(buf[:i])
+ n := i - j
+ if int(uint32(n)) != n {
+ // this should never happen
+ return nil, errors.New("Rat.GobEncode: numerator too large")
+ }
+ binary.BigEndian.PutUint32(buf[j-4:j], uint32(n))
+ j -= 1 + 4
+ b := ratGobVersion << 1 // make space for sign bit
+ if x.a.neg {
+ b |= 1
+ }
+ buf[j] = b
+ return buf[j:], nil
+}
+
+// GobDecode implements the [encoding/gob.GobDecoder] interface.
+func (z *Rat) GobDecode(buf []byte) error {
+ if len(buf) == 0 {
+ // Other side sent a nil or default value.
+ *z = Rat{}
+ return nil
+ }
+ if len(buf) < 5 {
+ return errors.New("Rat.GobDecode: buffer too small")
+ }
+ b := buf[0]
+ if b>>1 != ratGobVersion {
+ return fmt.Errorf("Rat.GobDecode: encoding version %d not supported", b>>1)
+ }
+ const j = 1 + 4
+ ln := binary.BigEndian.Uint32(buf[j-4 : j])
+ if uint64(ln) > math.MaxInt-j {
+ return errors.New("Rat.GobDecode: invalid length")
+ }
+ i := j + int(ln)
+ if len(buf) < i {
+ return errors.New("Rat.GobDecode: buffer too small")
+ }
+ z.a.neg = b&1 != 0
+ z.a.abs = z.a.abs.setBytes(buf[j:i])
+ z.b.abs = z.b.abs.setBytes(buf[i:])
+ return nil
+}
+
+// MarshalText implements the [encoding.TextMarshaler] interface.
+func (x *Rat) MarshalText() (text []byte, err error) {
+ if x.IsInt() {
+ return x.a.MarshalText()
+ }
+ return x.marshal(), nil
+}
+
+// UnmarshalText implements the [encoding.TextUnmarshaler] interface.
+func (z *Rat) UnmarshalText(text []byte) error {
+ // TODO(gri): get rid of the []byte/string conversion
+ if _, ok := z.SetString(string(text)); !ok {
+ return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Rat", text)
+ }
+ return nil
+}
diff --git a/src/math/big/ratmarsh_test.go b/src/math/big/ratmarsh_test.go
new file mode 100644
index 0000000..15c933e
--- /dev/null
+++ b/src/math/big/ratmarsh_test.go
@@ -0,0 +1,138 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "bytes"
+ "encoding/gob"
+ "encoding/json"
+ "encoding/xml"
+ "testing"
+)
+
+func TestRatGobEncoding(t *testing.T) {
+ var medium bytes.Buffer
+ enc := gob.NewEncoder(&medium)
+ dec := gob.NewDecoder(&medium)
+ for _, test := range encodingTests {
+ medium.Reset() // empty buffer for each test case (in case of failures)
+ var tx Rat
+ tx.SetString(test + ".14159265")
+ if err := enc.Encode(&tx); err != nil {
+ t.Errorf("encoding of %s failed: %s", &tx, err)
+ continue
+ }
+ var rx Rat
+ if err := dec.Decode(&rx); err != nil {
+ t.Errorf("decoding of %s failed: %s", &tx, err)
+ continue
+ }
+ if rx.Cmp(&tx) != 0 {
+ t.Errorf("transmission of %s failed: got %s want %s", &tx, &rx, &tx)
+ }
+ }
+}
+
+// Sending a nil Rat pointer (inside a slice) on a round trip through gob should yield a zero.
+// TODO: top-level nils.
+func TestGobEncodingNilRatInSlice(t *testing.T) {
+ buf := new(bytes.Buffer)
+ enc := gob.NewEncoder(buf)
+ dec := gob.NewDecoder(buf)
+
+ var in = make([]*Rat, 1)
+ err := enc.Encode(&in)
+ if err != nil {
+ t.Errorf("gob encode failed: %q", err)
+ }
+ var out []*Rat
+ err = dec.Decode(&out)
+ if err != nil {
+ t.Fatalf("gob decode failed: %q", err)
+ }
+ if len(out) != 1 {
+ t.Fatalf("wrong len; want 1 got %d", len(out))
+ }
+ var zero Rat
+ if out[0].Cmp(&zero) != 0 {
+ t.Fatalf("transmission of (*Int)(nil) failed: got %s want 0", out)
+ }
+}
+
+var ratNums = []string{
+ "-141592653589793238462643383279502884197169399375105820974944592307816406286",
+ "-1415926535897932384626433832795028841971",
+ "-141592653589793",
+ "-1",
+ "0",
+ "1",
+ "141592653589793",
+ "1415926535897932384626433832795028841971",
+ "141592653589793238462643383279502884197169399375105820974944592307816406286",
+}
+
+var ratDenoms = []string{
+ "1",
+ "718281828459045",
+ "7182818284590452353602874713526624977572",
+ "718281828459045235360287471352662497757247093699959574966967627724076630353",
+}
+
+func TestRatJSONEncoding(t *testing.T) {
+ for _, num := range ratNums {
+ for _, denom := range ratDenoms {
+ var tx Rat
+ tx.SetString(num + "/" + denom)
+ b, err := json.Marshal(&tx)
+ if err != nil {
+ t.Errorf("marshaling of %s failed: %s", &tx, err)
+ continue
+ }
+ var rx Rat
+ if err := json.Unmarshal(b, &rx); err != nil {
+ t.Errorf("unmarshaling of %s failed: %s", &tx, err)
+ continue
+ }
+ if rx.Cmp(&tx) != 0 {
+ t.Errorf("JSON encoding of %s failed: got %s want %s", &tx, &rx, &tx)
+ }
+ }
+ }
+}
+
+func TestRatXMLEncoding(t *testing.T) {
+ for _, num := range ratNums {
+ for _, denom := range ratDenoms {
+ var tx Rat
+ tx.SetString(num + "/" + denom)
+ b, err := xml.Marshal(&tx)
+ if err != nil {
+ t.Errorf("marshaling of %s failed: %s", &tx, err)
+ continue
+ }
+ var rx Rat
+ if err := xml.Unmarshal(b, &rx); err != nil {
+ t.Errorf("unmarshaling of %s failed: %s", &tx, err)
+ continue
+ }
+ if rx.Cmp(&tx) != 0 {
+ t.Errorf("XML encoding of %s failed: got %s want %s", &tx, &rx, &tx)
+ }
+ }
+ }
+}
+
+func TestRatGobDecodeShortBuffer(t *testing.T) {
+ for _, tc := range [][]byte{
+ []byte{0x2},
+ []byte{0x2, 0x0, 0x0, 0x0, 0xff},
+ []byte{0x2, 0xff, 0xff, 0xff, 0xff},
+ } {
+ err := NewRat(1, 2).GobDecode(tc)
+ if err == nil {
+ t.Error("expected GobDecode to return error for malformed input")
+ }
+ }
+}
diff --git a/src/math/big/roundingmode_string.go b/src/math/big/roundingmode_string.go
new file mode 100644
index 0000000..e2f13a6
--- /dev/null
+++ b/src/math/big/roundingmode_string.go
@@ -0,0 +1,28 @@
+// Code generated by "stringer -type=RoundingMode"; DO NOT EDIT.
+
+package big
+
+import "strconv"
+
+func _() {
+ // An "invalid array index" compiler error signifies that the constant values have changed.
+ // Re-run the stringer command to generate them again.
+ var x [1]struct{}
+ _ = x[ToNearestEven-0]
+ _ = x[ToNearestAway-1]
+ _ = x[ToZero-2]
+ _ = x[AwayFromZero-3]
+ _ = x[ToNegativeInf-4]
+ _ = x[ToPositiveInf-5]
+}
+
+const _RoundingMode_name = "ToNearestEvenToNearestAwayToZeroAwayFromZeroToNegativeInfToPositiveInf"
+
+var _RoundingMode_index = [...]uint8{0, 13, 26, 32, 44, 57, 70}
+
+func (i RoundingMode) String() string {
+ if i >= RoundingMode(len(_RoundingMode_index)-1) {
+ return "RoundingMode(" + strconv.FormatInt(int64(i), 10) + ")"
+ }
+ return _RoundingMode_name[_RoundingMode_index[i]:_RoundingMode_index[i+1]]
+}
diff --git a/src/math/big/sqrt.go b/src/math/big/sqrt.go
new file mode 100644
index 0000000..b4b0374
--- /dev/null
+++ b/src/math/big/sqrt.go
@@ -0,0 +1,130 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "math"
+ "sync"
+)
+
+var threeOnce struct {
+ sync.Once
+ v *Float
+}
+
+func three() *Float {
+ threeOnce.Do(func() {
+ threeOnce.v = NewFloat(3.0)
+ })
+ return threeOnce.v
+}
+
+// Sqrt sets z to the rounded square root of x, and returns it.
+//
+// If z's precision is 0, it is changed to x's precision before the
+// operation. Rounding is performed according to z's precision and
+// rounding mode, but z's accuracy is not computed. Specifically, the
+// result of z.Acc() is undefined.
+//
+// The function panics if z < 0. The value of z is undefined in that
+// case.
+func (z *Float) Sqrt(x *Float) *Float {
+ if debugFloat {
+ x.validate()
+ }
+
+ if z.prec == 0 {
+ z.prec = x.prec
+ }
+
+ if x.Sign() == -1 {
+ // following IEEE754-2008 (section 7.2)
+ panic(ErrNaN{"square root of negative operand"})
+ }
+
+ // handle ±0 and +∞
+ if x.form != finite {
+ z.acc = Exact
+ z.form = x.form
+ z.neg = x.neg // IEEE754-2008 requires √±0 = ±0
+ return z
+ }
+
+ // MantExp sets the argument's precision to the receiver's, and
+ // when z.prec > x.prec this will lower z.prec. Restore it after
+ // the MantExp call.
+ prec := z.prec
+ b := x.MantExp(z)
+ z.prec = prec
+
+ // Compute √(z·2**b) as
+ // √( z)·2**(½b) if b is even
+ // √(2z)·2**(⌊½b⌋) if b > 0 is odd
+ // √(½z)·2**(⌈½b⌉) if b < 0 is odd
+ switch b % 2 {
+ case 0:
+ // nothing to do
+ case 1:
+ z.exp++
+ case -1:
+ z.exp--
+ }
+ // 0.25 <= z < 2.0
+
+ // Solving 1/x² - z = 0 avoids Quo calls and is faster, especially
+ // for high precisions.
+ z.sqrtInverse(z)
+
+ // re-attach halved exponent
+ return z.SetMantExp(z, b/2)
+}
+
+// Compute √x (to z.prec precision) by solving
+//
+// 1/t² - x = 0
+//
+// for t (using Newton's method), and then inverting.
+func (z *Float) sqrtInverse(x *Float) {
+ // let
+ // f(t) = 1/t² - x
+ // then
+ // g(t) = f(t)/f'(t) = -½t(1 - xt²)
+ // and the next guess is given by
+ // t2 = t - g(t) = ½t(3 - xt²)
+ u := newFloat(z.prec)
+ v := newFloat(z.prec)
+ three := three()
+ ng := func(t *Float) *Float {
+ u.prec = t.prec
+ v.prec = t.prec
+ u.Mul(t, t) // u = t²
+ u.Mul(x, u) // = xt²
+ v.Sub(three, u) // v = 3 - xt²
+ u.Mul(t, v) // u = t(3 - xt²)
+ u.exp-- // = ½t(3 - xt²)
+ return t.Set(u)
+ }
+
+ xf, _ := x.Float64()
+ sqi := newFloat(z.prec)
+ sqi.SetFloat64(1 / math.Sqrt(xf))
+ for prec := z.prec + 32; sqi.prec < prec; {
+ sqi.prec *= 2
+ sqi = ng(sqi)
+ }
+ // sqi = 1/√x
+
+ // x/√x = √x
+ z.Mul(x, sqi)
+}
+
+// newFloat returns a new *Float with space for twice the given
+// precision.
+func newFloat(prec2 uint32) *Float {
+ z := new(Float)
+ // nat.make ensures the slice length is > 0
+ z.mant = z.mant.make(int(prec2/_W) * 2)
+ return z
+}
diff --git a/src/math/big/sqrt_test.go b/src/math/big/sqrt_test.go
new file mode 100644
index 0000000..d314711
--- /dev/null
+++ b/src/math/big/sqrt_test.go
@@ -0,0 +1,126 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "fmt"
+ "math"
+ "math/rand"
+ "testing"
+)
+
+// TestFloatSqrt64 tests that Float.Sqrt of numbers with 53bit mantissa
+// behaves like float math.Sqrt.
+func TestFloatSqrt64(t *testing.T) {
+ for i := 0; i < 1e5; i++ {
+ if i == 1e2 && testing.Short() {
+ break
+ }
+ r := rand.Float64()
+
+ got := new(Float).SetPrec(53)
+ got.Sqrt(NewFloat(r))
+ want := NewFloat(math.Sqrt(r))
+ if got.Cmp(want) != 0 {
+ t.Fatalf("Sqrt(%g) =\n got %g;\nwant %g", r, got, want)
+ }
+ }
+}
+
+func TestFloatSqrt(t *testing.T) {
+ for _, test := range []struct {
+ x string
+ want string
+ }{
+ // Test values were generated on Wolfram Alpha using query
+ // 'sqrt(N) to 350 digits'
+ // 350 decimal digits give up to 1000 binary digits.
+ {"0.03125", "0.17677669529663688110021109052621225982120898442211850914708496724884155980776337985629844179095519659187673077886403712811560450698134215158051518713749197892665283324093819909447499381264409775757143376369499645074628431682460775184106467733011114982619404115381053858929018135497032545349940642599871090667456829147610370507757690729404938184321879"},
+ {"0.125", "0.35355339059327376220042218105242451964241796884423701829416993449768311961552675971259688358191039318375346155772807425623120901396268430316103037427498395785330566648187639818894998762528819551514286752738999290149256863364921550368212935466022229965238808230762107717858036270994065090699881285199742181334913658295220741015515381458809876368643757"},
+ {"0.5", "0.70710678118654752440084436210484903928483593768847403658833986899536623923105351942519376716382078636750692311545614851246241802792536860632206074854996791570661133296375279637789997525057639103028573505477998580298513726729843100736425870932044459930477616461524215435716072541988130181399762570399484362669827316590441482031030762917619752737287514"},
+ {"2.0", "1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358314132226659275055927557999505011527820605714701095599716059702745345968620147285174186408891986095523292304843087143214508397626036279952514079896872533965463318088296406206152583523950547457503"},
+ {"3.0", "1.7320508075688772935274463415058723669428052538103806280558069794519330169088000370811461867572485756756261414154067030299699450949989524788116555120943736485280932319023055820679748201010846749232650153123432669033228866506722546689218379712270471316603678615880190499865373798593894676503475065760507566183481296061009476021871903250831458295239598"},
+ {"4.0", "2.0"},
+
+ {"1p512", "1p256"},
+ {"4p1024", "2p512"},
+ {"9p2048", "3p1024"},
+
+ {"1p-1024", "1p-512"},
+ {"4p-2048", "2p-1024"},
+ {"9p-4096", "3p-2048"},
+ } {
+ for _, prec := range []uint{24, 53, 64, 65, 100, 128, 129, 200, 256, 400, 600, 800, 1000} {
+ x := new(Float).SetPrec(prec)
+ x.Parse(test.x, 10)
+
+ got := new(Float).SetPrec(prec).Sqrt(x)
+ want := new(Float).SetPrec(prec)
+ want.Parse(test.want, 10)
+ if got.Cmp(want) != 0 {
+ t.Errorf("prec = %d, Sqrt(%v) =\ngot %g;\nwant %g",
+ prec, test.x, got, want)
+ }
+
+ // Square test.
+ // If got holds the square root of x to precision p, then
+ // got = √x + k
+ // for some k such that |k| < 2**(-p). Thus,
+ // got² = (√x + k)² = x + 2k√n + k²
+ // and the error must satisfy
+ // err = |got² - x| ≈ | 2k√n | < 2**(-p+1)*√n
+ // Ignoring the k² term for simplicity.
+
+ // err = |got² - x|
+ // (but do intermediate steps with 32 guard digits to
+ // avoid introducing spurious rounding-related errors)
+ sq := new(Float).SetPrec(prec+32).Mul(got, got)
+ diff := new(Float).Sub(sq, x)
+ err := diff.Abs(diff).SetPrec(prec)
+
+ // maxErr = 2**(-p+1)*√x
+ one := new(Float).SetPrec(prec).SetInt64(1)
+ maxErr := new(Float).Mul(new(Float).SetMantExp(one, -int(prec)+1), got)
+
+ if err.Cmp(maxErr) >= 0 {
+ t.Errorf("prec = %d, Sqrt(%v) =\ngot err %g;\nwant maxErr %g",
+ prec, test.x, err, maxErr)
+ }
+ }
+ }
+}
+
+func TestFloatSqrtSpecial(t *testing.T) {
+ for _, test := range []struct {
+ x *Float
+ want *Float
+ }{
+ {NewFloat(+0), NewFloat(+0)},
+ {NewFloat(-0), NewFloat(-0)},
+ {NewFloat(math.Inf(+1)), NewFloat(math.Inf(+1))},
+ } {
+ got := new(Float).Sqrt(test.x)
+ if got.neg != test.want.neg || got.form != test.want.form {
+ t.Errorf("Sqrt(%v) = %v (neg: %v); want %v (neg: %v)",
+ test.x, got, got.neg, test.want, test.want.neg)
+ }
+ }
+
+}
+
+// Benchmarks
+
+func BenchmarkFloatSqrt(b *testing.B) {
+ for _, prec := range []uint{64, 128, 256, 1e3, 1e4, 1e5, 1e6} {
+ x := NewFloat(2)
+ z := new(Float).SetPrec(prec)
+ b.Run(fmt.Sprintf("%v", prec), func(b *testing.B) {
+ b.ReportAllocs()
+ for n := 0; n < b.N; n++ {
+ z.Sqrt(x)
+ }
+ })
+ }
+}