summaryrefslogtreecommitdiffstats
path: root/src/runtime/extern.go
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/runtime/extern.go365
1 files changed, 365 insertions, 0 deletions
diff --git a/src/runtime/extern.go b/src/runtime/extern.go
new file mode 100644
index 0000000..e42122f
--- /dev/null
+++ b/src/runtime/extern.go
@@ -0,0 +1,365 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+/*
+Package runtime contains operations that interact with Go's runtime system,
+such as functions to control goroutines. It also includes the low-level type information
+used by the reflect package; see [reflect]'s documentation for the programmable
+interface to the run-time type system.
+
+# Environment Variables
+
+The following environment variables ($name or %name%, depending on the host
+operating system) control the run-time behavior of Go programs. The meanings
+and use may change from release to release.
+
+The GOGC variable sets the initial garbage collection target percentage.
+A collection is triggered when the ratio of freshly allocated data to live data
+remaining after the previous collection reaches this percentage. The default
+is GOGC=100. Setting GOGC=off disables the garbage collector entirely.
+[runtime/debug.SetGCPercent] allows changing this percentage at run time.
+
+The GOMEMLIMIT variable sets a soft memory limit for the runtime. This memory limit
+includes the Go heap and all other memory managed by the runtime, and excludes
+external memory sources such as mappings of the binary itself, memory managed in
+other languages, and memory held by the operating system on behalf of the Go
+program. GOMEMLIMIT is a numeric value in bytes with an optional unit suffix.
+The supported suffixes include B, KiB, MiB, GiB, and TiB. These suffixes
+represent quantities of bytes as defined by the IEC 80000-13 standard. That is,
+they are based on powers of two: KiB means 2^10 bytes, MiB means 2^20 bytes,
+and so on. The default setting is [math.MaxInt64], which effectively disables the
+memory limit. [runtime/debug.SetMemoryLimit] allows changing this limit at run
+time.
+
+The GODEBUG variable controls debugging variables within the runtime.
+It is a comma-separated list of name=val pairs setting these named variables:
+
+ allocfreetrace: setting allocfreetrace=1 causes every allocation to be
+ profiled and a stack trace printed on each object's allocation and free.
+
+ clobberfree: setting clobberfree=1 causes the garbage collector to
+ clobber the memory content of an object with bad content when it frees
+ the object.
+
+ cpu.*: cpu.all=off disables the use of all optional instruction set extensions.
+ cpu.extension=off disables use of instructions from the specified instruction set extension.
+ extension is the lower case name for the instruction set extension such as sse41 or avx
+ as listed in internal/cpu package. As an example cpu.avx=off disables runtime detection
+ and thereby use of AVX instructions.
+
+ cgocheck: setting cgocheck=0 disables all checks for packages
+ using cgo to incorrectly pass Go pointers to non-Go code.
+ Setting cgocheck=1 (the default) enables relatively cheap
+ checks that may miss some errors. A more complete, but slow,
+ cgocheck mode can be enabled using GOEXPERIMENT (which
+ requires a rebuild), see https://pkg.go.dev/internal/goexperiment for details.
+
+ disablethp: setting disablethp=1 on Linux disables transparent huge pages for the heap.
+ It has no effect on other platforms. disablethp is meant for compatibility with versions
+ of Go before 1.21, which stopped working around a Linux kernel default that can result
+ in significant memory overuse. See https://go.dev/issue/64332. This setting will be
+ removed in a future release, so operators should tweak their Linux configuration to suit
+ their needs before then. See https://go.dev/doc/gc-guide#Linux_transparent_huge_pages.
+
+ dontfreezetheworld: by default, the start of a fatal panic or throw
+ "freezes the world", preempting all threads to stop all running
+ goroutines, which makes it possible to traceback all goroutines, and
+ keeps their state close to the point of panic. Setting
+ dontfreezetheworld=1 disables this preemption, allowing goroutines to
+ continue executing during panic processing. Note that goroutines that
+ naturally enter the scheduler will still stop. This can be useful when
+ debugging the runtime scheduler, as freezetheworld perturbs scheduler
+ state and thus may hide problems.
+
+ efence: setting efence=1 causes the allocator to run in a mode
+ where each object is allocated on a unique page and addresses are
+ never recycled.
+
+ gccheckmark: setting gccheckmark=1 enables verification of the
+ garbage collector's concurrent mark phase by performing a
+ second mark pass while the world is stopped. If the second
+ pass finds a reachable object that was not found by concurrent
+ mark, the garbage collector will panic.
+
+ gcpacertrace: setting gcpacertrace=1 causes the garbage collector to
+ print information about the internal state of the concurrent pacer.
+
+ gcshrinkstackoff: setting gcshrinkstackoff=1 disables moving goroutines
+ onto smaller stacks. In this mode, a goroutine's stack can only grow.
+
+ gcstoptheworld: setting gcstoptheworld=1 disables concurrent garbage collection,
+ making every garbage collection a stop-the-world event. Setting gcstoptheworld=2
+ also disables concurrent sweeping after the garbage collection finishes.
+
+ gctrace: setting gctrace=1 causes the garbage collector to emit a single line to standard
+ error at each collection, summarizing the amount of memory collected and the
+ length of the pause. The format of this line is subject to change. Included in
+ the explanation below is also the relevant runtime/metrics metric for each field.
+ Currently, it is:
+ gc # @#s #%: #+#+# ms clock, #+#/#/#+# ms cpu, #->#-># MB, # MB goal, # MB stacks, #MB globals, # P
+ where the fields are as follows:
+ gc # the GC number, incremented at each GC
+ @#s time in seconds since program start
+ #% percentage of time spent in GC since program start
+ #+...+# wall-clock/CPU times for the phases of the GC
+ #->#-># MB heap size at GC start, at GC end, and live heap, or /gc/scan/heap:bytes
+ # MB goal goal heap size, or /gc/heap/goal:bytes
+ # MB stacks estimated scannable stack size, or /gc/scan/stack:bytes
+ # MB globals scannable global size, or /gc/scan/globals:bytes
+ # P number of processors used, or /sched/gomaxprocs:threads
+ The phases are stop-the-world (STW) sweep termination, concurrent
+ mark and scan, and STW mark termination. The CPU times
+ for mark/scan are broken down in to assist time (GC performed in
+ line with allocation), background GC time, and idle GC time.
+ If the line ends with "(forced)", this GC was forced by a
+ runtime.GC() call.
+
+ harddecommit: setting harddecommit=1 causes memory that is returned to the OS to
+ also have protections removed on it. This is the only mode of operation on Windows,
+ but is helpful in debugging scavenger-related issues on other platforms. Currently,
+ only supported on Linux.
+
+ inittrace: setting inittrace=1 causes the runtime to emit a single line to standard
+ error for each package with init work, summarizing the execution time and memory
+ allocation. No information is printed for inits executed as part of plugin loading
+ and for packages without both user defined and compiler generated init work.
+ The format of this line is subject to change. Currently, it is:
+ init # @#ms, # ms clock, # bytes, # allocs
+ where the fields are as follows:
+ init # the package name
+ @# ms time in milliseconds when the init started since program start
+ # clock wall-clock time for package initialization work
+ # bytes memory allocated on the heap
+ # allocs number of heap allocations
+
+ madvdontneed: setting madvdontneed=0 will use MADV_FREE
+ instead of MADV_DONTNEED on Linux when returning memory to the
+ kernel. This is more efficient, but means RSS numbers will
+ drop only when the OS is under memory pressure. On the BSDs and
+ Illumos/Solaris, setting madvdontneed=1 will use MADV_DONTNEED instead
+ of MADV_FREE. This is less efficient, but causes RSS numbers to drop
+ more quickly.
+
+ memprofilerate: setting memprofilerate=X will update the value of runtime.MemProfileRate.
+ When set to 0 memory profiling is disabled. Refer to the description of
+ MemProfileRate for the default value.
+
+ pagetrace: setting pagetrace=/path/to/file will write out a trace of page events
+ that can be viewed, analyzed, and visualized using the x/debug/cmd/pagetrace tool.
+ Build your program with GOEXPERIMENT=pagetrace to enable this functionality. Do not
+ enable this functionality if your program is a setuid binary as it introduces a security
+ risk in that scenario. Currently not supported on Windows, plan9 or js/wasm. Setting this
+ option for some applications can produce large traces, so use with care.
+
+ panicnil: setting panicnil=1 disables the runtime error when calling panic with nil
+ interface value or an untyped nil.
+
+ runtimecontentionstacks: setting runtimecontentionstacks=1 enables inclusion of call stacks
+ related to contention on runtime-internal locks in the "mutex" profile, subject to the
+ MutexProfileFraction setting. When runtimecontentionstacks=0, contention on
+ runtime-internal locks will report as "runtime._LostContendedRuntimeLock". When
+ runtimecontentionstacks=1, the call stacks will correspond to the unlock call that released
+ the lock. But instead of the value corresponding to the amount of contention that call
+ stack caused, it corresponds to the amount of time the caller of unlock had to wait in its
+ original call to lock. A future release is expected to align those and remove this setting.
+
+ invalidptr: invalidptr=1 (the default) causes the garbage collector and stack
+ copier to crash the program if an invalid pointer value (for example, 1)
+ is found in a pointer-typed location. Setting invalidptr=0 disables this check.
+ This should only be used as a temporary workaround to diagnose buggy code.
+ The real fix is to not store integers in pointer-typed locations.
+
+ sbrk: setting sbrk=1 replaces the memory allocator and garbage collector
+ with a trivial allocator that obtains memory from the operating system and
+ never reclaims any memory.
+
+ scavtrace: setting scavtrace=1 causes the runtime to emit a single line to standard
+ error, roughly once per GC cycle, summarizing the amount of work done by the
+ scavenger as well as the total amount of memory returned to the operating system
+ and an estimate of physical memory utilization. The format of this line is subject
+ to change, but currently it is:
+ scav # KiB work (bg), # KiB work (eager), # KiB total, #% util
+ where the fields are as follows:
+ # KiB work (bg) the amount of memory returned to the OS in the background since
+ the last line
+ # KiB work (eager) the amount of memory returned to the OS eagerly since the last line
+ # KiB now the amount of address space currently returned to the OS
+ #% util the fraction of all unscavenged heap memory which is in-use
+ If the line ends with "(forced)", then scavenging was forced by a
+ debug.FreeOSMemory() call.
+
+ scheddetail: setting schedtrace=X and scheddetail=1 causes the scheduler to emit
+ detailed multiline info every X milliseconds, describing state of the scheduler,
+ processors, threads and goroutines.
+
+ schedtrace: setting schedtrace=X causes the scheduler to emit a single line to standard
+ error every X milliseconds, summarizing the scheduler state.
+
+ tracebackancestors: setting tracebackancestors=N extends tracebacks with the stacks at
+ which goroutines were created, where N limits the number of ancestor goroutines to
+ report. This also extends the information returned by runtime.Stack. Ancestor's goroutine
+ IDs will refer to the ID of the goroutine at the time of creation; it's possible for this
+ ID to be reused for another goroutine. Setting N to 0 will report no ancestry information.
+
+ tracefpunwindoff: setting tracefpunwindoff=1 forces the execution tracer to
+ use the runtime's default stack unwinder instead of frame pointer unwinding.
+ This increases tracer overhead, but could be helpful as a workaround or for
+ debugging unexpected regressions caused by frame pointer unwinding.
+
+ traceadvanceperiod: the approximate period in nanoseconds between trace generations. Only
+ applies if a program is built with GOEXPERIMENT=exectracer2. Used primarily for testing
+ and debugging the execution tracer.
+
+ asyncpreemptoff: asyncpreemptoff=1 disables signal-based
+ asynchronous goroutine preemption. This makes some loops
+ non-preemptible for long periods, which may delay GC and
+ goroutine scheduling. This is useful for debugging GC issues
+ because it also disables the conservative stack scanning used
+ for asynchronously preempted goroutines.
+
+The [net] and [net/http] packages also refer to debugging variables in GODEBUG.
+See the documentation for those packages for details.
+
+The GOMAXPROCS variable limits the number of operating system threads that
+can execute user-level Go code simultaneously. There is no limit to the number of threads
+that can be blocked in system calls on behalf of Go code; those do not count against
+the GOMAXPROCS limit. This package's [GOMAXPROCS] function queries and changes
+the limit.
+
+The GORACE variable configures the race detector, for programs built using -race.
+See the [Race Detector article] for details.
+
+The GOTRACEBACK variable controls the amount of output generated when a Go
+program fails due to an unrecovered panic or an unexpected runtime condition.
+By default, a failure prints a stack trace for the current goroutine,
+eliding functions internal to the run-time system, and then exits with exit code 2.
+The failure prints stack traces for all goroutines if there is no current goroutine
+or the failure is internal to the run-time.
+GOTRACEBACK=none omits the goroutine stack traces entirely.
+GOTRACEBACK=single (the default) behaves as described above.
+GOTRACEBACK=all adds stack traces for all user-created goroutines.
+GOTRACEBACK=system is like “all” but adds stack frames for run-time functions
+and shows goroutines created internally by the run-time.
+GOTRACEBACK=crash is like “system” but crashes in an operating system-specific
+manner instead of exiting. For example, on Unix systems, the crash raises
+SIGABRT to trigger a core dump.
+GOTRACEBACK=wer is like “crash” but doesn't disable Windows Error Reporting (WER).
+For historical reasons, the GOTRACEBACK settings 0, 1, and 2 are synonyms for
+none, all, and system, respectively.
+The [runtime/debug.SetTraceback] function allows increasing the
+amount of output at run time, but it cannot reduce the amount below that
+specified by the environment variable.
+
+The GOARCH, GOOS, GOPATH, and GOROOT environment variables complete
+the set of Go environment variables. They influence the building of Go programs
+(see [cmd/go] and [go/build]).
+GOARCH, GOOS, and GOROOT are recorded at compile time and made available by
+constants or functions in this package, but they do not influence the execution
+of the run-time system.
+
+# Security
+
+On Unix platforms, Go's runtime system behaves slightly differently when a
+binary is setuid/setgid or executed with setuid/setgid-like properties, in order
+to prevent dangerous behaviors. On Linux this is determined by checking for the
+AT_SECURE flag in the auxiliary vector, on the BSDs and Solaris/Illumos it is
+determined by checking the issetugid syscall, and on AIX it is determined by
+checking if the uid/gid match the effective uid/gid.
+
+When the runtime determines the binary is setuid/setgid-like, it does three main
+things:
+ - The standard input/output file descriptors (0, 1, 2) are checked to be open.
+ If any of them are closed, they are opened pointing at /dev/null.
+ - The value of the GOTRACEBACK environment variable is set to 'none'.
+ - When a signal is received that terminates the program, or the program
+ encounters an unrecoverable panic that would otherwise override the value
+ of GOTRACEBACK, the goroutine stack, registers, and other memory related
+ information are omitted.
+
+[Race Detector article]: https://go.dev/doc/articles/race_detector
+*/
+package runtime
+
+import (
+ "internal/goarch"
+ "internal/goos"
+)
+
+// Caller reports file and line number information about function invocations on
+// the calling goroutine's stack. The argument skip is the number of stack frames
+// to ascend, with 0 identifying the caller of Caller. (For historical reasons the
+// meaning of skip differs between Caller and [Callers].) The return values report the
+// program counter, file name, and line number within the file of the corresponding
+// call. The boolean ok is false if it was not possible to recover the information.
+func Caller(skip int) (pc uintptr, file string, line int, ok bool) {
+ rpc := make([]uintptr, 1)
+ n := callers(skip+1, rpc[:])
+ if n < 1 {
+ return
+ }
+ frame, _ := CallersFrames(rpc).Next()
+ return frame.PC, frame.File, frame.Line, frame.PC != 0
+}
+
+// Callers fills the slice pc with the return program counters of function invocations
+// on the calling goroutine's stack. The argument skip is the number of stack frames
+// to skip before recording in pc, with 0 identifying the frame for Callers itself and
+// 1 identifying the caller of Callers.
+// It returns the number of entries written to pc.
+//
+// To translate these PCs into symbolic information such as function
+// names and line numbers, use [CallersFrames]. CallersFrames accounts
+// for inlined functions and adjusts the return program counters into
+// call program counters. Iterating over the returned slice of PCs
+// directly is discouraged, as is using [FuncForPC] on any of the
+// returned PCs, since these cannot account for inlining or return
+// program counter adjustment.
+func Callers(skip int, pc []uintptr) int {
+ // runtime.callers uses pc.array==nil as a signal
+ // to print a stack trace. Pick off 0-length pc here
+ // so that we don't let a nil pc slice get to it.
+ if len(pc) == 0 {
+ return 0
+ }
+ return callers(skip, pc)
+}
+
+var defaultGOROOT string // set by cmd/link
+
+// GOROOT returns the root of the Go tree. It uses the
+// GOROOT environment variable, if set at process start,
+// or else the root used during the Go build.
+func GOROOT() string {
+ s := gogetenv("GOROOT")
+ if s != "" {
+ return s
+ }
+ return defaultGOROOT
+}
+
+// buildVersion is the Go tree's version string at build time.
+//
+// If any GOEXPERIMENTs are set to non-default values, it will include
+// "X:<GOEXPERIMENT>".
+//
+// This is set by the linker.
+//
+// This is accessed by "go version <binary>".
+var buildVersion string
+
+// Version returns the Go tree's version string.
+// It is either the commit hash and date at the time of the build or,
+// when possible, a release tag like "go1.3".
+func Version() string {
+ return buildVersion
+}
+
+// GOOS is the running program's operating system target:
+// one of darwin, freebsd, linux, and so on.
+// To view possible combinations of GOOS and GOARCH, run "go tool dist list".
+const GOOS string = goos.GOOS
+
+// GOARCH is the running program's architecture target:
+// one of 386, amd64, arm, s390x, and so on.
+const GOARCH string = goarch.GOARCH