summaryrefslogtreecommitdiffstats
path: root/src/runtime/traceback.go
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/runtime/traceback.go1648
1 files changed, 1648 insertions, 0 deletions
diff --git a/src/runtime/traceback.go b/src/runtime/traceback.go
new file mode 100644
index 0000000..1e5afc6
--- /dev/null
+++ b/src/runtime/traceback.go
@@ -0,0 +1,1648 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package runtime
+
+import (
+ "internal/abi"
+ "internal/bytealg"
+ "internal/goarch"
+ "runtime/internal/sys"
+ "unsafe"
+)
+
+// The code in this file implements stack trace walking for all architectures.
+// The most important fact about a given architecture is whether it uses a link register.
+// On systems with link registers, the prologue for a non-leaf function stores the
+// incoming value of LR at the bottom of the newly allocated stack frame.
+// On systems without link registers (x86), the architecture pushes a return PC during
+// the call instruction, so the return PC ends up above the stack frame.
+// In this file, the return PC is always called LR, no matter how it was found.
+
+const usesLR = sys.MinFrameSize > 0
+
+const (
+ // tracebackInnerFrames is the number of innermost frames to print in a
+ // stack trace. The total maximum frames is tracebackInnerFrames +
+ // tracebackOuterFrames.
+ tracebackInnerFrames = 50
+
+ // tracebackOuterFrames is the number of outermost frames to print in a
+ // stack trace.
+ tracebackOuterFrames = 50
+)
+
+// unwindFlags control the behavior of various unwinders.
+type unwindFlags uint8
+
+const (
+ // unwindPrintErrors indicates that if unwinding encounters an error, it
+ // should print a message and stop without throwing. This is used for things
+ // like stack printing, where it's better to get incomplete information than
+ // to crash. This is also used in situations where everything may not be
+ // stopped nicely and the stack walk may not be able to complete, such as
+ // during profiling signals or during a crash.
+ //
+ // If neither unwindPrintErrors or unwindSilentErrors are set, unwinding
+ // performs extra consistency checks and throws on any error.
+ //
+ // Note that there are a small number of fatal situations that will throw
+ // regardless of unwindPrintErrors or unwindSilentErrors.
+ unwindPrintErrors unwindFlags = 1 << iota
+
+ // unwindSilentErrors silently ignores errors during unwinding.
+ unwindSilentErrors
+
+ // unwindTrap indicates that the initial PC and SP are from a trap, not a
+ // return PC from a call.
+ //
+ // The unwindTrap flag is updated during unwinding. If set, frame.pc is the
+ // address of a faulting instruction instead of the return address of a
+ // call. It also means the liveness at pc may not be known.
+ //
+ // TODO: Distinguish frame.continpc, which is really the stack map PC, from
+ // the actual continuation PC, which is computed differently depending on
+ // this flag and a few other things.
+ unwindTrap
+
+ // unwindJumpStack indicates that, if the traceback is on a system stack, it
+ // should resume tracing at the user stack when the system stack is
+ // exhausted.
+ unwindJumpStack
+)
+
+// An unwinder iterates the physical stack frames of a Go sack.
+//
+// Typical use of an unwinder looks like:
+//
+// var u unwinder
+// for u.init(gp, 0); u.valid(); u.next() {
+// // ... use frame info in u ...
+// }
+//
+// Implementation note: This is carefully structured to be pointer-free because
+// tracebacks happen in places that disallow write barriers (e.g., signals).
+// Even if this is stack-allocated, its pointer-receiver methods don't know that
+// their receiver is on the stack, so they still emit write barriers. Here we
+// address that by carefully avoiding any pointers in this type. Another
+// approach would be to split this into a mutable part that's passed by pointer
+// but contains no pointers itself and an immutable part that's passed and
+// returned by value and can contain pointers. We could potentially hide that
+// we're doing that in trivial methods that are inlined into the caller that has
+// the stack allocation, but that's fragile.
+type unwinder struct {
+ // frame is the current physical stack frame, or all 0s if
+ // there is no frame.
+ frame stkframe
+
+ // g is the G who's stack is being unwound. If the
+ // unwindJumpStack flag is set and the unwinder jumps stacks,
+ // this will be different from the initial G.
+ g guintptr
+
+ // cgoCtxt is the index into g.cgoCtxt of the next frame on the cgo stack.
+ // The cgo stack is unwound in tandem with the Go stack as we find marker frames.
+ cgoCtxt int
+
+ // calleeFuncID is the function ID of the caller of the current
+ // frame.
+ calleeFuncID abi.FuncID
+
+ // flags are the flags to this unwind. Some of these are updated as we
+ // unwind (see the flags documentation).
+ flags unwindFlags
+}
+
+// init initializes u to start unwinding gp's stack and positions the
+// iterator on gp's innermost frame. gp must not be the current G.
+//
+// A single unwinder can be reused for multiple unwinds.
+func (u *unwinder) init(gp *g, flags unwindFlags) {
+ // Implementation note: This starts the iterator on the first frame and we
+ // provide a "valid" method. Alternatively, this could start in a "before
+ // the first frame" state and "next" could return whether it was able to
+ // move to the next frame, but that's both more awkward to use in a "for"
+ // loop and is harder to implement because we have to do things differently
+ // for the first frame.
+ u.initAt(^uintptr(0), ^uintptr(0), ^uintptr(0), gp, flags)
+}
+
+func (u *unwinder) initAt(pc0, sp0, lr0 uintptr, gp *g, flags unwindFlags) {
+ // Don't call this "g"; it's too easy get "g" and "gp" confused.
+ if ourg := getg(); ourg == gp && ourg == ourg.m.curg {
+ // The starting sp has been passed in as a uintptr, and the caller may
+ // have other uintptr-typed stack references as well.
+ // If during one of the calls that got us here or during one of the
+ // callbacks below the stack must be grown, all these uintptr references
+ // to the stack will not be updated, and traceback will continue
+ // to inspect the old stack memory, which may no longer be valid.
+ // Even if all the variables were updated correctly, it is not clear that
+ // we want to expose a traceback that begins on one stack and ends
+ // on another stack. That could confuse callers quite a bit.
+ // Instead, we require that initAt and any other function that
+ // accepts an sp for the current goroutine (typically obtained by
+ // calling getcallersp) must not run on that goroutine's stack but
+ // instead on the g0 stack.
+ throw("cannot trace user goroutine on its own stack")
+ }
+
+ if pc0 == ^uintptr(0) && sp0 == ^uintptr(0) { // Signal to fetch saved values from gp.
+ if gp.syscallsp != 0 {
+ pc0 = gp.syscallpc
+ sp0 = gp.syscallsp
+ if usesLR {
+ lr0 = 0
+ }
+ } else {
+ pc0 = gp.sched.pc
+ sp0 = gp.sched.sp
+ if usesLR {
+ lr0 = gp.sched.lr
+ }
+ }
+ }
+
+ var frame stkframe
+ frame.pc = pc0
+ frame.sp = sp0
+ if usesLR {
+ frame.lr = lr0
+ }
+
+ // If the PC is zero, it's likely a nil function call.
+ // Start in the caller's frame.
+ if frame.pc == 0 {
+ if usesLR {
+ frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp))
+ frame.lr = 0
+ } else {
+ frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp))
+ frame.sp += goarch.PtrSize
+ }
+ }
+
+ // runtime/internal/atomic functions call into kernel helpers on
+ // arm < 7. See runtime/internal/atomic/sys_linux_arm.s.
+ //
+ // Start in the caller's frame.
+ if GOARCH == "arm" && goarm < 7 && GOOS == "linux" && frame.pc&0xffff0000 == 0xffff0000 {
+ // Note that the calls are simple BL without pushing the return
+ // address, so we use LR directly.
+ //
+ // The kernel helpers are frameless leaf functions, so SP and
+ // LR are not touched.
+ frame.pc = frame.lr
+ frame.lr = 0
+ }
+
+ f := findfunc(frame.pc)
+ if !f.valid() {
+ if flags&unwindSilentErrors == 0 {
+ print("runtime: g ", gp.goid, " gp=", gp, ": unknown pc ", hex(frame.pc), "\n")
+ tracebackHexdump(gp.stack, &frame, 0)
+ }
+ if flags&(unwindPrintErrors|unwindSilentErrors) == 0 {
+ throw("unknown pc")
+ }
+ *u = unwinder{}
+ return
+ }
+ frame.fn = f
+
+ // Populate the unwinder.
+ *u = unwinder{
+ frame: frame,
+ g: gp.guintptr(),
+ cgoCtxt: len(gp.cgoCtxt) - 1,
+ calleeFuncID: abi.FuncIDNormal,
+ flags: flags,
+ }
+
+ isSyscall := frame.pc == pc0 && frame.sp == sp0 && pc0 == gp.syscallpc && sp0 == gp.syscallsp
+ u.resolveInternal(true, isSyscall)
+}
+
+func (u *unwinder) valid() bool {
+ return u.frame.pc != 0
+}
+
+// resolveInternal fills in u.frame based on u.frame.fn, pc, and sp.
+//
+// innermost indicates that this is the first resolve on this stack. If
+// innermost is set, isSyscall indicates that the PC/SP was retrieved from
+// gp.syscall*; this is otherwise ignored.
+//
+// On entry, u.frame contains:
+// - fn is the running function.
+// - pc is the PC in the running function.
+// - sp is the stack pointer at that program counter.
+// - For the innermost frame on LR machines, lr is the program counter that called fn.
+//
+// On return, u.frame contains:
+// - fp is the stack pointer of the caller.
+// - lr is the program counter that called fn.
+// - varp, argp, and continpc are populated for the current frame.
+//
+// If fn is a stack-jumping function, resolveInternal can change the entire
+// frame state to follow that stack jump.
+//
+// This is internal to unwinder.
+func (u *unwinder) resolveInternal(innermost, isSyscall bool) {
+ frame := &u.frame
+ gp := u.g.ptr()
+
+ f := frame.fn
+ if f.pcsp == 0 {
+ // No frame information, must be external function, like race support.
+ // See golang.org/issue/13568.
+ u.finishInternal()
+ return
+ }
+
+ // Compute function info flags.
+ flag := f.flag
+ if f.funcID == abi.FuncID_cgocallback {
+ // cgocallback does write SP to switch from the g0 to the curg stack,
+ // but it carefully arranges that during the transition BOTH stacks
+ // have cgocallback frame valid for unwinding through.
+ // So we don't need to exclude it with the other SP-writing functions.
+ flag &^= abi.FuncFlagSPWrite
+ }
+ if isSyscall {
+ // Some Syscall functions write to SP, but they do so only after
+ // saving the entry PC/SP using entersyscall.
+ // Since we are using the entry PC/SP, the later SP write doesn't matter.
+ flag &^= abi.FuncFlagSPWrite
+ }
+
+ // Found an actual function.
+ // Derive frame pointer.
+ if frame.fp == 0 {
+ // Jump over system stack transitions. If we're on g0 and there's a user
+ // goroutine, try to jump. Otherwise this is a regular call.
+ // We also defensively check that this won't switch M's on us,
+ // which could happen at critical points in the scheduler.
+ // This ensures gp.m doesn't change from a stack jump.
+ if u.flags&unwindJumpStack != 0 && gp == gp.m.g0 && gp.m.curg != nil && gp.m.curg.m == gp.m {
+ switch f.funcID {
+ case abi.FuncID_morestack:
+ // morestack does not return normally -- newstack()
+ // gogo's to curg.sched. Match that.
+ // This keeps morestack() from showing up in the backtrace,
+ // but that makes some sense since it'll never be returned
+ // to.
+ gp = gp.m.curg
+ u.g.set(gp)
+ frame.pc = gp.sched.pc
+ frame.fn = findfunc(frame.pc)
+ f = frame.fn
+ flag = f.flag
+ frame.lr = gp.sched.lr
+ frame.sp = gp.sched.sp
+ u.cgoCtxt = len(gp.cgoCtxt) - 1
+ case abi.FuncID_systemstack:
+ // systemstack returns normally, so just follow the
+ // stack transition.
+ if usesLR && funcspdelta(f, frame.pc) == 0 {
+ // We're at the function prologue and the stack
+ // switch hasn't happened, or epilogue where we're
+ // about to return. Just unwind normally.
+ // Do this only on LR machines because on x86
+ // systemstack doesn't have an SP delta (the CALL
+ // instruction opens the frame), therefore no way
+ // to check.
+ flag &^= abi.FuncFlagSPWrite
+ break
+ }
+ gp = gp.m.curg
+ u.g.set(gp)
+ frame.sp = gp.sched.sp
+ u.cgoCtxt = len(gp.cgoCtxt) - 1
+ flag &^= abi.FuncFlagSPWrite
+ }
+ }
+ frame.fp = frame.sp + uintptr(funcspdelta(f, frame.pc))
+ if !usesLR {
+ // On x86, call instruction pushes return PC before entering new function.
+ frame.fp += goarch.PtrSize
+ }
+ }
+
+ // Derive link register.
+ if flag&abi.FuncFlagTopFrame != 0 {
+ // This function marks the top of the stack. Stop the traceback.
+ frame.lr = 0
+ } else if flag&abi.FuncFlagSPWrite != 0 && (!innermost || u.flags&(unwindPrintErrors|unwindSilentErrors) != 0) {
+ // The function we are in does a write to SP that we don't know
+ // how to encode in the spdelta table. Examples include context
+ // switch routines like runtime.gogo but also any code that switches
+ // to the g0 stack to run host C code.
+ // We can't reliably unwind the SP (we might not even be on
+ // the stack we think we are), so stop the traceback here.
+ //
+ // The one exception (encoded in the complex condition above) is that
+ // we assume if we're doing a precise traceback, and this is the
+ // innermost frame, that the SPWRITE function voluntarily preempted itself on entry
+ // during the stack growth check. In that case, the function has
+ // not yet had a chance to do any writes to SP and is safe to unwind.
+ // isAsyncSafePoint does not allow assembly functions to be async preempted,
+ // and preemptPark double-checks that SPWRITE functions are not async preempted.
+ // So for GC stack traversal, we can safely ignore SPWRITE for the innermost frame,
+ // but farther up the stack we'd better not find any.
+ // This is somewhat imprecise because we're just guessing that we're in the stack
+ // growth check. It would be better if SPWRITE were encoded in the spdelta
+ // table so we would know for sure that we were still in safe code.
+ //
+ // uSE uPE inn | action
+ // T _ _ | frame.lr = 0
+ // F T _ | frame.lr = 0
+ // F F F | print; panic
+ // F F T | ignore SPWrite
+ if u.flags&(unwindPrintErrors|unwindSilentErrors) == 0 && !innermost {
+ println("traceback: unexpected SPWRITE function", funcname(f))
+ throw("traceback")
+ }
+ frame.lr = 0
+ } else {
+ var lrPtr uintptr
+ if usesLR {
+ if innermost && frame.sp < frame.fp || frame.lr == 0 {
+ lrPtr = frame.sp
+ frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr))
+ }
+ } else {
+ if frame.lr == 0 {
+ lrPtr = frame.fp - goarch.PtrSize
+ frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr))
+ }
+ }
+ }
+
+ frame.varp = frame.fp
+ if !usesLR {
+ // On x86, call instruction pushes return PC before entering new function.
+ frame.varp -= goarch.PtrSize
+ }
+
+ // For architectures with frame pointers, if there's
+ // a frame, then there's a saved frame pointer here.
+ //
+ // NOTE: This code is not as general as it looks.
+ // On x86, the ABI is to save the frame pointer word at the
+ // top of the stack frame, so we have to back down over it.
+ // On arm64, the frame pointer should be at the bottom of
+ // the stack (with R29 (aka FP) = RSP), in which case we would
+ // not want to do the subtraction here. But we started out without
+ // any frame pointer, and when we wanted to add it, we didn't
+ // want to break all the assembly doing direct writes to 8(RSP)
+ // to set the first parameter to a called function.
+ // So we decided to write the FP link *below* the stack pointer
+ // (with R29 = RSP - 8 in Go functions).
+ // This is technically ABI-compatible but not standard.
+ // And it happens to end up mimicking the x86 layout.
+ // Other architectures may make different decisions.
+ if frame.varp > frame.sp && framepointer_enabled {
+ frame.varp -= goarch.PtrSize
+ }
+
+ frame.argp = frame.fp + sys.MinFrameSize
+
+ // Determine frame's 'continuation PC', where it can continue.
+ // Normally this is the return address on the stack, but if sigpanic
+ // is immediately below this function on the stack, then the frame
+ // stopped executing due to a trap, and frame.pc is probably not
+ // a safe point for looking up liveness information. In this panicking case,
+ // the function either doesn't return at all (if it has no defers or if the
+ // defers do not recover) or it returns from one of the calls to
+ // deferproc a second time (if the corresponding deferred func recovers).
+ // In the latter case, use a deferreturn call site as the continuation pc.
+ frame.continpc = frame.pc
+ if u.calleeFuncID == abi.FuncID_sigpanic {
+ if frame.fn.deferreturn != 0 {
+ frame.continpc = frame.fn.entry() + uintptr(frame.fn.deferreturn) + 1
+ // Note: this may perhaps keep return variables alive longer than
+ // strictly necessary, as we are using "function has a defer statement"
+ // as a proxy for "function actually deferred something". It seems
+ // to be a minor drawback. (We used to actually look through the
+ // gp._defer for a defer corresponding to this function, but that
+ // is hard to do with defer records on the stack during a stack copy.)
+ // Note: the +1 is to offset the -1 that
+ // stack.go:getStackMap does to back up a return
+ // address make sure the pc is in the CALL instruction.
+ } else {
+ frame.continpc = 0
+ }
+ }
+}
+
+func (u *unwinder) next() {
+ frame := &u.frame
+ f := frame.fn
+ gp := u.g.ptr()
+
+ // Do not unwind past the bottom of the stack.
+ if frame.lr == 0 {
+ u.finishInternal()
+ return
+ }
+ flr := findfunc(frame.lr)
+ if !flr.valid() {
+ // This happens if you get a profiling interrupt at just the wrong time.
+ // In that context it is okay to stop early.
+ // But if no error flags are set, we're doing a garbage collection and must
+ // get everything, so crash loudly.
+ fail := u.flags&(unwindPrintErrors|unwindSilentErrors) == 0
+ doPrint := u.flags&unwindSilentErrors == 0
+ if doPrint && gp.m.incgo && f.funcID == abi.FuncID_sigpanic {
+ // We can inject sigpanic
+ // calls directly into C code,
+ // in which case we'll see a C
+ // return PC. Don't complain.
+ doPrint = false
+ }
+ if fail || doPrint {
+ print("runtime: g ", gp.goid, ": unexpected return pc for ", funcname(f), " called from ", hex(frame.lr), "\n")
+ tracebackHexdump(gp.stack, frame, 0)
+ }
+ if fail {
+ throw("unknown caller pc")
+ }
+ frame.lr = 0
+ u.finishInternal()
+ return
+ }
+
+ if frame.pc == frame.lr && frame.sp == frame.fp {
+ // If the next frame is identical to the current frame, we cannot make progress.
+ print("runtime: traceback stuck. pc=", hex(frame.pc), " sp=", hex(frame.sp), "\n")
+ tracebackHexdump(gp.stack, frame, frame.sp)
+ throw("traceback stuck")
+ }
+
+ injectedCall := f.funcID == abi.FuncID_sigpanic || f.funcID == abi.FuncID_asyncPreempt || f.funcID == abi.FuncID_debugCallV2
+ if injectedCall {
+ u.flags |= unwindTrap
+ } else {
+ u.flags &^= unwindTrap
+ }
+
+ // Unwind to next frame.
+ u.calleeFuncID = f.funcID
+ frame.fn = flr
+ frame.pc = frame.lr
+ frame.lr = 0
+ frame.sp = frame.fp
+ frame.fp = 0
+
+ // On link register architectures, sighandler saves the LR on stack
+ // before faking a call.
+ if usesLR && injectedCall {
+ x := *(*uintptr)(unsafe.Pointer(frame.sp))
+ frame.sp += alignUp(sys.MinFrameSize, sys.StackAlign)
+ f = findfunc(frame.pc)
+ frame.fn = f
+ if !f.valid() {
+ frame.pc = x
+ } else if funcspdelta(f, frame.pc) == 0 {
+ frame.lr = x
+ }
+ }
+
+ u.resolveInternal(false, false)
+}
+
+// finishInternal is an unwinder-internal helper called after the stack has been
+// exhausted. It sets the unwinder to an invalid state and checks that it
+// successfully unwound the entire stack.
+func (u *unwinder) finishInternal() {
+ u.frame.pc = 0
+
+ // Note that panic != nil is okay here: there can be leftover panics,
+ // because the defers on the panic stack do not nest in frame order as
+ // they do on the defer stack. If you have:
+ //
+ // frame 1 defers d1
+ // frame 2 defers d2
+ // frame 3 defers d3
+ // frame 4 panics
+ // frame 4's panic starts running defers
+ // frame 5, running d3, defers d4
+ // frame 5 panics
+ // frame 5's panic starts running defers
+ // frame 6, running d4, garbage collects
+ // frame 6, running d2, garbage collects
+ //
+ // During the execution of d4, the panic stack is d4 -> d3, which
+ // is nested properly, and we'll treat frame 3 as resumable, because we
+ // can find d3. (And in fact frame 3 is resumable. If d4 recovers
+ // and frame 5 continues running, d3, d3 can recover and we'll
+ // resume execution in (returning from) frame 3.)
+ //
+ // During the execution of d2, however, the panic stack is d2 -> d3,
+ // which is inverted. The scan will match d2 to frame 2 but having
+ // d2 on the stack until then means it will not match d3 to frame 3.
+ // This is okay: if we're running d2, then all the defers after d2 have
+ // completed and their corresponding frames are dead. Not finding d3
+ // for frame 3 means we'll set frame 3's continpc == 0, which is correct
+ // (frame 3 is dead). At the end of the walk the panic stack can thus
+ // contain defers (d3 in this case) for dead frames. The inversion here
+ // always indicates a dead frame, and the effect of the inversion on the
+ // scan is to hide those dead frames, so the scan is still okay:
+ // what's left on the panic stack are exactly (and only) the dead frames.
+ //
+ // We require callback != nil here because only when callback != nil
+ // do we know that gentraceback is being called in a "must be correct"
+ // context as opposed to a "best effort" context. The tracebacks with
+ // callbacks only happen when everything is stopped nicely.
+ // At other times, such as when gathering a stack for a profiling signal
+ // or when printing a traceback during a crash, everything may not be
+ // stopped nicely, and the stack walk may not be able to complete.
+ gp := u.g.ptr()
+ if u.flags&(unwindPrintErrors|unwindSilentErrors) == 0 && u.frame.sp != gp.stktopsp {
+ print("runtime: g", gp.goid, ": frame.sp=", hex(u.frame.sp), " top=", hex(gp.stktopsp), "\n")
+ print("\tstack=[", hex(gp.stack.lo), "-", hex(gp.stack.hi), "\n")
+ throw("traceback did not unwind completely")
+ }
+}
+
+// symPC returns the PC that should be used for symbolizing the current frame.
+// Specifically, this is the PC of the last instruction executed in this frame.
+//
+// If this frame did a normal call, then frame.pc is a return PC, so this will
+// return frame.pc-1, which points into the CALL instruction. If the frame was
+// interrupted by a signal (e.g., profiler, segv, etc) then frame.pc is for the
+// trapped instruction, so this returns frame.pc. See issue #34123. Finally,
+// frame.pc can be at function entry when the frame is initialized without
+// actually running code, like in runtime.mstart, in which case this returns
+// frame.pc because that's the best we can do.
+func (u *unwinder) symPC() uintptr {
+ if u.flags&unwindTrap == 0 && u.frame.pc > u.frame.fn.entry() {
+ // Regular call.
+ return u.frame.pc - 1
+ }
+ // Trapping instruction or we're at the function entry point.
+ return u.frame.pc
+}
+
+// cgoCallers populates pcBuf with the cgo callers of the current frame using
+// the registered cgo unwinder. It returns the number of PCs written to pcBuf.
+// If the current frame is not a cgo frame or if there's no registered cgo
+// unwinder, it returns 0.
+func (u *unwinder) cgoCallers(pcBuf []uintptr) int {
+ if cgoTraceback == nil || u.frame.fn.funcID != abi.FuncID_cgocallback || u.cgoCtxt < 0 {
+ // We don't have a cgo unwinder (typical case), or we do but we're not
+ // in a cgo frame or we're out of cgo context.
+ return 0
+ }
+
+ ctxt := u.g.ptr().cgoCtxt[u.cgoCtxt]
+ u.cgoCtxt--
+ cgoContextPCs(ctxt, pcBuf)
+ for i, pc := range pcBuf {
+ if pc == 0 {
+ return i
+ }
+ }
+ return len(pcBuf)
+}
+
+// tracebackPCs populates pcBuf with the return addresses for each frame from u
+// and returns the number of PCs written to pcBuf. The returned PCs correspond
+// to "logical frames" rather than "physical frames"; that is if A is inlined
+// into B, this will still return a PCs for both A and B. This also includes PCs
+// generated by the cgo unwinder, if one is registered.
+//
+// If skip != 0, this skips this many logical frames.
+//
+// Callers should set the unwindSilentErrors flag on u.
+func tracebackPCs(u *unwinder, skip int, pcBuf []uintptr) int {
+ var cgoBuf [32]uintptr
+ n := 0
+ for ; n < len(pcBuf) && u.valid(); u.next() {
+ f := u.frame.fn
+ cgoN := u.cgoCallers(cgoBuf[:])
+
+ // TODO: Why does &u.cache cause u to escape? (Same in traceback2)
+ for iu, uf := newInlineUnwinder(f, u.symPC()); n < len(pcBuf) && uf.valid(); uf = iu.next(uf) {
+ sf := iu.srcFunc(uf)
+ if sf.funcID == abi.FuncIDWrapper && elideWrapperCalling(u.calleeFuncID) {
+ // ignore wrappers
+ } else if skip > 0 {
+ skip--
+ } else {
+ // Callers expect the pc buffer to contain return addresses
+ // and do the -1 themselves, so we add 1 to the call PC to
+ // create a return PC.
+ pcBuf[n] = uf.pc + 1
+ n++
+ }
+ u.calleeFuncID = sf.funcID
+ }
+ // Add cgo frames (if we're done skipping over the requested number of
+ // Go frames).
+ if skip == 0 {
+ n += copy(pcBuf[n:], cgoBuf[:cgoN])
+ }
+ }
+ return n
+}
+
+// printArgs prints function arguments in traceback.
+func printArgs(f funcInfo, argp unsafe.Pointer, pc uintptr) {
+ // The "instruction" of argument printing is encoded in _FUNCDATA_ArgInfo.
+ // See cmd/compile/internal/ssagen.emitArgInfo for the description of the
+ // encoding.
+ // These constants need to be in sync with the compiler.
+ const (
+ _endSeq = 0xff
+ _startAgg = 0xfe
+ _endAgg = 0xfd
+ _dotdotdot = 0xfc
+ _offsetTooLarge = 0xfb
+ )
+
+ const (
+ limit = 10 // print no more than 10 args/components
+ maxDepth = 5 // no more than 5 layers of nesting
+ maxLen = (maxDepth*3+2)*limit + 1 // max length of _FUNCDATA_ArgInfo (see the compiler side for reasoning)
+ )
+
+ p := (*[maxLen]uint8)(funcdata(f, abi.FUNCDATA_ArgInfo))
+ if p == nil {
+ return
+ }
+
+ liveInfo := funcdata(f, abi.FUNCDATA_ArgLiveInfo)
+ liveIdx := pcdatavalue(f, abi.PCDATA_ArgLiveIndex, pc)
+ startOffset := uint8(0xff) // smallest offset that needs liveness info (slots with a lower offset is always live)
+ if liveInfo != nil {
+ startOffset = *(*uint8)(liveInfo)
+ }
+
+ isLive := func(off, slotIdx uint8) bool {
+ if liveInfo == nil || liveIdx <= 0 {
+ return true // no liveness info, always live
+ }
+ if off < startOffset {
+ return true
+ }
+ bits := *(*uint8)(add(liveInfo, uintptr(liveIdx)+uintptr(slotIdx/8)))
+ return bits&(1<<(slotIdx%8)) != 0
+ }
+
+ print1 := func(off, sz, slotIdx uint8) {
+ x := readUnaligned64(add(argp, uintptr(off)))
+ // mask out irrelevant bits
+ if sz < 8 {
+ shift := 64 - sz*8
+ if goarch.BigEndian {
+ x = x >> shift
+ } else {
+ x = x << shift >> shift
+ }
+ }
+ print(hex(x))
+ if !isLive(off, slotIdx) {
+ print("?")
+ }
+ }
+
+ start := true
+ printcomma := func() {
+ if !start {
+ print(", ")
+ }
+ }
+ pi := 0
+ slotIdx := uint8(0) // register arg spill slot index
+printloop:
+ for {
+ o := p[pi]
+ pi++
+ switch o {
+ case _endSeq:
+ break printloop
+ case _startAgg:
+ printcomma()
+ print("{")
+ start = true
+ continue
+ case _endAgg:
+ print("}")
+ case _dotdotdot:
+ printcomma()
+ print("...")
+ case _offsetTooLarge:
+ printcomma()
+ print("_")
+ default:
+ printcomma()
+ sz := p[pi]
+ pi++
+ print1(o, sz, slotIdx)
+ if o >= startOffset {
+ slotIdx++
+ }
+ }
+ start = false
+ }
+}
+
+// funcNamePiecesForPrint returns the function name for printing to the user.
+// It returns three pieces so it doesn't need an allocation for string
+// concatenation.
+func funcNamePiecesForPrint(name string) (string, string, string) {
+ // Replace the shape name in generic function with "...".
+ i := bytealg.IndexByteString(name, '[')
+ if i < 0 {
+ return name, "", ""
+ }
+ j := len(name) - 1
+ for name[j] != ']' {
+ j--
+ }
+ if j <= i {
+ return name, "", ""
+ }
+ return name[:i], "[...]", name[j+1:]
+}
+
+// funcNameForPrint returns the function name for printing to the user.
+func funcNameForPrint(name string) string {
+ a, b, c := funcNamePiecesForPrint(name)
+ return a + b + c
+}
+
+// printFuncName prints a function name. name is the function name in
+// the binary's func data table.
+func printFuncName(name string) {
+ if name == "runtime.gopanic" {
+ print("panic")
+ return
+ }
+ a, b, c := funcNamePiecesForPrint(name)
+ print(a, b, c)
+}
+
+func printcreatedby(gp *g) {
+ // Show what created goroutine, except main goroutine (goid 1).
+ pc := gp.gopc
+ f := findfunc(pc)
+ if f.valid() && showframe(f.srcFunc(), gp, false, abi.FuncIDNormal) && gp.goid != 1 {
+ printcreatedby1(f, pc, gp.parentGoid)
+ }
+}
+
+func printcreatedby1(f funcInfo, pc uintptr, goid uint64) {
+ print("created by ")
+ printFuncName(funcname(f))
+ if goid != 0 {
+ print(" in goroutine ", goid)
+ }
+ print("\n")
+ tracepc := pc // back up to CALL instruction for funcline.
+ if pc > f.entry() {
+ tracepc -= sys.PCQuantum
+ }
+ file, line := funcline(f, tracepc)
+ print("\t", file, ":", line)
+ if pc > f.entry() {
+ print(" +", hex(pc-f.entry()))
+ }
+ print("\n")
+}
+
+func traceback(pc, sp, lr uintptr, gp *g) {
+ traceback1(pc, sp, lr, gp, 0)
+}
+
+// tracebacktrap is like traceback but expects that the PC and SP were obtained
+// from a trap, not from gp->sched or gp->syscallpc/gp->syscallsp or getcallerpc/getcallersp.
+// Because they are from a trap instead of from a saved pair,
+// the initial PC must not be rewound to the previous instruction.
+// (All the saved pairs record a PC that is a return address, so we
+// rewind it into the CALL instruction.)
+// If gp.m.libcall{g,pc,sp} information is available, it uses that information in preference to
+// the pc/sp/lr passed in.
+func tracebacktrap(pc, sp, lr uintptr, gp *g) {
+ if gp.m.libcallsp != 0 {
+ // We're in C code somewhere, traceback from the saved position.
+ traceback1(gp.m.libcallpc, gp.m.libcallsp, 0, gp.m.libcallg.ptr(), 0)
+ return
+ }
+ traceback1(pc, sp, lr, gp, unwindTrap)
+}
+
+func traceback1(pc, sp, lr uintptr, gp *g, flags unwindFlags) {
+ // If the goroutine is in cgo, and we have a cgo traceback, print that.
+ if iscgo && gp.m != nil && gp.m.ncgo > 0 && gp.syscallsp != 0 && gp.m.cgoCallers != nil && gp.m.cgoCallers[0] != 0 {
+ // Lock cgoCallers so that a signal handler won't
+ // change it, copy the array, reset it, unlock it.
+ // We are locked to the thread and are not running
+ // concurrently with a signal handler.
+ // We just have to stop a signal handler from interrupting
+ // in the middle of our copy.
+ gp.m.cgoCallersUse.Store(1)
+ cgoCallers := *gp.m.cgoCallers
+ gp.m.cgoCallers[0] = 0
+ gp.m.cgoCallersUse.Store(0)
+
+ printCgoTraceback(&cgoCallers)
+ }
+
+ if readgstatus(gp)&^_Gscan == _Gsyscall {
+ // Override registers if blocked in system call.
+ pc = gp.syscallpc
+ sp = gp.syscallsp
+ flags &^= unwindTrap
+ }
+ if gp.m != nil && gp.m.vdsoSP != 0 {
+ // Override registers if running in VDSO. This comes after the
+ // _Gsyscall check to cover VDSO calls after entersyscall.
+ pc = gp.m.vdsoPC
+ sp = gp.m.vdsoSP
+ flags &^= unwindTrap
+ }
+
+ // Print traceback.
+ //
+ // We print the first tracebackInnerFrames frames, and the last
+ // tracebackOuterFrames frames. There are many possible approaches to this.
+ // There are various complications to this:
+ //
+ // - We'd prefer to walk the stack once because in really bad situations
+ // traceback may crash (and we want as much output as possible) or the stack
+ // may be changing.
+ //
+ // - Each physical frame can represent several logical frames, so we might
+ // have to pause in the middle of a physical frame and pick up in the middle
+ // of a physical frame.
+ //
+ // - The cgo symbolizer can expand a cgo PC to more than one logical frame,
+ // and involves juggling state on the C side that we don't manage. Since its
+ // expansion state is managed on the C side, we can't capture the expansion
+ // state part way through, and because the output strings are managed on the
+ // C side, we can't capture the output. Thus, our only choice is to replay a
+ // whole expansion, potentially discarding some of it.
+ //
+ // Rejected approaches:
+ //
+ // - Do two passes where the first pass just counts and the second pass does
+ // all the printing. This is undesirable if the stack is corrupted or changing
+ // because we won't see a partial stack if we panic.
+ //
+ // - Keep a ring buffer of the last N logical frames and use this to print
+ // the bottom frames once we reach the end of the stack. This works, but
+ // requires keeping a surprising amount of state on the stack, and we have
+ // to run the cgo symbolizer twice—once to count frames, and a second to
+ // print them—since we can't retain the strings it returns.
+ //
+ // Instead, we print the outer frames, and if we reach that limit, we clone
+ // the unwinder, count the remaining frames, and then skip forward and
+ // finish printing from the clone. This makes two passes over the outer part
+ // of the stack, but the single pass over the inner part ensures that's
+ // printed immediately and not revisited. It keeps minimal state on the
+ // stack. And through a combination of skip counts and limits, we can do all
+ // of the steps we need with a single traceback printer implementation.
+ //
+ // We could be more lax about exactly how many frames we print, for example
+ // always stopping and resuming on physical frame boundaries, or at least
+ // cgo expansion boundaries. It's not clear that's much simpler.
+ flags |= unwindPrintErrors
+ var u unwinder
+ tracebackWithRuntime := func(showRuntime bool) int {
+ const maxInt int = 0x7fffffff
+ u.initAt(pc, sp, lr, gp, flags)
+ n, lastN := traceback2(&u, showRuntime, 0, tracebackInnerFrames)
+ if n < tracebackInnerFrames {
+ // We printed the whole stack.
+ return n
+ }
+ // Clone the unwinder and figure out how many frames are left. This
+ // count will include any logical frames already printed for u's current
+ // physical frame.
+ u2 := u
+ remaining, _ := traceback2(&u, showRuntime, maxInt, 0)
+ elide := remaining - lastN - tracebackOuterFrames
+ if elide > 0 {
+ print("...", elide, " frames elided...\n")
+ traceback2(&u2, showRuntime, lastN+elide, tracebackOuterFrames)
+ } else if elide <= 0 {
+ // There are tracebackOuterFrames or fewer frames left to print.
+ // Just print the rest of the stack.
+ traceback2(&u2, showRuntime, lastN, tracebackOuterFrames)
+ }
+ return n
+ }
+ // By default, omits runtime frames. If that means we print nothing at all,
+ // repeat forcing all frames printed.
+ if tracebackWithRuntime(false) == 0 {
+ tracebackWithRuntime(true)
+ }
+ printcreatedby(gp)
+
+ if gp.ancestors == nil {
+ return
+ }
+ for _, ancestor := range *gp.ancestors {
+ printAncestorTraceback(ancestor)
+ }
+}
+
+// traceback2 prints a stack trace starting at u. It skips the first "skip"
+// logical frames, after which it prints at most "max" logical frames. It
+// returns n, which is the number of logical frames skipped and printed, and
+// lastN, which is the number of logical frames skipped or printed just in the
+// physical frame that u references.
+func traceback2(u *unwinder, showRuntime bool, skip, max int) (n, lastN int) {
+ // commitFrame commits to a logical frame and returns whether this frame
+ // should be printed and whether iteration should stop.
+ commitFrame := func() (pr, stop bool) {
+ if skip == 0 && max == 0 {
+ // Stop
+ return false, true
+ }
+ n++
+ lastN++
+ if skip > 0 {
+ // Skip
+ skip--
+ return false, false
+ }
+ // Print
+ max--
+ return true, false
+ }
+
+ gp := u.g.ptr()
+ level, _, _ := gotraceback()
+ var cgoBuf [32]uintptr
+ for ; u.valid(); u.next() {
+ lastN = 0
+ f := u.frame.fn
+ for iu, uf := newInlineUnwinder(f, u.symPC()); uf.valid(); uf = iu.next(uf) {
+ sf := iu.srcFunc(uf)
+ callee := u.calleeFuncID
+ u.calleeFuncID = sf.funcID
+ if !(showRuntime || showframe(sf, gp, n == 0, callee)) {
+ continue
+ }
+
+ if pr, stop := commitFrame(); stop {
+ return
+ } else if !pr {
+ continue
+ }
+
+ name := sf.name()
+ file, line := iu.fileLine(uf)
+ // Print during crash.
+ // main(0x1, 0x2, 0x3)
+ // /home/rsc/go/src/runtime/x.go:23 +0xf
+ //
+ printFuncName(name)
+ print("(")
+ if iu.isInlined(uf) {
+ print("...")
+ } else {
+ argp := unsafe.Pointer(u.frame.argp)
+ printArgs(f, argp, u.symPC())
+ }
+ print(")\n")
+ print("\t", file, ":", line)
+ if !iu.isInlined(uf) {
+ if u.frame.pc > f.entry() {
+ print(" +", hex(u.frame.pc-f.entry()))
+ }
+ if gp.m != nil && gp.m.throwing >= throwTypeRuntime && gp == gp.m.curg || level >= 2 {
+ print(" fp=", hex(u.frame.fp), " sp=", hex(u.frame.sp), " pc=", hex(u.frame.pc))
+ }
+ }
+ print("\n")
+ }
+
+ // Print cgo frames.
+ if cgoN := u.cgoCallers(cgoBuf[:]); cgoN > 0 {
+ var arg cgoSymbolizerArg
+ anySymbolized := false
+ stop := false
+ for _, pc := range cgoBuf[:cgoN] {
+ if cgoSymbolizer == nil {
+ if pr, stop := commitFrame(); stop {
+ break
+ } else if pr {
+ print("non-Go function at pc=", hex(pc), "\n")
+ }
+ } else {
+ stop = printOneCgoTraceback(pc, commitFrame, &arg)
+ anySymbolized = true
+ if stop {
+ break
+ }
+ }
+ }
+ if anySymbolized {
+ // Free symbolization state.
+ arg.pc = 0
+ callCgoSymbolizer(&arg)
+ }
+ if stop {
+ return
+ }
+ }
+ }
+ return n, 0
+}
+
+// printAncestorTraceback prints the traceback of the given ancestor.
+// TODO: Unify this with gentraceback and CallersFrames.
+func printAncestorTraceback(ancestor ancestorInfo) {
+ print("[originating from goroutine ", ancestor.goid, "]:\n")
+ for fidx, pc := range ancestor.pcs {
+ f := findfunc(pc) // f previously validated
+ if showfuncinfo(f.srcFunc(), fidx == 0, abi.FuncIDNormal) {
+ printAncestorTracebackFuncInfo(f, pc)
+ }
+ }
+ if len(ancestor.pcs) == tracebackInnerFrames {
+ print("...additional frames elided...\n")
+ }
+ // Show what created goroutine, except main goroutine (goid 1).
+ f := findfunc(ancestor.gopc)
+ if f.valid() && showfuncinfo(f.srcFunc(), false, abi.FuncIDNormal) && ancestor.goid != 1 {
+ // In ancestor mode, we'll already print the goroutine ancestor.
+ // Pass 0 for the goid parameter so we don't print it again.
+ printcreatedby1(f, ancestor.gopc, 0)
+ }
+}
+
+// printAncestorTracebackFuncInfo prints the given function info at a given pc
+// within an ancestor traceback. The precision of this info is reduced
+// due to only have access to the pcs at the time of the caller
+// goroutine being created.
+func printAncestorTracebackFuncInfo(f funcInfo, pc uintptr) {
+ u, uf := newInlineUnwinder(f, pc)
+ file, line := u.fileLine(uf)
+ printFuncName(u.srcFunc(uf).name())
+ print("(...)\n")
+ print("\t", file, ":", line)
+ if pc > f.entry() {
+ print(" +", hex(pc-f.entry()))
+ }
+ print("\n")
+}
+
+func callers(skip int, pcbuf []uintptr) int {
+ sp := getcallersp()
+ pc := getcallerpc()
+ gp := getg()
+ var n int
+ systemstack(func() {
+ var u unwinder
+ u.initAt(pc, sp, 0, gp, unwindSilentErrors)
+ n = tracebackPCs(&u, skip, pcbuf)
+ })
+ return n
+}
+
+func gcallers(gp *g, skip int, pcbuf []uintptr) int {
+ var u unwinder
+ u.init(gp, unwindSilentErrors)
+ return tracebackPCs(&u, skip, pcbuf)
+}
+
+// showframe reports whether the frame with the given characteristics should
+// be printed during a traceback.
+func showframe(sf srcFunc, gp *g, firstFrame bool, calleeID abi.FuncID) bool {
+ mp := getg().m
+ if mp.throwing >= throwTypeRuntime && gp != nil && (gp == mp.curg || gp == mp.caughtsig.ptr()) {
+ return true
+ }
+ return showfuncinfo(sf, firstFrame, calleeID)
+}
+
+// showfuncinfo reports whether a function with the given characteristics should
+// be printed during a traceback.
+func showfuncinfo(sf srcFunc, firstFrame bool, calleeID abi.FuncID) bool {
+ level, _, _ := gotraceback()
+ if level > 1 {
+ // Show all frames.
+ return true
+ }
+
+ if sf.funcID == abi.FuncIDWrapper && elideWrapperCalling(calleeID) {
+ return false
+ }
+
+ name := sf.name()
+
+ // Special case: always show runtime.gopanic frame
+ // in the middle of a stack trace, so that we can
+ // see the boundary between ordinary code and
+ // panic-induced deferred code.
+ // See golang.org/issue/5832.
+ if name == "runtime.gopanic" && !firstFrame {
+ return true
+ }
+
+ return bytealg.IndexByteString(name, '.') >= 0 && (!hasPrefix(name, "runtime.") || isExportedRuntime(name))
+}
+
+// isExportedRuntime reports whether name is an exported runtime function.
+// It is only for runtime functions, so ASCII A-Z is fine.
+// TODO: this handles exported functions but not exported methods.
+func isExportedRuntime(name string) bool {
+ const n = len("runtime.")
+ return len(name) > n && name[:n] == "runtime." && 'A' <= name[n] && name[n] <= 'Z'
+}
+
+// elideWrapperCalling reports whether a wrapper function that called
+// function id should be elided from stack traces.
+func elideWrapperCalling(id abi.FuncID) bool {
+ // If the wrapper called a panic function instead of the
+ // wrapped function, we want to include it in stacks.
+ return !(id == abi.FuncID_gopanic || id == abi.FuncID_sigpanic || id == abi.FuncID_panicwrap)
+}
+
+var gStatusStrings = [...]string{
+ _Gidle: "idle",
+ _Grunnable: "runnable",
+ _Grunning: "running",
+ _Gsyscall: "syscall",
+ _Gwaiting: "waiting",
+ _Gdead: "dead",
+ _Gcopystack: "copystack",
+ _Gpreempted: "preempted",
+}
+
+func goroutineheader(gp *g) {
+ level, _, _ := gotraceback()
+
+ gpstatus := readgstatus(gp)
+
+ isScan := gpstatus&_Gscan != 0
+ gpstatus &^= _Gscan // drop the scan bit
+
+ // Basic string status
+ var status string
+ if 0 <= gpstatus && gpstatus < uint32(len(gStatusStrings)) {
+ status = gStatusStrings[gpstatus]
+ } else {
+ status = "???"
+ }
+
+ // Override.
+ if gpstatus == _Gwaiting && gp.waitreason != waitReasonZero {
+ status = gp.waitreason.String()
+ }
+
+ // approx time the G is blocked, in minutes
+ var waitfor int64
+ if (gpstatus == _Gwaiting || gpstatus == _Gsyscall) && gp.waitsince != 0 {
+ waitfor = (nanotime() - gp.waitsince) / 60e9
+ }
+ print("goroutine ", gp.goid)
+ if gp.m != nil && gp.m.throwing >= throwTypeRuntime && gp == gp.m.curg || level >= 2 {
+ print(" gp=", gp)
+ if gp.m != nil {
+ print(" m=", gp.m.id, " mp=", gp.m)
+ } else {
+ print(" m=nil")
+ }
+ }
+ print(" [", status)
+ if isScan {
+ print(" (scan)")
+ }
+ if waitfor >= 1 {
+ print(", ", waitfor, " minutes")
+ }
+ if gp.lockedm != 0 {
+ print(", locked to thread")
+ }
+ print("]:\n")
+}
+
+func tracebackothers(me *g) {
+ level, _, _ := gotraceback()
+
+ // Show the current goroutine first, if we haven't already.
+ curgp := getg().m.curg
+ if curgp != nil && curgp != me {
+ print("\n")
+ goroutineheader(curgp)
+ traceback(^uintptr(0), ^uintptr(0), 0, curgp)
+ }
+
+ // We can't call locking forEachG here because this may be during fatal
+ // throw/panic, where locking could be out-of-order or a direct
+ // deadlock.
+ //
+ // Instead, use forEachGRace, which requires no locking. We don't lock
+ // against concurrent creation of new Gs, but even with allglock we may
+ // miss Gs created after this loop.
+ forEachGRace(func(gp *g) {
+ if gp == me || gp == curgp || readgstatus(gp) == _Gdead || isSystemGoroutine(gp, false) && level < 2 {
+ return
+ }
+ print("\n")
+ goroutineheader(gp)
+ // Note: gp.m == getg().m occurs when tracebackothers is called
+ // from a signal handler initiated during a systemstack call.
+ // The original G is still in the running state, and we want to
+ // print its stack.
+ if gp.m != getg().m && readgstatus(gp)&^_Gscan == _Grunning {
+ print("\tgoroutine running on other thread; stack unavailable\n")
+ printcreatedby(gp)
+ } else {
+ traceback(^uintptr(0), ^uintptr(0), 0, gp)
+ }
+ })
+}
+
+// tracebackHexdump hexdumps part of stk around frame.sp and frame.fp
+// for debugging purposes. If the address bad is included in the
+// hexdumped range, it will mark it as well.
+func tracebackHexdump(stk stack, frame *stkframe, bad uintptr) {
+ const expand = 32 * goarch.PtrSize
+ const maxExpand = 256 * goarch.PtrSize
+ // Start around frame.sp.
+ lo, hi := frame.sp, frame.sp
+ // Expand to include frame.fp.
+ if frame.fp != 0 && frame.fp < lo {
+ lo = frame.fp
+ }
+ if frame.fp != 0 && frame.fp > hi {
+ hi = frame.fp
+ }
+ // Expand a bit more.
+ lo, hi = lo-expand, hi+expand
+ // But don't go too far from frame.sp.
+ if lo < frame.sp-maxExpand {
+ lo = frame.sp - maxExpand
+ }
+ if hi > frame.sp+maxExpand {
+ hi = frame.sp + maxExpand
+ }
+ // And don't go outside the stack bounds.
+ if lo < stk.lo {
+ lo = stk.lo
+ }
+ if hi > stk.hi {
+ hi = stk.hi
+ }
+
+ // Print the hex dump.
+ print("stack: frame={sp:", hex(frame.sp), ", fp:", hex(frame.fp), "} stack=[", hex(stk.lo), ",", hex(stk.hi), ")\n")
+ hexdumpWords(lo, hi, func(p uintptr) byte {
+ switch p {
+ case frame.fp:
+ return '>'
+ case frame.sp:
+ return '<'
+ case bad:
+ return '!'
+ }
+ return 0
+ })
+}
+
+// isSystemGoroutine reports whether the goroutine g must be omitted
+// in stack dumps and deadlock detector. This is any goroutine that
+// starts at a runtime.* entry point, except for runtime.main,
+// runtime.handleAsyncEvent (wasm only) and sometimes runtime.runfinq.
+//
+// If fixed is true, any goroutine that can vary between user and
+// system (that is, the finalizer goroutine) is considered a user
+// goroutine.
+func isSystemGoroutine(gp *g, fixed bool) bool {
+ // Keep this in sync with internal/trace.IsSystemGoroutine.
+ f := findfunc(gp.startpc)
+ if !f.valid() {
+ return false
+ }
+ if f.funcID == abi.FuncID_runtime_main || f.funcID == abi.FuncID_corostart || f.funcID == abi.FuncID_handleAsyncEvent {
+ return false
+ }
+ if f.funcID == abi.FuncID_runfinq {
+ // We include the finalizer goroutine if it's calling
+ // back into user code.
+ if fixed {
+ // This goroutine can vary. In fixed mode,
+ // always consider it a user goroutine.
+ return false
+ }
+ return fingStatus.Load()&fingRunningFinalizer == 0
+ }
+ return hasPrefix(funcname(f), "runtime.")
+}
+
+// SetCgoTraceback records three C functions to use to gather
+// traceback information from C code and to convert that traceback
+// information into symbolic information. These are used when printing
+// stack traces for a program that uses cgo.
+//
+// The traceback and context functions may be called from a signal
+// handler, and must therefore use only async-signal safe functions.
+// The symbolizer function may be called while the program is
+// crashing, and so must be cautious about using memory. None of the
+// functions may call back into Go.
+//
+// The context function will be called with a single argument, a
+// pointer to a struct:
+//
+// struct {
+// Context uintptr
+// }
+//
+// In C syntax, this struct will be
+//
+// struct {
+// uintptr_t Context;
+// };
+//
+// If the Context field is 0, the context function is being called to
+// record the current traceback context. It should record in the
+// Context field whatever information is needed about the current
+// point of execution to later produce a stack trace, probably the
+// stack pointer and PC. In this case the context function will be
+// called from C code.
+//
+// If the Context field is not 0, then it is a value returned by a
+// previous call to the context function. This case is called when the
+// context is no longer needed; that is, when the Go code is returning
+// to its C code caller. This permits the context function to release
+// any associated resources.
+//
+// While it would be correct for the context function to record a
+// complete a stack trace whenever it is called, and simply copy that
+// out in the traceback function, in a typical program the context
+// function will be called many times without ever recording a
+// traceback for that context. Recording a complete stack trace in a
+// call to the context function is likely to be inefficient.
+//
+// The traceback function will be called with a single argument, a
+// pointer to a struct:
+//
+// struct {
+// Context uintptr
+// SigContext uintptr
+// Buf *uintptr
+// Max uintptr
+// }
+//
+// In C syntax, this struct will be
+//
+// struct {
+// uintptr_t Context;
+// uintptr_t SigContext;
+// uintptr_t* Buf;
+// uintptr_t Max;
+// };
+//
+// The Context field will be zero to gather a traceback from the
+// current program execution point. In this case, the traceback
+// function will be called from C code.
+//
+// Otherwise Context will be a value previously returned by a call to
+// the context function. The traceback function should gather a stack
+// trace from that saved point in the program execution. The traceback
+// function may be called from an execution thread other than the one
+// that recorded the context, but only when the context is known to be
+// valid and unchanging. The traceback function may also be called
+// deeper in the call stack on the same thread that recorded the
+// context. The traceback function may be called multiple times with
+// the same Context value; it will usually be appropriate to cache the
+// result, if possible, the first time this is called for a specific
+// context value.
+//
+// If the traceback function is called from a signal handler on a Unix
+// system, SigContext will be the signal context argument passed to
+// the signal handler (a C ucontext_t* cast to uintptr_t). This may be
+// used to start tracing at the point where the signal occurred. If
+// the traceback function is not called from a signal handler,
+// SigContext will be zero.
+//
+// Buf is where the traceback information should be stored. It should
+// be PC values, such that Buf[0] is the PC of the caller, Buf[1] is
+// the PC of that function's caller, and so on. Max is the maximum
+// number of entries to store. The function should store a zero to
+// indicate the top of the stack, or that the caller is on a different
+// stack, presumably a Go stack.
+//
+// Unlike runtime.Callers, the PC values returned should, when passed
+// to the symbolizer function, return the file/line of the call
+// instruction. No additional subtraction is required or appropriate.
+//
+// On all platforms, the traceback function is invoked when a call from
+// Go to C to Go requests a stack trace. On linux/amd64, linux/ppc64le,
+// linux/arm64, and freebsd/amd64, the traceback function is also invoked
+// when a signal is received by a thread that is executing a cgo call.
+// The traceback function should not make assumptions about when it is
+// called, as future versions of Go may make additional calls.
+//
+// The symbolizer function will be called with a single argument, a
+// pointer to a struct:
+//
+// struct {
+// PC uintptr // program counter to fetch information for
+// File *byte // file name (NUL terminated)
+// Lineno uintptr // line number
+// Func *byte // function name (NUL terminated)
+// Entry uintptr // function entry point
+// More uintptr // set non-zero if more info for this PC
+// Data uintptr // unused by runtime, available for function
+// }
+//
+// In C syntax, this struct will be
+//
+// struct {
+// uintptr_t PC;
+// char* File;
+// uintptr_t Lineno;
+// char* Func;
+// uintptr_t Entry;
+// uintptr_t More;
+// uintptr_t Data;
+// };
+//
+// The PC field will be a value returned by a call to the traceback
+// function.
+//
+// The first time the function is called for a particular traceback,
+// all the fields except PC will be 0. The function should fill in the
+// other fields if possible, setting them to 0/nil if the information
+// is not available. The Data field may be used to store any useful
+// information across calls. The More field should be set to non-zero
+// if there is more information for this PC, zero otherwise. If More
+// is set non-zero, the function will be called again with the same
+// PC, and may return different information (this is intended for use
+// with inlined functions). If More is zero, the function will be
+// called with the next PC value in the traceback. When the traceback
+// is complete, the function will be called once more with PC set to
+// zero; this may be used to free any information. Each call will
+// leave the fields of the struct set to the same values they had upon
+// return, except for the PC field when the More field is zero. The
+// function must not keep a copy of the struct pointer between calls.
+//
+// When calling SetCgoTraceback, the version argument is the version
+// number of the structs that the functions expect to receive.
+// Currently this must be zero.
+//
+// The symbolizer function may be nil, in which case the results of
+// the traceback function will be displayed as numbers. If the
+// traceback function is nil, the symbolizer function will never be
+// called. The context function may be nil, in which case the
+// traceback function will only be called with the context field set
+// to zero. If the context function is nil, then calls from Go to C
+// to Go will not show a traceback for the C portion of the call stack.
+//
+// SetCgoTraceback should be called only once, ideally from an init function.
+func SetCgoTraceback(version int, traceback, context, symbolizer unsafe.Pointer) {
+ if version != 0 {
+ panic("unsupported version")
+ }
+
+ if cgoTraceback != nil && cgoTraceback != traceback ||
+ cgoContext != nil && cgoContext != context ||
+ cgoSymbolizer != nil && cgoSymbolizer != symbolizer {
+ panic("call SetCgoTraceback only once")
+ }
+
+ cgoTraceback = traceback
+ cgoContext = context
+ cgoSymbolizer = symbolizer
+
+ // The context function is called when a C function calls a Go
+ // function. As such it is only called by C code in runtime/cgo.
+ if _cgo_set_context_function != nil {
+ cgocall(_cgo_set_context_function, context)
+ }
+}
+
+var cgoTraceback unsafe.Pointer
+var cgoContext unsafe.Pointer
+var cgoSymbolizer unsafe.Pointer
+
+// cgoTracebackArg is the type passed to cgoTraceback.
+type cgoTracebackArg struct {
+ context uintptr
+ sigContext uintptr
+ buf *uintptr
+ max uintptr
+}
+
+// cgoContextArg is the type passed to the context function.
+type cgoContextArg struct {
+ context uintptr
+}
+
+// cgoSymbolizerArg is the type passed to cgoSymbolizer.
+type cgoSymbolizerArg struct {
+ pc uintptr
+ file *byte
+ lineno uintptr
+ funcName *byte
+ entry uintptr
+ more uintptr
+ data uintptr
+}
+
+// printCgoTraceback prints a traceback of callers.
+func printCgoTraceback(callers *cgoCallers) {
+ if cgoSymbolizer == nil {
+ for _, c := range callers {
+ if c == 0 {
+ break
+ }
+ print("non-Go function at pc=", hex(c), "\n")
+ }
+ return
+ }
+
+ commitFrame := func() (pr, stop bool) { return true, false }
+ var arg cgoSymbolizerArg
+ for _, c := range callers {
+ if c == 0 {
+ break
+ }
+ printOneCgoTraceback(c, commitFrame, &arg)
+ }
+ arg.pc = 0
+ callCgoSymbolizer(&arg)
+}
+
+// printOneCgoTraceback prints the traceback of a single cgo caller.
+// This can print more than one line because of inlining.
+// It returns the "stop" result of commitFrame.
+func printOneCgoTraceback(pc uintptr, commitFrame func() (pr, stop bool), arg *cgoSymbolizerArg) bool {
+ arg.pc = pc
+ for {
+ if pr, stop := commitFrame(); stop {
+ return true
+ } else if !pr {
+ continue
+ }
+
+ callCgoSymbolizer(arg)
+ if arg.funcName != nil {
+ // Note that we don't print any argument
+ // information here, not even parentheses.
+ // The symbolizer must add that if appropriate.
+ println(gostringnocopy(arg.funcName))
+ } else {
+ println("non-Go function")
+ }
+ print("\t")
+ if arg.file != nil {
+ print(gostringnocopy(arg.file), ":", arg.lineno, " ")
+ }
+ print("pc=", hex(pc), "\n")
+ if arg.more == 0 {
+ return false
+ }
+ }
+}
+
+// callCgoSymbolizer calls the cgoSymbolizer function.
+func callCgoSymbolizer(arg *cgoSymbolizerArg) {
+ call := cgocall
+ if panicking.Load() > 0 || getg().m.curg != getg() {
+ // We do not want to call into the scheduler when panicking
+ // or when on the system stack.
+ call = asmcgocall
+ }
+ if msanenabled {
+ msanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{}))
+ }
+ if asanenabled {
+ asanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{}))
+ }
+ call(cgoSymbolizer, noescape(unsafe.Pointer(arg)))
+}
+
+// cgoContextPCs gets the PC values from a cgo traceback.
+func cgoContextPCs(ctxt uintptr, buf []uintptr) {
+ if cgoTraceback == nil {
+ return
+ }
+ call := cgocall
+ if panicking.Load() > 0 || getg().m.curg != getg() {
+ // We do not want to call into the scheduler when panicking
+ // or when on the system stack.
+ call = asmcgocall
+ }
+ arg := cgoTracebackArg{
+ context: ctxt,
+ buf: (*uintptr)(noescape(unsafe.Pointer(&buf[0]))),
+ max: uintptr(len(buf)),
+ }
+ if msanenabled {
+ msanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg))
+ }
+ if asanenabled {
+ asanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg))
+ }
+ call(cgoTraceback, noescape(unsafe.Pointer(&arg)))
+}