1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
|
// Derived from Inferno utils/6l/l.h and related files.
// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/l.h
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package obj
import (
"bufio"
"cmd/internal/dwarf"
"cmd/internal/goobj"
"cmd/internal/objabi"
"cmd/internal/src"
"cmd/internal/sys"
"encoding/binary"
"fmt"
"internal/abi"
"sync"
"sync/atomic"
)
// An Addr is an argument to an instruction.
// The general forms and their encodings are:
//
// sym±offset(symkind)(reg)(index*scale)
// Memory reference at address &sym(symkind) + offset + reg + index*scale.
// Any of sym(symkind), ±offset, (reg), (index*scale), and *scale can be omitted.
// If (reg) and *scale are both omitted, the resulting expression (index) is parsed as (reg).
// To force a parsing as index*scale, write (index*1).
// Encoding:
// type = TYPE_MEM
// name = symkind (NAME_AUTO, ...) or 0 (NAME_NONE)
// sym = sym
// offset = ±offset
// reg = reg (REG_*)
// index = index (REG_*)
// scale = scale (1, 2, 4, 8)
//
// $<mem>
// Effective address of memory reference <mem>, defined above.
// Encoding: same as memory reference, but type = TYPE_ADDR.
//
// $<±integer value>
// This is a special case of $<mem>, in which only ±offset is present.
// It has a separate type for easy recognition.
// Encoding:
// type = TYPE_CONST
// offset = ±integer value
//
// *<mem>
// Indirect reference through memory reference <mem>, defined above.
// Only used on x86 for CALL/JMP *sym(SB), which calls/jumps to a function
// pointer stored in the data word sym(SB), not a function named sym(SB).
// Encoding: same as above, but type = TYPE_INDIR.
//
// $*$<mem>
// No longer used.
// On machines with actual SB registers, $*$<mem> forced the
// instruction encoding to use a full 32-bit constant, never a
// reference relative to SB.
//
// $<floating point literal>
// Floating point constant value.
// Encoding:
// type = TYPE_FCONST
// val = floating point value
//
// $<string literal, up to 8 chars>
// String literal value (raw bytes used for DATA instruction).
// Encoding:
// type = TYPE_SCONST
// val = string
//
// <symbolic constant name>
// Special symbolic constants for ARM64, such as conditional flags, tlbi_op and so on.
// Encoding:
// type = TYPE_SPECIAL
// offset = The constant value corresponding to this symbol
//
// <register name>
// Any register: integer, floating point, control, segment, and so on.
// If looking for specific register kind, must check type and reg value range.
// Encoding:
// type = TYPE_REG
// reg = reg (REG_*)
//
// x(PC)
// Encoding:
// type = TYPE_BRANCH
// val = Prog* reference OR ELSE offset = target pc (branch takes priority)
//
// $±x-±y
// Final argument to TEXT, specifying local frame size x and argument size y.
// In this form, x and y are integer literals only, not arbitrary expressions.
// This avoids parsing ambiguities due to the use of - as a separator.
// The ± are optional.
// If the final argument to TEXT omits the -±y, the encoding should still
// use TYPE_TEXTSIZE (not TYPE_CONST), with u.argsize = ArgsSizeUnknown.
// Encoding:
// type = TYPE_TEXTSIZE
// offset = x
// val = int32(y)
//
// reg<<shift, reg>>shift, reg->shift, reg@>shift
// Shifted register value, for ARM and ARM64.
// In this form, reg must be a register and shift can be a register or an integer constant.
// Encoding:
// type = TYPE_SHIFT
// On ARM:
// offset = (reg&15) | shifttype<<5 | count
// shifttype = 0, 1, 2, 3 for <<, >>, ->, @>
// count = (reg&15)<<8 | 1<<4 for a register shift count, (n&31)<<7 for an integer constant.
// On ARM64:
// offset = (reg&31)<<16 | shifttype<<22 | (count&63)<<10
// shifttype = 0, 1, 2 for <<, >>, ->
//
// (reg, reg)
// A destination register pair. When used as the last argument of an instruction,
// this form makes clear that both registers are destinations.
// Encoding:
// type = TYPE_REGREG
// reg = first register
// offset = second register
//
// [reg, reg, reg-reg]
// Register list for ARM, ARM64, 386/AMD64.
// Encoding:
// type = TYPE_REGLIST
// On ARM:
// offset = bit mask of registers in list; R0 is low bit.
// On ARM64:
// offset = register count (Q:size) | arrangement (opcode) | first register
// On 386/AMD64:
// reg = range low register
// offset = 2 packed registers + kind tag (see x86.EncodeRegisterRange)
//
// reg, reg
// Register pair for ARM.
// TYPE_REGREG2
//
// (reg+reg)
// Register pair for PPC64.
// Encoding:
// type = TYPE_MEM
// reg = first register
// index = second register
// scale = 1
//
// reg.[US]XT[BHWX]
// Register extension for ARM64
// Encoding:
// type = TYPE_REG
// reg = REG_[US]XT[BHWX] + register + shift amount
// offset = ((reg&31) << 16) | (exttype << 13) | (amount<<10)
//
// reg.<T>
// Register arrangement for ARM64 SIMD register
// e.g.: V1.S4, V2.S2, V7.D2, V2.H4, V6.B16
// Encoding:
// type = TYPE_REG
// reg = REG_ARNG + register + arrangement
//
// reg.<T>[index]
// Register element for ARM64
// Encoding:
// type = TYPE_REG
// reg = REG_ELEM + register + arrangement
// index = element index
type Addr struct {
Reg int16
Index int16
Scale int16 // Sometimes holds a register.
Type AddrType
Name AddrName
Class int8
Offset int64
Sym *LSym
// argument value:
// for TYPE_SCONST, a string
// for TYPE_FCONST, a float64
// for TYPE_BRANCH, a *Prog (optional)
// for TYPE_TEXTSIZE, an int32 (optional)
Val interface{}
}
type AddrName int8
const (
NAME_NONE AddrName = iota
NAME_EXTERN
NAME_STATIC
NAME_AUTO
NAME_PARAM
// A reference to name@GOT(SB) is a reference to the entry in the global offset
// table for 'name'.
NAME_GOTREF
// Indicates that this is a reference to a TOC anchor.
NAME_TOCREF
)
//go:generate stringer -type AddrType
type AddrType uint8
const (
TYPE_NONE AddrType = iota
TYPE_BRANCH
TYPE_TEXTSIZE
TYPE_MEM
TYPE_CONST
TYPE_FCONST
TYPE_SCONST
TYPE_REG
TYPE_ADDR
TYPE_SHIFT
TYPE_REGREG
TYPE_REGREG2
TYPE_INDIR
TYPE_REGLIST
TYPE_SPECIAL
)
func (a *Addr) Target() *Prog {
if a.Type == TYPE_BRANCH && a.Val != nil {
return a.Val.(*Prog)
}
return nil
}
func (a *Addr) SetTarget(t *Prog) {
if a.Type != TYPE_BRANCH {
panic("setting branch target when type is not TYPE_BRANCH")
}
a.Val = t
}
func (a *Addr) SetConst(v int64) {
a.Sym = nil
a.Type = TYPE_CONST
a.Offset = v
}
// Prog describes a single machine instruction.
//
// The general instruction form is:
//
// (1) As.Scond From [, ...RestArgs], To
// (2) As.Scond From, Reg [, ...RestArgs], To, RegTo2
//
// where As is an opcode and the others are arguments:
// From, Reg are sources, and To, RegTo2 are destinations.
// RestArgs can hold additional sources and destinations.
// Usually, not all arguments are present.
// For example, MOVL R1, R2 encodes using only As=MOVL, From=R1, To=R2.
// The Scond field holds additional condition bits for systems (like arm)
// that have generalized conditional execution.
// (2) form is present for compatibility with older code,
// to avoid too much changes in a single swing.
// (1) scheme is enough to express any kind of operand combination.
//
// Jump instructions use the To.Val field to point to the target *Prog,
// which must be in the same linked list as the jump instruction.
//
// The Progs for a given function are arranged in a list linked through the Link field.
//
// Each Prog is charged to a specific source line in the debug information,
// specified by Pos.Line().
// Every Prog has a Ctxt field that defines its context.
// For performance reasons, Progs are usually bulk allocated, cached, and reused;
// those bulk allocators should always be used, rather than new(Prog).
//
// The other fields not yet mentioned are for use by the back ends and should
// be left zeroed by creators of Prog lists.
type Prog struct {
Ctxt *Link // linker context
Link *Prog // next Prog in linked list
From Addr // first source operand
RestArgs []AddrPos // can pack any operands that not fit into {Prog.From, Prog.To}, same kinds of operands are saved in order
To Addr // destination operand (second is RegTo2 below)
Pool *Prog // constant pool entry, for arm,arm64 back ends
Forwd *Prog // for x86 back end
Rel *Prog // for x86, arm back ends
Pc int64 // for back ends or assembler: virtual or actual program counter, depending on phase
Pos src.XPos // source position of this instruction
Spadj int32 // effect of instruction on stack pointer (increment or decrement amount)
As As // assembler opcode
Reg int16 // 2nd source operand
RegTo2 int16 // 2nd destination operand
Mark uint16 // bitmask of arch-specific items
Optab uint16 // arch-specific opcode index
Scond uint8 // bits that describe instruction suffixes (e.g. ARM conditions)
Back uint8 // for x86 back end: backwards branch state
Ft uint8 // for x86 back end: type index of Prog.From
Tt uint8 // for x86 back end: type index of Prog.To
Isize uint8 // for x86 back end: size of the instruction in bytes
}
// AddrPos indicates whether the operand is the source or the destination.
type AddrPos struct {
Addr
Pos OperandPos
}
type OperandPos int8
const (
Source OperandPos = iota
Destination
)
// From3Type returns p.GetFrom3().Type, or TYPE_NONE when
// p.GetFrom3() returns nil.
func (p *Prog) From3Type() AddrType {
from3 := p.GetFrom3()
if from3 == nil {
return TYPE_NONE
}
return from3.Type
}
// GetFrom3 returns second source operand (the first is Prog.From).
// The same kinds of operands are saved in order so GetFrom3 actually
// return the first source operand in p.RestArgs.
// In combination with Prog.From and Prog.To it makes common 3 operand
// case easier to use.
func (p *Prog) GetFrom3() *Addr {
for i := range p.RestArgs {
if p.RestArgs[i].Pos == Source {
return &p.RestArgs[i].Addr
}
}
return nil
}
// AddRestSource assigns []Args{{a, Source}} to p.RestArgs.
func (p *Prog) AddRestSource(a Addr) {
p.RestArgs = append(p.RestArgs, AddrPos{a, Source})
}
// AddRestSourceReg calls p.AddRestSource with a register Addr containing reg.
func (p *Prog) AddRestSourceReg(reg int16) {
p.AddRestSource(Addr{Type: TYPE_REG, Reg: reg})
}
// AddRestSourceConst calls p.AddRestSource with a const Addr containing off.
func (p *Prog) AddRestSourceConst(off int64) {
p.AddRestSource(Addr{Type: TYPE_CONST, Offset: off})
}
// AddRestDest assigns []Args{{a, Destination}} to p.RestArgs when the second destination
// operand does not fit into prog.RegTo2.
func (p *Prog) AddRestDest(a Addr) {
p.RestArgs = append(p.RestArgs, AddrPos{a, Destination})
}
// GetTo2 returns the second destination operand.
// The same kinds of operands are saved in order so GetTo2 actually
// return the first destination operand in Prog.RestArgs[]
func (p *Prog) GetTo2() *Addr {
for i := range p.RestArgs {
if p.RestArgs[i].Pos == Destination {
return &p.RestArgs[i].Addr
}
}
return nil
}
// AddRestSourceArgs assigns more than one source operands to p.RestArgs.
func (p *Prog) AddRestSourceArgs(args []Addr) {
for i := range args {
p.RestArgs = append(p.RestArgs, AddrPos{args[i], Source})
}
}
// An As denotes an assembler opcode.
// There are some portable opcodes, declared here in package obj,
// that are common to all architectures.
// However, the majority of opcodes are arch-specific
// and are declared in their respective architecture's subpackage.
type As int16
// These are the portable opcodes.
const (
AXXX As = iota
ACALL
ADUFFCOPY
ADUFFZERO
AEND
AFUNCDATA
AJMP
ANOP
APCALIGN
APCDATA
ARET
AGETCALLERPC
ATEXT
AUNDEF
A_ARCHSPECIFIC
)
// Each architecture is allotted a distinct subspace of opcode values
// for declaring its arch-specific opcodes.
// Within this subspace, the first arch-specific opcode should be
// at offset A_ARCHSPECIFIC.
//
// Subspaces are aligned to a power of two so opcodes can be masked
// with AMask and used as compact array indices.
const (
ABase386 = (1 + iota) << 11
ABaseARM
ABaseAMD64
ABasePPC64
ABaseARM64
ABaseMIPS
ABaseLoong64
ABaseRISCV
ABaseS390X
ABaseWasm
AllowedOpCodes = 1 << 11 // The number of opcodes available for any given architecture.
AMask = AllowedOpCodes - 1 // AND with this to use the opcode as an array index.
)
// An LSym is the sort of symbol that is written to an object file.
// It represents Go symbols in a flat pkg+"."+name namespace.
type LSym struct {
Name string
Type objabi.SymKind
Attribute
Size int64
Gotype *LSym
P []byte
R []Reloc
Extra *interface{} // *FuncInfo, *VarInfo, *FileInfo, or *TypeInfo, if present
Pkg string
PkgIdx int32
SymIdx int32
}
// A FuncInfo contains extra fields for STEXT symbols.
type FuncInfo struct {
Args int32
Locals int32
Align int32
FuncID abi.FuncID
FuncFlag abi.FuncFlag
StartLine int32
Text *Prog
Autot map[*LSym]struct{}
Pcln Pcln
InlMarks []InlMark
spills []RegSpill
dwarfInfoSym *LSym
dwarfLocSym *LSym
dwarfRangesSym *LSym
dwarfAbsFnSym *LSym
dwarfDebugLinesSym *LSym
GCArgs *LSym
GCLocals *LSym
StackObjects *LSym
OpenCodedDeferInfo *LSym
ArgInfo *LSym // argument info for traceback
ArgLiveInfo *LSym // argument liveness info for traceback
WrapInfo *LSym // for wrapper, info of wrapped function
JumpTables []JumpTable
FuncInfoSym *LSym
WasmImportSym *LSym
WasmImport *WasmImport
sehUnwindInfoSym *LSym
}
// JumpTable represents a table used for implementing multi-way
// computed branching, used typically for implementing switches.
// Sym is the table itself, and Targets is a list of target
// instructions to go to for the computed branch index.
type JumpTable struct {
Sym *LSym
Targets []*Prog
}
// NewFuncInfo allocates and returns a FuncInfo for LSym.
func (s *LSym) NewFuncInfo() *FuncInfo {
if s.Extra != nil {
panic(fmt.Sprintf("invalid use of LSym - NewFuncInfo with Extra of type %T", *s.Extra))
}
f := new(FuncInfo)
s.Extra = new(interface{})
*s.Extra = f
return f
}
// Func returns the *FuncInfo associated with s, or else nil.
func (s *LSym) Func() *FuncInfo {
if s.Extra == nil {
return nil
}
f, _ := (*s.Extra).(*FuncInfo)
return f
}
type VarInfo struct {
dwarfInfoSym *LSym
}
// NewVarInfo allocates and returns a VarInfo for LSym.
func (s *LSym) NewVarInfo() *VarInfo {
if s.Extra != nil {
panic(fmt.Sprintf("invalid use of LSym - NewVarInfo with Extra of type %T", *s.Extra))
}
f := new(VarInfo)
s.Extra = new(interface{})
*s.Extra = f
return f
}
// VarInfo returns the *VarInfo associated with s, or else nil.
func (s *LSym) VarInfo() *VarInfo {
if s.Extra == nil {
return nil
}
f, _ := (*s.Extra).(*VarInfo)
return f
}
// A FileInfo contains extra fields for SDATA symbols backed by files.
// (If LSym.Extra is a *FileInfo, LSym.P == nil.)
type FileInfo struct {
Name string // name of file to read into object file
Size int64 // length of file
}
// NewFileInfo allocates and returns a FileInfo for LSym.
func (s *LSym) NewFileInfo() *FileInfo {
if s.Extra != nil {
panic(fmt.Sprintf("invalid use of LSym - NewFileInfo with Extra of type %T", *s.Extra))
}
f := new(FileInfo)
s.Extra = new(interface{})
*s.Extra = f
return f
}
// File returns the *FileInfo associated with s, or else nil.
func (s *LSym) File() *FileInfo {
if s.Extra == nil {
return nil
}
f, _ := (*s.Extra).(*FileInfo)
return f
}
// A TypeInfo contains information for a symbol
// that contains a runtime._type.
type TypeInfo struct {
Type interface{} // a *cmd/compile/internal/types.Type
}
func (s *LSym) NewTypeInfo() *TypeInfo {
if s.Extra != nil {
panic(fmt.Sprintf("invalid use of LSym - NewTypeInfo with Extra of type %T", *s.Extra))
}
t := new(TypeInfo)
s.Extra = new(interface{})
*s.Extra = t
return t
}
// WasmImport represents a WebAssembly (WASM) imported function with
// parameters and results translated into WASM types based on the Go function
// declaration.
type WasmImport struct {
// Module holds the WASM module name specified by the //go:wasmimport
// directive.
Module string
// Name holds the WASM imported function name specified by the
// //go:wasmimport directive.
Name string
// Params holds the imported function parameter fields.
Params []WasmField
// Results holds the imported function result fields.
Results []WasmField
}
func (wi *WasmImport) CreateSym(ctxt *Link) *LSym {
var sym LSym
var b [8]byte
writeByte := func(x byte) {
sym.WriteBytes(ctxt, sym.Size, []byte{x})
}
writeUint32 := func(x uint32) {
binary.LittleEndian.PutUint32(b[:], x)
sym.WriteBytes(ctxt, sym.Size, b[:4])
}
writeInt64 := func(x int64) {
binary.LittleEndian.PutUint64(b[:], uint64(x))
sym.WriteBytes(ctxt, sym.Size, b[:])
}
writeString := func(s string) {
writeUint32(uint32(len(s)))
sym.WriteString(ctxt, sym.Size, len(s), s)
}
writeString(wi.Module)
writeString(wi.Name)
writeUint32(uint32(len(wi.Params)))
for _, f := range wi.Params {
writeByte(byte(f.Type))
writeInt64(f.Offset)
}
writeUint32(uint32(len(wi.Results)))
for _, f := range wi.Results {
writeByte(byte(f.Type))
writeInt64(f.Offset)
}
return &sym
}
type WasmField struct {
Type WasmFieldType
// Offset holds the frame-pointer-relative locations for Go's stack-based
// ABI. This is used by the src/cmd/internal/wasm package to map WASM
// import parameters to the Go stack in a wrapper function.
Offset int64
}
type WasmFieldType byte
const (
WasmI32 WasmFieldType = iota
WasmI64
WasmF32
WasmF64
WasmPtr
)
type InlMark struct {
// When unwinding from an instruction in an inlined body, mark
// where we should unwind to.
// id records the global inlining id of the inlined body.
// p records the location of an instruction in the parent (inliner) frame.
p *Prog
id int32
}
// Mark p as the instruction to set as the pc when
// "unwinding" the inlining global frame id. Usually it should be
// instruction with a file:line at the callsite, and occur
// just before the body of the inlined function.
func (fi *FuncInfo) AddInlMark(p *Prog, id int32) {
fi.InlMarks = append(fi.InlMarks, InlMark{p: p, id: id})
}
// AddSpill appends a spill record to the list for FuncInfo fi
func (fi *FuncInfo) AddSpill(s RegSpill) {
fi.spills = append(fi.spills, s)
}
// Record the type symbol for an auto variable so that the linker
// an emit DWARF type information for the type.
func (fi *FuncInfo) RecordAutoType(gotype *LSym) {
if fi.Autot == nil {
fi.Autot = make(map[*LSym]struct{})
}
fi.Autot[gotype] = struct{}{}
}
//go:generate stringer -type ABI
// ABI is the calling convention of a text symbol.
type ABI uint8
const (
// ABI0 is the stable stack-based ABI. It's important that the
// value of this is "0": we can't distinguish between
// references to data and ABI0 text symbols in assembly code,
// and hence this doesn't distinguish between symbols without
// an ABI and text symbols with ABI0.
ABI0 ABI = iota
// ABIInternal is the internal ABI that may change between Go
// versions. All Go functions use the internal ABI and the
// compiler generates wrappers for calls to and from other
// ABIs.
ABIInternal
ABICount
)
// ParseABI converts from a string representation in 'abistr' to the
// corresponding ABI value. Second return value is TRUE if the
// abi string is recognized, FALSE otherwise.
func ParseABI(abistr string) (ABI, bool) {
switch abistr {
default:
return ABI0, false
case "ABI0":
return ABI0, true
case "ABIInternal":
return ABIInternal, true
}
}
// ABISet is a bit set of ABI values.
type ABISet uint8
const (
// ABISetCallable is the set of all ABIs any function could
// potentially be called using.
ABISetCallable ABISet = (1 << ABI0) | (1 << ABIInternal)
)
// Ensure ABISet is big enough to hold all ABIs.
var _ ABISet = 1 << (ABICount - 1)
func ABISetOf(abi ABI) ABISet {
return 1 << abi
}
func (a *ABISet) Set(abi ABI, value bool) {
if value {
*a |= 1 << abi
} else {
*a &^= 1 << abi
}
}
func (a *ABISet) Get(abi ABI) bool {
return (*a>>abi)&1 != 0
}
func (a ABISet) String() string {
s := "{"
for i := ABI(0); a != 0; i++ {
if a&(1<<i) != 0 {
if s != "{" {
s += ","
}
s += i.String()
a &^= 1 << i
}
}
return s + "}"
}
// Attribute is a set of symbol attributes.
type Attribute uint32
const (
AttrDuplicateOK Attribute = 1 << iota
AttrCFunc
AttrNoSplit
AttrLeaf
AttrWrapper
AttrNeedCtxt
AttrNoFrame
AttrOnList
AttrStatic
// MakeTypelink means that the type should have an entry in the typelink table.
AttrMakeTypelink
// ReflectMethod means the function may call reflect.Type.Method or
// reflect.Type.MethodByName. Matching is imprecise (as reflect.Type
// can be used through a custom interface), so ReflectMethod may be
// set in some cases when the reflect package is not called.
//
// Used by the linker to determine what methods can be pruned.
AttrReflectMethod
// Local means make the symbol local even when compiling Go code to reference Go
// symbols in other shared libraries, as in this mode symbols are global by
// default. "local" here means in the sense of the dynamic linker, i.e. not
// visible outside of the module (shared library or executable) that contains its
// definition. (When not compiling to support Go shared libraries, all symbols are
// local in this sense unless there is a cgo_export_* directive).
AttrLocal
// For function symbols; indicates that the specified function was the
// target of an inline during compilation
AttrWasInlined
// Indexed indicates this symbol has been assigned with an index (when using the
// new object file format).
AttrIndexed
// Only applied on type descriptor symbols, UsedInIface indicates this type is
// converted to an interface.
//
// Used by the linker to determine what methods can be pruned.
AttrUsedInIface
// ContentAddressable indicates this is a content-addressable symbol.
AttrContentAddressable
// ABI wrapper is set for compiler-generated text symbols that
// convert between ABI0 and ABIInternal calling conventions.
AttrABIWrapper
// IsPcdata indicates this is a pcdata symbol.
AttrPcdata
// PkgInit indicates this is a compiler-generated package init func.
AttrPkgInit
// attrABIBase is the value at which the ABI is encoded in
// Attribute. This must be last; all bits after this are
// assumed to be an ABI value.
//
// MUST BE LAST since all bits above this comprise the ABI.
attrABIBase
)
func (a *Attribute) load() Attribute { return Attribute(atomic.LoadUint32((*uint32)(a))) }
func (a *Attribute) DuplicateOK() bool { return a.load()&AttrDuplicateOK != 0 }
func (a *Attribute) MakeTypelink() bool { return a.load()&AttrMakeTypelink != 0 }
func (a *Attribute) CFunc() bool { return a.load()&AttrCFunc != 0 }
func (a *Attribute) NoSplit() bool { return a.load()&AttrNoSplit != 0 }
func (a *Attribute) Leaf() bool { return a.load()&AttrLeaf != 0 }
func (a *Attribute) OnList() bool { return a.load()&AttrOnList != 0 }
func (a *Attribute) ReflectMethod() bool { return a.load()&AttrReflectMethod != 0 }
func (a *Attribute) Local() bool { return a.load()&AttrLocal != 0 }
func (a *Attribute) Wrapper() bool { return a.load()&AttrWrapper != 0 }
func (a *Attribute) NeedCtxt() bool { return a.load()&AttrNeedCtxt != 0 }
func (a *Attribute) NoFrame() bool { return a.load()&AttrNoFrame != 0 }
func (a *Attribute) Static() bool { return a.load()&AttrStatic != 0 }
func (a *Attribute) WasInlined() bool { return a.load()&AttrWasInlined != 0 }
func (a *Attribute) Indexed() bool { return a.load()&AttrIndexed != 0 }
func (a *Attribute) UsedInIface() bool { return a.load()&AttrUsedInIface != 0 }
func (a *Attribute) ContentAddressable() bool { return a.load()&AttrContentAddressable != 0 }
func (a *Attribute) ABIWrapper() bool { return a.load()&AttrABIWrapper != 0 }
func (a *Attribute) IsPcdata() bool { return a.load()&AttrPcdata != 0 }
func (a *Attribute) IsPkgInit() bool { return a.load()&AttrPkgInit != 0 }
func (a *Attribute) Set(flag Attribute, value bool) {
for {
v0 := a.load()
v := v0
if value {
v |= flag
} else {
v &^= flag
}
if atomic.CompareAndSwapUint32((*uint32)(a), uint32(v0), uint32(v)) {
break
}
}
}
func (a *Attribute) ABI() ABI { return ABI(a.load() / attrABIBase) }
func (a *Attribute) SetABI(abi ABI) {
const mask = 1 // Only one ABI bit for now.
for {
v0 := a.load()
v := (v0 &^ (mask * attrABIBase)) | Attribute(abi)*attrABIBase
if atomic.CompareAndSwapUint32((*uint32)(a), uint32(v0), uint32(v)) {
break
}
}
}
var textAttrStrings = [...]struct {
bit Attribute
s string
}{
{bit: AttrDuplicateOK, s: "DUPOK"},
{bit: AttrMakeTypelink, s: ""},
{bit: AttrCFunc, s: "CFUNC"},
{bit: AttrNoSplit, s: "NOSPLIT"},
{bit: AttrLeaf, s: "LEAF"},
{bit: AttrOnList, s: ""},
{bit: AttrReflectMethod, s: "REFLECTMETHOD"},
{bit: AttrLocal, s: "LOCAL"},
{bit: AttrWrapper, s: "WRAPPER"},
{bit: AttrNeedCtxt, s: "NEEDCTXT"},
{bit: AttrNoFrame, s: "NOFRAME"},
{bit: AttrStatic, s: "STATIC"},
{bit: AttrWasInlined, s: ""},
{bit: AttrIndexed, s: ""},
{bit: AttrContentAddressable, s: ""},
{bit: AttrABIWrapper, s: "ABIWRAPPER"},
{bit: AttrPkgInit, s: "PKGINIT"},
}
// String formats a for printing in as part of a TEXT prog.
func (a Attribute) String() string {
var s string
for _, x := range textAttrStrings {
if a&x.bit != 0 {
if x.s != "" {
s += x.s + "|"
}
a &^= x.bit
}
}
switch a.ABI() {
case ABI0:
case ABIInternal:
s += "ABIInternal|"
a.SetABI(0) // Clear ABI so we don't print below.
}
if a != 0 {
s += fmt.Sprintf("UnknownAttribute(%d)|", a)
}
// Chop off trailing |, if present.
if len(s) > 0 {
s = s[:len(s)-1]
}
return s
}
// TextAttrString formats the symbol attributes for printing in as part of a TEXT prog.
func (s *LSym) TextAttrString() string {
attr := s.Attribute.String()
if s.Func().FuncFlag&abi.FuncFlagTopFrame != 0 {
if attr != "" {
attr += "|"
}
attr += "TOPFRAME"
}
return attr
}
func (s *LSym) String() string {
return s.Name
}
// The compiler needs *LSym to be assignable to cmd/compile/internal/ssa.Sym.
func (*LSym) CanBeAnSSASym() {}
func (*LSym) CanBeAnSSAAux() {}
type Pcln struct {
// Aux symbols for pcln
Pcsp *LSym
Pcfile *LSym
Pcline *LSym
Pcinline *LSym
Pcdata []*LSym
Funcdata []*LSym
UsedFiles map[goobj.CUFileIndex]struct{} // file indices used while generating pcfile
InlTree InlTree // per-function inlining tree extracted from the global tree
}
type Reloc struct {
Off int32
Siz uint8
Type objabi.RelocType
Add int64
Sym *LSym
}
type Auto struct {
Asym *LSym
Aoffset int32
Name AddrName
Gotype *LSym
}
// RegSpill provides spill/fill information for a register-resident argument
// to a function. These need spilling/filling in the safepoint/stackgrowth case.
// At the time of fill/spill, the offset must be adjusted by the architecture-dependent
// adjustment to hardware SP that occurs in a call instruction. E.g., for AMD64,
// at Offset+8 because the return address was pushed.
type RegSpill struct {
Addr Addr
Reg int16
Spill, Unspill As
}
// A Func represents a Go function. If non-nil, it must be a *ir.Func.
type Func interface {
Pos() src.XPos
}
// Link holds the context for writing object code from a compiler
// to be linker input or for reading that input into the linker.
type Link struct {
Headtype objabi.HeadType
Arch *LinkArch
Debugasm int
Debugvlog bool
Debugpcln string
Flag_shared bool
Flag_dynlink bool
Flag_linkshared bool
Flag_optimize bool
Flag_locationlists bool
Flag_noRefName bool // do not include referenced symbol names in object file
Retpoline bool // emit use of retpoline stubs for indirect jmp/call
Flag_maymorestack string // If not "", call this function before stack checks
Bso *bufio.Writer
Pathname string
Pkgpath string // the current package's import path
hashmu sync.Mutex // protects hash, funchash
hash map[string]*LSym // name -> sym mapping
funchash map[string]*LSym // name -> sym mapping for ABIInternal syms
statichash map[string]*LSym // name -> sym mapping for static syms
PosTable src.PosTable
InlTree InlTree // global inlining tree used by gc/inl.go
DwFixups *DwarfFixupTable
Imports []goobj.ImportedPkg
DiagFunc func(string, ...interface{})
DiagFlush func()
DebugInfo func(fn *LSym, info *LSym, curfn Func) ([]dwarf.Scope, dwarf.InlCalls)
GenAbstractFunc func(fn *LSym)
Errors int
InParallel bool // parallel backend phase in effect
UseBASEntries bool // use Base Address Selection Entries in location lists and PC ranges
IsAsm bool // is the source assembly language, which may contain surprising idioms (e.g., call tables)
// state for writing objects
Text []*LSym
Data []*LSym
// Constant symbols (e.g. $i64.*) are data symbols created late
// in the concurrent phase. To ensure a deterministic order, we
// add them to a separate list, sort at the end, and append it
// to Data.
constSyms []*LSym
// pkgIdx maps package path to index. The index is used for
// symbol reference in the object file.
pkgIdx map[string]int32
defs []*LSym // list of defined symbols in the current package
hashed64defs []*LSym // list of defined short (64-bit or less) hashed (content-addressable) symbols
hasheddefs []*LSym // list of defined hashed (content-addressable) symbols
nonpkgdefs []*LSym // list of defined non-package symbols
nonpkgrefs []*LSym // list of referenced non-package symbols
Fingerprint goobj.FingerprintType // fingerprint of symbol indices, to catch index mismatch
}
func (ctxt *Link) Diag(format string, args ...interface{}) {
ctxt.Errors++
ctxt.DiagFunc(format, args...)
}
func (ctxt *Link) Logf(format string, args ...interface{}) {
fmt.Fprintf(ctxt.Bso, format, args...)
ctxt.Bso.Flush()
}
// SpillRegisterArgs emits the code to spill register args into whatever
// locations the spill records specify.
func (fi *FuncInfo) SpillRegisterArgs(last *Prog, pa ProgAlloc) *Prog {
// Spill register args.
for _, ra := range fi.spills {
spill := Appendp(last, pa)
spill.As = ra.Spill
spill.From.Type = TYPE_REG
spill.From.Reg = ra.Reg
spill.To = ra.Addr
last = spill
}
return last
}
// UnspillRegisterArgs emits the code to restore register args from whatever
// locations the spill records specify.
func (fi *FuncInfo) UnspillRegisterArgs(last *Prog, pa ProgAlloc) *Prog {
// Unspill any spilled register args
for _, ra := range fi.spills {
unspill := Appendp(last, pa)
unspill.As = ra.Unspill
unspill.From = ra.Addr
unspill.To.Type = TYPE_REG
unspill.To.Reg = ra.Reg
last = unspill
}
return last
}
// LinkArch is the definition of a single architecture.
type LinkArch struct {
*sys.Arch
Init func(*Link)
ErrorCheck func(*Link, *LSym)
Preprocess func(*Link, *LSym, ProgAlloc)
Assemble func(*Link, *LSym, ProgAlloc)
Progedit func(*Link, *Prog, ProgAlloc)
SEH func(*Link, *LSym) *LSym
UnaryDst map[As]bool // Instruction takes one operand, a destination.
DWARFRegisters map[int16]int16
}
|