summaryrefslogtreecommitdiffstats
path: root/src/math/big/ftoa.go
blob: f7a4345d3acf98821a6071b9c54d025ba54d3a5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements Float-to-string conversion functions.
// It is closely following the corresponding implementation
// in strconv/ftoa.go, but modified and simplified for Float.

package big

import (
	"bytes"
	"fmt"
	"strconv"
)

// Text converts the floating-point number x to a string according
// to the given format and precision prec. The format is one of:
//
//	'e'	-d.dddde±dd, decimal exponent, at least two (possibly 0) exponent digits
//	'E'	-d.ddddE±dd, decimal exponent, at least two (possibly 0) exponent digits
//	'f'	-ddddd.dddd, no exponent
//	'g'	like 'e' for large exponents, like 'f' otherwise
//	'G'	like 'E' for large exponents, like 'f' otherwise
//	'x'	-0xd.dddddp±dd, hexadecimal mantissa, decimal power of two exponent
//	'p'	-0x.dddp±dd, hexadecimal mantissa, decimal power of two exponent (non-standard)
//	'b'	-ddddddp±dd, decimal mantissa, decimal power of two exponent (non-standard)
//
// For the power-of-two exponent formats, the mantissa is printed in normalized form:
//
//	'x'	hexadecimal mantissa in [1, 2), or 0
//	'p'	hexadecimal mantissa in [½, 1), or 0
//	'b'	decimal integer mantissa using x.Prec() bits, or 0
//
// Note that the 'x' form is the one used by most other languages and libraries.
//
// If format is a different character, Text returns a "%" followed by the
// unrecognized format character.
//
// The precision prec controls the number of digits (excluding the exponent)
// printed by the 'e', 'E', 'f', 'g', 'G', and 'x' formats.
// For 'e', 'E', 'f', and 'x', it is the number of digits after the decimal point.
// For 'g' and 'G' it is the total number of digits. A negative precision selects
// the smallest number of decimal digits necessary to identify the value x uniquely
// using x.Prec() mantissa bits.
// The prec value is ignored for the 'b' and 'p' formats.
func (x *Float) Text(format byte, prec int) string {
	cap := 10 // TODO(gri) determine a good/better value here
	if prec > 0 {
		cap += prec
	}
	return string(x.Append(make([]byte, 0, cap), format, prec))
}

// String formats x like x.Text('g', 10).
// (String must be called explicitly, [Float.Format] does not support %s verb.)
func (x *Float) String() string {
	return x.Text('g', 10)
}

// Append appends to buf the string form of the floating-point number x,
// as generated by x.Text, and returns the extended buffer.
func (x *Float) Append(buf []byte, fmt byte, prec int) []byte {
	// sign
	if x.neg {
		buf = append(buf, '-')
	}

	// Inf
	if x.form == inf {
		if !x.neg {
			buf = append(buf, '+')
		}
		return append(buf, "Inf"...)
	}

	// pick off easy formats
	switch fmt {
	case 'b':
		return x.fmtB(buf)
	case 'p':
		return x.fmtP(buf)
	case 'x':
		return x.fmtX(buf, prec)
	}

	// Algorithm:
	//   1) convert Float to multiprecision decimal
	//   2) round to desired precision
	//   3) read digits out and format

	// 1) convert Float to multiprecision decimal
	var d decimal // == 0.0
	if x.form == finite {
		// x != 0
		d.init(x.mant, int(x.exp)-x.mant.bitLen())
	}

	// 2) round to desired precision
	shortest := false
	if prec < 0 {
		shortest = true
		roundShortest(&d, x)
		// Precision for shortest representation mode.
		switch fmt {
		case 'e', 'E':
			prec = len(d.mant) - 1
		case 'f':
			prec = max(len(d.mant)-d.exp, 0)
		case 'g', 'G':
			prec = len(d.mant)
		}
	} else {
		// round appropriately
		switch fmt {
		case 'e', 'E':
			// one digit before and number of digits after decimal point
			d.round(1 + prec)
		case 'f':
			// number of digits before and after decimal point
			d.round(d.exp + prec)
		case 'g', 'G':
			if prec == 0 {
				prec = 1
			}
			d.round(prec)
		}
	}

	// 3) read digits out and format
	switch fmt {
	case 'e', 'E':
		return fmtE(buf, fmt, prec, d)
	case 'f':
		return fmtF(buf, prec, d)
	case 'g', 'G':
		// trim trailing fractional zeros in %e format
		eprec := prec
		if eprec > len(d.mant) && len(d.mant) >= d.exp {
			eprec = len(d.mant)
		}
		// %e is used if the exponent from the conversion
		// is less than -4 or greater than or equal to the precision.
		// If precision was the shortest possible, use eprec = 6 for
		// this decision.
		if shortest {
			eprec = 6
		}
		exp := d.exp - 1
		if exp < -4 || exp >= eprec {
			if prec > len(d.mant) {
				prec = len(d.mant)
			}
			return fmtE(buf, fmt+'e'-'g', prec-1, d)
		}
		if prec > d.exp {
			prec = len(d.mant)
		}
		return fmtF(buf, max(prec-d.exp, 0), d)
	}

	// unknown format
	if x.neg {
		buf = buf[:len(buf)-1] // sign was added prematurely - remove it again
	}
	return append(buf, '%', fmt)
}

func roundShortest(d *decimal, x *Float) {
	// if the mantissa is zero, the number is zero - stop now
	if len(d.mant) == 0 {
		return
	}

	// Approach: All numbers in the interval [x - 1/2ulp, x + 1/2ulp]
	// (possibly exclusive) round to x for the given precision of x.
	// Compute the lower and upper bound in decimal form and find the
	// shortest decimal number d such that lower <= d <= upper.

	// TODO(gri) strconv/ftoa.do describes a shortcut in some cases.
	// See if we can use it (in adjusted form) here as well.

	// 1) Compute normalized mantissa mant and exponent exp for x such
	// that the lsb of mant corresponds to 1/2 ulp for the precision of
	// x (i.e., for mant we want x.prec + 1 bits).
	mant := nat(nil).set(x.mant)
	exp := int(x.exp) - mant.bitLen()
	s := mant.bitLen() - int(x.prec+1)
	switch {
	case s < 0:
		mant = mant.shl(mant, uint(-s))
	case s > 0:
		mant = mant.shr(mant, uint(+s))
	}
	exp += s
	// x = mant * 2**exp with lsb(mant) == 1/2 ulp of x.prec

	// 2) Compute lower bound by subtracting 1/2 ulp.
	var lower decimal
	var tmp nat
	lower.init(tmp.sub(mant, natOne), exp)

	// 3) Compute upper bound by adding 1/2 ulp.
	var upper decimal
	upper.init(tmp.add(mant, natOne), exp)

	// The upper and lower bounds are possible outputs only if
	// the original mantissa is even, so that ToNearestEven rounding
	// would round to the original mantissa and not the neighbors.
	inclusive := mant[0]&2 == 0 // test bit 1 since original mantissa was shifted by 1

	// Now we can figure out the minimum number of digits required.
	// Walk along until d has distinguished itself from upper and lower.
	for i, m := range d.mant {
		l := lower.at(i)
		u := upper.at(i)

		// Okay to round down (truncate) if lower has a different digit
		// or if lower is inclusive and is exactly the result of rounding
		// down (i.e., and we have reached the final digit of lower).
		okdown := l != m || inclusive && i+1 == len(lower.mant)

		// Okay to round up if upper has a different digit and either upper
		// is inclusive or upper is bigger than the result of rounding up.
		okup := m != u && (inclusive || m+1 < u || i+1 < len(upper.mant))

		// If it's okay to do either, then round to the nearest one.
		// If it's okay to do only one, do it.
		switch {
		case okdown && okup:
			d.round(i + 1)
			return
		case okdown:
			d.roundDown(i + 1)
			return
		case okup:
			d.roundUp(i + 1)
			return
		}
	}
}

// %e: d.ddddde±dd
func fmtE(buf []byte, fmt byte, prec int, d decimal) []byte {
	// first digit
	ch := byte('0')
	if len(d.mant) > 0 {
		ch = d.mant[0]
	}
	buf = append(buf, ch)

	// .moredigits
	if prec > 0 {
		buf = append(buf, '.')
		i := 1
		m := min(len(d.mant), prec+1)
		if i < m {
			buf = append(buf, d.mant[i:m]...)
			i = m
		}
		for ; i <= prec; i++ {
			buf = append(buf, '0')
		}
	}

	// e±
	buf = append(buf, fmt)
	var exp int64
	if len(d.mant) > 0 {
		exp = int64(d.exp) - 1 // -1 because first digit was printed before '.'
	}
	if exp < 0 {
		ch = '-'
		exp = -exp
	} else {
		ch = '+'
	}
	buf = append(buf, ch)

	// dd...d
	if exp < 10 {
		buf = append(buf, '0') // at least 2 exponent digits
	}
	return strconv.AppendInt(buf, exp, 10)
}

// %f: ddddddd.ddddd
func fmtF(buf []byte, prec int, d decimal) []byte {
	// integer, padded with zeros as needed
	if d.exp > 0 {
		m := min(len(d.mant), d.exp)
		buf = append(buf, d.mant[:m]...)
		for ; m < d.exp; m++ {
			buf = append(buf, '0')
		}
	} else {
		buf = append(buf, '0')
	}

	// fraction
	if prec > 0 {
		buf = append(buf, '.')
		for i := 0; i < prec; i++ {
			buf = append(buf, d.at(d.exp+i))
		}
	}

	return buf
}

// fmtB appends the string of x in the format mantissa "p" exponent
// with a decimal mantissa and a binary exponent, or 0" if x is zero,
// and returns the extended buffer.
// The mantissa is normalized such that is uses x.Prec() bits in binary
// representation.
// The sign of x is ignored, and x must not be an Inf.
// (The caller handles Inf before invoking fmtB.)
func (x *Float) fmtB(buf []byte) []byte {
	if x.form == zero {
		return append(buf, '0')
	}

	if debugFloat && x.form != finite {
		panic("non-finite float")
	}
	// x != 0

	// adjust mantissa to use exactly x.prec bits
	m := x.mant
	switch w := uint32(len(x.mant)) * _W; {
	case w < x.prec:
		m = nat(nil).shl(m, uint(x.prec-w))
	case w > x.prec:
		m = nat(nil).shr(m, uint(w-x.prec))
	}

	buf = append(buf, m.utoa(10)...)
	buf = append(buf, 'p')
	e := int64(x.exp) - int64(x.prec)
	if e >= 0 {
		buf = append(buf, '+')
	}
	return strconv.AppendInt(buf, e, 10)
}

// fmtX appends the string of x in the format "0x1." mantissa "p" exponent
// with a hexadecimal mantissa and a binary exponent, or "0x0p0" if x is zero,
// and returns the extended buffer.
// A non-zero mantissa is normalized such that 1.0 <= mantissa < 2.0.
// The sign of x is ignored, and x must not be an Inf.
// (The caller handles Inf before invoking fmtX.)
func (x *Float) fmtX(buf []byte, prec int) []byte {
	if x.form == zero {
		buf = append(buf, "0x0"...)
		if prec > 0 {
			buf = append(buf, '.')
			for i := 0; i < prec; i++ {
				buf = append(buf, '0')
			}
		}
		buf = append(buf, "p+00"...)
		return buf
	}

	if debugFloat && x.form != finite {
		panic("non-finite float")
	}

	// round mantissa to n bits
	var n uint
	if prec < 0 {
		n = 1 + (x.MinPrec()-1+3)/4*4 // round MinPrec up to 1 mod 4
	} else {
		n = 1 + 4*uint(prec)
	}
	// n%4 == 1
	x = new(Float).SetPrec(n).SetMode(x.mode).Set(x)

	// adjust mantissa to use exactly n bits
	m := x.mant
	switch w := uint(len(x.mant)) * _W; {
	case w < n:
		m = nat(nil).shl(m, n-w)
	case w > n:
		m = nat(nil).shr(m, w-n)
	}
	exp64 := int64(x.exp) - 1 // avoid wrap-around

	hm := m.utoa(16)
	if debugFloat && hm[0] != '1' {
		panic("incorrect mantissa: " + string(hm))
	}
	buf = append(buf, "0x1"...)
	if len(hm) > 1 {
		buf = append(buf, '.')
		buf = append(buf, hm[1:]...)
	}

	buf = append(buf, 'p')
	if exp64 >= 0 {
		buf = append(buf, '+')
	} else {
		exp64 = -exp64
		buf = append(buf, '-')
	}
	// Force at least two exponent digits, to match fmt.
	if exp64 < 10 {
		buf = append(buf, '0')
	}
	return strconv.AppendInt(buf, exp64, 10)
}

// fmtP appends the string of x in the format "0x." mantissa "p" exponent
// with a hexadecimal mantissa and a binary exponent, or "0" if x is zero,
// and returns the extended buffer.
// The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0.
// The sign of x is ignored, and x must not be an Inf.
// (The caller handles Inf before invoking fmtP.)
func (x *Float) fmtP(buf []byte) []byte {
	if x.form == zero {
		return append(buf, '0')
	}

	if debugFloat && x.form != finite {
		panic("non-finite float")
	}
	// x != 0

	// remove trailing 0 words early
	// (no need to convert to hex 0's and trim later)
	m := x.mant
	i := 0
	for i < len(m) && m[i] == 0 {
		i++
	}
	m = m[i:]

	buf = append(buf, "0x."...)
	buf = append(buf, bytes.TrimRight(m.utoa(16), "0")...)
	buf = append(buf, 'p')
	if x.exp >= 0 {
		buf = append(buf, '+')
	}
	return strconv.AppendInt(buf, int64(x.exp), 10)
}

var _ fmt.Formatter = &floatZero // *Float must implement fmt.Formatter

// Format implements [fmt.Formatter]. It accepts all the regular
// formats for floating-point numbers ('b', 'e', 'E', 'f', 'F',
// 'g', 'G', 'x') as well as 'p' and 'v'. See (*Float).Text for the
// interpretation of 'p'. The 'v' format is handled like 'g'.
// Format also supports specification of the minimum precision
// in digits, the output field width, as well as the format flags
// '+' and ' ' for sign control, '0' for space or zero padding,
// and '-' for left or right justification. See the fmt package
// for details.
func (x *Float) Format(s fmt.State, format rune) {
	prec, hasPrec := s.Precision()
	if !hasPrec {
		prec = 6 // default precision for 'e', 'f'
	}

	switch format {
	case 'e', 'E', 'f', 'b', 'p', 'x':
		// nothing to do
	case 'F':
		// (*Float).Text doesn't support 'F'; handle like 'f'
		format = 'f'
	case 'v':
		// handle like 'g'
		format = 'g'
		fallthrough
	case 'g', 'G':
		if !hasPrec {
			prec = -1 // default precision for 'g', 'G'
		}
	default:
		fmt.Fprintf(s, "%%!%c(*big.Float=%s)", format, x.String())
		return
	}
	var buf []byte
	buf = x.Append(buf, byte(format), prec)
	if len(buf) == 0 {
		buf = []byte("?") // should never happen, but don't crash
	}
	// len(buf) > 0

	var sign string
	switch {
	case buf[0] == '-':
		sign = "-"
		buf = buf[1:]
	case buf[0] == '+':
		// +Inf
		sign = "+"
		if s.Flag(' ') {
			sign = " "
		}
		buf = buf[1:]
	case s.Flag('+'):
		sign = "+"
	case s.Flag(' '):
		sign = " "
	}

	var padding int
	if width, hasWidth := s.Width(); hasWidth && width > len(sign)+len(buf) {
		padding = width - len(sign) - len(buf)
	}

	switch {
	case s.Flag('0') && !x.IsInf():
		// 0-padding on left
		writeMultiple(s, sign, 1)
		writeMultiple(s, "0", padding)
		s.Write(buf)
	case s.Flag('-'):
		// padding on right
		writeMultiple(s, sign, 1)
		s.Write(buf)
		writeMultiple(s, " ", padding)
	default:
		// padding on left
		writeMultiple(s, " ", padding)
		writeMultiple(s, sign, 1)
		s.Write(buf)
	}
}