1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package reflect implements run-time reflection, allowing a program to
// manipulate objects with arbitrary types. The typical use is to take a value
// with static type interface{} and extract its dynamic type information by
// calling TypeOf, which returns a Type.
//
// A call to ValueOf returns a Value representing the run-time data.
// Zero takes a Type and returns a Value representing a zero value
// for that type.
//
// See "The Laws of Reflection" for an introduction to reflection in Go:
// https://golang.org/doc/articles/laws_of_reflection.html
package reflect
import (
"internal/abi"
"internal/goarch"
"strconv"
"sync"
"unicode"
"unicode/utf8"
"unsafe"
)
// Type is the representation of a Go type.
//
// Not all methods apply to all kinds of types. Restrictions,
// if any, are noted in the documentation for each method.
// Use the Kind method to find out the kind of type before
// calling kind-specific methods. Calling a method
// inappropriate to the kind of type causes a run-time panic.
//
// Type values are comparable, such as with the == operator,
// so they can be used as map keys.
// Two Type values are equal if they represent identical types.
type Type interface {
// Methods applicable to all types.
// Align returns the alignment in bytes of a value of
// this type when allocated in memory.
Align() int
// FieldAlign returns the alignment in bytes of a value of
// this type when used as a field in a struct.
FieldAlign() int
// Method returns the i'th method in the type's method set.
// It panics if i is not in the range [0, NumMethod()).
//
// For a non-interface type T or *T, the returned Method's Type and Func
// fields describe a function whose first argument is the receiver,
// and only exported methods are accessible.
//
// For an interface type, the returned Method's Type field gives the
// method signature, without a receiver, and the Func field is nil.
//
// Methods are sorted in lexicographic order.
Method(int) Method
// MethodByName returns the method with that name in the type's
// method set and a boolean indicating if the method was found.
//
// For a non-interface type T or *T, the returned Method's Type and Func
// fields describe a function whose first argument is the receiver.
//
// For an interface type, the returned Method's Type field gives the
// method signature, without a receiver, and the Func field is nil.
MethodByName(string) (Method, bool)
// NumMethod returns the number of methods accessible using Method.
//
// For a non-interface type, it returns the number of exported methods.
//
// For an interface type, it returns the number of exported and unexported methods.
NumMethod() int
// Name returns the type's name within its package for a defined type.
// For other (non-defined) types it returns the empty string.
Name() string
// PkgPath returns a defined type's package path, that is, the import path
// that uniquely identifies the package, such as "encoding/base64".
// If the type was predeclared (string, error) or not defined (*T, struct{},
// []int, or A where A is an alias for a non-defined type), the package path
// will be the empty string.
PkgPath() string
// Size returns the number of bytes needed to store
// a value of the given type; it is analogous to unsafe.Sizeof.
Size() uintptr
// String returns a string representation of the type.
// The string representation may use shortened package names
// (e.g., base64 instead of "encoding/base64") and is not
// guaranteed to be unique among types. To test for type identity,
// compare the Types directly.
String() string
// Kind returns the specific kind of this type.
Kind() Kind
// Implements reports whether the type implements the interface type u.
Implements(u Type) bool
// AssignableTo reports whether a value of the type is assignable to type u.
AssignableTo(u Type) bool
// ConvertibleTo reports whether a value of the type is convertible to type u.
// Even if ConvertibleTo returns true, the conversion may still panic.
// For example, a slice of type []T is convertible to *[N]T,
// but the conversion will panic if its length is less than N.
ConvertibleTo(u Type) bool
// Comparable reports whether values of this type are comparable.
// Even if Comparable returns true, the comparison may still panic.
// For example, values of interface type are comparable,
// but the comparison will panic if their dynamic type is not comparable.
Comparable() bool
// Methods applicable only to some types, depending on Kind.
// The methods allowed for each kind are:
//
// Int*, Uint*, Float*, Complex*: Bits
// Array: Elem, Len
// Chan: ChanDir, Elem
// Func: In, NumIn, Out, NumOut, IsVariadic.
// Map: Key, Elem
// Pointer: Elem
// Slice: Elem
// Struct: Field, FieldByIndex, FieldByName, FieldByNameFunc, NumField
// Bits returns the size of the type in bits.
// It panics if the type's Kind is not one of the
// sized or unsized Int, Uint, Float, or Complex kinds.
Bits() int
// ChanDir returns a channel type's direction.
// It panics if the type's Kind is not Chan.
ChanDir() ChanDir
// IsVariadic reports whether a function type's final input parameter
// is a "..." parameter. If so, t.In(t.NumIn() - 1) returns the parameter's
// implicit actual type []T.
//
// For concreteness, if t represents func(x int, y ... float64), then
//
// t.NumIn() == 2
// t.In(0) is the reflect.Type for "int"
// t.In(1) is the reflect.Type for "[]float64"
// t.IsVariadic() == true
//
// IsVariadic panics if the type's Kind is not Func.
IsVariadic() bool
// Elem returns a type's element type.
// It panics if the type's Kind is not Array, Chan, Map, Pointer, or Slice.
Elem() Type
// Field returns a struct type's i'th field.
// It panics if the type's Kind is not Struct.
// It panics if i is not in the range [0, NumField()).
Field(i int) StructField
// FieldByIndex returns the nested field corresponding
// to the index sequence. It is equivalent to calling Field
// successively for each index i.
// It panics if the type's Kind is not Struct.
FieldByIndex(index []int) StructField
// FieldByName returns the struct field with the given name
// and a boolean indicating if the field was found.
// If the returned field is promoted from an embedded struct,
// then Offset in the returned StructField is the offset in
// the embedded struct.
FieldByName(name string) (StructField, bool)
// FieldByNameFunc returns the struct field with a name
// that satisfies the match function and a boolean indicating if
// the field was found.
//
// FieldByNameFunc considers the fields in the struct itself
// and then the fields in any embedded structs, in breadth first order,
// stopping at the shallowest nesting depth containing one or more
// fields satisfying the match function. If multiple fields at that depth
// satisfy the match function, they cancel each other
// and FieldByNameFunc returns no match.
// This behavior mirrors Go's handling of name lookup in
// structs containing embedded fields.
//
// If the returned field is promoted from an embedded struct,
// then Offset in the returned StructField is the offset in
// the embedded struct.
FieldByNameFunc(match func(string) bool) (StructField, bool)
// In returns the type of a function type's i'th input parameter.
// It panics if the type's Kind is not Func.
// It panics if i is not in the range [0, NumIn()).
In(i int) Type
// Key returns a map type's key type.
// It panics if the type's Kind is not Map.
Key() Type
// Len returns an array type's length.
// It panics if the type's Kind is not Array.
Len() int
// NumField returns a struct type's field count.
// It panics if the type's Kind is not Struct.
NumField() int
// NumIn returns a function type's input parameter count.
// It panics if the type's Kind is not Func.
NumIn() int
// NumOut returns a function type's output parameter count.
// It panics if the type's Kind is not Func.
NumOut() int
// Out returns the type of a function type's i'th output parameter.
// It panics if the type's Kind is not Func.
// It panics if i is not in the range [0, NumOut()).
Out(i int) Type
common() *abi.Type
uncommon() *uncommonType
}
// BUG(rsc): FieldByName and related functions consider struct field names to be equal
// if the names are equal, even if they are unexported names originating
// in different packages. The practical effect of this is that the result of
// t.FieldByName("x") is not well defined if the struct type t contains
// multiple fields named x (embedded from different packages).
// FieldByName may return one of the fields named x or may report that there are none.
// See https://golang.org/issue/4876 for more details.
/*
* These data structures are known to the compiler (../cmd/compile/internal/reflectdata/reflect.go).
* A few are known to ../runtime/type.go to convey to debuggers.
* They are also known to ../runtime/type.go.
*/
// A Kind represents the specific kind of type that a [Type] represents.
// The zero Kind is not a valid kind.
type Kind uint
const (
Invalid Kind = iota
Bool
Int
Int8
Int16
Int32
Int64
Uint
Uint8
Uint16
Uint32
Uint64
Uintptr
Float32
Float64
Complex64
Complex128
Array
Chan
Func
Interface
Map
Pointer
Slice
String
Struct
UnsafePointer
)
// Ptr is the old name for the [Pointer] kind.
const Ptr = Pointer
// uncommonType is present only for defined types or types with methods
// (if T is a defined type, the uncommonTypes for T and *T have methods).
// Using a pointer to this struct reduces the overall size required
// to describe a non-defined type with no methods.
type uncommonType = abi.UncommonType
// Embed this type to get common/uncommon
type common struct {
abi.Type
}
// rtype is the common implementation of most values.
// It is embedded in other struct types.
type rtype struct {
t abi.Type
}
func (t *rtype) common() *abi.Type {
return &t.t
}
func (t *rtype) uncommon() *abi.UncommonType {
return t.t.Uncommon()
}
type aNameOff = abi.NameOff
type aTypeOff = abi.TypeOff
type aTextOff = abi.TextOff
// ChanDir represents a channel type's direction.
type ChanDir int
const (
RecvDir ChanDir = 1 << iota // <-chan
SendDir // chan<-
BothDir = RecvDir | SendDir // chan
)
// arrayType represents a fixed array type.
type arrayType = abi.ArrayType
// chanType represents a channel type.
type chanType = abi.ChanType
// funcType represents a function type.
//
// A *rtype for each in and out parameter is stored in an array that
// directly follows the funcType (and possibly its uncommonType). So
// a function type with one method, one input, and one output is:
//
// struct {
// funcType
// uncommonType
// [2]*rtype // [0] is in, [1] is out
// }
type funcType = abi.FuncType
// interfaceType represents an interface type.
type interfaceType struct {
abi.InterfaceType // can embed directly because not a public type.
}
func (t *interfaceType) nameOff(off aNameOff) abi.Name {
return toRType(&t.Type).nameOff(off)
}
func nameOffFor(t *abi.Type, off aNameOff) abi.Name {
return toRType(t).nameOff(off)
}
func typeOffFor(t *abi.Type, off aTypeOff) *abi.Type {
return toRType(t).typeOff(off)
}
func (t *interfaceType) typeOff(off aTypeOff) *abi.Type {
return toRType(&t.Type).typeOff(off)
}
func (t *interfaceType) common() *abi.Type {
return &t.Type
}
func (t *interfaceType) uncommon() *abi.UncommonType {
return t.Uncommon()
}
// mapType represents a map type.
type mapType struct {
abi.MapType
}
// ptrType represents a pointer type.
type ptrType struct {
abi.PtrType
}
// sliceType represents a slice type.
type sliceType struct {
abi.SliceType
}
// Struct field
type structField = abi.StructField
// structType represents a struct type.
type structType struct {
abi.StructType
}
func pkgPath(n abi.Name) string {
if n.Bytes == nil || *n.DataChecked(0, "name flag field")&(1<<2) == 0 {
return ""
}
i, l := n.ReadVarint(1)
off := 1 + i + l
if n.HasTag() {
i2, l2 := n.ReadVarint(off)
off += i2 + l2
}
var nameOff int32
// Note that this field may not be aligned in memory,
// so we cannot use a direct int32 assignment here.
copy((*[4]byte)(unsafe.Pointer(&nameOff))[:], (*[4]byte)(unsafe.Pointer(n.DataChecked(off, "name offset field")))[:])
pkgPathName := abi.Name{Bytes: (*byte)(resolveTypeOff(unsafe.Pointer(n.Bytes), nameOff))}
return pkgPathName.Name()
}
func newName(n, tag string, exported, embedded bool) abi.Name {
return abi.NewName(n, tag, exported, embedded)
}
/*
* The compiler knows the exact layout of all the data structures above.
* The compiler does not know about the data structures and methods below.
*/
// Method represents a single method.
type Method struct {
// Name is the method name.
Name string
// PkgPath is the package path that qualifies a lower case (unexported)
// method name. It is empty for upper case (exported) method names.
// The combination of PkgPath and Name uniquely identifies a method
// in a method set.
// See https://golang.org/ref/spec#Uniqueness_of_identifiers
PkgPath string
Type Type // method type
Func Value // func with receiver as first argument
Index int // index for Type.Method
}
// IsExported reports whether the method is exported.
func (m Method) IsExported() bool {
return m.PkgPath == ""
}
const (
kindDirectIface = 1 << 5
kindGCProg = 1 << 6 // Type.gc points to GC program
kindMask = (1 << 5) - 1
)
// String returns the name of k.
func (k Kind) String() string {
if uint(k) < uint(len(kindNames)) {
return kindNames[uint(k)]
}
return "kind" + strconv.Itoa(int(k))
}
var kindNames = []string{
Invalid: "invalid",
Bool: "bool",
Int: "int",
Int8: "int8",
Int16: "int16",
Int32: "int32",
Int64: "int64",
Uint: "uint",
Uint8: "uint8",
Uint16: "uint16",
Uint32: "uint32",
Uint64: "uint64",
Uintptr: "uintptr",
Float32: "float32",
Float64: "float64",
Complex64: "complex64",
Complex128: "complex128",
Array: "array",
Chan: "chan",
Func: "func",
Interface: "interface",
Map: "map",
Pointer: "ptr",
Slice: "slice",
String: "string",
Struct: "struct",
UnsafePointer: "unsafe.Pointer",
}
// resolveNameOff resolves a name offset from a base pointer.
// The (*rtype).nameOff method is a convenience wrapper for this function.
// Implemented in the runtime package.
//
//go:noescape
func resolveNameOff(ptrInModule unsafe.Pointer, off int32) unsafe.Pointer
// resolveTypeOff resolves an *rtype offset from a base type.
// The (*rtype).typeOff method is a convenience wrapper for this function.
// Implemented in the runtime package.
//
//go:noescape
func resolveTypeOff(rtype unsafe.Pointer, off int32) unsafe.Pointer
// resolveTextOff resolves a function pointer offset from a base type.
// The (*rtype).textOff method is a convenience wrapper for this function.
// Implemented in the runtime package.
//
//go:noescape
func resolveTextOff(rtype unsafe.Pointer, off int32) unsafe.Pointer
// addReflectOff adds a pointer to the reflection lookup map in the runtime.
// It returns a new ID that can be used as a typeOff or textOff, and will
// be resolved correctly. Implemented in the runtime package.
//
//go:noescape
func addReflectOff(ptr unsafe.Pointer) int32
// resolveReflectName adds a name to the reflection lookup map in the runtime.
// It returns a new nameOff that can be used to refer to the pointer.
func resolveReflectName(n abi.Name) aNameOff {
return aNameOff(addReflectOff(unsafe.Pointer(n.Bytes)))
}
// resolveReflectType adds a *rtype to the reflection lookup map in the runtime.
// It returns a new typeOff that can be used to refer to the pointer.
func resolveReflectType(t *abi.Type) aTypeOff {
return aTypeOff(addReflectOff(unsafe.Pointer(t)))
}
// resolveReflectText adds a function pointer to the reflection lookup map in
// the runtime. It returns a new textOff that can be used to refer to the
// pointer.
func resolveReflectText(ptr unsafe.Pointer) aTextOff {
return aTextOff(addReflectOff(ptr))
}
func (t *rtype) nameOff(off aNameOff) abi.Name {
return abi.Name{Bytes: (*byte)(resolveNameOff(unsafe.Pointer(t), int32(off)))}
}
func (t *rtype) typeOff(off aTypeOff) *abi.Type {
return (*abi.Type)(resolveTypeOff(unsafe.Pointer(t), int32(off)))
}
func (t *rtype) textOff(off aTextOff) unsafe.Pointer {
return resolveTextOff(unsafe.Pointer(t), int32(off))
}
func textOffFor(t *abi.Type, off aTextOff) unsafe.Pointer {
return toRType(t).textOff(off)
}
func (t *rtype) String() string {
s := t.nameOff(t.t.Str).Name()
if t.t.TFlag&abi.TFlagExtraStar != 0 {
return s[1:]
}
return s
}
func (t *rtype) Size() uintptr { return t.t.Size() }
func (t *rtype) Bits() int {
if t == nil {
panic("reflect: Bits of nil Type")
}
k := t.Kind()
if k < Int || k > Complex128 {
panic("reflect: Bits of non-arithmetic Type " + t.String())
}
return int(t.t.Size_) * 8
}
func (t *rtype) Align() int { return t.t.Align() }
func (t *rtype) FieldAlign() int { return t.t.FieldAlign() }
func (t *rtype) Kind() Kind { return Kind(t.t.Kind()) }
func (t *rtype) exportedMethods() []abi.Method {
ut := t.uncommon()
if ut == nil {
return nil
}
return ut.ExportedMethods()
}
func (t *rtype) NumMethod() int {
if t.Kind() == Interface {
tt := (*interfaceType)(unsafe.Pointer(t))
return tt.NumMethod()
}
return len(t.exportedMethods())
}
func (t *rtype) Method(i int) (m Method) {
if t.Kind() == Interface {
tt := (*interfaceType)(unsafe.Pointer(t))
return tt.Method(i)
}
methods := t.exportedMethods()
if i < 0 || i >= len(methods) {
panic("reflect: Method index out of range")
}
p := methods[i]
pname := t.nameOff(p.Name)
m.Name = pname.Name()
fl := flag(Func)
mtyp := t.typeOff(p.Mtyp)
ft := (*funcType)(unsafe.Pointer(mtyp))
in := make([]Type, 0, 1+ft.NumIn())
in = append(in, t)
for _, arg := range ft.InSlice() {
in = append(in, toRType(arg))
}
out := make([]Type, 0, ft.NumOut())
for _, ret := range ft.OutSlice() {
out = append(out, toRType(ret))
}
mt := FuncOf(in, out, ft.IsVariadic())
m.Type = mt
tfn := t.textOff(p.Tfn)
fn := unsafe.Pointer(&tfn)
m.Func = Value{&mt.(*rtype).t, fn, fl}
m.Index = i
return m
}
func (t *rtype) MethodByName(name string) (m Method, ok bool) {
if t.Kind() == Interface {
tt := (*interfaceType)(unsafe.Pointer(t))
return tt.MethodByName(name)
}
ut := t.uncommon()
if ut == nil {
return Method{}, false
}
methods := ut.ExportedMethods()
// We are looking for the first index i where the string becomes >= s.
// This is a copy of sort.Search, with f(h) replaced by (t.nameOff(methods[h].name).name() >= name).
i, j := 0, len(methods)
for i < j {
h := int(uint(i+j) >> 1) // avoid overflow when computing h
// i ≤ h < j
if !(t.nameOff(methods[h].Name).Name() >= name) {
i = h + 1 // preserves f(i-1) == false
} else {
j = h // preserves f(j) == true
}
}
// i == j, f(i-1) == false, and f(j) (= f(i)) == true => answer is i.
if i < len(methods) && name == t.nameOff(methods[i].Name).Name() {
return t.Method(i), true
}
return Method{}, false
}
func (t *rtype) PkgPath() string {
if t.t.TFlag&abi.TFlagNamed == 0 {
return ""
}
ut := t.uncommon()
if ut == nil {
return ""
}
return t.nameOff(ut.PkgPath).Name()
}
func pkgPathFor(t *abi.Type) string {
return toRType(t).PkgPath()
}
func (t *rtype) Name() string {
if !t.t.HasName() {
return ""
}
s := t.String()
i := len(s) - 1
sqBrackets := 0
for i >= 0 && (s[i] != '.' || sqBrackets != 0) {
switch s[i] {
case ']':
sqBrackets++
case '[':
sqBrackets--
}
i--
}
return s[i+1:]
}
func nameFor(t *abi.Type) string {
return toRType(t).Name()
}
func (t *rtype) ChanDir() ChanDir {
if t.Kind() != Chan {
panic("reflect: ChanDir of non-chan type " + t.String())
}
tt := (*abi.ChanType)(unsafe.Pointer(t))
return ChanDir(tt.Dir)
}
func toRType(t *abi.Type) *rtype {
return (*rtype)(unsafe.Pointer(t))
}
func elem(t *abi.Type) *abi.Type {
et := t.Elem()
if et != nil {
return et
}
panic("reflect: Elem of invalid type " + stringFor(t))
}
func (t *rtype) Elem() Type {
return toType(elem(t.common()))
}
func (t *rtype) Field(i int) StructField {
if t.Kind() != Struct {
panic("reflect: Field of non-struct type " + t.String())
}
tt := (*structType)(unsafe.Pointer(t))
return tt.Field(i)
}
func (t *rtype) FieldByIndex(index []int) StructField {
if t.Kind() != Struct {
panic("reflect: FieldByIndex of non-struct type " + t.String())
}
tt := (*structType)(unsafe.Pointer(t))
return tt.FieldByIndex(index)
}
func (t *rtype) FieldByName(name string) (StructField, bool) {
if t.Kind() != Struct {
panic("reflect: FieldByName of non-struct type " + t.String())
}
tt := (*structType)(unsafe.Pointer(t))
return tt.FieldByName(name)
}
func (t *rtype) FieldByNameFunc(match func(string) bool) (StructField, bool) {
if t.Kind() != Struct {
panic("reflect: FieldByNameFunc of non-struct type " + t.String())
}
tt := (*structType)(unsafe.Pointer(t))
return tt.FieldByNameFunc(match)
}
func (t *rtype) Key() Type {
if t.Kind() != Map {
panic("reflect: Key of non-map type " + t.String())
}
tt := (*mapType)(unsafe.Pointer(t))
return toType(tt.Key)
}
func (t *rtype) Len() int {
if t.Kind() != Array {
panic("reflect: Len of non-array type " + t.String())
}
tt := (*arrayType)(unsafe.Pointer(t))
return int(tt.Len)
}
func (t *rtype) NumField() int {
if t.Kind() != Struct {
panic("reflect: NumField of non-struct type " + t.String())
}
tt := (*structType)(unsafe.Pointer(t))
return len(tt.Fields)
}
func (t *rtype) In(i int) Type {
if t.Kind() != Func {
panic("reflect: In of non-func type " + t.String())
}
tt := (*abi.FuncType)(unsafe.Pointer(t))
return toType(tt.InSlice()[i])
}
func (t *rtype) NumIn() int {
if t.Kind() != Func {
panic("reflect: NumIn of non-func type " + t.String())
}
tt := (*abi.FuncType)(unsafe.Pointer(t))
return tt.NumIn()
}
func (t *rtype) NumOut() int {
if t.Kind() != Func {
panic("reflect: NumOut of non-func type " + t.String())
}
tt := (*abi.FuncType)(unsafe.Pointer(t))
return tt.NumOut()
}
func (t *rtype) Out(i int) Type {
if t.Kind() != Func {
panic("reflect: Out of non-func type " + t.String())
}
tt := (*abi.FuncType)(unsafe.Pointer(t))
return toType(tt.OutSlice()[i])
}
func (t *rtype) IsVariadic() bool {
if t.Kind() != Func {
panic("reflect: IsVariadic of non-func type " + t.String())
}
tt := (*abi.FuncType)(unsafe.Pointer(t))
return tt.IsVariadic()
}
// add returns p+x.
//
// The whySafe string is ignored, so that the function still inlines
// as efficiently as p+x, but all call sites should use the string to
// record why the addition is safe, which is to say why the addition
// does not cause x to advance to the very end of p's allocation
// and therefore point incorrectly at the next block in memory.
func add(p unsafe.Pointer, x uintptr, whySafe string) unsafe.Pointer {
return unsafe.Pointer(uintptr(p) + x)
}
func (d ChanDir) String() string {
switch d {
case SendDir:
return "chan<-"
case RecvDir:
return "<-chan"
case BothDir:
return "chan"
}
return "ChanDir" + strconv.Itoa(int(d))
}
// Method returns the i'th method in the type's method set.
func (t *interfaceType) Method(i int) (m Method) {
if i < 0 || i >= len(t.Methods) {
return
}
p := &t.Methods[i]
pname := t.nameOff(p.Name)
m.Name = pname.Name()
if !pname.IsExported() {
m.PkgPath = pkgPath(pname)
if m.PkgPath == "" {
m.PkgPath = t.PkgPath.Name()
}
}
m.Type = toType(t.typeOff(p.Typ))
m.Index = i
return
}
// NumMethod returns the number of interface methods in the type's method set.
func (t *interfaceType) NumMethod() int { return len(t.Methods) }
// MethodByName method with the given name in the type's method set.
func (t *interfaceType) MethodByName(name string) (m Method, ok bool) {
if t == nil {
return
}
var p *abi.Imethod
for i := range t.Methods {
p = &t.Methods[i]
if t.nameOff(p.Name).Name() == name {
return t.Method(i), true
}
}
return
}
// A StructField describes a single field in a struct.
type StructField struct {
// Name is the field name.
Name string
// PkgPath is the package path that qualifies a lower case (unexported)
// field name. It is empty for upper case (exported) field names.
// See https://golang.org/ref/spec#Uniqueness_of_identifiers
PkgPath string
Type Type // field type
Tag StructTag // field tag string
Offset uintptr // offset within struct, in bytes
Index []int // index sequence for Type.FieldByIndex
Anonymous bool // is an embedded field
}
// IsExported reports whether the field is exported.
func (f StructField) IsExported() bool {
return f.PkgPath == ""
}
// A StructTag is the tag string in a struct field.
//
// By convention, tag strings are a concatenation of
// optionally space-separated key:"value" pairs.
// Each key is a non-empty string consisting of non-control
// characters other than space (U+0020 ' '), quote (U+0022 '"'),
// and colon (U+003A ':'). Each value is quoted using U+0022 '"'
// characters and Go string literal syntax.
type StructTag string
// Get returns the value associated with key in the tag string.
// If there is no such key in the tag, Get returns the empty string.
// If the tag does not have the conventional format, the value
// returned by Get is unspecified. To determine whether a tag is
// explicitly set to the empty string, use Lookup.
func (tag StructTag) Get(key string) string {
v, _ := tag.Lookup(key)
return v
}
// Lookup returns the value associated with key in the tag string.
// If the key is present in the tag the value (which may be empty)
// is returned. Otherwise the returned value will be the empty string.
// The ok return value reports whether the value was explicitly set in
// the tag string. If the tag does not have the conventional format,
// the value returned by Lookup is unspecified.
func (tag StructTag) Lookup(key string) (value string, ok bool) {
// When modifying this code, also update the validateStructTag code
// in cmd/vet/structtag.go.
for tag != "" {
// Skip leading space.
i := 0
for i < len(tag) && tag[i] == ' ' {
i++
}
tag = tag[i:]
if tag == "" {
break
}
// Scan to colon. A space, a quote or a control character is a syntax error.
// Strictly speaking, control chars include the range [0x7f, 0x9f], not just
// [0x00, 0x1f], but in practice, we ignore the multi-byte control characters
// as it is simpler to inspect the tag's bytes than the tag's runes.
i = 0
for i < len(tag) && tag[i] > ' ' && tag[i] != ':' && tag[i] != '"' && tag[i] != 0x7f {
i++
}
if i == 0 || i+1 >= len(tag) || tag[i] != ':' || tag[i+1] != '"' {
break
}
name := string(tag[:i])
tag = tag[i+1:]
// Scan quoted string to find value.
i = 1
for i < len(tag) && tag[i] != '"' {
if tag[i] == '\\' {
i++
}
i++
}
if i >= len(tag) {
break
}
qvalue := string(tag[:i+1])
tag = tag[i+1:]
if key == name {
value, err := strconv.Unquote(qvalue)
if err != nil {
break
}
return value, true
}
}
return "", false
}
// Field returns the i'th struct field.
func (t *structType) Field(i int) (f StructField) {
if i < 0 || i >= len(t.Fields) {
panic("reflect: Field index out of bounds")
}
p := &t.Fields[i]
f.Type = toType(p.Typ)
f.Name = p.Name.Name()
f.Anonymous = p.Embedded()
if !p.Name.IsExported() {
f.PkgPath = t.PkgPath.Name()
}
if tag := p.Name.Tag(); tag != "" {
f.Tag = StructTag(tag)
}
f.Offset = p.Offset
// NOTE(rsc): This is the only allocation in the interface
// presented by a reflect.Type. It would be nice to avoid,
// at least in the common cases, but we need to make sure
// that misbehaving clients of reflect cannot affect other
// uses of reflect. One possibility is CL 5371098, but we
// postponed that ugliness until there is a demonstrated
// need for the performance. This is issue 2320.
f.Index = []int{i}
return
}
// TODO(gri): Should there be an error/bool indicator if the index
// is wrong for FieldByIndex?
// FieldByIndex returns the nested field corresponding to index.
func (t *structType) FieldByIndex(index []int) (f StructField) {
f.Type = toType(&t.Type)
for i, x := range index {
if i > 0 {
ft := f.Type
if ft.Kind() == Pointer && ft.Elem().Kind() == Struct {
ft = ft.Elem()
}
f.Type = ft
}
f = f.Type.Field(x)
}
return
}
// A fieldScan represents an item on the fieldByNameFunc scan work list.
type fieldScan struct {
typ *structType
index []int
}
// FieldByNameFunc returns the struct field with a name that satisfies the
// match function and a boolean to indicate if the field was found.
func (t *structType) FieldByNameFunc(match func(string) bool) (result StructField, ok bool) {
// This uses the same condition that the Go language does: there must be a unique instance
// of the match at a given depth level. If there are multiple instances of a match at the
// same depth, they annihilate each other and inhibit any possible match at a lower level.
// The algorithm is breadth first search, one depth level at a time.
// The current and next slices are work queues:
// current lists the fields to visit on this depth level,
// and next lists the fields on the next lower level.
current := []fieldScan{}
next := []fieldScan{{typ: t}}
// nextCount records the number of times an embedded type has been
// encountered and considered for queueing in the 'next' slice.
// We only queue the first one, but we increment the count on each.
// If a struct type T can be reached more than once at a given depth level,
// then it annihilates itself and need not be considered at all when we
// process that next depth level.
var nextCount map[*structType]int
// visited records the structs that have been considered already.
// Embedded pointer fields can create cycles in the graph of
// reachable embedded types; visited avoids following those cycles.
// It also avoids duplicated effort: if we didn't find the field in an
// embedded type T at level 2, we won't find it in one at level 4 either.
visited := map[*structType]bool{}
for len(next) > 0 {
current, next = next, current[:0]
count := nextCount
nextCount = nil
// Process all the fields at this depth, now listed in 'current'.
// The loop queues embedded fields found in 'next', for processing during the next
// iteration. The multiplicity of the 'current' field counts is recorded
// in 'count'; the multiplicity of the 'next' field counts is recorded in 'nextCount'.
for _, scan := range current {
t := scan.typ
if visited[t] {
// We've looked through this type before, at a higher level.
// That higher level would shadow the lower level we're now at,
// so this one can't be useful to us. Ignore it.
continue
}
visited[t] = true
for i := range t.Fields {
f := &t.Fields[i]
// Find name and (for embedded field) type for field f.
fname := f.Name.Name()
var ntyp *abi.Type
if f.Embedded() {
// Embedded field of type T or *T.
ntyp = f.Typ
if ntyp.Kind() == abi.Pointer {
ntyp = ntyp.Elem()
}
}
// Does it match?
if match(fname) {
// Potential match
if count[t] > 1 || ok {
// Name appeared multiple times at this level: annihilate.
return StructField{}, false
}
result = t.Field(i)
result.Index = nil
result.Index = append(result.Index, scan.index...)
result.Index = append(result.Index, i)
ok = true
continue
}
// Queue embedded struct fields for processing with next level,
// but only if we haven't seen a match yet at this level and only
// if the embedded types haven't already been queued.
if ok || ntyp == nil || ntyp.Kind() != abi.Struct {
continue
}
styp := (*structType)(unsafe.Pointer(ntyp))
if nextCount[styp] > 0 {
nextCount[styp] = 2 // exact multiple doesn't matter
continue
}
if nextCount == nil {
nextCount = map[*structType]int{}
}
nextCount[styp] = 1
if count[t] > 1 {
nextCount[styp] = 2 // exact multiple doesn't matter
}
var index []int
index = append(index, scan.index...)
index = append(index, i)
next = append(next, fieldScan{styp, index})
}
}
if ok {
break
}
}
return
}
// FieldByName returns the struct field with the given name
// and a boolean to indicate if the field was found.
func (t *structType) FieldByName(name string) (f StructField, present bool) {
// Quick check for top-level name, or struct without embedded fields.
hasEmbeds := false
if name != "" {
for i := range t.Fields {
tf := &t.Fields[i]
if tf.Name.Name() == name {
return t.Field(i), true
}
if tf.Embedded() {
hasEmbeds = true
}
}
}
if !hasEmbeds {
return
}
return t.FieldByNameFunc(func(s string) bool { return s == name })
}
// TypeOf returns the reflection [Type] that represents the dynamic type of i.
// If i is a nil interface value, TypeOf returns nil.
func TypeOf(i any) Type {
eface := *(*emptyInterface)(unsafe.Pointer(&i))
// Noescape so this doesn't make i to escape. See the comment
// at Value.typ for why this is safe.
return toType((*abi.Type)(noescape(unsafe.Pointer(eface.typ))))
}
// rtypeOf directly extracts the *rtype of the provided value.
func rtypeOf(i any) *abi.Type {
eface := *(*emptyInterface)(unsafe.Pointer(&i))
return eface.typ
}
// ptrMap is the cache for PointerTo.
var ptrMap sync.Map // map[*rtype]*ptrType
// PtrTo returns the pointer type with element t.
// For example, if t represents type Foo, PtrTo(t) represents *Foo.
//
// PtrTo is the old spelling of [PointerTo].
// The two functions behave identically.
//
// Deprecated: Superseded by [PointerTo].
func PtrTo(t Type) Type { return PointerTo(t) }
// PointerTo returns the pointer type with element t.
// For example, if t represents type Foo, PointerTo(t) represents *Foo.
func PointerTo(t Type) Type {
return toRType(t.(*rtype).ptrTo())
}
func (t *rtype) ptrTo() *abi.Type {
at := &t.t
if at.PtrToThis != 0 {
return t.typeOff(at.PtrToThis)
}
// Check the cache.
if pi, ok := ptrMap.Load(t); ok {
return &pi.(*ptrType).Type
}
// Look in known types.
s := "*" + t.String()
for _, tt := range typesByString(s) {
p := (*ptrType)(unsafe.Pointer(tt))
if p.Elem != &t.t {
continue
}
pi, _ := ptrMap.LoadOrStore(t, p)
return &pi.(*ptrType).Type
}
// Create a new ptrType starting with the description
// of an *unsafe.Pointer.
var iptr any = (*unsafe.Pointer)(nil)
prototype := *(**ptrType)(unsafe.Pointer(&iptr))
pp := *prototype
pp.Str = resolveReflectName(newName(s, "", false, false))
pp.PtrToThis = 0
// For the type structures linked into the binary, the
// compiler provides a good hash of the string.
// Create a good hash for the new string by using
// the FNV-1 hash's mixing function to combine the
// old hash and the new "*".
pp.Hash = fnv1(t.t.Hash, '*')
pp.Elem = at
pi, _ := ptrMap.LoadOrStore(t, &pp)
return &pi.(*ptrType).Type
}
func ptrTo(t *abi.Type) *abi.Type {
return toRType(t).ptrTo()
}
// fnv1 incorporates the list of bytes into the hash x using the FNV-1 hash function.
func fnv1(x uint32, list ...byte) uint32 {
for _, b := range list {
x = x*16777619 ^ uint32(b)
}
return x
}
func (t *rtype) Implements(u Type) bool {
if u == nil {
panic("reflect: nil type passed to Type.Implements")
}
if u.Kind() != Interface {
panic("reflect: non-interface type passed to Type.Implements")
}
return implements(u.common(), t.common())
}
func (t *rtype) AssignableTo(u Type) bool {
if u == nil {
panic("reflect: nil type passed to Type.AssignableTo")
}
uu := u.common()
return directlyAssignable(uu, t.common()) || implements(uu, t.common())
}
func (t *rtype) ConvertibleTo(u Type) bool {
if u == nil {
panic("reflect: nil type passed to Type.ConvertibleTo")
}
return convertOp(u.common(), t.common()) != nil
}
func (t *rtype) Comparable() bool {
return t.t.Equal != nil
}
// implements reports whether the type V implements the interface type T.
func implements(T, V *abi.Type) bool {
if T.Kind() != abi.Interface {
return false
}
t := (*interfaceType)(unsafe.Pointer(T))
if len(t.Methods) == 0 {
return true
}
// The same algorithm applies in both cases, but the
// method tables for an interface type and a concrete type
// are different, so the code is duplicated.
// In both cases the algorithm is a linear scan over the two
// lists - T's methods and V's methods - simultaneously.
// Since method tables are stored in a unique sorted order
// (alphabetical, with no duplicate method names), the scan
// through V's methods must hit a match for each of T's
// methods along the way, or else V does not implement T.
// This lets us run the scan in overall linear time instead of
// the quadratic time a naive search would require.
// See also ../runtime/iface.go.
if V.Kind() == abi.Interface {
v := (*interfaceType)(unsafe.Pointer(V))
i := 0
for j := 0; j < len(v.Methods); j++ {
tm := &t.Methods[i]
tmName := t.nameOff(tm.Name)
vm := &v.Methods[j]
vmName := nameOffFor(V, vm.Name)
if vmName.Name() == tmName.Name() && typeOffFor(V, vm.Typ) == t.typeOff(tm.Typ) {
if !tmName.IsExported() {
tmPkgPath := pkgPath(tmName)
if tmPkgPath == "" {
tmPkgPath = t.PkgPath.Name()
}
vmPkgPath := pkgPath(vmName)
if vmPkgPath == "" {
vmPkgPath = v.PkgPath.Name()
}
if tmPkgPath != vmPkgPath {
continue
}
}
if i++; i >= len(t.Methods) {
return true
}
}
}
return false
}
v := V.Uncommon()
if v == nil {
return false
}
i := 0
vmethods := v.Methods()
for j := 0; j < int(v.Mcount); j++ {
tm := &t.Methods[i]
tmName := t.nameOff(tm.Name)
vm := vmethods[j]
vmName := nameOffFor(V, vm.Name)
if vmName.Name() == tmName.Name() && typeOffFor(V, vm.Mtyp) == t.typeOff(tm.Typ) {
if !tmName.IsExported() {
tmPkgPath := pkgPath(tmName)
if tmPkgPath == "" {
tmPkgPath = t.PkgPath.Name()
}
vmPkgPath := pkgPath(vmName)
if vmPkgPath == "" {
vmPkgPath = nameOffFor(V, v.PkgPath).Name()
}
if tmPkgPath != vmPkgPath {
continue
}
}
if i++; i >= len(t.Methods) {
return true
}
}
}
return false
}
// specialChannelAssignability reports whether a value x of channel type V
// can be directly assigned (using memmove) to another channel type T.
// https://golang.org/doc/go_spec.html#Assignability
// T and V must be both of Chan kind.
func specialChannelAssignability(T, V *abi.Type) bool {
// Special case:
// x is a bidirectional channel value, T is a channel type,
// x's type V and T have identical element types,
// and at least one of V or T is not a defined type.
return V.ChanDir() == abi.BothDir && (nameFor(T) == "" || nameFor(V) == "") && haveIdenticalType(T.Elem(), V.Elem(), true)
}
// directlyAssignable reports whether a value x of type V can be directly
// assigned (using memmove) to a value of type T.
// https://golang.org/doc/go_spec.html#Assignability
// Ignoring the interface rules (implemented elsewhere)
// and the ideal constant rules (no ideal constants at run time).
func directlyAssignable(T, V *abi.Type) bool {
// x's type V is identical to T?
if T == V {
return true
}
// Otherwise at least one of T and V must not be defined
// and they must have the same kind.
if T.HasName() && V.HasName() || T.Kind() != V.Kind() {
return false
}
if T.Kind() == abi.Chan && specialChannelAssignability(T, V) {
return true
}
// x's type T and V must have identical underlying types.
return haveIdenticalUnderlyingType(T, V, true)
}
func haveIdenticalType(T, V *abi.Type, cmpTags bool) bool {
if cmpTags {
return T == V
}
if nameFor(T) != nameFor(V) || T.Kind() != V.Kind() || pkgPathFor(T) != pkgPathFor(V) {
return false
}
return haveIdenticalUnderlyingType(T, V, false)
}
func haveIdenticalUnderlyingType(T, V *abi.Type, cmpTags bool) bool {
if T == V {
return true
}
kind := Kind(T.Kind())
if kind != Kind(V.Kind()) {
return false
}
// Non-composite types of equal kind have same underlying type
// (the predefined instance of the type).
if Bool <= kind && kind <= Complex128 || kind == String || kind == UnsafePointer {
return true
}
// Composite types.
switch kind {
case Array:
return T.Len() == V.Len() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
case Chan:
return V.ChanDir() == T.ChanDir() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
case Func:
t := (*funcType)(unsafe.Pointer(T))
v := (*funcType)(unsafe.Pointer(V))
if t.OutCount != v.OutCount || t.InCount != v.InCount {
return false
}
for i := 0; i < t.NumIn(); i++ {
if !haveIdenticalType(t.In(i), v.In(i), cmpTags) {
return false
}
}
for i := 0; i < t.NumOut(); i++ {
if !haveIdenticalType(t.Out(i), v.Out(i), cmpTags) {
return false
}
}
return true
case Interface:
t := (*interfaceType)(unsafe.Pointer(T))
v := (*interfaceType)(unsafe.Pointer(V))
if len(t.Methods) == 0 && len(v.Methods) == 0 {
return true
}
// Might have the same methods but still
// need a run time conversion.
return false
case Map:
return haveIdenticalType(T.Key(), V.Key(), cmpTags) && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
case Pointer, Slice:
return haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
case Struct:
t := (*structType)(unsafe.Pointer(T))
v := (*structType)(unsafe.Pointer(V))
if len(t.Fields) != len(v.Fields) {
return false
}
if t.PkgPath.Name() != v.PkgPath.Name() {
return false
}
for i := range t.Fields {
tf := &t.Fields[i]
vf := &v.Fields[i]
if tf.Name.Name() != vf.Name.Name() {
return false
}
if !haveIdenticalType(tf.Typ, vf.Typ, cmpTags) {
return false
}
if cmpTags && tf.Name.Tag() != vf.Name.Tag() {
return false
}
if tf.Offset != vf.Offset {
return false
}
if tf.Embedded() != vf.Embedded() {
return false
}
}
return true
}
return false
}
// typelinks is implemented in package runtime.
// It returns a slice of the sections in each module,
// and a slice of *rtype offsets in each module.
//
// The types in each module are sorted by string. That is, the first
// two linked types of the first module are:
//
// d0 := sections[0]
// t1 := (*rtype)(add(d0, offset[0][0]))
// t2 := (*rtype)(add(d0, offset[0][1]))
//
// and
//
// t1.String() < t2.String()
//
// Note that strings are not unique identifiers for types:
// there can be more than one with a given string.
// Only types we might want to look up are included:
// pointers, channels, maps, slices, and arrays.
func typelinks() (sections []unsafe.Pointer, offset [][]int32)
func rtypeOff(section unsafe.Pointer, off int32) *abi.Type {
return (*abi.Type)(add(section, uintptr(off), "sizeof(rtype) > 0"))
}
// typesByString returns the subslice of typelinks() whose elements have
// the given string representation.
// It may be empty (no known types with that string) or may have
// multiple elements (multiple types with that string).
func typesByString(s string) []*abi.Type {
sections, offset := typelinks()
var ret []*abi.Type
for offsI, offs := range offset {
section := sections[offsI]
// We are looking for the first index i where the string becomes >= s.
// This is a copy of sort.Search, with f(h) replaced by (*typ[h].String() >= s).
i, j := 0, len(offs)
for i < j {
h := int(uint(i+j) >> 1) // avoid overflow when computing h
// i ≤ h < j
if !(stringFor(rtypeOff(section, offs[h])) >= s) {
i = h + 1 // preserves f(i-1) == false
} else {
j = h // preserves f(j) == true
}
}
// i == j, f(i-1) == false, and f(j) (= f(i)) == true => answer is i.
// Having found the first, linear scan forward to find the last.
// We could do a second binary search, but the caller is going
// to do a linear scan anyway.
for j := i; j < len(offs); j++ {
typ := rtypeOff(section, offs[j])
if stringFor(typ) != s {
break
}
ret = append(ret, typ)
}
}
return ret
}
// The lookupCache caches ArrayOf, ChanOf, MapOf and SliceOf lookups.
var lookupCache sync.Map // map[cacheKey]*rtype
// A cacheKey is the key for use in the lookupCache.
// Four values describe any of the types we are looking for:
// type kind, one or two subtypes, and an extra integer.
type cacheKey struct {
kind Kind
t1 *abi.Type
t2 *abi.Type
extra uintptr
}
// The funcLookupCache caches FuncOf lookups.
// FuncOf does not share the common lookupCache since cacheKey is not
// sufficient to represent functions unambiguously.
var funcLookupCache struct {
sync.Mutex // Guards stores (but not loads) on m.
// m is a map[uint32][]*rtype keyed by the hash calculated in FuncOf.
// Elements of m are append-only and thus safe for concurrent reading.
m sync.Map
}
// ChanOf returns the channel type with the given direction and element type.
// For example, if t represents int, ChanOf(RecvDir, t) represents <-chan int.
//
// The gc runtime imposes a limit of 64 kB on channel element types.
// If t's size is equal to or exceeds this limit, ChanOf panics.
func ChanOf(dir ChanDir, t Type) Type {
typ := t.common()
// Look in cache.
ckey := cacheKey{Chan, typ, nil, uintptr(dir)}
if ch, ok := lookupCache.Load(ckey); ok {
return ch.(*rtype)
}
// This restriction is imposed by the gc compiler and the runtime.
if typ.Size_ >= 1<<16 {
panic("reflect.ChanOf: element size too large")
}
// Look in known types.
var s string
switch dir {
default:
panic("reflect.ChanOf: invalid dir")
case SendDir:
s = "chan<- " + stringFor(typ)
case RecvDir:
s = "<-chan " + stringFor(typ)
case BothDir:
typeStr := stringFor(typ)
if typeStr[0] == '<' {
// typ is recv chan, need parentheses as "<-" associates with leftmost
// chan possible, see:
// * https://golang.org/ref/spec#Channel_types
// * https://github.com/golang/go/issues/39897
s = "chan (" + typeStr + ")"
} else {
s = "chan " + typeStr
}
}
for _, tt := range typesByString(s) {
ch := (*chanType)(unsafe.Pointer(tt))
if ch.Elem == typ && ch.Dir == abi.ChanDir(dir) {
ti, _ := lookupCache.LoadOrStore(ckey, toRType(tt))
return ti.(Type)
}
}
// Make a channel type.
var ichan any = (chan unsafe.Pointer)(nil)
prototype := *(**chanType)(unsafe.Pointer(&ichan))
ch := *prototype
ch.TFlag = abi.TFlagRegularMemory
ch.Dir = abi.ChanDir(dir)
ch.Str = resolveReflectName(newName(s, "", false, false))
ch.Hash = fnv1(typ.Hash, 'c', byte(dir))
ch.Elem = typ
ti, _ := lookupCache.LoadOrStore(ckey, toRType(&ch.Type))
return ti.(Type)
}
// MapOf returns the map type with the given key and element types.
// For example, if k represents int and e represents string,
// MapOf(k, e) represents map[int]string.
//
// If the key type is not a valid map key type (that is, if it does
// not implement Go's == operator), MapOf panics.
func MapOf(key, elem Type) Type {
ktyp := key.common()
etyp := elem.common()
if ktyp.Equal == nil {
panic("reflect.MapOf: invalid key type " + stringFor(ktyp))
}
// Look in cache.
ckey := cacheKey{Map, ktyp, etyp, 0}
if mt, ok := lookupCache.Load(ckey); ok {
return mt.(Type)
}
// Look in known types.
s := "map[" + stringFor(ktyp) + "]" + stringFor(etyp)
for _, tt := range typesByString(s) {
mt := (*mapType)(unsafe.Pointer(tt))
if mt.Key == ktyp && mt.Elem == etyp {
ti, _ := lookupCache.LoadOrStore(ckey, toRType(tt))
return ti.(Type)
}
}
// Make a map type.
// Note: flag values must match those used in the TMAP case
// in ../cmd/compile/internal/reflectdata/reflect.go:writeType.
var imap any = (map[unsafe.Pointer]unsafe.Pointer)(nil)
mt := **(**mapType)(unsafe.Pointer(&imap))
mt.Str = resolveReflectName(newName(s, "", false, false))
mt.TFlag = 0
mt.Hash = fnv1(etyp.Hash, 'm', byte(ktyp.Hash>>24), byte(ktyp.Hash>>16), byte(ktyp.Hash>>8), byte(ktyp.Hash))
mt.Key = ktyp
mt.Elem = etyp
mt.Bucket = bucketOf(ktyp, etyp)
mt.Hasher = func(p unsafe.Pointer, seed uintptr) uintptr {
return typehash(ktyp, p, seed)
}
mt.Flags = 0
if ktyp.Size_ > maxKeySize {
mt.KeySize = uint8(goarch.PtrSize)
mt.Flags |= 1 // indirect key
} else {
mt.KeySize = uint8(ktyp.Size_)
}
if etyp.Size_ > maxValSize {
mt.ValueSize = uint8(goarch.PtrSize)
mt.Flags |= 2 // indirect value
} else {
mt.MapType.ValueSize = uint8(etyp.Size_)
}
mt.MapType.BucketSize = uint16(mt.Bucket.Size_)
if isReflexive(ktyp) {
mt.Flags |= 4
}
if needKeyUpdate(ktyp) {
mt.Flags |= 8
}
if hashMightPanic(ktyp) {
mt.Flags |= 16
}
mt.PtrToThis = 0
ti, _ := lookupCache.LoadOrStore(ckey, toRType(&mt.Type))
return ti.(Type)
}
var funcTypes []Type
var funcTypesMutex sync.Mutex
func initFuncTypes(n int) Type {
funcTypesMutex.Lock()
defer funcTypesMutex.Unlock()
if n >= len(funcTypes) {
newFuncTypes := make([]Type, n+1)
copy(newFuncTypes, funcTypes)
funcTypes = newFuncTypes
}
if funcTypes[n] != nil {
return funcTypes[n]
}
funcTypes[n] = StructOf([]StructField{
{
Name: "FuncType",
Type: TypeOf(funcType{}),
},
{
Name: "Args",
Type: ArrayOf(n, TypeOf(&rtype{})),
},
})
return funcTypes[n]
}
// FuncOf returns the function type with the given argument and result types.
// For example if k represents int and e represents string,
// FuncOf([]Type{k}, []Type{e}, false) represents func(int) string.
//
// The variadic argument controls whether the function is variadic. FuncOf
// panics if the in[len(in)-1] does not represent a slice and variadic is
// true.
func FuncOf(in, out []Type, variadic bool) Type {
if variadic && (len(in) == 0 || in[len(in)-1].Kind() != Slice) {
panic("reflect.FuncOf: last arg of variadic func must be slice")
}
// Make a func type.
var ifunc any = (func())(nil)
prototype := *(**funcType)(unsafe.Pointer(&ifunc))
n := len(in) + len(out)
if n > 128 {
panic("reflect.FuncOf: too many arguments")
}
o := New(initFuncTypes(n)).Elem()
ft := (*funcType)(unsafe.Pointer(o.Field(0).Addr().Pointer()))
args := unsafe.Slice((**rtype)(unsafe.Pointer(o.Field(1).Addr().Pointer())), n)[0:0:n]
*ft = *prototype
// Build a hash and minimally populate ft.
var hash uint32
for _, in := range in {
t := in.(*rtype)
args = append(args, t)
hash = fnv1(hash, byte(t.t.Hash>>24), byte(t.t.Hash>>16), byte(t.t.Hash>>8), byte(t.t.Hash))
}
if variadic {
hash = fnv1(hash, 'v')
}
hash = fnv1(hash, '.')
for _, out := range out {
t := out.(*rtype)
args = append(args, t)
hash = fnv1(hash, byte(t.t.Hash>>24), byte(t.t.Hash>>16), byte(t.t.Hash>>8), byte(t.t.Hash))
}
ft.TFlag = 0
ft.Hash = hash
ft.InCount = uint16(len(in))
ft.OutCount = uint16(len(out))
if variadic {
ft.OutCount |= 1 << 15
}
// Look in cache.
if ts, ok := funcLookupCache.m.Load(hash); ok {
for _, t := range ts.([]*abi.Type) {
if haveIdenticalUnderlyingType(&ft.Type, t, true) {
return toRType(t)
}
}
}
// Not in cache, lock and retry.
funcLookupCache.Lock()
defer funcLookupCache.Unlock()
if ts, ok := funcLookupCache.m.Load(hash); ok {
for _, t := range ts.([]*abi.Type) {
if haveIdenticalUnderlyingType(&ft.Type, t, true) {
return toRType(t)
}
}
}
addToCache := func(tt *abi.Type) Type {
var rts []*abi.Type
if rti, ok := funcLookupCache.m.Load(hash); ok {
rts = rti.([]*abi.Type)
}
funcLookupCache.m.Store(hash, append(rts, tt))
return toType(tt)
}
// Look in known types for the same string representation.
str := funcStr(ft)
for _, tt := range typesByString(str) {
if haveIdenticalUnderlyingType(&ft.Type, tt, true) {
return addToCache(tt)
}
}
// Populate the remaining fields of ft and store in cache.
ft.Str = resolveReflectName(newName(str, "", false, false))
ft.PtrToThis = 0
return addToCache(&ft.Type)
}
func stringFor(t *abi.Type) string {
return toRType(t).String()
}
// funcStr builds a string representation of a funcType.
func funcStr(ft *funcType) string {
repr := make([]byte, 0, 64)
repr = append(repr, "func("...)
for i, t := range ft.InSlice() {
if i > 0 {
repr = append(repr, ", "...)
}
if ft.IsVariadic() && i == int(ft.InCount)-1 {
repr = append(repr, "..."...)
repr = append(repr, stringFor((*sliceType)(unsafe.Pointer(t)).Elem)...)
} else {
repr = append(repr, stringFor(t)...)
}
}
repr = append(repr, ')')
out := ft.OutSlice()
if len(out) == 1 {
repr = append(repr, ' ')
} else if len(out) > 1 {
repr = append(repr, " ("...)
}
for i, t := range out {
if i > 0 {
repr = append(repr, ", "...)
}
repr = append(repr, stringFor(t)...)
}
if len(out) > 1 {
repr = append(repr, ')')
}
return string(repr)
}
// isReflexive reports whether the == operation on the type is reflexive.
// That is, x == x for all values x of type t.
func isReflexive(t *abi.Type) bool {
switch Kind(t.Kind()) {
case Bool, Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr, Chan, Pointer, String, UnsafePointer:
return true
case Float32, Float64, Complex64, Complex128, Interface:
return false
case Array:
tt := (*arrayType)(unsafe.Pointer(t))
return isReflexive(tt.Elem)
case Struct:
tt := (*structType)(unsafe.Pointer(t))
for _, f := range tt.Fields {
if !isReflexive(f.Typ) {
return false
}
}
return true
default:
// Func, Map, Slice, Invalid
panic("isReflexive called on non-key type " + stringFor(t))
}
}
// needKeyUpdate reports whether map overwrites require the key to be copied.
func needKeyUpdate(t *abi.Type) bool {
switch Kind(t.Kind()) {
case Bool, Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr, Chan, Pointer, UnsafePointer:
return false
case Float32, Float64, Complex64, Complex128, Interface, String:
// Float keys can be updated from +0 to -0.
// String keys can be updated to use a smaller backing store.
// Interfaces might have floats or strings in them.
return true
case Array:
tt := (*arrayType)(unsafe.Pointer(t))
return needKeyUpdate(tt.Elem)
case Struct:
tt := (*structType)(unsafe.Pointer(t))
for _, f := range tt.Fields {
if needKeyUpdate(f.Typ) {
return true
}
}
return false
default:
// Func, Map, Slice, Invalid
panic("needKeyUpdate called on non-key type " + stringFor(t))
}
}
// hashMightPanic reports whether the hash of a map key of type t might panic.
func hashMightPanic(t *abi.Type) bool {
switch Kind(t.Kind()) {
case Interface:
return true
case Array:
tt := (*arrayType)(unsafe.Pointer(t))
return hashMightPanic(tt.Elem)
case Struct:
tt := (*structType)(unsafe.Pointer(t))
for _, f := range tt.Fields {
if hashMightPanic(f.Typ) {
return true
}
}
return false
default:
return false
}
}
// Make sure these routines stay in sync with ../runtime/map.go!
// These types exist only for GC, so we only fill out GC relevant info.
// Currently, that's just size and the GC program. We also fill in string
// for possible debugging use.
const (
bucketSize uintptr = abi.MapBucketCount
maxKeySize uintptr = abi.MapMaxKeyBytes
maxValSize uintptr = abi.MapMaxElemBytes
)
func bucketOf(ktyp, etyp *abi.Type) *abi.Type {
if ktyp.Size_ > maxKeySize {
ktyp = ptrTo(ktyp)
}
if etyp.Size_ > maxValSize {
etyp = ptrTo(etyp)
}
// Prepare GC data if any.
// A bucket is at most bucketSize*(1+maxKeySize+maxValSize)+ptrSize bytes,
// or 2064 bytes, or 258 pointer-size words, or 33 bytes of pointer bitmap.
// Note that since the key and value are known to be <= 128 bytes,
// they're guaranteed to have bitmaps instead of GC programs.
var gcdata *byte
var ptrdata uintptr
size := bucketSize*(1+ktyp.Size_+etyp.Size_) + goarch.PtrSize
if size&uintptr(ktyp.Align_-1) != 0 || size&uintptr(etyp.Align_-1) != 0 {
panic("reflect: bad size computation in MapOf")
}
if ktyp.PtrBytes != 0 || etyp.PtrBytes != 0 {
nptr := (bucketSize*(1+ktyp.Size_+etyp.Size_) + goarch.PtrSize) / goarch.PtrSize
n := (nptr + 7) / 8
// Runtime needs pointer masks to be a multiple of uintptr in size.
n = (n + goarch.PtrSize - 1) &^ (goarch.PtrSize - 1)
mask := make([]byte, n)
base := bucketSize / goarch.PtrSize
if ktyp.PtrBytes != 0 {
emitGCMask(mask, base, ktyp, bucketSize)
}
base += bucketSize * ktyp.Size_ / goarch.PtrSize
if etyp.PtrBytes != 0 {
emitGCMask(mask, base, etyp, bucketSize)
}
base += bucketSize * etyp.Size_ / goarch.PtrSize
word := base
mask[word/8] |= 1 << (word % 8)
gcdata = &mask[0]
ptrdata = (word + 1) * goarch.PtrSize
// overflow word must be last
if ptrdata != size {
panic("reflect: bad layout computation in MapOf")
}
}
b := &abi.Type{
Align_: goarch.PtrSize,
Size_: size,
Kind_: uint8(Struct),
PtrBytes: ptrdata,
GCData: gcdata,
}
s := "bucket(" + stringFor(ktyp) + "," + stringFor(etyp) + ")"
b.Str = resolveReflectName(newName(s, "", false, false))
return b
}
func (t *rtype) gcSlice(begin, end uintptr) []byte {
return (*[1 << 30]byte)(unsafe.Pointer(t.t.GCData))[begin:end:end]
}
// emitGCMask writes the GC mask for [n]typ into out, starting at bit
// offset base.
func emitGCMask(out []byte, base uintptr, typ *abi.Type, n uintptr) {
if typ.Kind_&kindGCProg != 0 {
panic("reflect: unexpected GC program")
}
ptrs := typ.PtrBytes / goarch.PtrSize
words := typ.Size_ / goarch.PtrSize
mask := typ.GcSlice(0, (ptrs+7)/8)
for j := uintptr(0); j < ptrs; j++ {
if (mask[j/8]>>(j%8))&1 != 0 {
for i := uintptr(0); i < n; i++ {
k := base + i*words + j
out[k/8] |= 1 << (k % 8)
}
}
}
}
// appendGCProg appends the GC program for the first ptrdata bytes of
// typ to dst and returns the extended slice.
func appendGCProg(dst []byte, typ *abi.Type) []byte {
if typ.Kind_&kindGCProg != 0 {
// Element has GC program; emit one element.
n := uintptr(*(*uint32)(unsafe.Pointer(typ.GCData)))
prog := typ.GcSlice(4, 4+n-1)
return append(dst, prog...)
}
// Element is small with pointer mask; use as literal bits.
ptrs := typ.PtrBytes / goarch.PtrSize
mask := typ.GcSlice(0, (ptrs+7)/8)
// Emit 120-bit chunks of full bytes (max is 127 but we avoid using partial bytes).
for ; ptrs > 120; ptrs -= 120 {
dst = append(dst, 120)
dst = append(dst, mask[:15]...)
mask = mask[15:]
}
dst = append(dst, byte(ptrs))
dst = append(dst, mask...)
return dst
}
// SliceOf returns the slice type with element type t.
// For example, if t represents int, SliceOf(t) represents []int.
func SliceOf(t Type) Type {
typ := t.common()
// Look in cache.
ckey := cacheKey{Slice, typ, nil, 0}
if slice, ok := lookupCache.Load(ckey); ok {
return slice.(Type)
}
// Look in known types.
s := "[]" + stringFor(typ)
for _, tt := range typesByString(s) {
slice := (*sliceType)(unsafe.Pointer(tt))
if slice.Elem == typ {
ti, _ := lookupCache.LoadOrStore(ckey, toRType(tt))
return ti.(Type)
}
}
// Make a slice type.
var islice any = ([]unsafe.Pointer)(nil)
prototype := *(**sliceType)(unsafe.Pointer(&islice))
slice := *prototype
slice.TFlag = 0
slice.Str = resolveReflectName(newName(s, "", false, false))
slice.Hash = fnv1(typ.Hash, '[')
slice.Elem = typ
slice.PtrToThis = 0
ti, _ := lookupCache.LoadOrStore(ckey, toRType(&slice.Type))
return ti.(Type)
}
// The structLookupCache caches StructOf lookups.
// StructOf does not share the common lookupCache since we need to pin
// the memory associated with *structTypeFixedN.
var structLookupCache struct {
sync.Mutex // Guards stores (but not loads) on m.
// m is a map[uint32][]Type keyed by the hash calculated in StructOf.
// Elements in m are append-only and thus safe for concurrent reading.
m sync.Map
}
type structTypeUncommon struct {
structType
u uncommonType
}
// isLetter reports whether a given 'rune' is classified as a Letter.
func isLetter(ch rune) bool {
return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_' || ch >= utf8.RuneSelf && unicode.IsLetter(ch)
}
// isValidFieldName checks if a string is a valid (struct) field name or not.
//
// According to the language spec, a field name should be an identifier.
//
// identifier = letter { letter | unicode_digit } .
// letter = unicode_letter | "_" .
func isValidFieldName(fieldName string) bool {
for i, c := range fieldName {
if i == 0 && !isLetter(c) {
return false
}
if !(isLetter(c) || unicode.IsDigit(c)) {
return false
}
}
return len(fieldName) > 0
}
// StructOf returns the struct type containing fields.
// The Offset and Index fields are ignored and computed as they would be
// by the compiler.
//
// StructOf currently does not support promoted methods of embedded fields
// and panics if passed unexported StructFields.
func StructOf(fields []StructField) Type {
var (
hash = fnv1(0, []byte("struct {")...)
size uintptr
typalign uint8
comparable = true
methods []abi.Method
fs = make([]structField, len(fields))
repr = make([]byte, 0, 64)
fset = map[string]struct{}{} // fields' names
hasGCProg = false // records whether a struct-field type has a GCProg
)
lastzero := uintptr(0)
repr = append(repr, "struct {"...)
pkgpath := ""
for i, field := range fields {
if field.Name == "" {
panic("reflect.StructOf: field " + strconv.Itoa(i) + " has no name")
}
if !isValidFieldName(field.Name) {
panic("reflect.StructOf: field " + strconv.Itoa(i) + " has invalid name")
}
if field.Type == nil {
panic("reflect.StructOf: field " + strconv.Itoa(i) + " has no type")
}
f, fpkgpath := runtimeStructField(field)
ft := f.Typ
if ft.Kind_&kindGCProg != 0 {
hasGCProg = true
}
if fpkgpath != "" {
if pkgpath == "" {
pkgpath = fpkgpath
} else if pkgpath != fpkgpath {
panic("reflect.Struct: fields with different PkgPath " + pkgpath + " and " + fpkgpath)
}
}
// Update string and hash
name := f.Name.Name()
hash = fnv1(hash, []byte(name)...)
repr = append(repr, (" " + name)...)
if f.Embedded() {
// Embedded field
if f.Typ.Kind() == abi.Pointer {
// Embedded ** and *interface{} are illegal
elem := ft.Elem()
if k := elem.Kind(); k == abi.Pointer || k == abi.Interface {
panic("reflect.StructOf: illegal embedded field type " + stringFor(ft))
}
}
switch Kind(f.Typ.Kind()) {
case Interface:
ift := (*interfaceType)(unsafe.Pointer(ft))
for _, m := range ift.Methods {
if pkgPath(ift.nameOff(m.Name)) != "" {
// TODO(sbinet). Issue 15924.
panic("reflect: embedded interface with unexported method(s) not implemented")
}
fnStub := resolveReflectText(unsafe.Pointer(abi.FuncPCABIInternal(embeddedIfaceMethStub)))
methods = append(methods, abi.Method{
Name: resolveReflectName(ift.nameOff(m.Name)),
Mtyp: resolveReflectType(ift.typeOff(m.Typ)),
Ifn: fnStub,
Tfn: fnStub,
})
}
case Pointer:
ptr := (*ptrType)(unsafe.Pointer(ft))
if unt := ptr.Uncommon(); unt != nil {
if i > 0 && unt.Mcount > 0 {
// Issue 15924.
panic("reflect: embedded type with methods not implemented if type is not first field")
}
if len(fields) > 1 {
panic("reflect: embedded type with methods not implemented if there is more than one field")
}
for _, m := range unt.Methods() {
mname := nameOffFor(ft, m.Name)
if pkgPath(mname) != "" {
// TODO(sbinet).
// Issue 15924.
panic("reflect: embedded interface with unexported method(s) not implemented")
}
methods = append(methods, abi.Method{
Name: resolveReflectName(mname),
Mtyp: resolveReflectType(typeOffFor(ft, m.Mtyp)),
Ifn: resolveReflectText(textOffFor(ft, m.Ifn)),
Tfn: resolveReflectText(textOffFor(ft, m.Tfn)),
})
}
}
if unt := ptr.Elem.Uncommon(); unt != nil {
for _, m := range unt.Methods() {
mname := nameOffFor(ft, m.Name)
if pkgPath(mname) != "" {
// TODO(sbinet)
// Issue 15924.
panic("reflect: embedded interface with unexported method(s) not implemented")
}
methods = append(methods, abi.Method{
Name: resolveReflectName(mname),
Mtyp: resolveReflectType(typeOffFor(ptr.Elem, m.Mtyp)),
Ifn: resolveReflectText(textOffFor(ptr.Elem, m.Ifn)),
Tfn: resolveReflectText(textOffFor(ptr.Elem, m.Tfn)),
})
}
}
default:
if unt := ft.Uncommon(); unt != nil {
if i > 0 && unt.Mcount > 0 {
// Issue 15924.
panic("reflect: embedded type with methods not implemented if type is not first field")
}
if len(fields) > 1 && ft.Kind_&kindDirectIface != 0 {
panic("reflect: embedded type with methods not implemented for non-pointer type")
}
for _, m := range unt.Methods() {
mname := nameOffFor(ft, m.Name)
if pkgPath(mname) != "" {
// TODO(sbinet)
// Issue 15924.
panic("reflect: embedded interface with unexported method(s) not implemented")
}
methods = append(methods, abi.Method{
Name: resolveReflectName(mname),
Mtyp: resolveReflectType(typeOffFor(ft, m.Mtyp)),
Ifn: resolveReflectText(textOffFor(ft, m.Ifn)),
Tfn: resolveReflectText(textOffFor(ft, m.Tfn)),
})
}
}
}
}
if _, dup := fset[name]; dup && name != "_" {
panic("reflect.StructOf: duplicate field " + name)
}
fset[name] = struct{}{}
hash = fnv1(hash, byte(ft.Hash>>24), byte(ft.Hash>>16), byte(ft.Hash>>8), byte(ft.Hash))
repr = append(repr, (" " + stringFor(ft))...)
if f.Name.HasTag() {
hash = fnv1(hash, []byte(f.Name.Tag())...)
repr = append(repr, (" " + strconv.Quote(f.Name.Tag()))...)
}
if i < len(fields)-1 {
repr = append(repr, ';')
}
comparable = comparable && (ft.Equal != nil)
offset := align(size, uintptr(ft.Align_))
if offset < size {
panic("reflect.StructOf: struct size would exceed virtual address space")
}
if ft.Align_ > typalign {
typalign = ft.Align_
}
size = offset + ft.Size_
if size < offset {
panic("reflect.StructOf: struct size would exceed virtual address space")
}
f.Offset = offset
if ft.Size_ == 0 {
lastzero = size
}
fs[i] = f
}
if size > 0 && lastzero == size {
// This is a non-zero sized struct that ends in a
// zero-sized field. We add an extra byte of padding,
// to ensure that taking the address of the final
// zero-sized field can't manufacture a pointer to the
// next object in the heap. See issue 9401.
size++
if size == 0 {
panic("reflect.StructOf: struct size would exceed virtual address space")
}
}
var typ *structType
var ut *uncommonType
if len(methods) == 0 {
t := new(structTypeUncommon)
typ = &t.structType
ut = &t.u
} else {
// A *rtype representing a struct is followed directly in memory by an
// array of method objects representing the methods attached to the
// struct. To get the same layout for a run time generated type, we
// need an array directly following the uncommonType memory.
// A similar strategy is used for funcTypeFixed4, ...funcTypeFixedN.
tt := New(StructOf([]StructField{
{Name: "S", Type: TypeOf(structType{})},
{Name: "U", Type: TypeOf(uncommonType{})},
{Name: "M", Type: ArrayOf(len(methods), TypeOf(methods[0]))},
}))
typ = (*structType)(tt.Elem().Field(0).Addr().UnsafePointer())
ut = (*uncommonType)(tt.Elem().Field(1).Addr().UnsafePointer())
copy(tt.Elem().Field(2).Slice(0, len(methods)).Interface().([]abi.Method), methods)
}
// TODO(sbinet): Once we allow embedding multiple types,
// methods will need to be sorted like the compiler does.
// TODO(sbinet): Once we allow non-exported methods, we will
// need to compute xcount as the number of exported methods.
ut.Mcount = uint16(len(methods))
ut.Xcount = ut.Mcount
ut.Moff = uint32(unsafe.Sizeof(uncommonType{}))
if len(fs) > 0 {
repr = append(repr, ' ')
}
repr = append(repr, '}')
hash = fnv1(hash, '}')
str := string(repr)
// Round the size up to be a multiple of the alignment.
s := align(size, uintptr(typalign))
if s < size {
panic("reflect.StructOf: struct size would exceed virtual address space")
}
size = s
// Make the struct type.
var istruct any = struct{}{}
prototype := *(**structType)(unsafe.Pointer(&istruct))
*typ = *prototype
typ.Fields = fs
if pkgpath != "" {
typ.PkgPath = newName(pkgpath, "", false, false)
}
// Look in cache.
if ts, ok := structLookupCache.m.Load(hash); ok {
for _, st := range ts.([]Type) {
t := st.common()
if haveIdenticalUnderlyingType(&typ.Type, t, true) {
return toType(t)
}
}
}
// Not in cache, lock and retry.
structLookupCache.Lock()
defer structLookupCache.Unlock()
if ts, ok := structLookupCache.m.Load(hash); ok {
for _, st := range ts.([]Type) {
t := st.common()
if haveIdenticalUnderlyingType(&typ.Type, t, true) {
return toType(t)
}
}
}
addToCache := func(t Type) Type {
var ts []Type
if ti, ok := structLookupCache.m.Load(hash); ok {
ts = ti.([]Type)
}
structLookupCache.m.Store(hash, append(ts, t))
return t
}
// Look in known types.
for _, t := range typesByString(str) {
if haveIdenticalUnderlyingType(&typ.Type, t, true) {
// even if 't' wasn't a structType with methods, we should be ok
// as the 'u uncommonType' field won't be accessed except when
// tflag&abi.TFlagUncommon is set.
return addToCache(toType(t))
}
}
typ.Str = resolveReflectName(newName(str, "", false, false))
typ.TFlag = 0 // TODO: set tflagRegularMemory
typ.Hash = hash
typ.Size_ = size
typ.PtrBytes = typeptrdata(&typ.Type)
typ.Align_ = typalign
typ.FieldAlign_ = typalign
typ.PtrToThis = 0
if len(methods) > 0 {
typ.TFlag |= abi.TFlagUncommon
}
if hasGCProg {
lastPtrField := 0
for i, ft := range fs {
if ft.Typ.Pointers() {
lastPtrField = i
}
}
prog := []byte{0, 0, 0, 0} // will be length of prog
var off uintptr
for i, ft := range fs {
if i > lastPtrField {
// gcprog should not include anything for any field after
// the last field that contains pointer data
break
}
if !ft.Typ.Pointers() {
// Ignore pointerless fields.
continue
}
// Pad to start of this field with zeros.
if ft.Offset > off {
n := (ft.Offset - off) / goarch.PtrSize
prog = append(prog, 0x01, 0x00) // emit a 0 bit
if n > 1 {
prog = append(prog, 0x81) // repeat previous bit
prog = appendVarint(prog, n-1) // n-1 times
}
off = ft.Offset
}
prog = appendGCProg(prog, ft.Typ)
off += ft.Typ.PtrBytes
}
prog = append(prog, 0)
*(*uint32)(unsafe.Pointer(&prog[0])) = uint32(len(prog) - 4)
typ.Kind_ |= kindGCProg
typ.GCData = &prog[0]
} else {
typ.Kind_ &^= kindGCProg
bv := new(bitVector)
addTypeBits(bv, 0, &typ.Type)
if len(bv.data) > 0 {
typ.GCData = &bv.data[0]
}
}
typ.Equal = nil
if comparable {
typ.Equal = func(p, q unsafe.Pointer) bool {
for _, ft := range typ.Fields {
pi := add(p, ft.Offset, "&x.field safe")
qi := add(q, ft.Offset, "&x.field safe")
if !ft.Typ.Equal(pi, qi) {
return false
}
}
return true
}
}
switch {
case len(fs) == 1 && !ifaceIndir(fs[0].Typ):
// structs of 1 direct iface type can be direct
typ.Kind_ |= kindDirectIface
default:
typ.Kind_ &^= kindDirectIface
}
return addToCache(toType(&typ.Type))
}
func embeddedIfaceMethStub() {
panic("reflect: StructOf does not support methods of embedded interfaces")
}
// runtimeStructField takes a StructField value passed to StructOf and
// returns both the corresponding internal representation, of type
// structField, and the pkgpath value to use for this field.
func runtimeStructField(field StructField) (structField, string) {
if field.Anonymous && field.PkgPath != "" {
panic("reflect.StructOf: field \"" + field.Name + "\" is anonymous but has PkgPath set")
}
if field.IsExported() {
// Best-effort check for misuse.
// Since this field will be treated as exported, not much harm done if Unicode lowercase slips through.
c := field.Name[0]
if 'a' <= c && c <= 'z' || c == '_' {
panic("reflect.StructOf: field \"" + field.Name + "\" is unexported but missing PkgPath")
}
}
resolveReflectType(field.Type.common()) // install in runtime
f := structField{
Name: newName(field.Name, string(field.Tag), field.IsExported(), field.Anonymous),
Typ: field.Type.common(),
Offset: 0,
}
return f, field.PkgPath
}
// typeptrdata returns the length in bytes of the prefix of t
// containing pointer data. Anything after this offset is scalar data.
// keep in sync with ../cmd/compile/internal/reflectdata/reflect.go
func typeptrdata(t *abi.Type) uintptr {
switch t.Kind() {
case abi.Struct:
st := (*structType)(unsafe.Pointer(t))
// find the last field that has pointers.
field := -1
for i := range st.Fields {
ft := st.Fields[i].Typ
if ft.Pointers() {
field = i
}
}
if field == -1 {
return 0
}
f := st.Fields[field]
return f.Offset + f.Typ.PtrBytes
default:
panic("reflect.typeptrdata: unexpected type, " + stringFor(t))
}
}
// See cmd/compile/internal/reflectdata/reflect.go for derivation of constant.
const maxPtrmaskBytes = 2048
// ArrayOf returns the array type with the given length and element type.
// For example, if t represents int, ArrayOf(5, t) represents [5]int.
//
// If the resulting type would be larger than the available address space,
// ArrayOf panics.
func ArrayOf(length int, elem Type) Type {
if length < 0 {
panic("reflect: negative length passed to ArrayOf")
}
typ := elem.common()
// Look in cache.
ckey := cacheKey{Array, typ, nil, uintptr(length)}
if array, ok := lookupCache.Load(ckey); ok {
return array.(Type)
}
// Look in known types.
s := "[" + strconv.Itoa(length) + "]" + stringFor(typ)
for _, tt := range typesByString(s) {
array := (*arrayType)(unsafe.Pointer(tt))
if array.Elem == typ {
ti, _ := lookupCache.LoadOrStore(ckey, toRType(tt))
return ti.(Type)
}
}
// Make an array type.
var iarray any = [1]unsafe.Pointer{}
prototype := *(**arrayType)(unsafe.Pointer(&iarray))
array := *prototype
array.TFlag = typ.TFlag & abi.TFlagRegularMemory
array.Str = resolveReflectName(newName(s, "", false, false))
array.Hash = fnv1(typ.Hash, '[')
for n := uint32(length); n > 0; n >>= 8 {
array.Hash = fnv1(array.Hash, byte(n))
}
array.Hash = fnv1(array.Hash, ']')
array.Elem = typ
array.PtrToThis = 0
if typ.Size_ > 0 {
max := ^uintptr(0) / typ.Size_
if uintptr(length) > max {
panic("reflect.ArrayOf: array size would exceed virtual address space")
}
}
array.Size_ = typ.Size_ * uintptr(length)
if length > 0 && typ.PtrBytes != 0 {
array.PtrBytes = typ.Size_*uintptr(length-1) + typ.PtrBytes
}
array.Align_ = typ.Align_
array.FieldAlign_ = typ.FieldAlign_
array.Len = uintptr(length)
array.Slice = &(SliceOf(elem).(*rtype).t)
switch {
case typ.PtrBytes == 0 || array.Size_ == 0:
// No pointers.
array.GCData = nil
array.PtrBytes = 0
case length == 1:
// In memory, 1-element array looks just like the element.
array.Kind_ |= typ.Kind_ & kindGCProg
array.GCData = typ.GCData
array.PtrBytes = typ.PtrBytes
case typ.Kind_&kindGCProg == 0 && array.Size_ <= maxPtrmaskBytes*8*goarch.PtrSize:
// Element is small with pointer mask; array is still small.
// Create direct pointer mask by turning each 1 bit in elem
// into length 1 bits in larger mask.
n := (array.PtrBytes/goarch.PtrSize + 7) / 8
// Runtime needs pointer masks to be a multiple of uintptr in size.
n = (n + goarch.PtrSize - 1) &^ (goarch.PtrSize - 1)
mask := make([]byte, n)
emitGCMask(mask, 0, typ, array.Len)
array.GCData = &mask[0]
default:
// Create program that emits one element
// and then repeats to make the array.
prog := []byte{0, 0, 0, 0} // will be length of prog
prog = appendGCProg(prog, typ)
// Pad from ptrdata to size.
elemPtrs := typ.PtrBytes / goarch.PtrSize
elemWords := typ.Size_ / goarch.PtrSize
if elemPtrs < elemWords {
// Emit literal 0 bit, then repeat as needed.
prog = append(prog, 0x01, 0x00)
if elemPtrs+1 < elemWords {
prog = append(prog, 0x81)
prog = appendVarint(prog, elemWords-elemPtrs-1)
}
}
// Repeat length-1 times.
if elemWords < 0x80 {
prog = append(prog, byte(elemWords|0x80))
} else {
prog = append(prog, 0x80)
prog = appendVarint(prog, elemWords)
}
prog = appendVarint(prog, uintptr(length)-1)
prog = append(prog, 0)
*(*uint32)(unsafe.Pointer(&prog[0])) = uint32(len(prog) - 4)
array.Kind_ |= kindGCProg
array.GCData = &prog[0]
array.PtrBytes = array.Size_ // overestimate but ok; must match program
}
etyp := typ
esize := etyp.Size()
array.Equal = nil
if eequal := etyp.Equal; eequal != nil {
array.Equal = func(p, q unsafe.Pointer) bool {
for i := 0; i < length; i++ {
pi := arrayAt(p, i, esize, "i < length")
qi := arrayAt(q, i, esize, "i < length")
if !eequal(pi, qi) {
return false
}
}
return true
}
}
switch {
case length == 1 && !ifaceIndir(typ):
// array of 1 direct iface type can be direct
array.Kind_ |= kindDirectIface
default:
array.Kind_ &^= kindDirectIface
}
ti, _ := lookupCache.LoadOrStore(ckey, toRType(&array.Type))
return ti.(Type)
}
func appendVarint(x []byte, v uintptr) []byte {
for ; v >= 0x80; v >>= 7 {
x = append(x, byte(v|0x80))
}
x = append(x, byte(v))
return x
}
// toType converts from a *rtype to a Type that can be returned
// to the client of package reflect. In gc, the only concern is that
// a nil *rtype must be replaced by a nil Type, but in gccgo this
// function takes care of ensuring that multiple *rtype for the same
// type are coalesced into a single Type.
func toType(t *abi.Type) Type {
if t == nil {
return nil
}
return toRType(t)
}
type layoutKey struct {
ftyp *funcType // function signature
rcvr *abi.Type // receiver type, or nil if none
}
type layoutType struct {
t *abi.Type
framePool *sync.Pool
abid abiDesc
}
var layoutCache sync.Map // map[layoutKey]layoutType
// funcLayout computes a struct type representing the layout of the
// stack-assigned function arguments and return values for the function
// type t.
// If rcvr != nil, rcvr specifies the type of the receiver.
// The returned type exists only for GC, so we only fill out GC relevant info.
// Currently, that's just size and the GC program. We also fill in
// the name for possible debugging use.
func funcLayout(t *funcType, rcvr *abi.Type) (frametype *abi.Type, framePool *sync.Pool, abid abiDesc) {
if t.Kind() != abi.Func {
panic("reflect: funcLayout of non-func type " + stringFor(&t.Type))
}
if rcvr != nil && rcvr.Kind() == abi.Interface {
panic("reflect: funcLayout with interface receiver " + stringFor(rcvr))
}
k := layoutKey{t, rcvr}
if lti, ok := layoutCache.Load(k); ok {
lt := lti.(layoutType)
return lt.t, lt.framePool, lt.abid
}
// Compute the ABI layout.
abid = newAbiDesc(t, rcvr)
// build dummy rtype holding gc program
x := &abi.Type{
Align_: goarch.PtrSize,
// Don't add spill space here; it's only necessary in
// reflectcall's frame, not in the allocated frame.
// TODO(mknyszek): Remove this comment when register
// spill space in the frame is no longer required.
Size_: align(abid.retOffset+abid.ret.stackBytes, goarch.PtrSize),
PtrBytes: uintptr(abid.stackPtrs.n) * goarch.PtrSize,
}
if abid.stackPtrs.n > 0 {
x.GCData = &abid.stackPtrs.data[0]
}
var s string
if rcvr != nil {
s = "methodargs(" + stringFor(rcvr) + ")(" + stringFor(&t.Type) + ")"
} else {
s = "funcargs(" + stringFor(&t.Type) + ")"
}
x.Str = resolveReflectName(newName(s, "", false, false))
// cache result for future callers
framePool = &sync.Pool{New: func() any {
return unsafe_New(x)
}}
lti, _ := layoutCache.LoadOrStore(k, layoutType{
t: x,
framePool: framePool,
abid: abid,
})
lt := lti.(layoutType)
return lt.t, lt.framePool, lt.abid
}
// ifaceIndir reports whether t is stored indirectly in an interface value.
func ifaceIndir(t *abi.Type) bool {
return t.Kind_&kindDirectIface == 0
}
// Note: this type must agree with runtime.bitvector.
type bitVector struct {
n uint32 // number of bits
data []byte
}
// append a bit to the bitmap.
func (bv *bitVector) append(bit uint8) {
if bv.n%(8*goarch.PtrSize) == 0 {
// Runtime needs pointer masks to be a multiple of uintptr in size.
// Since reflect passes bv.data directly to the runtime as a pointer mask,
// we append a full uintptr of zeros at a time.
for i := 0; i < goarch.PtrSize; i++ {
bv.data = append(bv.data, 0)
}
}
bv.data[bv.n/8] |= bit << (bv.n % 8)
bv.n++
}
func addTypeBits(bv *bitVector, offset uintptr, t *abi.Type) {
if t.PtrBytes == 0 {
return
}
switch Kind(t.Kind_ & kindMask) {
case Chan, Func, Map, Pointer, Slice, String, UnsafePointer:
// 1 pointer at start of representation
for bv.n < uint32(offset/uintptr(goarch.PtrSize)) {
bv.append(0)
}
bv.append(1)
case Interface:
// 2 pointers
for bv.n < uint32(offset/uintptr(goarch.PtrSize)) {
bv.append(0)
}
bv.append(1)
bv.append(1)
case Array:
// repeat inner type
tt := (*arrayType)(unsafe.Pointer(t))
for i := 0; i < int(tt.Len); i++ {
addTypeBits(bv, offset+uintptr(i)*tt.Elem.Size_, tt.Elem)
}
case Struct:
// apply fields
tt := (*structType)(unsafe.Pointer(t))
for i := range tt.Fields {
f := &tt.Fields[i]
addTypeBits(bv, offset+f.Offset, f.Typ)
}
}
}
// TypeFor returns the [Type] that represents the type argument T.
func TypeFor[T any]() Type {
return TypeOf((*T)(nil)).Elem()
}
|