1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
|
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"bytes"
"fmt"
"internal/goexperiment"
"internal/profile"
"internal/testenv"
"os"
"reflect"
"runtime"
"runtime/debug"
"runtime/metrics"
"runtime/pprof"
"runtime/trace"
"slices"
"sort"
"strings"
"sync"
"sync/atomic"
"testing"
"time"
"unsafe"
)
func prepareAllMetricsSamples() (map[string]metrics.Description, []metrics.Sample) {
all := metrics.All()
samples := make([]metrics.Sample, len(all))
descs := make(map[string]metrics.Description)
for i := range all {
samples[i].Name = all[i].Name
descs[all[i].Name] = all[i]
}
return descs, samples
}
func TestReadMetrics(t *testing.T) {
// Run a GC cycle to get some of the stats to be non-zero.
runtime.GC()
// Set an arbitrary memory limit to check the metric for it
limit := int64(512 * 1024 * 1024)
oldLimit := debug.SetMemoryLimit(limit)
defer debug.SetMemoryLimit(oldLimit)
// Set a GC percent to check the metric for it
gcPercent := 99
oldGCPercent := debug.SetGCPercent(gcPercent)
defer debug.SetGCPercent(oldGCPercent)
// Tests whether readMetrics produces values aligning
// with ReadMemStats while the world is stopped.
var mstats runtime.MemStats
_, samples := prepareAllMetricsSamples()
runtime.ReadMetricsSlow(&mstats, unsafe.Pointer(&samples[0]), len(samples), cap(samples))
checkUint64 := func(t *testing.T, m string, got, want uint64) {
t.Helper()
if got != want {
t.Errorf("metric %q: got %d, want %d", m, got, want)
}
}
// Check to make sure the values we read line up with other values we read.
var allocsBySize, gcPauses, schedPausesTotalGC *metrics.Float64Histogram
var tinyAllocs uint64
var mallocs, frees uint64
for i := range samples {
switch name := samples[i].Name; name {
case "/cgo/go-to-c-calls:calls":
checkUint64(t, name, samples[i].Value.Uint64(), uint64(runtime.NumCgoCall()))
case "/memory/classes/heap/free:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.HeapIdle-mstats.HeapReleased)
case "/memory/classes/heap/released:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.HeapReleased)
case "/memory/classes/heap/objects:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.HeapAlloc)
case "/memory/classes/heap/unused:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.HeapInuse-mstats.HeapAlloc)
case "/memory/classes/heap/stacks:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.StackInuse)
case "/memory/classes/metadata/mcache/free:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.MCacheSys-mstats.MCacheInuse)
case "/memory/classes/metadata/mcache/inuse:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.MCacheInuse)
case "/memory/classes/metadata/mspan/free:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.MSpanSys-mstats.MSpanInuse)
case "/memory/classes/metadata/mspan/inuse:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.MSpanInuse)
case "/memory/classes/metadata/other:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.GCSys)
case "/memory/classes/os-stacks:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.StackSys-mstats.StackInuse)
case "/memory/classes/other:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.OtherSys)
case "/memory/classes/profiling/buckets:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.BuckHashSys)
case "/memory/classes/total:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.Sys)
case "/gc/heap/allocs-by-size:bytes":
hist := samples[i].Value.Float64Histogram()
// Skip size class 0 in BySize, because it's always empty and not represented
// in the histogram.
for i, sc := range mstats.BySize[1:] {
if b, s := hist.Buckets[i+1], float64(sc.Size+1); b != s {
t.Errorf("bucket does not match size class: got %f, want %f", b, s)
// The rest of the checks aren't expected to work anyway.
continue
}
if c, m := hist.Counts[i], sc.Mallocs; c != m {
t.Errorf("histogram counts do not much BySize for class %d: got %d, want %d", i, c, m)
}
}
allocsBySize = hist
case "/gc/heap/allocs:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.TotalAlloc)
case "/gc/heap/frees-by-size:bytes":
hist := samples[i].Value.Float64Histogram()
// Skip size class 0 in BySize, because it's always empty and not represented
// in the histogram.
for i, sc := range mstats.BySize[1:] {
if b, s := hist.Buckets[i+1], float64(sc.Size+1); b != s {
t.Errorf("bucket does not match size class: got %f, want %f", b, s)
// The rest of the checks aren't expected to work anyway.
continue
}
if c, f := hist.Counts[i], sc.Frees; c != f {
t.Errorf("histogram counts do not match BySize for class %d: got %d, want %d", i, c, f)
}
}
case "/gc/heap/frees:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.TotalAlloc-mstats.HeapAlloc)
case "/gc/heap/tiny/allocs:objects":
// Currently, MemStats adds tiny alloc count to both Mallocs AND Frees.
// The reason for this is because MemStats couldn't be extended at the time
// but there was a desire to have Mallocs at least be a little more representative,
// while having Mallocs - Frees still represent a live object count.
// Unfortunately, MemStats doesn't actually export a large allocation count,
// so it's impossible to pull this number out directly.
//
// Check tiny allocation count outside of this loop, by using the allocs-by-size
// histogram in order to figure out how many large objects there are.
tinyAllocs = samples[i].Value.Uint64()
// Because the next two metrics tests are checking against Mallocs and Frees,
// we can't check them directly for the same reason: we need to account for tiny
// allocations included in Mallocs and Frees.
case "/gc/heap/allocs:objects":
mallocs = samples[i].Value.Uint64()
case "/gc/heap/frees:objects":
frees = samples[i].Value.Uint64()
case "/gc/heap/live:bytes":
// Check for "obviously wrong" values. We can't check a stronger invariant,
// such as live <= HeapAlloc, because live is not 100% accurate. It's computed
// under racy conditions, and some objects may be double-counted (this is
// intentional and necessary for GC performance).
//
// Instead, check against a much more reasonable upper-bound: the amount of
// mapped heap memory. We can't possibly overcount to the point of exceeding
// total mapped heap memory, except if there's an accounting bug.
if live := samples[i].Value.Uint64(); live > mstats.HeapSys {
t.Errorf("live bytes: %d > heap sys: %d", live, mstats.HeapSys)
} else if live == 0 {
// Might happen if we don't call runtime.GC() above.
t.Error("live bytes is 0")
}
case "/gc/gomemlimit:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), uint64(limit))
case "/gc/heap/objects:objects":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.HeapObjects)
case "/gc/heap/goal:bytes":
checkUint64(t, name, samples[i].Value.Uint64(), mstats.NextGC)
case "/gc/gogc:percent":
checkUint64(t, name, samples[i].Value.Uint64(), uint64(gcPercent))
case "/gc/cycles/automatic:gc-cycles":
checkUint64(t, name, samples[i].Value.Uint64(), uint64(mstats.NumGC-mstats.NumForcedGC))
case "/gc/cycles/forced:gc-cycles":
checkUint64(t, name, samples[i].Value.Uint64(), uint64(mstats.NumForcedGC))
case "/gc/cycles/total:gc-cycles":
checkUint64(t, name, samples[i].Value.Uint64(), uint64(mstats.NumGC))
case "/gc/pauses:seconds":
gcPauses = samples[i].Value.Float64Histogram()
case "/sched/pauses/total/gc:seconds":
schedPausesTotalGC = samples[i].Value.Float64Histogram()
}
}
// Check tinyAllocs.
nonTinyAllocs := uint64(0)
for _, c := range allocsBySize.Counts {
nonTinyAllocs += c
}
checkUint64(t, "/gc/heap/tiny/allocs:objects", tinyAllocs, mstats.Mallocs-nonTinyAllocs)
// Check allocation and free counts.
checkUint64(t, "/gc/heap/allocs:objects", mallocs, mstats.Mallocs-tinyAllocs)
checkUint64(t, "/gc/heap/frees:objects", frees, mstats.Frees-tinyAllocs)
// Verify that /gc/pauses:seconds is a copy of /sched/pauses/total/gc:seconds
if !reflect.DeepEqual(gcPauses.Buckets, schedPausesTotalGC.Buckets) {
t.Errorf("/gc/pauses:seconds buckets %v do not match /sched/pauses/total/gc:seconds buckets %v", gcPauses.Buckets, schedPausesTotalGC.Counts)
}
if !reflect.DeepEqual(gcPauses.Counts, schedPausesTotalGC.Counts) {
t.Errorf("/gc/pauses:seconds counts %v do not match /sched/pauses/total/gc:seconds counts %v", gcPauses.Counts, schedPausesTotalGC.Counts)
}
}
func TestReadMetricsConsistency(t *testing.T) {
// Tests whether readMetrics produces consistent, sensible values.
// The values are read concurrently with the runtime doing other
// things (e.g. allocating) so what we read can't reasonably compared
// to other runtime values (e.g. MemStats).
// Run a few GC cycles to get some of the stats to be non-zero.
runtime.GC()
runtime.GC()
runtime.GC()
// Set GOMAXPROCS high then sleep briefly to ensure we generate
// some idle time.
oldmaxprocs := runtime.GOMAXPROCS(10)
time.Sleep(time.Millisecond)
runtime.GOMAXPROCS(oldmaxprocs)
// Read all the supported metrics through the metrics package.
descs, samples := prepareAllMetricsSamples()
metrics.Read(samples)
// Check to make sure the values we read make sense.
var totalVirtual struct {
got, want uint64
}
var objects struct {
alloc, free *metrics.Float64Histogram
allocs, frees uint64
allocdBytes, freedBytes uint64
total, totalBytes uint64
}
var gc struct {
numGC uint64
pauses uint64
}
var totalScan struct {
got, want uint64
}
var cpu struct {
gcAssist float64
gcDedicated float64
gcIdle float64
gcPause float64
gcTotal float64
idle float64
user float64
scavengeAssist float64
scavengeBg float64
scavengeTotal float64
total float64
}
for i := range samples {
kind := samples[i].Value.Kind()
if want := descs[samples[i].Name].Kind; kind != want {
t.Errorf("supported metric %q has unexpected kind: got %d, want %d", samples[i].Name, kind, want)
continue
}
if samples[i].Name != "/memory/classes/total:bytes" && strings.HasPrefix(samples[i].Name, "/memory/classes") {
v := samples[i].Value.Uint64()
totalVirtual.want += v
// None of these stats should ever get this big.
// If they do, there's probably overflow involved,
// usually due to bad accounting.
if int64(v) < 0 {
t.Errorf("%q has high/negative value: %d", samples[i].Name, v)
}
}
switch samples[i].Name {
case "/cpu/classes/gc/mark/assist:cpu-seconds":
cpu.gcAssist = samples[i].Value.Float64()
case "/cpu/classes/gc/mark/dedicated:cpu-seconds":
cpu.gcDedicated = samples[i].Value.Float64()
case "/cpu/classes/gc/mark/idle:cpu-seconds":
cpu.gcIdle = samples[i].Value.Float64()
case "/cpu/classes/gc/pause:cpu-seconds":
cpu.gcPause = samples[i].Value.Float64()
case "/cpu/classes/gc/total:cpu-seconds":
cpu.gcTotal = samples[i].Value.Float64()
case "/cpu/classes/idle:cpu-seconds":
cpu.idle = samples[i].Value.Float64()
case "/cpu/classes/scavenge/assist:cpu-seconds":
cpu.scavengeAssist = samples[i].Value.Float64()
case "/cpu/classes/scavenge/background:cpu-seconds":
cpu.scavengeBg = samples[i].Value.Float64()
case "/cpu/classes/scavenge/total:cpu-seconds":
cpu.scavengeTotal = samples[i].Value.Float64()
case "/cpu/classes/total:cpu-seconds":
cpu.total = samples[i].Value.Float64()
case "/cpu/classes/user:cpu-seconds":
cpu.user = samples[i].Value.Float64()
case "/memory/classes/total:bytes":
totalVirtual.got = samples[i].Value.Uint64()
case "/memory/classes/heap/objects:bytes":
objects.totalBytes = samples[i].Value.Uint64()
case "/gc/heap/objects:objects":
objects.total = samples[i].Value.Uint64()
case "/gc/heap/allocs:bytes":
objects.allocdBytes = samples[i].Value.Uint64()
case "/gc/heap/allocs:objects":
objects.allocs = samples[i].Value.Uint64()
case "/gc/heap/allocs-by-size:bytes":
objects.alloc = samples[i].Value.Float64Histogram()
case "/gc/heap/frees:bytes":
objects.freedBytes = samples[i].Value.Uint64()
case "/gc/heap/frees:objects":
objects.frees = samples[i].Value.Uint64()
case "/gc/heap/frees-by-size:bytes":
objects.free = samples[i].Value.Float64Histogram()
case "/gc/cycles:gc-cycles":
gc.numGC = samples[i].Value.Uint64()
case "/gc/pauses:seconds":
h := samples[i].Value.Float64Histogram()
gc.pauses = 0
for i := range h.Counts {
gc.pauses += h.Counts[i]
}
case "/gc/scan/heap:bytes":
totalScan.want += samples[i].Value.Uint64()
case "/gc/scan/globals:bytes":
totalScan.want += samples[i].Value.Uint64()
case "/gc/scan/stack:bytes":
totalScan.want += samples[i].Value.Uint64()
case "/gc/scan/total:bytes":
totalScan.got = samples[i].Value.Uint64()
case "/sched/gomaxprocs:threads":
if got, want := samples[i].Value.Uint64(), uint64(runtime.GOMAXPROCS(-1)); got != want {
t.Errorf("gomaxprocs doesn't match runtime.GOMAXPROCS: got %d, want %d", got, want)
}
case "/sched/goroutines:goroutines":
if samples[i].Value.Uint64() < 1 {
t.Error("number of goroutines is less than one")
}
}
}
// Only check this on Linux where we can be reasonably sure we have a high-resolution timer.
if runtime.GOOS == "linux" {
if cpu.gcDedicated <= 0 && cpu.gcAssist <= 0 && cpu.gcIdle <= 0 {
t.Errorf("found no time spent on GC work: %#v", cpu)
}
if cpu.gcPause <= 0 {
t.Errorf("found no GC pauses: %f", cpu.gcPause)
}
if cpu.idle <= 0 {
t.Errorf("found no idle time: %f", cpu.idle)
}
if total := cpu.gcDedicated + cpu.gcAssist + cpu.gcIdle + cpu.gcPause; !withinEpsilon(cpu.gcTotal, total, 0.01) {
t.Errorf("calculated total GC CPU not within 1%% of sampled total: %f vs. %f", total, cpu.gcTotal)
}
if total := cpu.scavengeAssist + cpu.scavengeBg; !withinEpsilon(cpu.scavengeTotal, total, 0.01) {
t.Errorf("calculated total scavenge CPU not within 1%% of sampled total: %f vs. %f", total, cpu.scavengeTotal)
}
if cpu.total <= 0 {
t.Errorf("found no total CPU time passed")
}
if cpu.user <= 0 {
t.Errorf("found no user time passed")
}
if total := cpu.gcTotal + cpu.scavengeTotal + cpu.user + cpu.idle; !withinEpsilon(cpu.total, total, 0.02) {
t.Errorf("calculated total CPU not within 2%% of sampled total: %f vs. %f", total, cpu.total)
}
}
if totalVirtual.got != totalVirtual.want {
t.Errorf(`"/memory/classes/total:bytes" does not match sum of /memory/classes/**: got %d, want %d`, totalVirtual.got, totalVirtual.want)
}
if got, want := objects.allocs-objects.frees, objects.total; got != want {
t.Errorf("mismatch between object alloc/free tallies and total: got %d, want %d", got, want)
}
if got, want := objects.allocdBytes-objects.freedBytes, objects.totalBytes; got != want {
t.Errorf("mismatch between object alloc/free tallies and total: got %d, want %d", got, want)
}
if b, c := len(objects.alloc.Buckets), len(objects.alloc.Counts); b != c+1 {
t.Errorf("allocs-by-size has wrong bucket or counts length: %d buckets, %d counts", b, c)
}
if b, c := len(objects.free.Buckets), len(objects.free.Counts); b != c+1 {
t.Errorf("frees-by-size has wrong bucket or counts length: %d buckets, %d counts", b, c)
}
if len(objects.alloc.Buckets) != len(objects.free.Buckets) {
t.Error("allocs-by-size and frees-by-size buckets don't match in length")
} else if len(objects.alloc.Counts) != len(objects.free.Counts) {
t.Error("allocs-by-size and frees-by-size counts don't match in length")
} else {
for i := range objects.alloc.Buckets {
ba := objects.alloc.Buckets[i]
bf := objects.free.Buckets[i]
if ba != bf {
t.Errorf("bucket %d is different for alloc and free hists: %f != %f", i, ba, bf)
}
}
if !t.Failed() {
var gotAlloc, gotFree uint64
want := objects.total
for i := range objects.alloc.Counts {
if objects.alloc.Counts[i] < objects.free.Counts[i] {
t.Errorf("found more allocs than frees in object dist bucket %d", i)
continue
}
gotAlloc += objects.alloc.Counts[i]
gotFree += objects.free.Counts[i]
}
if got := gotAlloc - gotFree; got != want {
t.Errorf("object distribution counts don't match count of live objects: got %d, want %d", got, want)
}
if gotAlloc != objects.allocs {
t.Errorf("object distribution counts don't match total allocs: got %d, want %d", gotAlloc, objects.allocs)
}
if gotFree != objects.frees {
t.Errorf("object distribution counts don't match total allocs: got %d, want %d", gotFree, objects.frees)
}
}
}
// The current GC has at least 2 pauses per GC.
// Check to see if that value makes sense.
if gc.pauses < gc.numGC*2 {
t.Errorf("fewer pauses than expected: got %d, want at least %d", gc.pauses, gc.numGC*2)
}
if totalScan.got <= 0 {
t.Errorf("scannable GC space is empty: %d", totalScan.got)
}
if totalScan.got != totalScan.want {
t.Errorf("/gc/scan/total:bytes doesn't line up with sum of /gc/scan*: total %d vs. sum %d", totalScan.got, totalScan.want)
}
}
func BenchmarkReadMetricsLatency(b *testing.B) {
stop := applyGCLoad(b)
// Spend this much time measuring latencies.
latencies := make([]time.Duration, 0, 1024)
_, samples := prepareAllMetricsSamples()
// Hit metrics.Read continuously and measure.
b.ResetTimer()
for i := 0; i < b.N; i++ {
start := time.Now()
metrics.Read(samples)
latencies = append(latencies, time.Since(start))
}
// Make sure to stop the timer before we wait! The load created above
// is very heavy-weight and not easy to stop, so we could end up
// confusing the benchmarking framework for small b.N.
b.StopTimer()
stop()
// Disable the default */op metrics.
// ns/op doesn't mean anything because it's an average, but we
// have a sleep in our b.N loop above which skews this significantly.
b.ReportMetric(0, "ns/op")
b.ReportMetric(0, "B/op")
b.ReportMetric(0, "allocs/op")
// Sort latencies then report percentiles.
sort.Slice(latencies, func(i, j int) bool {
return latencies[i] < latencies[j]
})
b.ReportMetric(float64(latencies[len(latencies)*50/100]), "p50-ns")
b.ReportMetric(float64(latencies[len(latencies)*90/100]), "p90-ns")
b.ReportMetric(float64(latencies[len(latencies)*99/100]), "p99-ns")
}
var readMetricsSink [1024]interface{}
func TestReadMetricsCumulative(t *testing.T) {
// Set up the set of metrics marked cumulative.
descs := metrics.All()
var samples [2][]metrics.Sample
samples[0] = make([]metrics.Sample, len(descs))
samples[1] = make([]metrics.Sample, len(descs))
total := 0
for i := range samples[0] {
if !descs[i].Cumulative {
continue
}
samples[0][total].Name = descs[i].Name
total++
}
samples[0] = samples[0][:total]
samples[1] = samples[1][:total]
copy(samples[1], samples[0])
// Start some noise in the background.
var wg sync.WaitGroup
wg.Add(1)
done := make(chan struct{})
go func() {
defer wg.Done()
for {
// Add more things here that could influence metrics.
for i := 0; i < len(readMetricsSink); i++ {
readMetricsSink[i] = make([]byte, 1024)
select {
case <-done:
return
default:
}
}
runtime.GC()
}
}()
sum := func(us []uint64) uint64 {
total := uint64(0)
for _, u := range us {
total += u
}
return total
}
// Populate the first generation.
metrics.Read(samples[0])
// Check to make sure that these metrics only grow monotonically.
for gen := 1; gen < 10; gen++ {
metrics.Read(samples[gen%2])
for i := range samples[gen%2] {
name := samples[gen%2][i].Name
vNew, vOld := samples[gen%2][i].Value, samples[1-(gen%2)][i].Value
switch vNew.Kind() {
case metrics.KindUint64:
new := vNew.Uint64()
old := vOld.Uint64()
if new < old {
t.Errorf("%s decreased: %d < %d", name, new, old)
}
case metrics.KindFloat64:
new := vNew.Float64()
old := vOld.Float64()
if new < old {
t.Errorf("%s decreased: %f < %f", name, new, old)
}
case metrics.KindFloat64Histogram:
new := sum(vNew.Float64Histogram().Counts)
old := sum(vOld.Float64Histogram().Counts)
if new < old {
t.Errorf("%s counts decreased: %d < %d", name, new, old)
}
}
}
}
close(done)
wg.Wait()
}
func withinEpsilon(v1, v2, e float64) bool {
return v2-v2*e <= v1 && v1 <= v2+v2*e
}
func TestMutexWaitTimeMetric(t *testing.T) {
var sample [1]metrics.Sample
sample[0].Name = "/sync/mutex/wait/total:seconds"
locks := []locker2{
new(mutex),
new(rwmutexWrite),
new(rwmutexReadWrite),
new(rwmutexWriteRead),
}
for _, lock := range locks {
t.Run(reflect.TypeOf(lock).Elem().Name(), func(t *testing.T) {
metrics.Read(sample[:])
before := time.Duration(sample[0].Value.Float64() * 1e9)
minMutexWaitTime := generateMutexWaitTime(lock)
metrics.Read(sample[:])
after := time.Duration(sample[0].Value.Float64() * 1e9)
if wt := after - before; wt < minMutexWaitTime {
t.Errorf("too little mutex wait time: got %s, want %s", wt, minMutexWaitTime)
}
})
}
}
// locker2 represents an API surface of two concurrent goroutines
// locking the same resource, but through different APIs. It's intended
// to abstract over the relationship of two Lock calls or an RLock
// and a Lock call.
type locker2 interface {
Lock1()
Unlock1()
Lock2()
Unlock2()
}
type mutex struct {
mu sync.Mutex
}
func (m *mutex) Lock1() { m.mu.Lock() }
func (m *mutex) Unlock1() { m.mu.Unlock() }
func (m *mutex) Lock2() { m.mu.Lock() }
func (m *mutex) Unlock2() { m.mu.Unlock() }
type rwmutexWrite struct {
mu sync.RWMutex
}
func (m *rwmutexWrite) Lock1() { m.mu.Lock() }
func (m *rwmutexWrite) Unlock1() { m.mu.Unlock() }
func (m *rwmutexWrite) Lock2() { m.mu.Lock() }
func (m *rwmutexWrite) Unlock2() { m.mu.Unlock() }
type rwmutexReadWrite struct {
mu sync.RWMutex
}
func (m *rwmutexReadWrite) Lock1() { m.mu.RLock() }
func (m *rwmutexReadWrite) Unlock1() { m.mu.RUnlock() }
func (m *rwmutexReadWrite) Lock2() { m.mu.Lock() }
func (m *rwmutexReadWrite) Unlock2() { m.mu.Unlock() }
type rwmutexWriteRead struct {
mu sync.RWMutex
}
func (m *rwmutexWriteRead) Lock1() { m.mu.Lock() }
func (m *rwmutexWriteRead) Unlock1() { m.mu.Unlock() }
func (m *rwmutexWriteRead) Lock2() { m.mu.RLock() }
func (m *rwmutexWriteRead) Unlock2() { m.mu.RUnlock() }
// generateMutexWaitTime causes a couple of goroutines
// to block a whole bunch of times on a sync.Mutex, returning
// the minimum amount of time that should be visible in the
// /sync/mutex-wait:seconds metric.
func generateMutexWaitTime(mu locker2) time.Duration {
// Set up the runtime to always track casgstatus transitions for metrics.
*runtime.CasGStatusAlwaysTrack = true
mu.Lock1()
// Start up a goroutine to wait on the lock.
gc := make(chan *runtime.G)
done := make(chan bool)
go func() {
gc <- runtime.Getg()
for {
mu.Lock2()
mu.Unlock2()
if <-done {
return
}
}
}()
gp := <-gc
// Set the block time high enough so that it will always show up, even
// on systems with coarse timer granularity.
const blockTime = 100 * time.Millisecond
// Make sure the goroutine spawned above actually blocks on the lock.
for {
if runtime.GIsWaitingOnMutex(gp) {
break
}
runtime.Gosched()
}
// Let some amount of time pass.
time.Sleep(blockTime)
// Let the other goroutine acquire the lock.
mu.Unlock1()
done <- true
// Reset flag.
*runtime.CasGStatusAlwaysTrack = false
return blockTime
}
// See issue #60276.
func TestCPUMetricsSleep(t *testing.T) {
if runtime.GOOS == "wasip1" {
// Since wasip1 busy-waits in the scheduler, there's no meaningful idle
// time. This is accurately reflected in the metrics, but it means this
// test is basically meaningless on this platform.
t.Skip("wasip1 currently busy-waits in idle time; test not applicable")
}
names := []string{
"/cpu/classes/idle:cpu-seconds",
"/cpu/classes/gc/mark/assist:cpu-seconds",
"/cpu/classes/gc/mark/dedicated:cpu-seconds",
"/cpu/classes/gc/mark/idle:cpu-seconds",
"/cpu/classes/gc/pause:cpu-seconds",
"/cpu/classes/gc/total:cpu-seconds",
"/cpu/classes/scavenge/assist:cpu-seconds",
"/cpu/classes/scavenge/background:cpu-seconds",
"/cpu/classes/scavenge/total:cpu-seconds",
"/cpu/classes/total:cpu-seconds",
"/cpu/classes/user:cpu-seconds",
}
prep := func() []metrics.Sample {
mm := make([]metrics.Sample, len(names))
for i := range names {
mm[i].Name = names[i]
}
return mm
}
m1, m2 := prep(), prep()
const (
// Expected time spent idle.
dur = 100 * time.Millisecond
// maxFailures is the number of consecutive failures requires to cause the test to fail.
maxFailures = 10
)
failureIdleTimes := make([]float64, 0, maxFailures)
// If the bug we expect is happening, then the Sleep CPU time will be accounted for
// as user time rather than idle time. In an ideal world we'd expect the whole application
// to go instantly idle the moment this goroutine goes to sleep, and stay asleep for that
// duration. However, the Go runtime can easily eat into idle time while this goroutine is
// blocked in a sleep. For example, slow platforms might spend more time expected in the
// scheduler. Another example is that a Go runtime background goroutine could run while
// everything else is idle. Lastly, if a running goroutine is descheduled by the OS, enough
// time may pass such that the goroutine is ready to wake, even though the runtime couldn't
// observe itself as idle with nanotime.
//
// To deal with all this, we give a half-proc's worth of leniency.
//
// We also retry multiple times to deal with the fact that the OS might deschedule us before
// we yield and go idle. That has a rare enough chance that retries should resolve it.
// If the issue we expect is happening, it should be persistent.
minIdleCPUSeconds := dur.Seconds() * (float64(runtime.GOMAXPROCS(-1)) - 0.5)
// Let's make sure there's no background scavenge work to do.
//
// The runtime.GC calls below ensure the background sweeper
// will not run during the idle period.
debug.FreeOSMemory()
for retries := 0; retries < maxFailures; retries++ {
// Read 1.
runtime.GC() // Update /cpu/classes metrics.
metrics.Read(m1)
// Sleep.
time.Sleep(dur)
// Read 2.
runtime.GC() // Update /cpu/classes metrics.
metrics.Read(m2)
dt := m2[0].Value.Float64() - m1[0].Value.Float64()
if dt >= minIdleCPUSeconds {
// All is well. Test passed.
return
}
failureIdleTimes = append(failureIdleTimes, dt)
// Try again.
}
// We couldn't observe the expected idle time even once.
for i, dt := range failureIdleTimes {
t.Logf("try %2d: idle time = %.5fs\n", i+1, dt)
}
t.Logf("try %d breakdown:\n", len(failureIdleTimes))
for i := range names {
if m1[i].Value.Kind() == metrics.KindBad {
continue
}
t.Logf("\t%s %0.3f\n", names[i], m2[i].Value.Float64()-m1[i].Value.Float64())
}
t.Errorf(`time.Sleep did not contribute enough to "idle" class: minimum idle time = %.5fs`, minIdleCPUSeconds)
}
// Call f() and verify that the correct STW metrics increment. If isGC is true,
// fn triggers a GC STW. Otherwise, fn triggers an other STW.
func testSchedPauseMetrics(t *testing.T, fn func(t *testing.T), isGC bool) {
m := []metrics.Sample{
{Name: "/sched/pauses/stopping/gc:seconds"},
{Name: "/sched/pauses/stopping/other:seconds"},
{Name: "/sched/pauses/total/gc:seconds"},
{Name: "/sched/pauses/total/other:seconds"},
}
stoppingGC := &m[0]
stoppingOther := &m[1]
totalGC := &m[2]
totalOther := &m[3]
sampleCount := func(s *metrics.Sample) uint64 {
h := s.Value.Float64Histogram()
var n uint64
for _, c := range h.Counts {
n += c
}
return n
}
// Read baseline.
metrics.Read(m)
baselineStartGC := sampleCount(stoppingGC)
baselineStartOther := sampleCount(stoppingOther)
baselineTotalGC := sampleCount(totalGC)
baselineTotalOther := sampleCount(totalOther)
fn(t)
metrics.Read(m)
if isGC {
if got := sampleCount(stoppingGC); got <= baselineStartGC {
t.Errorf("/sched/pauses/stopping/gc:seconds sample count %d did not increase from baseline of %d", got, baselineStartGC)
}
if got := sampleCount(totalGC); got <= baselineTotalGC {
t.Errorf("/sched/pauses/total/gc:seconds sample count %d did not increase from baseline of %d", got, baselineTotalGC)
}
if got := sampleCount(stoppingOther); got != baselineStartOther {
t.Errorf("/sched/pauses/stopping/other:seconds sample count %d changed from baseline of %d", got, baselineStartOther)
}
if got := sampleCount(totalOther); got != baselineTotalOther {
t.Errorf("/sched/pauses/stopping/other:seconds sample count %d changed from baseline of %d", got, baselineTotalOther)
}
} else {
if got := sampleCount(stoppingGC); got != baselineStartGC {
t.Errorf("/sched/pauses/stopping/gc:seconds sample count %d changed from baseline of %d", got, baselineStartGC)
}
if got := sampleCount(totalGC); got != baselineTotalGC {
t.Errorf("/sched/pauses/total/gc:seconds sample count %d changed from baseline of %d", got, baselineTotalGC)
}
if got := sampleCount(stoppingOther); got <= baselineStartOther {
t.Errorf("/sched/pauses/stopping/other:seconds sample count %d did not increase from baseline of %d", got, baselineStartOther)
}
if got := sampleCount(totalOther); got <= baselineTotalOther {
t.Errorf("/sched/pauses/stopping/other:seconds sample count %d did not increase from baseline of %d", got, baselineTotalOther)
}
}
}
func TestSchedPauseMetrics(t *testing.T) {
tests := []struct {
name string
isGC bool
fn func(t *testing.T)
}{
{
name: "runtime.GC",
isGC: true,
fn: func(t *testing.T) {
runtime.GC()
},
},
{
name: "runtime.GOMAXPROCS",
fn: func(t *testing.T) {
if runtime.GOARCH == "wasm" {
t.Skip("GOMAXPROCS >1 not supported on wasm")
}
n := runtime.GOMAXPROCS(0)
defer runtime.GOMAXPROCS(n)
runtime.GOMAXPROCS(n + 1)
},
},
{
name: "runtime.GoroutineProfile",
fn: func(t *testing.T) {
var s [1]runtime.StackRecord
runtime.GoroutineProfile(s[:])
},
},
{
name: "runtime.ReadMemStats",
fn: func(t *testing.T) {
var mstats runtime.MemStats
runtime.ReadMemStats(&mstats)
},
},
{
name: "runtime.Stack",
fn: func(t *testing.T) {
var b [64]byte
runtime.Stack(b[:], true)
},
},
{
name: "runtime/debug.WriteHeapDump",
fn: func(t *testing.T) {
if runtime.GOOS == "js" {
t.Skip("WriteHeapDump not supported on js")
}
f, err := os.CreateTemp(t.TempDir(), "heapdumptest")
if err != nil {
t.Fatalf("os.CreateTemp failed: %v", err)
}
defer os.Remove(f.Name())
defer f.Close()
debug.WriteHeapDump(f.Fd())
},
},
{
name: "runtime/trace.Start",
fn: func(t *testing.T) {
if trace.IsEnabled() {
t.Skip("tracing already enabled")
}
var buf bytes.Buffer
if err := trace.Start(&buf); err != nil {
t.Errorf("trace.Start err got %v want nil", err)
}
trace.Stop()
},
},
}
// These tests count STW pauses, classified based on whether they're related
// to the GC or not. Disable automatic GC cycles during the test so we don't
// have an incidental GC pause when we're trying to observe only
// non-GC-related pauses. This is especially important for the
// runtime/trace.Start test, since (as of this writing) that will block
// until any active GC mark phase completes.
defer debug.SetGCPercent(debug.SetGCPercent(-1))
runtime.GC()
for _, tc := range tests {
t.Run(tc.name, func(t *testing.T) {
testSchedPauseMetrics(t, tc.fn, tc.isGC)
})
}
}
func TestRuntimeLockMetricsAndProfile(t *testing.T) {
testenv.SkipFlaky(t, 64253)
old := runtime.SetMutexProfileFraction(0) // enabled during sub-tests
defer runtime.SetMutexProfileFraction(old)
if old != 0 {
t.Fatalf("need MutexProfileRate 0, got %d", old)
}
{
before := os.Getenv("GODEBUG")
for _, s := range strings.Split(before, ",") {
if strings.HasPrefix(s, "runtimecontentionstacks=") {
t.Logf("GODEBUG includes explicit setting %q", s)
}
}
defer func() { os.Setenv("GODEBUG", before) }()
os.Setenv("GODEBUG", fmt.Sprintf("%s,runtimecontentionstacks=1", before))
}
t.Logf("NumCPU %d", runtime.NumCPU())
t.Logf("GOMAXPROCS %d", runtime.GOMAXPROCS(0))
if minCPU := 2; runtime.NumCPU() < minCPU {
t.Skipf("creating and observing contention on runtime-internal locks requires NumCPU >= %d", minCPU)
}
loadProfile := func(t *testing.T) *profile.Profile {
var w bytes.Buffer
pprof.Lookup("mutex").WriteTo(&w, 0)
p, err := profile.Parse(&w)
if err != nil {
t.Fatalf("failed to parse profile: %v", err)
}
if err := p.CheckValid(); err != nil {
t.Fatalf("invalid profile: %v", err)
}
return p
}
measureDelta := func(t *testing.T, fn func()) (metricGrowth, profileGrowth float64, p *profile.Profile) {
beforeProfile := loadProfile(t)
beforeMetrics := []metrics.Sample{{Name: "/sync/mutex/wait/total:seconds"}}
metrics.Read(beforeMetrics)
fn()
afterProfile := loadProfile(t)
afterMetrics := []metrics.Sample{{Name: "/sync/mutex/wait/total:seconds"}}
metrics.Read(afterMetrics)
sumSamples := func(p *profile.Profile, i int) int64 {
var sum int64
for _, s := range p.Sample {
sum += s.Value[i]
}
return sum
}
metricGrowth = afterMetrics[0].Value.Float64() - beforeMetrics[0].Value.Float64()
profileGrowth = float64(sumSamples(afterProfile, 1)-sumSamples(beforeProfile, 1)) * time.Nanosecond.Seconds()
// The internal/profile package does not support compaction; this delta
// profile will include separate positive and negative entries.
p = afterProfile.Copy()
if len(beforeProfile.Sample) > 0 {
err := p.Merge(beforeProfile, -1)
if err != nil {
t.Fatalf("Merge profiles: %v", err)
}
}
return metricGrowth, profileGrowth, p
}
testcase := func(strictTiming bool, acceptStacks [][]string, workers int, fn func() bool) func(t *testing.T) (metricGrowth, profileGrowth float64, n, value int64) {
return func(t *testing.T) (metricGrowth, profileGrowth float64, n, value int64) {
metricGrowth, profileGrowth, p := measureDelta(t, func() {
var started, stopped sync.WaitGroup
started.Add(workers)
stopped.Add(workers)
for i := 0; i < workers; i++ {
w := &contentionWorker{
before: func() {
started.Done()
started.Wait()
},
after: func() {
stopped.Done()
},
fn: fn,
}
go w.run()
}
stopped.Wait()
})
if profileGrowth == 0 {
t.Errorf("no increase in mutex profile")
}
if metricGrowth == 0 && strictTiming {
// If the critical section is very short, systems with low timer
// resolution may be unable to measure it via nanotime.
t.Errorf("no increase in /sync/mutex/wait/total:seconds metric")
}
// This comparison is possible because the time measurements in support of
// runtime/pprof and runtime/metrics for runtime-internal locks are so close
// together. It doesn't work as well for user-space contention, where the
// involved goroutines are not _Grunnable the whole time and so need to pass
// through the scheduler.
t.Logf("lock contention growth in runtime/pprof's view (%fs)", profileGrowth)
t.Logf("lock contention growth in runtime/metrics' view (%fs)", metricGrowth)
acceptStacks = append([][]string(nil), acceptStacks...)
for i, stk := range acceptStacks {
if goexperiment.StaticLockRanking {
if !slices.ContainsFunc(stk, func(s string) bool {
return s == "runtime.systemstack" || s == "runtime.mcall" || s == "runtime.mstart"
}) {
// stk is a call stack that is still on the user stack when
// it calls runtime.unlock. Add the extra function that
// we'll see, when the static lock ranking implementation of
// runtime.unlockWithRank switches to the system stack.
stk = append([]string{"runtime.unlockWithRank"}, stk...)
}
}
acceptStacks[i] = stk
}
var stks [][]string
values := make([][2]int64, len(acceptStacks))
for _, s := range p.Sample {
var have []string
for _, loc := range s.Location {
for _, line := range loc.Line {
have = append(have, line.Function.Name)
}
}
stks = append(stks, have)
for i, stk := range acceptStacks {
if slices.Equal(have, stk) {
values[i][0] += s.Value[0]
values[i][1] += s.Value[1]
}
}
}
for i, stk := range acceptStacks {
n += values[i][0]
value += values[i][1]
t.Logf("stack %v has samples totaling n=%d value=%d", stk, values[i][0], values[i][1])
}
if n == 0 && value == 0 {
t.Logf("profile:\n%s", p)
for _, have := range stks {
t.Logf("have stack %v", have)
}
for _, stk := range acceptStacks {
t.Errorf("want stack %v", stk)
}
}
return metricGrowth, profileGrowth, n, value
}
}
name := t.Name()
t.Run("runtime.lock", func(t *testing.T) {
mus := make([]runtime.Mutex, 100)
var needContention atomic.Int64
delay := 100 * time.Microsecond // large relative to system noise, for comparison between clocks
delayMicros := delay.Microseconds()
// The goroutine that acquires the lock will only proceed when it
// detects that its partner is contended for the lock. That will lead to
// live-lock if anything (such as a STW) prevents the partner goroutine
// from running. Allowing the contention workers to pause and restart
// (to allow a STW to proceed) makes it harder to confirm that we're
// counting the correct number of contention events, since some locks
// will end up contended twice. Instead, disable the GC.
defer debug.SetGCPercent(debug.SetGCPercent(-1))
const workers = 2
if runtime.GOMAXPROCS(0) < workers {
t.Skipf("contention on runtime-internal locks requires GOMAXPROCS >= %d", workers)
}
fn := func() bool {
n := int(needContention.Load())
if n < 0 {
return false
}
mu := &mus[n]
runtime.Lock(mu)
for int(needContention.Load()) == n {
if runtime.MutexContended(mu) {
// make them wait a little while
for start := runtime.Nanotime(); (runtime.Nanotime()-start)/1000 < delayMicros; {
runtime.Usleep(uint32(delayMicros))
}
break
}
}
runtime.Unlock(mu)
needContention.Store(int64(n - 1))
return true
}
stks := [][]string{{
"runtime.unlock",
"runtime_test." + name + ".func5.1",
"runtime_test.(*contentionWorker).run",
}}
t.Run("sample-1", func(t *testing.T) {
old := runtime.SetMutexProfileFraction(1)
defer runtime.SetMutexProfileFraction(old)
needContention.Store(int64(len(mus) - 1))
metricGrowth, profileGrowth, n, _ := testcase(true, stks, workers, fn)(t)
if have, want := metricGrowth, delay.Seconds()*float64(len(mus)); have < want {
// The test imposes a delay with usleep, verified with calls to
// nanotime. Compare against the runtime/metrics package's view
// (based on nanotime) rather than runtime/pprof's view (based
// on cputicks).
t.Errorf("runtime/metrics reported less than the known minimum contention duration (%fs < %fs)", have, want)
}
if have, want := n, int64(len(mus)); have != want {
t.Errorf("mutex profile reported contention count different from the known true count (%d != %d)", have, want)
}
const slop = 1.5 // account for nanotime vs cputicks
if profileGrowth > slop*metricGrowth || metricGrowth > slop*profileGrowth {
t.Errorf("views differ by more than %fx", slop)
}
})
t.Run("sample-2", func(t *testing.T) {
old := runtime.SetMutexProfileFraction(2)
defer runtime.SetMutexProfileFraction(old)
needContention.Store(int64(len(mus) - 1))
metricGrowth, profileGrowth, n, _ := testcase(true, stks, workers, fn)(t)
// With 100 trials and profile fraction of 2, we expect to capture
// 50 samples. Allow the test to pass if we get at least 20 samples;
// the CDF of the binomial distribution says there's less than a
// 1e-9 chance of that, which is an acceptably low flakiness rate.
const samplingSlop = 2.5
if have, want := metricGrowth, delay.Seconds()*float64(len(mus)); samplingSlop*have < want {
// The test imposes a delay with usleep, verified with calls to
// nanotime. Compare against the runtime/metrics package's view
// (based on nanotime) rather than runtime/pprof's view (based
// on cputicks).
t.Errorf("runtime/metrics reported less than the known minimum contention duration (%f * %fs < %fs)", samplingSlop, have, want)
}
if have, want := n, int64(len(mus)); float64(have) > float64(want)*samplingSlop || float64(want) > float64(have)*samplingSlop {
t.Errorf("mutex profile reported contention count too different from the expected count (%d far from %d)", have, want)
}
const timerSlop = 1.5 * samplingSlop // account for nanotime vs cputicks, plus the two views' independent sampling
if profileGrowth > timerSlop*metricGrowth || metricGrowth > timerSlop*profileGrowth {
t.Errorf("views differ by more than %fx", timerSlop)
}
})
})
t.Run("runtime.semrelease", func(t *testing.T) {
old := runtime.SetMutexProfileFraction(1)
defer runtime.SetMutexProfileFraction(old)
const workers = 3
if runtime.GOMAXPROCS(0) < workers {
t.Skipf("creating and observing contention on runtime-internal semaphores requires GOMAXPROCS >= %d", workers)
}
var sem uint32 = 1
var tries atomic.Int32
tries.Store(10_000_000) // prefer controlled failure to timeout
var sawContention atomic.Int32
var need int32 = 1
fn := func() bool {
if sawContention.Load() >= need {
return false
}
if tries.Add(-1) < 0 {
return false
}
runtime.Semacquire(&sem)
runtime.Semrelease1(&sem, false, 0)
if runtime.MutexContended(runtime.SemRootLock(&sem)) {
sawContention.Add(1)
}
return true
}
stks := [][]string{
{
"runtime.unlock",
"runtime.semrelease1",
"runtime_test.TestRuntimeLockMetricsAndProfile.func6.1",
"runtime_test.(*contentionWorker).run",
},
{
"runtime.unlock",
"runtime.semacquire1",
"runtime.semacquire",
"runtime_test.TestRuntimeLockMetricsAndProfile.func6.1",
"runtime_test.(*contentionWorker).run",
},
}
// Verify that we get call stack we expect, with anything more than zero
// cycles / zero samples. The duration of each contention event is too
// small relative to the expected overhead for us to verify its value
// more directly. Leave that to the explicit lock/unlock test.
testcase(false, stks, workers, fn)(t)
if remaining := tries.Load(); remaining >= 0 {
t.Logf("finished test early (%d tries remaining)", remaining)
}
})
}
// contentionWorker provides cleaner call stacks for lock contention profile tests
type contentionWorker struct {
before func()
fn func() bool
after func()
}
func (w *contentionWorker) run() {
defer w.after()
w.before()
for w.fn() {
}
}
func TestMetricHeapUnusedLargeObjectOverflow(t *testing.T) {
// This test makes sure /memory/classes/heap/unused:bytes
// doesn't overflow when allocating and deallocating large
// objects. It is a regression test for #67019.
done := make(chan struct{})
var wg sync.WaitGroup
wg.Add(1)
go func() {
defer wg.Done()
for {
for i := 0; i < 10; i++ {
runtime.Escape(make([]byte, 1<<20))
}
runtime.GC()
select {
case <-done:
return
default:
}
}
}()
s := []metrics.Sample{
{Name: "/memory/classes/heap/unused:bytes"},
}
for i := 0; i < 1000; i++ {
metrics.Read(s)
if s[0].Value.Uint64() > 1<<40 {
t.Errorf("overflow")
break
}
}
done <- struct{}{}
wg.Wait()
}
|