diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 12:18:05 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 12:18:05 +0000 |
commit | b46aad6df449445a9fc4aa7b32bd40005438e3f7 (patch) | |
tree | 751aa858ca01f35de800164516b298887382919d /src/compression.c | |
parent | Initial commit. (diff) | |
download | haproxy-b46aad6df449445a9fc4aa7b32bd40005438e3f7.tar.xz haproxy-b46aad6df449445a9fc4aa7b32bd40005438e3f7.zip |
Adding upstream version 2.9.5.upstream/2.9.5
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/compression.c')
-rw-r--r-- | src/compression.c | 742 |
1 files changed, 742 insertions, 0 deletions
diff --git a/src/compression.c b/src/compression.c new file mode 100644 index 0000000..7b75461 --- /dev/null +++ b/src/compression.c @@ -0,0 +1,742 @@ +/* + * HTTP compression. + * + * Copyright 2012 Exceliance, David Du Colombier <dducolombier@exceliance.fr> + * William Lallemand <wlallemand@exceliance.fr> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + * + */ + +#include <stdio.h> + +#if defined(USE_ZLIB) +/* Note: the crappy zlib and openssl libs both define the "free_func" type. + * That's a very clever idea to use such a generic name in general purpose + * libraries, really... The zlib one is easier to redefine than openssl's, + * so let's only fix this one. + */ +#define free_func zlib_free_func +#include <zlib.h> +#undef free_func +#endif /* USE_ZLIB */ + +#include <haproxy/api.h> +#include <haproxy/cfgparse.h> +#include <haproxy/compression-t.h> +#include <haproxy/compression.h> +#include <haproxy/dynbuf.h> +#include <haproxy/freq_ctr.h> +#include <haproxy/global.h> +#include <haproxy/pool.h> +#include <haproxy/stream.h> +#include <haproxy/thread.h> +#include <haproxy/tools.h> + + +#if defined(USE_ZLIB) +__decl_spinlock(comp_pool_lock); +#endif + +#ifdef USE_ZLIB + +static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size); +static void free_zlib(void *opaque, void *ptr); + +/* zlib allocation */ +static struct pool_head *zlib_pool_deflate_state __read_mostly = NULL; +static struct pool_head *zlib_pool_window __read_mostly = NULL; +static struct pool_head *zlib_pool_prev __read_mostly = NULL; +static struct pool_head *zlib_pool_head __read_mostly = NULL; +static struct pool_head *zlib_pool_pending_buf __read_mostly = NULL; + +long zlib_used_memory = 0; + +static int global_tune_zlibmemlevel = 8; /* zlib memlevel */ +static int global_tune_zlibwindowsize = MAX_WBITS; /* zlib window size */ + +#endif + +unsigned int compress_min_idle = 0; + +static int identity_init(struct comp_ctx **comp_ctx, int level); +static int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out); +static int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out); +static int identity_finish(struct comp_ctx *comp_ctx, struct buffer *out); +static int identity_end(struct comp_ctx **comp_ctx); + +#if defined(USE_SLZ) + +static int rfc1950_init(struct comp_ctx **comp_ctx, int level); +static int rfc1951_init(struct comp_ctx **comp_ctx, int level); +static int rfc1952_init(struct comp_ctx **comp_ctx, int level); +static int rfc195x_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out); +static int rfc195x_flush(struct comp_ctx *comp_ctx, struct buffer *out); +static int rfc195x_finish(struct comp_ctx *comp_ctx, struct buffer *out); +static int rfc195x_end(struct comp_ctx **comp_ctx); + +#elif defined(USE_ZLIB) + +static int gzip_init(struct comp_ctx **comp_ctx, int level); +static int raw_def_init(struct comp_ctx **comp_ctx, int level); +static int deflate_init(struct comp_ctx **comp_ctx, int level); +static int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out); +static int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out); +static int deflate_finish(struct comp_ctx *comp_ctx, struct buffer *out); +static int deflate_end(struct comp_ctx **comp_ctx); + +#endif /* USE_ZLIB */ + + +const struct comp_algo comp_algos[] = +{ + { "identity", 8, "identity", 8, identity_init, identity_add_data, identity_flush, identity_finish, identity_end }, +#if defined(USE_SLZ) + { "deflate", 7, "deflate", 7, rfc1950_init, rfc195x_add_data, rfc195x_flush, rfc195x_finish, rfc195x_end }, + { "raw-deflate", 11, "deflate", 7, rfc1951_init, rfc195x_add_data, rfc195x_flush, rfc195x_finish, rfc195x_end }, + { "gzip", 4, "gzip", 4, rfc1952_init, rfc195x_add_data, rfc195x_flush, rfc195x_finish, rfc195x_end }, +#elif defined(USE_ZLIB) + { "deflate", 7, "deflate", 7, deflate_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end }, + { "raw-deflate", 11, "deflate", 7, raw_def_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end }, + { "gzip", 4, "gzip", 4, gzip_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end }, +#endif /* USE_ZLIB */ + { NULL, 0, NULL, 0, NULL , NULL, NULL, NULL, NULL } +}; + +/* + * Add a content-type in the configuration + * Returns 0 in case of success, 1 in case of allocation failure. + */ +int comp_append_type(struct comp_type **types, const char *type) +{ + struct comp_type *comp_type; + + comp_type = calloc(1, sizeof(*comp_type)); + if (!comp_type) + return 1; + comp_type->name_len = strlen(type); + comp_type->name = strdup(type); + comp_type->next = *types; + *types = comp_type; + return 0; +} + +/* + * Add an algorithm in the configuration + * Returns 0 in case of success, -1 if the <algo> is unmanaged, 1 in case of + * allocation failure. + */ +int comp_append_algo(struct comp_algo **algos, const char *algo) +{ + struct comp_algo *comp_algo; + int i; + + for (i = 0; comp_algos[i].cfg_name; i++) { + if (strcmp(algo, comp_algos[i].cfg_name) == 0) { + comp_algo = calloc(1, sizeof(*comp_algo)); + if (!comp_algo) + return 1; + memmove(comp_algo, &comp_algos[i], sizeof(struct comp_algo)); + comp_algo->next = *algos; + *algos = comp_algo; + return 0; + } + } + return -1; +} + +#if defined(USE_ZLIB) || defined(USE_SLZ) +DECLARE_STATIC_POOL(pool_comp_ctx, "comp_ctx", sizeof(struct comp_ctx)); + +/* + * Alloc the comp_ctx + */ +static inline int init_comp_ctx(struct comp_ctx **comp_ctx) +{ +#ifdef USE_ZLIB + z_stream *strm; + + if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < sizeof(struct comp_ctx)) + return -1; +#endif + + *comp_ctx = pool_alloc(pool_comp_ctx); + if (*comp_ctx == NULL) + return -1; +#if defined(USE_SLZ) + (*comp_ctx)->direct_ptr = NULL; + (*comp_ctx)->direct_len = 0; + (*comp_ctx)->queued = BUF_NULL; +#elif defined(USE_ZLIB) + _HA_ATOMIC_ADD(&zlib_used_memory, sizeof(struct comp_ctx)); + __ha_barrier_atomic_store(); + + strm = &(*comp_ctx)->strm; + strm->zalloc = alloc_zlib; + strm->zfree = free_zlib; + strm->opaque = *comp_ctx; +#endif + return 0; +} + +/* + * Dealloc the comp_ctx + */ +static inline int deinit_comp_ctx(struct comp_ctx **comp_ctx) +{ + if (!*comp_ctx) + return 0; + + pool_free(pool_comp_ctx, *comp_ctx); + *comp_ctx = NULL; + +#ifdef USE_ZLIB + _HA_ATOMIC_SUB(&zlib_used_memory, sizeof(struct comp_ctx)); + __ha_barrier_atomic_store(); +#endif + return 0; +} +#endif + + +/**************************** + **** Identity algorithm **** + ****************************/ + +/* + * Init the identity algorithm + */ +static int identity_init(struct comp_ctx **comp_ctx, int level) +{ + return 0; +} + +/* + * Process data + * Return size of consumed data or -1 on error + */ +static int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out) +{ + char *out_data = b_tail(out); + int out_len = b_room(out); + + if (out_len < in_len) + return -1; + + memcpy(out_data, in_data, in_len); + + b_add(out, in_len); + + return in_len; +} + +static int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out) +{ + return 0; +} + +static int identity_finish(struct comp_ctx *comp_ctx, struct buffer *out) +{ + return 0; +} + +/* + * Deinit the algorithm + */ +static int identity_end(struct comp_ctx **comp_ctx) +{ + return 0; +} + + +#ifdef USE_SLZ + +/* SLZ's gzip format (RFC1952). Returns < 0 on error. */ +static int rfc1952_init(struct comp_ctx **comp_ctx, int level) +{ + if (init_comp_ctx(comp_ctx) < 0) + return -1; + + (*comp_ctx)->cur_lvl = !!level; + return slz_rfc1952_init(&(*comp_ctx)->strm, !!level); +} + +/* SLZ's raw deflate format (RFC1951). Returns < 0 on error. */ +static int rfc1951_init(struct comp_ctx **comp_ctx, int level) +{ + if (init_comp_ctx(comp_ctx) < 0) + return -1; + + (*comp_ctx)->cur_lvl = !!level; + return slz_rfc1951_init(&(*comp_ctx)->strm, !!level); +} + +/* SLZ's zlib format (RFC1950). Returns < 0 on error. */ +static int rfc1950_init(struct comp_ctx **comp_ctx, int level) +{ + if (init_comp_ctx(comp_ctx) < 0) + return -1; + + (*comp_ctx)->cur_lvl = !!level; + return slz_rfc1950_init(&(*comp_ctx)->strm, !!level); +} + +/* Return the size of consumed data or -1. The output buffer is unused at this + * point, we only keep a reference to the input data or a copy of them if the + * reference is already used. + */ +static int rfc195x_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out) +{ + static THREAD_LOCAL struct buffer tmpbuf = BUF_NULL; + + if (in_len <= 0) + return 0; + + if (comp_ctx->direct_ptr && b_is_null(&comp_ctx->queued)) { + /* data already being pointed to, we're in front of fragmented + * data and need a buffer now. We reuse the same buffer, as it's + * not used out of the scope of a series of add_data()*, end(). + */ + if (b_alloc(&tmpbuf) == NULL) + return -1; /* no memory */ + b_reset(&tmpbuf); + memcpy(b_tail(&tmpbuf), comp_ctx->direct_ptr, comp_ctx->direct_len); + b_add(&tmpbuf, comp_ctx->direct_len); + comp_ctx->direct_ptr = NULL; + comp_ctx->direct_len = 0; + comp_ctx->queued = tmpbuf; + /* fall through buffer copy */ + } + + if (!b_is_null(&comp_ctx->queued)) { + /* data already pending */ + memcpy(b_tail(&comp_ctx->queued), in_data, in_len); + b_add(&comp_ctx->queued, in_len); + return in_len; + } + + comp_ctx->direct_ptr = in_data; + comp_ctx->direct_len = in_len; + return in_len; +} + +/* Compresses the data accumulated using add_data(), and optionally sends the + * format-specific trailer if <finish> is non-null. <out> is expected to have a + * large enough free non-wrapping space as verified by http_comp_buffer_init(). + * The number of bytes emitted is reported. + */ +static int rfc195x_flush_or_finish(struct comp_ctx *comp_ctx, struct buffer *out, int finish) +{ + struct slz_stream *strm = &comp_ctx->strm; + const char *in_ptr; + int in_len; + int out_len; + + in_ptr = comp_ctx->direct_ptr; + in_len = comp_ctx->direct_len; + + if (!b_is_null(&comp_ctx->queued)) { + in_ptr = b_head(&comp_ctx->queued); + in_len = b_data(&comp_ctx->queued); + } + + out_len = b_data(out); + + if (in_ptr) + b_add(out, slz_encode(strm, b_tail(out), in_ptr, in_len, !finish)); + + if (finish) + b_add(out, slz_finish(strm, b_tail(out))); + else + b_add(out, slz_flush(strm, b_tail(out))); + + out_len = b_data(out) - out_len; + + /* very important, we must wipe the data we've just flushed */ + comp_ctx->direct_len = 0; + comp_ctx->direct_ptr = NULL; + comp_ctx->queued = BUF_NULL; + + /* Verify compression rate limiting and CPU usage */ + if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) || /* rate */ + (th_ctx->idle_pct < compress_min_idle)) { /* idle */ + if (comp_ctx->cur_lvl > 0) + strm->level = --comp_ctx->cur_lvl; + } + else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel && comp_ctx->cur_lvl < 1) { + strm->level = ++comp_ctx->cur_lvl; + } + + /* and that's all */ + return out_len; +} + +static int rfc195x_flush(struct comp_ctx *comp_ctx, struct buffer *out) +{ + return rfc195x_flush_or_finish(comp_ctx, out, 0); +} + +static int rfc195x_finish(struct comp_ctx *comp_ctx, struct buffer *out) +{ + return rfc195x_flush_or_finish(comp_ctx, out, 1); +} + +/* we just need to free the comp_ctx here, nothing was allocated */ +static int rfc195x_end(struct comp_ctx **comp_ctx) +{ + deinit_comp_ctx(comp_ctx); + return 0; +} + +#elif defined(USE_ZLIB) /* ! USE_SLZ */ + +/* + * This is a tricky allocation function using the zlib. + * This is based on the allocation order in deflateInit2. + */ +static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size) +{ + struct comp_ctx *ctx = opaque; + static THREAD_LOCAL char round = 0; /* order in deflateInit2 */ + void *buf = NULL; + struct pool_head *pool = NULL; + + if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < (long)(items * size)) + goto end; + + switch (round) { + case 0: + if (zlib_pool_deflate_state == NULL) { + HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock); + if (zlib_pool_deflate_state == NULL) + zlib_pool_deflate_state = create_pool("zlib_state", size * items, MEM_F_SHARED); + HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock); + } + pool = zlib_pool_deflate_state; + ctx->zlib_deflate_state = buf = pool_alloc(pool); + break; + + case 1: + if (zlib_pool_window == NULL) { + HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock); + if (zlib_pool_window == NULL) + zlib_pool_window = create_pool("zlib_window", size * items, MEM_F_SHARED); + HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock); + } + pool = zlib_pool_window; + ctx->zlib_window = buf = pool_alloc(pool); + break; + + case 2: + if (zlib_pool_prev == NULL) { + HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock); + if (zlib_pool_prev == NULL) + zlib_pool_prev = create_pool("zlib_prev", size * items, MEM_F_SHARED); + HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock); + } + pool = zlib_pool_prev; + ctx->zlib_prev = buf = pool_alloc(pool); + break; + + case 3: + if (zlib_pool_head == NULL) { + HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock); + if (zlib_pool_head == NULL) + zlib_pool_head = create_pool("zlib_head", size * items, MEM_F_SHARED); + HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock); + } + pool = zlib_pool_head; + ctx->zlib_head = buf = pool_alloc(pool); + break; + + case 4: + if (zlib_pool_pending_buf == NULL) { + HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock); + if (zlib_pool_pending_buf == NULL) + zlib_pool_pending_buf = create_pool("zlib_pending_buf", size * items, MEM_F_SHARED); + HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock); + } + pool = zlib_pool_pending_buf; + ctx->zlib_pending_buf = buf = pool_alloc(pool); + break; + } + if (buf != NULL) { + _HA_ATOMIC_ADD(&zlib_used_memory, pool->size); + __ha_barrier_atomic_store(); + } + +end: + + /* deflateInit2() first allocates and checks the deflate_state, then if + * it succeeds, it allocates all other 4 areas at ones and checks them + * at the end. So we want to correctly count the rounds depending on when + * zlib is supposed to abort. + */ + if (buf || round) + round = (round + 1) % 5; + return buf; +} + +static void free_zlib(void *opaque, void *ptr) +{ + struct comp_ctx *ctx = opaque; + struct pool_head *pool = NULL; + + if (ptr == ctx->zlib_window) + pool = zlib_pool_window; + else if (ptr == ctx->zlib_deflate_state) + pool = zlib_pool_deflate_state; + else if (ptr == ctx->zlib_prev) + pool = zlib_pool_prev; + else if (ptr == ctx->zlib_head) + pool = zlib_pool_head; + else if (ptr == ctx->zlib_pending_buf) + pool = zlib_pool_pending_buf; + else { + // never matched, just to silence gcc + ABORT_NOW(); + return; + } + + pool_free(pool, ptr); + _HA_ATOMIC_SUB(&zlib_used_memory, pool->size); + __ha_barrier_atomic_store(); +} + +/************************** +**** gzip algorithm **** +***************************/ +static int gzip_init(struct comp_ctx **comp_ctx, int level) +{ + z_stream *strm; + + if (init_comp_ctx(comp_ctx) < 0) + return -1; + + strm = &(*comp_ctx)->strm; + + if (deflateInit2(strm, level, Z_DEFLATED, global_tune_zlibwindowsize + 16, global_tune_zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) { + deinit_comp_ctx(comp_ctx); + return -1; + } + + (*comp_ctx)->cur_lvl = level; + + return 0; +} + +/* Raw deflate algorithm */ +static int raw_def_init(struct comp_ctx **comp_ctx, int level) +{ + z_stream *strm; + + if (init_comp_ctx(comp_ctx) < 0) + return -1; + + strm = &(*comp_ctx)->strm; + + if (deflateInit2(strm, level, Z_DEFLATED, -global_tune_zlibwindowsize, global_tune_zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) { + deinit_comp_ctx(comp_ctx); + return -1; + } + + (*comp_ctx)->cur_lvl = level; + return 0; +} + +/************************** +**** Deflate algorithm **** +***************************/ + +static int deflate_init(struct comp_ctx **comp_ctx, int level) +{ + z_stream *strm; + + if (init_comp_ctx(comp_ctx) < 0) + return -1; + + strm = &(*comp_ctx)->strm; + + if (deflateInit2(strm, level, Z_DEFLATED, global_tune_zlibwindowsize, global_tune_zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) { + deinit_comp_ctx(comp_ctx); + return -1; + } + + (*comp_ctx)->cur_lvl = level; + + return 0; +} + +/* Return the size of consumed data or -1 */ +static int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out) +{ + int ret; + z_stream *strm = &comp_ctx->strm; + char *out_data = b_tail(out); + int out_len = b_room(out); + + if (in_len <= 0) + return 0; + + + if (out_len <= 0) + return -1; + + strm->next_in = (unsigned char *)in_data; + strm->avail_in = in_len; + strm->next_out = (unsigned char *)out_data; + strm->avail_out = out_len; + + ret = deflate(strm, Z_NO_FLUSH); + if (ret != Z_OK) + return -1; + + /* deflate update the available data out */ + b_add(out, out_len - strm->avail_out); + + return in_len - strm->avail_in; +} + +static int deflate_flush_or_finish(struct comp_ctx *comp_ctx, struct buffer *out, int flag) +{ + int ret; + int out_len = 0; + z_stream *strm = &comp_ctx->strm; + + strm->next_in = NULL; + strm->avail_in = 0; + strm->next_out = (unsigned char *)b_tail(out); + strm->avail_out = b_room(out); + + ret = deflate(strm, flag); + if (ret != Z_OK && ret != Z_STREAM_END) + return -1; + + out_len = b_room(out) - strm->avail_out; + b_add(out, out_len); + + /* compression limit */ + if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) || /* rate */ + (th_ctx->idle_pct < compress_min_idle)) { /* idle */ + /* decrease level */ + if (comp_ctx->cur_lvl > 0) { + comp_ctx->cur_lvl--; + deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY); + } + + } else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel) { + /* increase level */ + comp_ctx->cur_lvl++ ; + deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY); + } + + return out_len; +} + +static int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out) +{ + return deflate_flush_or_finish(comp_ctx, out, Z_SYNC_FLUSH); +} + +static int deflate_finish(struct comp_ctx *comp_ctx, struct buffer *out) +{ + return deflate_flush_or_finish(comp_ctx, out, Z_FINISH); +} + +static int deflate_end(struct comp_ctx **comp_ctx) +{ + z_stream *strm = &(*comp_ctx)->strm; + int ret; + + ret = deflateEnd(strm); + + deinit_comp_ctx(comp_ctx); + + return ret; +} + +/* config parser for global "tune.zlibmemlevel" */ +static int zlib_parse_global_memlevel(char **args, int section_type, struct proxy *curpx, + const struct proxy *defpx, const char *file, int line, + char **err) +{ + if (too_many_args(1, args, err, NULL)) + return -1; + + if (*(args[1]) == 0) { + memprintf(err, "'%s' expects a numeric value between 1 and 9.", args[0]); + return -1; + } + + global_tune_zlibmemlevel = atoi(args[1]); + if (global_tune_zlibmemlevel < 1 || global_tune_zlibmemlevel > 9) { + memprintf(err, "'%s' expects a numeric value between 1 and 9.", args[0]); + return -1; + } + return 0; +} + + +/* config parser for global "tune.zlibwindowsize" */ +static int zlib_parse_global_windowsize(char **args, int section_type, struct proxy *curpx, + const struct proxy *defpx, const char *file, int line, + char **err) +{ + if (too_many_args(1, args, err, NULL)) + return -1; + + if (*(args[1]) == 0) { + memprintf(err, "'%s' expects a numeric value between 8 and 15.", args[0]); + return -1; + } + + global_tune_zlibwindowsize = atoi(args[1]); + if (global_tune_zlibwindowsize < 8 || global_tune_zlibwindowsize > 15) { + memprintf(err, "'%s' expects a numeric value between 8 and 15.", args[0]); + return -1; + } + return 0; +} + +#endif /* USE_ZLIB */ + + +/* config keyword parsers */ +static struct cfg_kw_list cfg_kws = {ILH, { +#ifdef USE_ZLIB + { CFG_GLOBAL, "tune.zlib.memlevel", zlib_parse_global_memlevel }, + { CFG_GLOBAL, "tune.zlib.windowsize", zlib_parse_global_windowsize }, +#endif + { 0, NULL, NULL } +}}; + +INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws); + +static void comp_register_build_opts(void) +{ + char *ptr = NULL; + int i; + +#ifdef USE_ZLIB + memprintf(&ptr, "Built with zlib version : " ZLIB_VERSION); + memprintf(&ptr, "%s\nRunning on zlib version : %s", ptr, zlibVersion()); +#elif defined(USE_SLZ) + memprintf(&ptr, "Built with libslz for stateless compression."); +#else + memprintf(&ptr, "Built without compression support (neither USE_ZLIB nor USE_SLZ are set)."); +#endif + memprintf(&ptr, "%s\nCompression algorithms supported :", ptr); + + for (i = 0; comp_algos[i].cfg_name; i++) + memprintf(&ptr, "%s%s %s(\"%s\")", ptr, (i == 0 ? "" : ","), comp_algos[i].cfg_name, comp_algos[i].ua_name); + + if (i == 0) + memprintf(&ptr, "%s none", ptr); + + hap_register_build_opts(ptr, 1); +} + +INITCALL0(STG_REGISTER, comp_register_build_opts); |