summaryrefslogtreecommitdiffstats
path: root/src/quic_tls.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 12:18:05 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 12:18:05 +0000
commitb46aad6df449445a9fc4aa7b32bd40005438e3f7 (patch)
tree751aa858ca01f35de800164516b298887382919d /src/quic_tls.c
parentInitial commit. (diff)
downloadhaproxy-upstream/2.9.5.tar.xz
haproxy-upstream/2.9.5.zip
Adding upstream version 2.9.5.upstream/2.9.5
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--src/quic_tls.c1095
1 files changed, 1095 insertions, 0 deletions
diff --git a/src/quic_tls.c b/src/quic_tls.c
new file mode 100644
index 0000000..581d615
--- /dev/null
+++ b/src/quic_tls.c
@@ -0,0 +1,1095 @@
+#include <haproxy/quic_tls.h>
+
+#include <string.h>
+
+#include <openssl/evp.h>
+#include <openssl/kdf.h>
+#include <openssl/ssl.h>
+
+#include <haproxy/buf.h>
+#include <haproxy/chunk.h>
+#include <haproxy/pool.h>
+#include <haproxy/quic_ack.h>
+#include <haproxy/quic_conn.h>
+#include <haproxy/quic_rx.h>
+#include <haproxy/quic_stream.h>
+
+
+DECLARE_POOL(pool_head_quic_enc_level, "quic_enc_level", sizeof(struct quic_enc_level));
+DECLARE_POOL(pool_head_quic_pktns, "quic_pktns", sizeof(struct quic_pktns));
+DECLARE_POOL(pool_head_quic_tls_ctx, "quic_tls_ctx", sizeof(struct quic_tls_ctx));
+DECLARE_POOL(pool_head_quic_tls_secret, "quic_tls_secret", QUIC_TLS_SECRET_LEN);
+DECLARE_POOL(pool_head_quic_tls_iv, "quic_tls_iv", QUIC_TLS_IV_LEN);
+DECLARE_POOL(pool_head_quic_tls_key, "quic_tls_key", QUIC_TLS_KEY_LEN);
+
+DECLARE_POOL(pool_head_quic_crypto_buf, "quic_crypto_buf", sizeof(struct quic_crypto_buf));
+DECLARE_STATIC_POOL(pool_head_quic_cstream, "quic_cstream", sizeof(struct quic_cstream));
+
+/* Initial salt depending on QUIC version to derive client/server initial secrets.
+ * This one is for draft-29 QUIC version.
+ */
+const unsigned char initial_salt_draft_29[20] = {
+ 0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c,
+ 0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61, 0x11, 0xe0,
+ 0x43, 0x90, 0xa8, 0x99
+};
+
+const unsigned char initial_salt_v1[20] = {
+ 0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3,
+ 0x4d, 0x17, 0x9a, 0xe6, 0xa4, 0xc8, 0x0c, 0xad,
+ 0xcc, 0xbb, 0x7f, 0x0a
+};
+
+const unsigned char initial_salt_v2[20] = {
+ 0x0d, 0xed, 0xe3, 0xde, 0xf7, 0x00, 0xa6, 0xdb,
+ 0x81, 0x93, 0x81, 0xbe, 0x6e, 0x26, 0x9d, 0xcb,
+ 0xf9, 0xbd, 0x2e, 0xd9
+};
+
+/* Dump the RX/TX secrets of <secs> QUIC TLS secrets. */
+void quic_tls_keys_hexdump(struct buffer *buf,
+ const struct quic_tls_secrets *secs)
+{
+ int i;
+ size_t aead_keylen;
+ size_t aead_ivlen;
+ size_t hp_len;
+
+ if (!secs->aead || !secs->hp)
+ return;
+
+ aead_keylen = (size_t)EVP_CIPHER_key_length(secs->aead);
+ aead_ivlen = (size_t)EVP_CIPHER_iv_length(secs->aead);
+ hp_len = (size_t)EVP_CIPHER_key_length(secs->hp);
+
+ chunk_appendf(buf, "\n key=");
+ for (i = 0; i < aead_keylen; i++)
+ chunk_appendf(buf, "%02x", secs->key[i]);
+ chunk_appendf(buf, "\n iv=");
+ for (i = 0; i < aead_ivlen; i++)
+ chunk_appendf(buf, "%02x", secs->iv[i]);
+ chunk_appendf(buf, "\n hp=");
+ for (i = 0; i < hp_len; i++)
+ chunk_appendf(buf, "%02x", secs->hp_key[i]);
+}
+
+/* Dump the RX/TX secrets of <kp> QUIC TLS key phase */
+void quic_tls_kp_keys_hexdump(struct buffer *buf,
+ const struct quic_tls_kp *kp)
+{
+ int i;
+
+ chunk_appendf(buf, "\n secret=");
+ for (i = 0; i < kp->secretlen; i++)
+ chunk_appendf(buf, "%02x", kp->secret[i]);
+ chunk_appendf(buf, "\n key=");
+ for (i = 0; i < kp->keylen; i++)
+ chunk_appendf(buf, "%02x", kp->key[i]);
+ chunk_appendf(buf, "\n iv=");
+ for (i = 0; i < kp->ivlen; i++)
+ chunk_appendf(buf, "%02x", kp->iv[i]);
+}
+
+/* Release the memory of <pktns> packet number space attached to <qc> QUIC connection. */
+void quic_pktns_release(struct quic_conn *qc, struct quic_pktns **pktns)
+{
+ if (!*pktns)
+ return;
+
+ quic_pktns_tx_pkts_release(*pktns, qc);
+ qc_release_pktns_frms(qc, *pktns);
+ quic_free_arngs(qc, &(*pktns)->rx.arngs);
+ LIST_DEL_INIT(&(*pktns)->list);
+ pool_free(pool_head_quic_pktns, *pktns);
+ *pktns = NULL;
+}
+
+/* Dump <secret> TLS secret. */
+void quic_tls_secret_hexdump(struct buffer *buf,
+ const unsigned char *secret, size_t secret_len)
+{
+ int i;
+
+ chunk_appendf(buf, " secret=");
+ for (i = 0; i < secret_len; i++)
+ chunk_appendf(buf, "%02x", secret[i]);
+}
+
+/* Release the memory allocated for <cs> CRYPTO stream */
+void quic_cstream_free(struct quic_cstream *cs)
+{
+ if (!cs) {
+ /* This is the case for ORTT encryption level */
+ return;
+ }
+
+ quic_free_ncbuf(&cs->rx.ncbuf);
+
+ qc_stream_desc_release(cs->desc, 0);
+ pool_free(pool_head_quic_cstream, cs);
+}
+
+/* Allocate a new QUIC stream for <qc>.
+ * Return it if succeeded, NULL if not.
+ */
+struct quic_cstream *quic_cstream_new(struct quic_conn *qc)
+{
+ struct quic_cstream *cs, *ret_cs = NULL;
+
+ TRACE_ENTER(QUIC_EV_CONN_LPKT, qc);
+ cs = pool_alloc(pool_head_quic_cstream);
+ if (!cs) {
+ TRACE_ERROR("crypto stream allocation failed", QUIC_EV_CONN_INIT, qc);
+ goto leave;
+ }
+
+ cs->rx.offset = 0;
+ cs->rx.ncbuf = NCBUF_NULL;
+ cs->rx.offset = 0;
+
+ cs->tx.offset = 0;
+ cs->tx.sent_offset = 0;
+ cs->tx.buf = BUF_NULL;
+ cs->desc = qc_stream_desc_new((uint64_t)-1, -1, cs, qc);
+ if (!cs->desc) {
+ TRACE_ERROR("crypto stream allocation failed", QUIC_EV_CONN_INIT, qc);
+ goto err;
+ }
+
+ ret_cs = cs;
+ leave:
+ TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc);
+ return ret_cs;
+
+ err:
+ pool_free(pool_head_quic_cstream, cs);
+ goto leave;
+}
+
+/* Uninitialize <qel> QUIC encryption level. Never fails. */
+void quic_conn_enc_level_uninit(struct quic_conn *qc, struct quic_enc_level *qel)
+{
+ int i;
+ struct qf_crypto *qf_crypto, *qfback;
+
+ TRACE_ENTER(QUIC_EV_CONN_CLOSE, qc);
+
+ for (i = 0; i < qel->tx.crypto.nb_buf; i++) {
+ if (qel->tx.crypto.bufs[i]) {
+ pool_free(pool_head_quic_crypto_buf, qel->tx.crypto.bufs[i]);
+ qel->tx.crypto.bufs[i] = NULL;
+ }
+ }
+
+ list_for_each_entry_safe(qf_crypto, qfback, &qel->rx.crypto_frms, list) {
+ LIST_DELETE(&qf_crypto->list);
+ pool_free(pool_head_qf_crypto, qf_crypto);
+ }
+
+ ha_free(&qel->tx.crypto.bufs);
+ quic_cstream_free(qel->cstream);
+
+ TRACE_LEAVE(QUIC_EV_CONN_CLOSE, qc);
+}
+
+/* Initialize QUIC TLS encryption level with <level<> as level for <qc> QUIC
+ * connection allocating everything needed.
+ *
+ * Returns 1 if succeeded, 0 if not. On error the caller is responsible to use
+ * quic_conn_enc_level_uninit() to cleanup partially allocated content.
+ */
+static int quic_conn_enc_level_init(struct quic_conn *qc,
+ struct quic_enc_level **el,
+ struct quic_pktns *pktns,
+ enum ssl_encryption_level_t level)
+{
+ int ret = 0;
+ struct quic_enc_level *qel;
+
+ TRACE_ENTER(QUIC_EV_CONN_CLOSE, qc);
+
+ qel = pool_alloc(pool_head_quic_enc_level);
+ if (!qel)
+ goto leave;
+
+ LIST_INIT(&qel->retrans);
+ qel->retrans_frms = NULL;
+ qel->tx.crypto.bufs = NULL;
+ qel->tx.crypto.nb_buf = 0;
+ qel->cstream = NULL;
+ qel->pktns = pktns;
+ qel->level = level;
+ quic_tls_ctx_reset(&qel->tls_ctx);
+
+ qel->rx.pkts = EB_ROOT;
+ LIST_INIT(&qel->rx.pqpkts);
+ LIST_INIT(&qel->rx.crypto_frms);
+
+ /* Allocate only one buffer. */
+ /* TODO: use a pool */
+ qel->tx.crypto.bufs = malloc(sizeof *qel->tx.crypto.bufs);
+ if (!qel->tx.crypto.bufs)
+ goto err;
+
+ qel->tx.crypto.bufs[0] = pool_alloc(pool_head_quic_crypto_buf);
+ if (!qel->tx.crypto.bufs[0])
+ goto err;
+
+
+ qel->tx.crypto.bufs[0]->sz = 0;
+ qel->tx.crypto.nb_buf = 1;
+
+ qel->tx.crypto.sz = 0;
+ qel->tx.crypto.offset = 0;
+ /* No CRYPTO data for early data TLS encryption level */
+ if (level == ssl_encryption_early_data)
+ qel->cstream = NULL;
+ else {
+ qel->cstream = quic_cstream_new(qc);
+ if (!qel->cstream)
+ goto err;
+ }
+
+ LIST_APPEND(&qc->qel_list, &qel->list);
+ *el = qel;
+ ret = 1;
+ leave:
+ TRACE_LEAVE(QUIC_EV_CONN_CLOSE, qc);
+ return ret;
+
+ err:
+ quic_conn_enc_level_uninit(qc, qel);
+ pool_free(pool_head_quic_enc_level, qel);
+ goto leave;
+}
+
+/* Allocate a QUIC TLS encryption with <level> as TLS stack encryption to be
+ * attached to <qc> QUIC connection. Also allocate the associated packet number
+ * space object with <pktns> as address to be attached to <qc> if not already
+ * allocated.
+ * Return 1 if succeeded, 0 if not.
+ */
+int qc_enc_level_alloc(struct quic_conn *qc, struct quic_pktns **pktns,
+ struct quic_enc_level **qel, enum ssl_encryption_level_t level)
+{
+ int ret = 0;
+
+ BUG_ON(!qel || !pktns);
+ BUG_ON(*qel && !*pktns);
+
+ if (!*pktns && !quic_pktns_init(qc, pktns))
+ goto leave;
+
+ if (!*qel && !quic_conn_enc_level_init(qc, qel, *pktns, level))
+ goto leave;
+
+ ret = 1;
+ leave:
+ return ret;
+}
+
+/* Free the memory allocated to the encryption level attached to <qc> connection
+ * with <qel> as pointer address. Also remove it from the list of the encryption
+ * levels attached to this connection and reset its value to NULL.
+ * Never fails.
+ */
+void qc_enc_level_free(struct quic_conn *qc, struct quic_enc_level **qel)
+{
+ if (!*qel)
+ return;
+
+ quic_tls_ctx_secs_free(&(*qel)->tls_ctx);
+ quic_conn_enc_level_uninit(qc, *qel);
+ LIST_DEL_INIT(&(*qel)->list);
+ pool_free(pool_head_quic_enc_level, *qel);
+ *qel = NULL;
+}
+
+int quic_hkdf_extract(const EVP_MD *md,
+ unsigned char *buf, size_t buflen,
+ const unsigned char *key, size_t keylen,
+ const unsigned char *salt, size_t saltlen)
+{
+ EVP_PKEY_CTX *ctx;
+
+ ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
+ if (!ctx)
+ return 0;
+
+ if (EVP_PKEY_derive_init(ctx) <= 0 ||
+ EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY) <= 0 ||
+ EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 ||
+ EVP_PKEY_CTX_set1_hkdf_salt(ctx, salt, saltlen) <= 0 ||
+ EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 ||
+ EVP_PKEY_derive(ctx, buf, &buflen) <= 0)
+ goto err;
+
+ EVP_PKEY_CTX_free(ctx);
+ return 1;
+
+ err:
+ EVP_PKEY_CTX_free(ctx);
+ return 0;
+}
+
+int quic_hkdf_expand(const EVP_MD *md,
+ unsigned char *buf, size_t buflen,
+ const unsigned char *key, size_t keylen,
+ const unsigned char *label, size_t labellen)
+{
+ EVP_PKEY_CTX *ctx;
+
+ ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
+ if (!ctx)
+ return 0;
+
+ if (EVP_PKEY_derive_init(ctx) <= 0 ||
+ EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY) <= 0 ||
+ EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 ||
+ EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 ||
+ EVP_PKEY_CTX_add1_hkdf_info(ctx, label, labellen) <= 0 ||
+ EVP_PKEY_derive(ctx, buf, &buflen) <= 0)
+ goto err;
+
+ EVP_PKEY_CTX_free(ctx);
+ return 1;
+
+ err:
+ EVP_PKEY_CTX_free(ctx);
+ return 0;
+}
+
+/* Extracts a peudo-random secret key from <key> which is eventually not
+ * pseudo-random and expand it to a new pseudo-random key into
+ * <buf> with <buflen> as key length according to HKDF specifications
+ * (https://datatracker.ietf.org/doc/html/rfc5869).
+ * According to this specifications it is highly recommended to use
+ * a salt, even if optional (NULL value).
+ * Return 1 if succeeded, 0 if not.
+ */
+int quic_hkdf_extract_and_expand(const EVP_MD *md,
+ unsigned char *buf, size_t buflen,
+ const unsigned char *key, size_t keylen,
+ const unsigned char *salt, size_t saltlen,
+ const unsigned char *label, size_t labellen)
+{
+ EVP_PKEY_CTX *ctx;
+
+ ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
+ if (!ctx)
+ return 0;
+
+ if (EVP_PKEY_derive_init(ctx) <= 0 ||
+ EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXTRACT_AND_EXPAND) <= 0 ||
+ EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 ||
+ EVP_PKEY_CTX_set1_hkdf_salt(ctx, salt, saltlen) <= 0 ||
+ EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 ||
+ EVP_PKEY_CTX_add1_hkdf_info(ctx, label, labellen) <= 0 ||
+ EVP_PKEY_derive(ctx, buf, &buflen) <= 0)
+ goto err;
+
+ EVP_PKEY_CTX_free(ctx);
+ return 1;
+
+ err:
+ EVP_PKEY_CTX_free(ctx);
+ return 0;
+}
+
+/* https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#protection-keys
+ * refers to:
+ *
+ * https://tools.ietf.org/html/rfc8446#section-7.1:
+ * 7.1. Key Schedule
+ *
+ * The key derivation process makes use of the HKDF-Extract and
+ * HKDF-Expand functions as defined for HKDF [RFC5869], as well as the
+ * functions defined below:
+ *
+ * HKDF-Expand-Label(Secret, Label, Context, Length) =
+ * HKDF-Expand(Secret, HkdfLabel, Length)
+ *
+ * Where HkdfLabel is specified as:
+ *
+ * struct {
+ * uint16 length = Length;
+ * opaque label<7..255> = "tls13 " + Label;
+ * opaque context<0..255> = Context;
+ * } HkdfLabel;
+ *
+ * Derive-Secret(Secret, Label, Messages) =
+ * HKDF-Expand-Label(Secret, Label,
+ * Transcript-Hash(Messages), Hash.length)
+ *
+ */
+int quic_hkdf_expand_label(const EVP_MD *md,
+ unsigned char *buf, size_t buflen,
+ const unsigned char *key, size_t keylen,
+ const unsigned char *label, size_t labellen)
+{
+ unsigned char hdkf_label[256], *pos;
+ const unsigned char hdkf_label_label[] = "tls13 ";
+ size_t hdkf_label_label_sz = sizeof hdkf_label_label - 1;
+
+ pos = hdkf_label;
+ *pos++ = buflen >> 8;
+ *pos++ = buflen & 0xff;
+ *pos++ = hdkf_label_label_sz + labellen;
+ memcpy(pos, hdkf_label_label, hdkf_label_label_sz);
+ pos += hdkf_label_label_sz;
+ memcpy(pos, label, labellen);
+ pos += labellen;
+ *pos++ = '\0';
+
+ return quic_hkdf_expand(md, buf, buflen,
+ key, keylen, hdkf_label, pos - hdkf_label);
+}
+
+/*
+ * This function derives two keys from <secret> is <ctx> as TLS cryptographic context.
+ * ->key is the TLS key to be derived to encrypt/decrypt data at TLS level.
+ * ->iv is the initialization vector to be used with ->key.
+ * ->hp_key is the key to be derived for header protection.
+ * Obviouly these keys have the same size becaused derived with the same TLS cryptographic context.
+ */
+int quic_tls_derive_keys(const EVP_CIPHER *aead, const EVP_CIPHER *hp,
+ const EVP_MD *md, const struct quic_version *qv,
+ unsigned char *key, size_t keylen,
+ unsigned char *iv, size_t ivlen,
+ unsigned char *hp_key, size_t hp_keylen,
+ const unsigned char *secret, size_t secretlen)
+{
+ size_t aead_keylen = (size_t)EVP_CIPHER_key_length(aead);
+ size_t aead_ivlen = (size_t)EVP_CIPHER_iv_length(aead);
+ size_t hp_len = hp ? (size_t)EVP_CIPHER_key_length(hp) : 0;
+
+ if (aead_keylen > keylen || aead_ivlen > ivlen || hp_len > hp_keylen)
+ return 0;
+
+ if (!quic_hkdf_expand_label(md, key, aead_keylen, secret, secretlen,
+ qv->key_label,qv->key_label_len) ||
+ !quic_hkdf_expand_label(md, iv, aead_ivlen, secret, secretlen,
+ qv->iv_label, qv->iv_label_len) ||
+ (hp_key && !quic_hkdf_expand_label(md, hp_key, hp_len, secret, secretlen,
+ qv->hp_label, qv->hp_label_len)))
+ return 0;
+
+ return 1;
+}
+
+/*
+ * Derive the initial secret from <secret> and QUIC version dependent salt.
+ * Returns the size of the derived secret if succeeded, 0 if not.
+ */
+int quic_derive_initial_secret(const EVP_MD *md,
+ const unsigned char *initial_salt, size_t initial_salt_sz,
+ unsigned char *initial_secret, size_t initial_secret_sz,
+ const unsigned char *secret, size_t secret_sz)
+{
+ if (!quic_hkdf_extract(md, initial_secret, initial_secret_sz, secret, secret_sz,
+ initial_salt, initial_salt_sz))
+ return 0;
+
+ return 1;
+}
+
+/*
+ * Derive the client initial secret from the initial secret.
+ * Returns the size of the derived secret if succeeded, 0 if not.
+ */
+int quic_tls_derive_initial_secrets(const EVP_MD *md,
+ unsigned char *rx, size_t rx_sz,
+ unsigned char *tx, size_t tx_sz,
+ const unsigned char *secret, size_t secret_sz,
+ int server)
+{
+ const unsigned char client_label[] = "client in";
+ const unsigned char server_label[] = "server in";
+ const unsigned char *tx_label, *rx_label;
+ size_t rx_label_sz, tx_label_sz;
+
+ if (server) {
+ rx_label = client_label;
+ rx_label_sz = sizeof client_label;
+ tx_label = server_label;
+ tx_label_sz = sizeof server_label;
+ }
+ else {
+ rx_label = server_label;
+ rx_label_sz = sizeof server_label;
+ tx_label = client_label;
+ tx_label_sz = sizeof client_label;
+ }
+
+ if (!quic_hkdf_expand_label(md, rx, rx_sz, secret, secret_sz,
+ rx_label, rx_label_sz - 1) ||
+ !quic_hkdf_expand_label(md, tx, tx_sz, secret, secret_sz,
+ tx_label, tx_label_sz - 1))
+ return 0;
+
+ return 1;
+}
+
+/* Update <sec> secret key into <new_sec> according to RFC 9001 6.1.
+ * Always succeeds.
+ */
+int quic_tls_sec_update(const EVP_MD *md, const struct quic_version *qv,
+ unsigned char *new_sec, size_t new_seclen,
+ const unsigned char *sec, size_t seclen)
+{
+ return quic_hkdf_expand_label(md, new_sec, new_seclen, sec, seclen,
+ qv->ku_label, qv->ku_label_len);
+}
+
+/*
+ * Build an IV into <iv> buffer with <ivlen> as size from <aead_iv> with
+ * <aead_ivlen> as size depending on <pn> packet number.
+ * This is the function which must be called to build an AEAD IV for the AEAD cryptographic algorithm
+ * used to encrypt/decrypt the QUIC packet payloads depending on the packet number <pn>.
+ */
+void quic_aead_iv_build(unsigned char *iv, size_t ivlen,
+ unsigned char *aead_iv, size_t aead_ivlen, uint64_t pn)
+{
+ int i;
+ unsigned int shift;
+ unsigned char *pos = iv;
+
+ /* Input buffers must have the same size. */
+ BUG_ON(ivlen != aead_ivlen);
+
+ for (i = 0; i < ivlen - sizeof pn; i++)
+ *pos++ = *aead_iv++;
+
+ /* Only the remaining (sizeof pn) bytes are XOR'ed. */
+ shift = 56;
+ for (i = aead_ivlen - sizeof pn; i < aead_ivlen ; i++, shift -= 8)
+ *pos++ = *aead_iv++ ^ (pn >> shift);
+}
+
+/* Initialize the cipher context for RX part of <tls_ctx> QUIC TLS context.
+ * Return 1 if succeeded, 0 if not.
+ */
+int quic_tls_rx_ctx_init(EVP_CIPHER_CTX **rx_ctx,
+ const EVP_CIPHER *aead, unsigned char *key)
+{
+ EVP_CIPHER_CTX *ctx;
+ int aead_nid = EVP_CIPHER_nid(aead);
+
+ ctx = EVP_CIPHER_CTX_new();
+ if (!ctx)
+ return 0;
+
+ if (!EVP_DecryptInit_ex(ctx, aead, NULL, NULL, NULL) ||
+ !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, QUIC_TLS_IV_LEN, NULL) ||
+ (aead_nid == NID_aes_128_ccm &&
+ !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, NULL)) ||
+ !EVP_DecryptInit_ex(ctx, NULL, NULL, key, NULL))
+ goto err;
+
+ *rx_ctx = ctx;
+
+ return 1;
+
+ err:
+ EVP_CIPHER_CTX_free(ctx);
+ return 0;
+}
+
+/* Initialize <*aes_ctx> AES cipher context with <key> as key for encryption */
+int quic_tls_enc_aes_ctx_init(EVP_CIPHER_CTX **aes_ctx,
+ const EVP_CIPHER *aes, unsigned char *key)
+{
+ EVP_CIPHER_CTX *ctx;
+
+ ctx = EVP_CIPHER_CTX_new();
+ if (!ctx)
+ return 0;
+
+ if (!EVP_EncryptInit_ex(ctx, aes, NULL, key, NULL))
+ goto err;
+
+ *aes_ctx = ctx;
+ return 1;
+
+ err:
+ EVP_CIPHER_CTX_free(ctx);
+ return 0;
+}
+
+/* Encrypt <inlen> bytes from <in> buffer into <out> with <ctx> as AES
+ * cipher context. This is the responsibility of the caller to check there
+ * is at least <inlen> bytes of available space in <out> buffer.
+ * Return 1 if succeeded, 0 if not.
+ */
+int quic_tls_aes_encrypt(unsigned char *out,
+ const unsigned char *in, size_t inlen,
+ EVP_CIPHER_CTX *ctx)
+{
+ int ret = 0;
+
+ if (!EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, in) ||
+ !EVP_EncryptUpdate(ctx, out, &ret, out, inlen) ||
+ !EVP_EncryptFinal_ex(ctx, out, &ret))
+ return 0;
+
+ return 1;
+}
+
+/* Initialize <*aes_ctx> AES cipher context with <key> as key for decryption */
+int quic_tls_dec_aes_ctx_init(EVP_CIPHER_CTX **aes_ctx,
+ const EVP_CIPHER *aes, unsigned char *key)
+{
+ EVP_CIPHER_CTX *ctx;
+
+ ctx = EVP_CIPHER_CTX_new();
+ if (!ctx)
+ return 0;
+
+ if (!EVP_DecryptInit_ex(ctx, aes, NULL, key, NULL))
+ goto err;
+
+ *aes_ctx = ctx;
+ return 1;
+
+ err:
+ EVP_CIPHER_CTX_free(ctx);
+ return 0;
+}
+
+/* Decrypt <in> data into <out> with <ctx> as AES cipher context.
+ * This is the responsibility of the caller to check there is at least
+ * <outlen> bytes into <in> buffer.
+ * Return 1 if succeeded, 0 if not.
+ */
+int quic_tls_aes_decrypt(unsigned char *out,
+ const unsigned char *in, size_t inlen,
+ EVP_CIPHER_CTX *ctx)
+{
+ int ret = 0;
+
+ if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, in) ||
+ !EVP_DecryptUpdate(ctx, out, &ret, out, inlen) ||
+ !EVP_DecryptFinal_ex(ctx, out, &ret))
+ return 0;
+
+ return 1;
+}
+
+/* Initialize the cipher context for TX part of <tls_ctx> QUIC TLS context.
+ * Return 1 if succeeded, 0 if not.
+ */
+int quic_tls_tx_ctx_init(EVP_CIPHER_CTX **tx_ctx,
+ const EVP_CIPHER *aead, unsigned char *key)
+{
+ EVP_CIPHER_CTX *ctx;
+ int aead_nid = EVP_CIPHER_nid(aead);
+
+ ctx = EVP_CIPHER_CTX_new();
+ if (!ctx)
+ return 0;
+
+ if (!EVP_EncryptInit_ex(ctx, aead, NULL, NULL, NULL) ||
+ !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, QUIC_TLS_IV_LEN, NULL) ||
+ (aead_nid == NID_aes_128_ccm &&
+ !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, NULL)) ||
+ !EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL))
+ goto err;
+
+ *tx_ctx = ctx;
+
+ return 1;
+
+ err:
+ EVP_CIPHER_CTX_free(ctx);
+ return 0;
+}
+
+/*
+ * https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#aead
+ *
+ * 5.3. AEAD Usage
+ *
+ * Packets are protected prior to applying header protection (Section 5.4).
+ * The unprotected packet header is part of the associated data (A). When removing
+ * packet protection, an endpoint first removes the header protection.
+ * (...)
+ * These ciphersuites have a 16-byte authentication tag and produce an output 16
+ * bytes larger than their input.
+ * The key and IV for the packet are computed as described in Section 5.1. The nonce,
+ * N, is formed by combining the packet protection IV with the packet number. The 62
+ * bits of the reconstructed QUIC packet number in network byte order are left-padded
+ * with zeros to the size of the IV. The exclusive OR of the padded packet number and
+ * the IV forms the AEAD nonce.
+ *
+ * The associated data, A, for the AEAD is the contents of the QUIC header, starting
+ * from the flags byte in either the short or long header, up to and including the
+ * unprotected packet number.
+ *
+ * The input plaintext, P, for the AEAD is the payload of the QUIC packet, as described
+ * in [QUIC-TRANSPORT].
+ *
+ * The output ciphertext, C, of the AEAD is transmitted in place of P.
+ *
+ * Some AEAD functions have limits for how many packets can be encrypted under the same
+ * key and IV (see for example [AEBounds]). This might be lower than the packet number limit.
+ * An endpoint MUST initiate a key update (Section 6) prior to exceeding any limit set for
+ * the AEAD that is in use.
+ */
+
+/* Encrypt in place <buf> plaintext with <len> as length with QUIC_TLS_TAG_LEN
+ * included tailing bytes for the tag.
+ * Note that for CCM mode, we must set the the ciphertext length if AAD data
+ * are provided from <aad> buffer with <aad_len> as length. This is always the
+ * case here. So the caller of this function must provide <aad>.
+ *
+ * https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption
+ */
+int quic_tls_encrypt(unsigned char *buf, size_t len,
+ const unsigned char *aad, size_t aad_len,
+ EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead,
+ const unsigned char *iv)
+{
+ int outlen;
+ int aead_nid = EVP_CIPHER_nid(aead);
+
+ if (!EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) ||
+ (aead_nid == NID_aes_128_ccm &&
+ !EVP_EncryptUpdate(ctx, NULL, &outlen, NULL, len)) ||
+ !EVP_EncryptUpdate(ctx, NULL, &outlen, aad, aad_len) ||
+ !EVP_EncryptUpdate(ctx, buf, &outlen, buf, len) ||
+ !EVP_EncryptFinal_ex(ctx, buf + outlen, &outlen) ||
+ !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, QUIC_TLS_TAG_LEN, buf + len))
+ return 0;
+
+ return 1;
+}
+
+/* Decrypt in place <buf> ciphertext with <len> as length with QUIC_TLS_TAG_LEN
+ * included tailing bytes for the tag.
+ * Note that for CCM mode, we must set the the ciphertext length if AAD data
+ * are provided from <aad> buffer with <aad_len> as length. This is always the
+ * case here. So the caller of this function must provide <aad>. Also not the
+ * there is no need to call EVP_DecryptFinal_ex for CCM mode.
+ *
+ * https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption
+ */
+int quic_tls_decrypt(unsigned char *buf, size_t len,
+ unsigned char *aad, size_t aad_len,
+ EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead,
+ const unsigned char *key, const unsigned char *iv)
+{
+ int outlen;
+ int aead_nid = EVP_CIPHER_nid(aead);
+
+ if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) ||
+ !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN,
+ buf + len - QUIC_TLS_TAG_LEN) ||
+ (aead_nid == NID_aes_128_ccm &&
+ !EVP_DecryptUpdate(ctx, NULL, &outlen, NULL, len - QUIC_TLS_TAG_LEN)) ||
+ !EVP_DecryptUpdate(ctx, NULL, &outlen, aad, aad_len) ||
+ !EVP_DecryptUpdate(ctx, buf, &outlen, buf, len - QUIC_TLS_TAG_LEN) ||
+ (aead_nid != NID_aes_128_ccm &&
+ !EVP_DecryptFinal_ex(ctx, buf + outlen, &outlen)))
+ return 0;
+
+ return 1;
+}
+
+/* Similar to quic_tls_decrypt(), except that this function does not decrypt
+ * in place its ciphertest if <out> output buffer ciphertest with <len> as length
+ * is different from <in> input buffer. This is the responbality of the caller
+ * to check that the output buffer has at least the same size as the input buffer.
+ * Note that for CCM mode, we must set the the ciphertext length if AAD data
+ * are provided from <aad> buffer with <aad_len> as length. This is always the
+ * case here. So the caller of this function must provide <aad>. Also note that
+ * there is no need to call EVP_DecryptFinal_ex for CCM mode.
+ *
+ * https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption
+ *
+ * Return 1 if succeeded, 0 if not.
+ */
+int quic_tls_decrypt2(unsigned char *out,
+ unsigned char *in, size_t len,
+ unsigned char *aad, size_t aad_len,
+ EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead,
+ const unsigned char *key, const unsigned char *iv)
+{
+ int outlen;
+ int aead_nid = EVP_CIPHER_nid(aead);
+
+ len -= QUIC_TLS_TAG_LEN;
+ if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) ||
+ !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, in + len) ||
+ (aead_nid == NID_aes_128_ccm &&
+ !EVP_DecryptUpdate(ctx, NULL, &outlen, NULL, len)) ||
+ !EVP_DecryptUpdate(ctx, NULL, &outlen, aad, aad_len) ||
+ !EVP_DecryptUpdate(ctx, out, &outlen, in, len) ||
+ (aead_nid != NID_aes_128_ccm &&
+ !EVP_DecryptFinal_ex(ctx, out + outlen, &outlen)))
+ return 0;
+
+ return 1;
+}
+
+/* Derive <key> and <iv> key and IV to be used to encrypt a retry token
+ * with <secret> which is not pseudo-random.
+ * Return 1 if succeeded, 0 if not.
+ */
+int quic_tls_derive_retry_token_secret(const EVP_MD *md,
+ unsigned char *key, size_t keylen,
+ unsigned char *iv, size_t ivlen,
+ const unsigned char *salt, size_t saltlen,
+ const unsigned char *secret, size_t secretlen)
+{
+ unsigned char tmpkey[QUIC_TLS_KEY_LEN];
+ const unsigned char key_label[] = "retry token key";
+ const unsigned char iv_label[] = "retry token iv";
+
+ if (!quic_hkdf_extract(md, tmpkey, sizeof tmpkey,
+ secret, secretlen, salt, saltlen) ||
+ !quic_hkdf_expand(md, key, keylen, tmpkey, sizeof tmpkey,
+ key_label, sizeof key_label - 1) ||
+ !quic_hkdf_expand(md, iv, ivlen, tmpkey, sizeof tmpkey,
+ iv_label, sizeof iv_label - 1))
+ return 0;
+
+ return 1;
+}
+
+/* Generate the AEAD tag for the Retry packet <pkt> of <pkt_len> bytes and
+ * write it to <tag>. The tag is written just after the <pkt> area. It should
+ * be at least 16 bytes longs. <odcid> is the CID of the Initial packet
+ * received which triggers the Retry.
+ *
+ * Returns non-zero on success else zero.
+ */
+int quic_tls_generate_retry_integrity_tag(unsigned char *odcid, unsigned char odcid_len,
+ unsigned char *pkt, size_t pkt_len,
+ const struct quic_version *qv)
+{
+ const EVP_CIPHER *evp = EVP_aes_128_gcm();
+ EVP_CIPHER_CTX *ctx;
+
+ /* encryption buffer - not used as only AEAD tag generation is proceed */
+ unsigned char *out = NULL;
+ /* address to store the AEAD tag */
+ unsigned char *tag = pkt + pkt_len;
+ int outlen, ret = 0;
+
+ ctx = EVP_CIPHER_CTX_new();
+ if (!ctx)
+ return 0;
+
+ /* rfc9001 5.8. Retry Packet Integrity
+ *
+ * AEAD is proceed over a pseudo-Retry packet used as AAD. It contains
+ * the ODCID len + data and the Retry packet itself.
+ */
+ if (!EVP_EncryptInit_ex(ctx, evp, NULL, qv->retry_tag_key, qv->retry_tag_nonce) ||
+ /* specify pseudo-Retry as AAD */
+ !EVP_EncryptUpdate(ctx, NULL, &outlen, &odcid_len, sizeof(odcid_len)) ||
+ !EVP_EncryptUpdate(ctx, NULL, &outlen, odcid, odcid_len) ||
+ !EVP_EncryptUpdate(ctx, NULL, &outlen, pkt, pkt_len) ||
+ /* finalize */
+ !EVP_EncryptFinal_ex(ctx, out, &outlen) ||
+ /* store the tag */
+ !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, QUIC_TLS_TAG_LEN, tag)) {
+ goto out;
+ }
+ ret = 1;
+
+ out:
+ EVP_CIPHER_CTX_free(ctx);
+ return ret;
+}
+
+/* Derive new keys and ivs required for Key Update feature for <qc> QUIC
+ * connection.
+ * Return 1 if succeeded, 0 if not.
+ */
+int quic_tls_key_update(struct quic_conn *qc)
+{
+ struct quic_tls_ctx *tls_ctx = &qc->ael->tls_ctx;
+ struct quic_tls_secrets *rx = &tls_ctx->rx;
+ struct quic_tls_secrets *tx = &tls_ctx->tx;
+ /* Used only for the traces */
+ struct quic_kp_trace kp_trace = {
+ .rx_sec = rx->secret,
+ .rx_seclen = rx->secretlen,
+ .tx_sec = tx->secret,
+ .tx_seclen = tx->secretlen,
+ };
+ /* The next key phase secrets to be derived */
+ struct quic_tls_kp *nxt_rx = &qc->ku.nxt_rx;
+ struct quic_tls_kp *nxt_tx = &qc->ku.nxt_tx;
+ const struct quic_version *ver =
+ qc->negotiated_version ? qc->negotiated_version : qc->original_version;
+ int ret = 0;
+
+ TRACE_ENTER(QUIC_EV_CONN_KP, qc);
+
+ nxt_rx = &qc->ku.nxt_rx;
+ nxt_tx = &qc->ku.nxt_tx;
+
+ TRACE_PRINTF(TRACE_LEVEL_DEVELOPER, QUIC_EV_CONN_SPPKTS, qc, 0, 0, 0,
+ "nxt_rx->secretlen=%llu rx->secretlen=%llu",
+ (ull)nxt_rx->secretlen, (ull)rx->secretlen);
+ /* Prepare new RX secrets */
+ if (!quic_tls_sec_update(rx->md, ver, nxt_rx->secret, nxt_rx->secretlen,
+ rx->secret, rx->secretlen)) {
+ TRACE_ERROR("New RX secret update failed", QUIC_EV_CONN_KP, qc);
+ goto leave;
+ }
+
+ if (!quic_tls_derive_keys(rx->aead, NULL, rx->md, ver,
+ nxt_rx->key, nxt_rx->keylen,
+ nxt_rx->iv, nxt_rx->ivlen, NULL, 0,
+ nxt_rx->secret, nxt_rx->secretlen)) {
+ TRACE_ERROR("New RX key derivation failed", QUIC_EV_CONN_KP, qc);
+ goto leave;
+ }
+
+ kp_trace.rx = nxt_rx;
+ /* Prepare new TX secrets */
+ if (!quic_tls_sec_update(tx->md, ver, nxt_tx->secret, nxt_tx->secretlen,
+ tx->secret, tx->secretlen)) {
+ TRACE_ERROR("New TX secret update failed", QUIC_EV_CONN_KP, qc);
+ goto leave;
+ }
+
+ if (!quic_tls_derive_keys(tx->aead, NULL, tx->md, ver,
+ nxt_tx->key, nxt_tx->keylen,
+ nxt_tx->iv, nxt_tx->ivlen, NULL, 0,
+ nxt_tx->secret, nxt_tx->secretlen)) {
+ TRACE_ERROR("New TX key derivation failed", QUIC_EV_CONN_KP, qc);
+ goto leave;
+ }
+
+ kp_trace.tx = nxt_tx;
+ if (nxt_rx->ctx) {
+ EVP_CIPHER_CTX_free(nxt_rx->ctx);
+ nxt_rx->ctx = NULL;
+ }
+
+ if (!quic_tls_rx_ctx_init(&nxt_rx->ctx, tls_ctx->rx.aead, nxt_rx->key)) {
+ TRACE_ERROR("could not initialize RX TLS cipher context", QUIC_EV_CONN_KP, qc);
+ goto leave;
+ }
+
+ if (nxt_tx->ctx) {
+ EVP_CIPHER_CTX_free(nxt_tx->ctx);
+ nxt_tx->ctx = NULL;
+ }
+
+ if (!quic_tls_tx_ctx_init(&nxt_tx->ctx, tls_ctx->tx.aead, nxt_tx->key)) {
+ TRACE_ERROR("could not initialize TX TLS cipher context", QUIC_EV_CONN_KP, qc);
+ goto leave;
+ }
+
+ ret = 1;
+ leave:
+ TRACE_PROTO("key update", QUIC_EV_CONN_KP, qc, &kp_trace);
+ TRACE_LEAVE(QUIC_EV_CONN_KP, qc);
+ return ret;
+}
+
+/* Rotate the Key Update information for <qc> QUIC connection.
+ * Must be used after having updated them.
+ * Always succeeds.
+ */
+void quic_tls_rotate_keys(struct quic_conn *qc)
+{
+ struct quic_tls_ctx *tls_ctx = &qc->ael->tls_ctx;
+ unsigned char *curr_secret, *curr_iv, *curr_key;
+ EVP_CIPHER_CTX *curr_ctx;
+
+ TRACE_ENTER(QUIC_EV_CONN_RXPKT, qc);
+
+ /* Rotate the RX secrets */
+ curr_ctx = tls_ctx->rx.ctx;
+ curr_secret = tls_ctx->rx.secret;
+ curr_iv = tls_ctx->rx.iv;
+ curr_key = tls_ctx->rx.key;
+
+ tls_ctx->rx.ctx = qc->ku.nxt_rx.ctx;
+ tls_ctx->rx.secret = qc->ku.nxt_rx.secret;
+ tls_ctx->rx.iv = qc->ku.nxt_rx.iv;
+ tls_ctx->rx.key = qc->ku.nxt_rx.key;
+
+ qc->ku.nxt_rx.ctx = qc->ku.prv_rx.ctx;
+ qc->ku.nxt_rx.secret = qc->ku.prv_rx.secret;
+ qc->ku.nxt_rx.iv = qc->ku.prv_rx.iv;
+ qc->ku.nxt_rx.key = qc->ku.prv_rx.key;
+
+ qc->ku.prv_rx.ctx = curr_ctx;
+ qc->ku.prv_rx.secret = curr_secret;
+ qc->ku.prv_rx.iv = curr_iv;
+ qc->ku.prv_rx.key = curr_key;
+ qc->ku.prv_rx.pn = tls_ctx->rx.pn;
+
+ /* Update the TX secrets */
+ curr_ctx = tls_ctx->tx.ctx;
+ curr_secret = tls_ctx->tx.secret;
+ curr_iv = tls_ctx->tx.iv;
+ curr_key = tls_ctx->tx.key;
+
+ tls_ctx->tx.ctx = qc->ku.nxt_tx.ctx;
+ tls_ctx->tx.secret = qc->ku.nxt_tx.secret;
+ tls_ctx->tx.iv = qc->ku.nxt_tx.iv;
+ tls_ctx->tx.key = qc->ku.nxt_tx.key;
+
+ qc->ku.nxt_tx.ctx = curr_ctx;
+ qc->ku.nxt_tx.secret = curr_secret;
+ qc->ku.nxt_tx.iv = curr_iv;
+ qc->ku.nxt_tx.key = curr_key;
+
+ TRACE_LEAVE(QUIC_EV_CONN_RXPKT, qc);
+}
+
+/* Release the memory allocated for the QUIC TLS context with <ctx> as address. */
+void quic_tls_ctx_free(struct quic_tls_ctx **ctx)
+{
+ if (!*ctx)
+ return;
+
+ quic_tls_ctx_secs_free(*ctx);
+ pool_free(pool_head_quic_tls_ctx, *ctx);
+ *ctx = NULL;
+}
+
+/* Finalize <qc> QUIC connection:
+ * - allocated and initialize the Initial QUIC TLS context for negotiated
+ * version if needed,
+ * - derive the secrets for this context,
+ * - set them into the TLS stack,
+ *
+ * Return 1 if succeeded, 0 if not.
+ */
+int quic_tls_finalize(struct quic_conn *qc, int server)
+{
+ int ret = 0;
+
+ TRACE_ENTER(QUIC_EV_CONN_NEW, qc);
+
+ if (!qc->negotiated_version)
+ goto done;
+
+ qc->nictx = pool_alloc(pool_head_quic_tls_ctx);
+ if (!qc->nictx)
+ goto err;
+
+ quic_tls_ctx_reset(qc->nictx);
+ if (!qc_new_isecs(qc, qc->nictx, qc->negotiated_version,
+ qc->odcid.data, qc->odcid.len, server))
+ goto err;
+
+ done:
+ ret = 1;
+ out:
+ TRACE_LEAVE(QUIC_EV_CONN_NEW, qc);
+ return ret;
+
+ err:
+ quic_tls_ctx_free(&qc->nictx);
+ goto out;
+}