diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 12:18:05 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-13 12:18:05 +0000 |
commit | b46aad6df449445a9fc4aa7b32bd40005438e3f7 (patch) | |
tree | 751aa858ca01f35de800164516b298887382919d /src/quic_tls.c | |
parent | Initial commit. (diff) | |
download | haproxy-b46aad6df449445a9fc4aa7b32bd40005438e3f7.tar.xz haproxy-b46aad6df449445a9fc4aa7b32bd40005438e3f7.zip |
Adding upstream version 2.9.5.upstream/2.9.5
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/quic_tls.c')
-rw-r--r-- | src/quic_tls.c | 1095 |
1 files changed, 1095 insertions, 0 deletions
diff --git a/src/quic_tls.c b/src/quic_tls.c new file mode 100644 index 0000000..581d615 --- /dev/null +++ b/src/quic_tls.c @@ -0,0 +1,1095 @@ +#include <haproxy/quic_tls.h> + +#include <string.h> + +#include <openssl/evp.h> +#include <openssl/kdf.h> +#include <openssl/ssl.h> + +#include <haproxy/buf.h> +#include <haproxy/chunk.h> +#include <haproxy/pool.h> +#include <haproxy/quic_ack.h> +#include <haproxy/quic_conn.h> +#include <haproxy/quic_rx.h> +#include <haproxy/quic_stream.h> + + +DECLARE_POOL(pool_head_quic_enc_level, "quic_enc_level", sizeof(struct quic_enc_level)); +DECLARE_POOL(pool_head_quic_pktns, "quic_pktns", sizeof(struct quic_pktns)); +DECLARE_POOL(pool_head_quic_tls_ctx, "quic_tls_ctx", sizeof(struct quic_tls_ctx)); +DECLARE_POOL(pool_head_quic_tls_secret, "quic_tls_secret", QUIC_TLS_SECRET_LEN); +DECLARE_POOL(pool_head_quic_tls_iv, "quic_tls_iv", QUIC_TLS_IV_LEN); +DECLARE_POOL(pool_head_quic_tls_key, "quic_tls_key", QUIC_TLS_KEY_LEN); + +DECLARE_POOL(pool_head_quic_crypto_buf, "quic_crypto_buf", sizeof(struct quic_crypto_buf)); +DECLARE_STATIC_POOL(pool_head_quic_cstream, "quic_cstream", sizeof(struct quic_cstream)); + +/* Initial salt depending on QUIC version to derive client/server initial secrets. + * This one is for draft-29 QUIC version. + */ +const unsigned char initial_salt_draft_29[20] = { + 0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c, + 0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61, 0x11, 0xe0, + 0x43, 0x90, 0xa8, 0x99 +}; + +const unsigned char initial_salt_v1[20] = { + 0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3, + 0x4d, 0x17, 0x9a, 0xe6, 0xa4, 0xc8, 0x0c, 0xad, + 0xcc, 0xbb, 0x7f, 0x0a +}; + +const unsigned char initial_salt_v2[20] = { + 0x0d, 0xed, 0xe3, 0xde, 0xf7, 0x00, 0xa6, 0xdb, + 0x81, 0x93, 0x81, 0xbe, 0x6e, 0x26, 0x9d, 0xcb, + 0xf9, 0xbd, 0x2e, 0xd9 +}; + +/* Dump the RX/TX secrets of <secs> QUIC TLS secrets. */ +void quic_tls_keys_hexdump(struct buffer *buf, + const struct quic_tls_secrets *secs) +{ + int i; + size_t aead_keylen; + size_t aead_ivlen; + size_t hp_len; + + if (!secs->aead || !secs->hp) + return; + + aead_keylen = (size_t)EVP_CIPHER_key_length(secs->aead); + aead_ivlen = (size_t)EVP_CIPHER_iv_length(secs->aead); + hp_len = (size_t)EVP_CIPHER_key_length(secs->hp); + + chunk_appendf(buf, "\n key="); + for (i = 0; i < aead_keylen; i++) + chunk_appendf(buf, "%02x", secs->key[i]); + chunk_appendf(buf, "\n iv="); + for (i = 0; i < aead_ivlen; i++) + chunk_appendf(buf, "%02x", secs->iv[i]); + chunk_appendf(buf, "\n hp="); + for (i = 0; i < hp_len; i++) + chunk_appendf(buf, "%02x", secs->hp_key[i]); +} + +/* Dump the RX/TX secrets of <kp> QUIC TLS key phase */ +void quic_tls_kp_keys_hexdump(struct buffer *buf, + const struct quic_tls_kp *kp) +{ + int i; + + chunk_appendf(buf, "\n secret="); + for (i = 0; i < kp->secretlen; i++) + chunk_appendf(buf, "%02x", kp->secret[i]); + chunk_appendf(buf, "\n key="); + for (i = 0; i < kp->keylen; i++) + chunk_appendf(buf, "%02x", kp->key[i]); + chunk_appendf(buf, "\n iv="); + for (i = 0; i < kp->ivlen; i++) + chunk_appendf(buf, "%02x", kp->iv[i]); +} + +/* Release the memory of <pktns> packet number space attached to <qc> QUIC connection. */ +void quic_pktns_release(struct quic_conn *qc, struct quic_pktns **pktns) +{ + if (!*pktns) + return; + + quic_pktns_tx_pkts_release(*pktns, qc); + qc_release_pktns_frms(qc, *pktns); + quic_free_arngs(qc, &(*pktns)->rx.arngs); + LIST_DEL_INIT(&(*pktns)->list); + pool_free(pool_head_quic_pktns, *pktns); + *pktns = NULL; +} + +/* Dump <secret> TLS secret. */ +void quic_tls_secret_hexdump(struct buffer *buf, + const unsigned char *secret, size_t secret_len) +{ + int i; + + chunk_appendf(buf, " secret="); + for (i = 0; i < secret_len; i++) + chunk_appendf(buf, "%02x", secret[i]); +} + +/* Release the memory allocated for <cs> CRYPTO stream */ +void quic_cstream_free(struct quic_cstream *cs) +{ + if (!cs) { + /* This is the case for ORTT encryption level */ + return; + } + + quic_free_ncbuf(&cs->rx.ncbuf); + + qc_stream_desc_release(cs->desc, 0); + pool_free(pool_head_quic_cstream, cs); +} + +/* Allocate a new QUIC stream for <qc>. + * Return it if succeeded, NULL if not. + */ +struct quic_cstream *quic_cstream_new(struct quic_conn *qc) +{ + struct quic_cstream *cs, *ret_cs = NULL; + + TRACE_ENTER(QUIC_EV_CONN_LPKT, qc); + cs = pool_alloc(pool_head_quic_cstream); + if (!cs) { + TRACE_ERROR("crypto stream allocation failed", QUIC_EV_CONN_INIT, qc); + goto leave; + } + + cs->rx.offset = 0; + cs->rx.ncbuf = NCBUF_NULL; + cs->rx.offset = 0; + + cs->tx.offset = 0; + cs->tx.sent_offset = 0; + cs->tx.buf = BUF_NULL; + cs->desc = qc_stream_desc_new((uint64_t)-1, -1, cs, qc); + if (!cs->desc) { + TRACE_ERROR("crypto stream allocation failed", QUIC_EV_CONN_INIT, qc); + goto err; + } + + ret_cs = cs; + leave: + TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc); + return ret_cs; + + err: + pool_free(pool_head_quic_cstream, cs); + goto leave; +} + +/* Uninitialize <qel> QUIC encryption level. Never fails. */ +void quic_conn_enc_level_uninit(struct quic_conn *qc, struct quic_enc_level *qel) +{ + int i; + struct qf_crypto *qf_crypto, *qfback; + + TRACE_ENTER(QUIC_EV_CONN_CLOSE, qc); + + for (i = 0; i < qel->tx.crypto.nb_buf; i++) { + if (qel->tx.crypto.bufs[i]) { + pool_free(pool_head_quic_crypto_buf, qel->tx.crypto.bufs[i]); + qel->tx.crypto.bufs[i] = NULL; + } + } + + list_for_each_entry_safe(qf_crypto, qfback, &qel->rx.crypto_frms, list) { + LIST_DELETE(&qf_crypto->list); + pool_free(pool_head_qf_crypto, qf_crypto); + } + + ha_free(&qel->tx.crypto.bufs); + quic_cstream_free(qel->cstream); + + TRACE_LEAVE(QUIC_EV_CONN_CLOSE, qc); +} + +/* Initialize QUIC TLS encryption level with <level<> as level for <qc> QUIC + * connection allocating everything needed. + * + * Returns 1 if succeeded, 0 if not. On error the caller is responsible to use + * quic_conn_enc_level_uninit() to cleanup partially allocated content. + */ +static int quic_conn_enc_level_init(struct quic_conn *qc, + struct quic_enc_level **el, + struct quic_pktns *pktns, + enum ssl_encryption_level_t level) +{ + int ret = 0; + struct quic_enc_level *qel; + + TRACE_ENTER(QUIC_EV_CONN_CLOSE, qc); + + qel = pool_alloc(pool_head_quic_enc_level); + if (!qel) + goto leave; + + LIST_INIT(&qel->retrans); + qel->retrans_frms = NULL; + qel->tx.crypto.bufs = NULL; + qel->tx.crypto.nb_buf = 0; + qel->cstream = NULL; + qel->pktns = pktns; + qel->level = level; + quic_tls_ctx_reset(&qel->tls_ctx); + + qel->rx.pkts = EB_ROOT; + LIST_INIT(&qel->rx.pqpkts); + LIST_INIT(&qel->rx.crypto_frms); + + /* Allocate only one buffer. */ + /* TODO: use a pool */ + qel->tx.crypto.bufs = malloc(sizeof *qel->tx.crypto.bufs); + if (!qel->tx.crypto.bufs) + goto err; + + qel->tx.crypto.bufs[0] = pool_alloc(pool_head_quic_crypto_buf); + if (!qel->tx.crypto.bufs[0]) + goto err; + + + qel->tx.crypto.bufs[0]->sz = 0; + qel->tx.crypto.nb_buf = 1; + + qel->tx.crypto.sz = 0; + qel->tx.crypto.offset = 0; + /* No CRYPTO data for early data TLS encryption level */ + if (level == ssl_encryption_early_data) + qel->cstream = NULL; + else { + qel->cstream = quic_cstream_new(qc); + if (!qel->cstream) + goto err; + } + + LIST_APPEND(&qc->qel_list, &qel->list); + *el = qel; + ret = 1; + leave: + TRACE_LEAVE(QUIC_EV_CONN_CLOSE, qc); + return ret; + + err: + quic_conn_enc_level_uninit(qc, qel); + pool_free(pool_head_quic_enc_level, qel); + goto leave; +} + +/* Allocate a QUIC TLS encryption with <level> as TLS stack encryption to be + * attached to <qc> QUIC connection. Also allocate the associated packet number + * space object with <pktns> as address to be attached to <qc> if not already + * allocated. + * Return 1 if succeeded, 0 if not. + */ +int qc_enc_level_alloc(struct quic_conn *qc, struct quic_pktns **pktns, + struct quic_enc_level **qel, enum ssl_encryption_level_t level) +{ + int ret = 0; + + BUG_ON(!qel || !pktns); + BUG_ON(*qel && !*pktns); + + if (!*pktns && !quic_pktns_init(qc, pktns)) + goto leave; + + if (!*qel && !quic_conn_enc_level_init(qc, qel, *pktns, level)) + goto leave; + + ret = 1; + leave: + return ret; +} + +/* Free the memory allocated to the encryption level attached to <qc> connection + * with <qel> as pointer address. Also remove it from the list of the encryption + * levels attached to this connection and reset its value to NULL. + * Never fails. + */ +void qc_enc_level_free(struct quic_conn *qc, struct quic_enc_level **qel) +{ + if (!*qel) + return; + + quic_tls_ctx_secs_free(&(*qel)->tls_ctx); + quic_conn_enc_level_uninit(qc, *qel); + LIST_DEL_INIT(&(*qel)->list); + pool_free(pool_head_quic_enc_level, *qel); + *qel = NULL; +} + +int quic_hkdf_extract(const EVP_MD *md, + unsigned char *buf, size_t buflen, + const unsigned char *key, size_t keylen, + const unsigned char *salt, size_t saltlen) +{ + EVP_PKEY_CTX *ctx; + + ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL); + if (!ctx) + return 0; + + if (EVP_PKEY_derive_init(ctx) <= 0 || + EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY) <= 0 || + EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 || + EVP_PKEY_CTX_set1_hkdf_salt(ctx, salt, saltlen) <= 0 || + EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 || + EVP_PKEY_derive(ctx, buf, &buflen) <= 0) + goto err; + + EVP_PKEY_CTX_free(ctx); + return 1; + + err: + EVP_PKEY_CTX_free(ctx); + return 0; +} + +int quic_hkdf_expand(const EVP_MD *md, + unsigned char *buf, size_t buflen, + const unsigned char *key, size_t keylen, + const unsigned char *label, size_t labellen) +{ + EVP_PKEY_CTX *ctx; + + ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL); + if (!ctx) + return 0; + + if (EVP_PKEY_derive_init(ctx) <= 0 || + EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY) <= 0 || + EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 || + EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 || + EVP_PKEY_CTX_add1_hkdf_info(ctx, label, labellen) <= 0 || + EVP_PKEY_derive(ctx, buf, &buflen) <= 0) + goto err; + + EVP_PKEY_CTX_free(ctx); + return 1; + + err: + EVP_PKEY_CTX_free(ctx); + return 0; +} + +/* Extracts a peudo-random secret key from <key> which is eventually not + * pseudo-random and expand it to a new pseudo-random key into + * <buf> with <buflen> as key length according to HKDF specifications + * (https://datatracker.ietf.org/doc/html/rfc5869). + * According to this specifications it is highly recommended to use + * a salt, even if optional (NULL value). + * Return 1 if succeeded, 0 if not. + */ +int quic_hkdf_extract_and_expand(const EVP_MD *md, + unsigned char *buf, size_t buflen, + const unsigned char *key, size_t keylen, + const unsigned char *salt, size_t saltlen, + const unsigned char *label, size_t labellen) +{ + EVP_PKEY_CTX *ctx; + + ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL); + if (!ctx) + return 0; + + if (EVP_PKEY_derive_init(ctx) <= 0 || + EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXTRACT_AND_EXPAND) <= 0 || + EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 || + EVP_PKEY_CTX_set1_hkdf_salt(ctx, salt, saltlen) <= 0 || + EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 || + EVP_PKEY_CTX_add1_hkdf_info(ctx, label, labellen) <= 0 || + EVP_PKEY_derive(ctx, buf, &buflen) <= 0) + goto err; + + EVP_PKEY_CTX_free(ctx); + return 1; + + err: + EVP_PKEY_CTX_free(ctx); + return 0; +} + +/* https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#protection-keys + * refers to: + * + * https://tools.ietf.org/html/rfc8446#section-7.1: + * 7.1. Key Schedule + * + * The key derivation process makes use of the HKDF-Extract and + * HKDF-Expand functions as defined for HKDF [RFC5869], as well as the + * functions defined below: + * + * HKDF-Expand-Label(Secret, Label, Context, Length) = + * HKDF-Expand(Secret, HkdfLabel, Length) + * + * Where HkdfLabel is specified as: + * + * struct { + * uint16 length = Length; + * opaque label<7..255> = "tls13 " + Label; + * opaque context<0..255> = Context; + * } HkdfLabel; + * + * Derive-Secret(Secret, Label, Messages) = + * HKDF-Expand-Label(Secret, Label, + * Transcript-Hash(Messages), Hash.length) + * + */ +int quic_hkdf_expand_label(const EVP_MD *md, + unsigned char *buf, size_t buflen, + const unsigned char *key, size_t keylen, + const unsigned char *label, size_t labellen) +{ + unsigned char hdkf_label[256], *pos; + const unsigned char hdkf_label_label[] = "tls13 "; + size_t hdkf_label_label_sz = sizeof hdkf_label_label - 1; + + pos = hdkf_label; + *pos++ = buflen >> 8; + *pos++ = buflen & 0xff; + *pos++ = hdkf_label_label_sz + labellen; + memcpy(pos, hdkf_label_label, hdkf_label_label_sz); + pos += hdkf_label_label_sz; + memcpy(pos, label, labellen); + pos += labellen; + *pos++ = '\0'; + + return quic_hkdf_expand(md, buf, buflen, + key, keylen, hdkf_label, pos - hdkf_label); +} + +/* + * This function derives two keys from <secret> is <ctx> as TLS cryptographic context. + * ->key is the TLS key to be derived to encrypt/decrypt data at TLS level. + * ->iv is the initialization vector to be used with ->key. + * ->hp_key is the key to be derived for header protection. + * Obviouly these keys have the same size becaused derived with the same TLS cryptographic context. + */ +int quic_tls_derive_keys(const EVP_CIPHER *aead, const EVP_CIPHER *hp, + const EVP_MD *md, const struct quic_version *qv, + unsigned char *key, size_t keylen, + unsigned char *iv, size_t ivlen, + unsigned char *hp_key, size_t hp_keylen, + const unsigned char *secret, size_t secretlen) +{ + size_t aead_keylen = (size_t)EVP_CIPHER_key_length(aead); + size_t aead_ivlen = (size_t)EVP_CIPHER_iv_length(aead); + size_t hp_len = hp ? (size_t)EVP_CIPHER_key_length(hp) : 0; + + if (aead_keylen > keylen || aead_ivlen > ivlen || hp_len > hp_keylen) + return 0; + + if (!quic_hkdf_expand_label(md, key, aead_keylen, secret, secretlen, + qv->key_label,qv->key_label_len) || + !quic_hkdf_expand_label(md, iv, aead_ivlen, secret, secretlen, + qv->iv_label, qv->iv_label_len) || + (hp_key && !quic_hkdf_expand_label(md, hp_key, hp_len, secret, secretlen, + qv->hp_label, qv->hp_label_len))) + return 0; + + return 1; +} + +/* + * Derive the initial secret from <secret> and QUIC version dependent salt. + * Returns the size of the derived secret if succeeded, 0 if not. + */ +int quic_derive_initial_secret(const EVP_MD *md, + const unsigned char *initial_salt, size_t initial_salt_sz, + unsigned char *initial_secret, size_t initial_secret_sz, + const unsigned char *secret, size_t secret_sz) +{ + if (!quic_hkdf_extract(md, initial_secret, initial_secret_sz, secret, secret_sz, + initial_salt, initial_salt_sz)) + return 0; + + return 1; +} + +/* + * Derive the client initial secret from the initial secret. + * Returns the size of the derived secret if succeeded, 0 if not. + */ +int quic_tls_derive_initial_secrets(const EVP_MD *md, + unsigned char *rx, size_t rx_sz, + unsigned char *tx, size_t tx_sz, + const unsigned char *secret, size_t secret_sz, + int server) +{ + const unsigned char client_label[] = "client in"; + const unsigned char server_label[] = "server in"; + const unsigned char *tx_label, *rx_label; + size_t rx_label_sz, tx_label_sz; + + if (server) { + rx_label = client_label; + rx_label_sz = sizeof client_label; + tx_label = server_label; + tx_label_sz = sizeof server_label; + } + else { + rx_label = server_label; + rx_label_sz = sizeof server_label; + tx_label = client_label; + tx_label_sz = sizeof client_label; + } + + if (!quic_hkdf_expand_label(md, rx, rx_sz, secret, secret_sz, + rx_label, rx_label_sz - 1) || + !quic_hkdf_expand_label(md, tx, tx_sz, secret, secret_sz, + tx_label, tx_label_sz - 1)) + return 0; + + return 1; +} + +/* Update <sec> secret key into <new_sec> according to RFC 9001 6.1. + * Always succeeds. + */ +int quic_tls_sec_update(const EVP_MD *md, const struct quic_version *qv, + unsigned char *new_sec, size_t new_seclen, + const unsigned char *sec, size_t seclen) +{ + return quic_hkdf_expand_label(md, new_sec, new_seclen, sec, seclen, + qv->ku_label, qv->ku_label_len); +} + +/* + * Build an IV into <iv> buffer with <ivlen> as size from <aead_iv> with + * <aead_ivlen> as size depending on <pn> packet number. + * This is the function which must be called to build an AEAD IV for the AEAD cryptographic algorithm + * used to encrypt/decrypt the QUIC packet payloads depending on the packet number <pn>. + */ +void quic_aead_iv_build(unsigned char *iv, size_t ivlen, + unsigned char *aead_iv, size_t aead_ivlen, uint64_t pn) +{ + int i; + unsigned int shift; + unsigned char *pos = iv; + + /* Input buffers must have the same size. */ + BUG_ON(ivlen != aead_ivlen); + + for (i = 0; i < ivlen - sizeof pn; i++) + *pos++ = *aead_iv++; + + /* Only the remaining (sizeof pn) bytes are XOR'ed. */ + shift = 56; + for (i = aead_ivlen - sizeof pn; i < aead_ivlen ; i++, shift -= 8) + *pos++ = *aead_iv++ ^ (pn >> shift); +} + +/* Initialize the cipher context for RX part of <tls_ctx> QUIC TLS context. + * Return 1 if succeeded, 0 if not. + */ +int quic_tls_rx_ctx_init(EVP_CIPHER_CTX **rx_ctx, + const EVP_CIPHER *aead, unsigned char *key) +{ + EVP_CIPHER_CTX *ctx; + int aead_nid = EVP_CIPHER_nid(aead); + + ctx = EVP_CIPHER_CTX_new(); + if (!ctx) + return 0; + + if (!EVP_DecryptInit_ex(ctx, aead, NULL, NULL, NULL) || + !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, QUIC_TLS_IV_LEN, NULL) || + (aead_nid == NID_aes_128_ccm && + !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, NULL)) || + !EVP_DecryptInit_ex(ctx, NULL, NULL, key, NULL)) + goto err; + + *rx_ctx = ctx; + + return 1; + + err: + EVP_CIPHER_CTX_free(ctx); + return 0; +} + +/* Initialize <*aes_ctx> AES cipher context with <key> as key for encryption */ +int quic_tls_enc_aes_ctx_init(EVP_CIPHER_CTX **aes_ctx, + const EVP_CIPHER *aes, unsigned char *key) +{ + EVP_CIPHER_CTX *ctx; + + ctx = EVP_CIPHER_CTX_new(); + if (!ctx) + return 0; + + if (!EVP_EncryptInit_ex(ctx, aes, NULL, key, NULL)) + goto err; + + *aes_ctx = ctx; + return 1; + + err: + EVP_CIPHER_CTX_free(ctx); + return 0; +} + +/* Encrypt <inlen> bytes from <in> buffer into <out> with <ctx> as AES + * cipher context. This is the responsibility of the caller to check there + * is at least <inlen> bytes of available space in <out> buffer. + * Return 1 if succeeded, 0 if not. + */ +int quic_tls_aes_encrypt(unsigned char *out, + const unsigned char *in, size_t inlen, + EVP_CIPHER_CTX *ctx) +{ + int ret = 0; + + if (!EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, in) || + !EVP_EncryptUpdate(ctx, out, &ret, out, inlen) || + !EVP_EncryptFinal_ex(ctx, out, &ret)) + return 0; + + return 1; +} + +/* Initialize <*aes_ctx> AES cipher context with <key> as key for decryption */ +int quic_tls_dec_aes_ctx_init(EVP_CIPHER_CTX **aes_ctx, + const EVP_CIPHER *aes, unsigned char *key) +{ + EVP_CIPHER_CTX *ctx; + + ctx = EVP_CIPHER_CTX_new(); + if (!ctx) + return 0; + + if (!EVP_DecryptInit_ex(ctx, aes, NULL, key, NULL)) + goto err; + + *aes_ctx = ctx; + return 1; + + err: + EVP_CIPHER_CTX_free(ctx); + return 0; +} + +/* Decrypt <in> data into <out> with <ctx> as AES cipher context. + * This is the responsibility of the caller to check there is at least + * <outlen> bytes into <in> buffer. + * Return 1 if succeeded, 0 if not. + */ +int quic_tls_aes_decrypt(unsigned char *out, + const unsigned char *in, size_t inlen, + EVP_CIPHER_CTX *ctx) +{ + int ret = 0; + + if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, in) || + !EVP_DecryptUpdate(ctx, out, &ret, out, inlen) || + !EVP_DecryptFinal_ex(ctx, out, &ret)) + return 0; + + return 1; +} + +/* Initialize the cipher context for TX part of <tls_ctx> QUIC TLS context. + * Return 1 if succeeded, 0 if not. + */ +int quic_tls_tx_ctx_init(EVP_CIPHER_CTX **tx_ctx, + const EVP_CIPHER *aead, unsigned char *key) +{ + EVP_CIPHER_CTX *ctx; + int aead_nid = EVP_CIPHER_nid(aead); + + ctx = EVP_CIPHER_CTX_new(); + if (!ctx) + return 0; + + if (!EVP_EncryptInit_ex(ctx, aead, NULL, NULL, NULL) || + !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, QUIC_TLS_IV_LEN, NULL) || + (aead_nid == NID_aes_128_ccm && + !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, NULL)) || + !EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL)) + goto err; + + *tx_ctx = ctx; + + return 1; + + err: + EVP_CIPHER_CTX_free(ctx); + return 0; +} + +/* + * https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#aead + * + * 5.3. AEAD Usage + * + * Packets are protected prior to applying header protection (Section 5.4). + * The unprotected packet header is part of the associated data (A). When removing + * packet protection, an endpoint first removes the header protection. + * (...) + * These ciphersuites have a 16-byte authentication tag and produce an output 16 + * bytes larger than their input. + * The key and IV for the packet are computed as described in Section 5.1. The nonce, + * N, is formed by combining the packet protection IV with the packet number. The 62 + * bits of the reconstructed QUIC packet number in network byte order are left-padded + * with zeros to the size of the IV. The exclusive OR of the padded packet number and + * the IV forms the AEAD nonce. + * + * The associated data, A, for the AEAD is the contents of the QUIC header, starting + * from the flags byte in either the short or long header, up to and including the + * unprotected packet number. + * + * The input plaintext, P, for the AEAD is the payload of the QUIC packet, as described + * in [QUIC-TRANSPORT]. + * + * The output ciphertext, C, of the AEAD is transmitted in place of P. + * + * Some AEAD functions have limits for how many packets can be encrypted under the same + * key and IV (see for example [AEBounds]). This might be lower than the packet number limit. + * An endpoint MUST initiate a key update (Section 6) prior to exceeding any limit set for + * the AEAD that is in use. + */ + +/* Encrypt in place <buf> plaintext with <len> as length with QUIC_TLS_TAG_LEN + * included tailing bytes for the tag. + * Note that for CCM mode, we must set the the ciphertext length if AAD data + * are provided from <aad> buffer with <aad_len> as length. This is always the + * case here. So the caller of this function must provide <aad>. + * + * https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption + */ +int quic_tls_encrypt(unsigned char *buf, size_t len, + const unsigned char *aad, size_t aad_len, + EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead, + const unsigned char *iv) +{ + int outlen; + int aead_nid = EVP_CIPHER_nid(aead); + + if (!EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) || + (aead_nid == NID_aes_128_ccm && + !EVP_EncryptUpdate(ctx, NULL, &outlen, NULL, len)) || + !EVP_EncryptUpdate(ctx, NULL, &outlen, aad, aad_len) || + !EVP_EncryptUpdate(ctx, buf, &outlen, buf, len) || + !EVP_EncryptFinal_ex(ctx, buf + outlen, &outlen) || + !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, QUIC_TLS_TAG_LEN, buf + len)) + return 0; + + return 1; +} + +/* Decrypt in place <buf> ciphertext with <len> as length with QUIC_TLS_TAG_LEN + * included tailing bytes for the tag. + * Note that for CCM mode, we must set the the ciphertext length if AAD data + * are provided from <aad> buffer with <aad_len> as length. This is always the + * case here. So the caller of this function must provide <aad>. Also not the + * there is no need to call EVP_DecryptFinal_ex for CCM mode. + * + * https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption + */ +int quic_tls_decrypt(unsigned char *buf, size_t len, + unsigned char *aad, size_t aad_len, + EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead, + const unsigned char *key, const unsigned char *iv) +{ + int outlen; + int aead_nid = EVP_CIPHER_nid(aead); + + if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) || + !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, + buf + len - QUIC_TLS_TAG_LEN) || + (aead_nid == NID_aes_128_ccm && + !EVP_DecryptUpdate(ctx, NULL, &outlen, NULL, len - QUIC_TLS_TAG_LEN)) || + !EVP_DecryptUpdate(ctx, NULL, &outlen, aad, aad_len) || + !EVP_DecryptUpdate(ctx, buf, &outlen, buf, len - QUIC_TLS_TAG_LEN) || + (aead_nid != NID_aes_128_ccm && + !EVP_DecryptFinal_ex(ctx, buf + outlen, &outlen))) + return 0; + + return 1; +} + +/* Similar to quic_tls_decrypt(), except that this function does not decrypt + * in place its ciphertest if <out> output buffer ciphertest with <len> as length + * is different from <in> input buffer. This is the responbality of the caller + * to check that the output buffer has at least the same size as the input buffer. + * Note that for CCM mode, we must set the the ciphertext length if AAD data + * are provided from <aad> buffer with <aad_len> as length. This is always the + * case here. So the caller of this function must provide <aad>. Also note that + * there is no need to call EVP_DecryptFinal_ex for CCM mode. + * + * https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption + * + * Return 1 if succeeded, 0 if not. + */ +int quic_tls_decrypt2(unsigned char *out, + unsigned char *in, size_t len, + unsigned char *aad, size_t aad_len, + EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead, + const unsigned char *key, const unsigned char *iv) +{ + int outlen; + int aead_nid = EVP_CIPHER_nid(aead); + + len -= QUIC_TLS_TAG_LEN; + if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) || + !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, in + len) || + (aead_nid == NID_aes_128_ccm && + !EVP_DecryptUpdate(ctx, NULL, &outlen, NULL, len)) || + !EVP_DecryptUpdate(ctx, NULL, &outlen, aad, aad_len) || + !EVP_DecryptUpdate(ctx, out, &outlen, in, len) || + (aead_nid != NID_aes_128_ccm && + !EVP_DecryptFinal_ex(ctx, out + outlen, &outlen))) + return 0; + + return 1; +} + +/* Derive <key> and <iv> key and IV to be used to encrypt a retry token + * with <secret> which is not pseudo-random. + * Return 1 if succeeded, 0 if not. + */ +int quic_tls_derive_retry_token_secret(const EVP_MD *md, + unsigned char *key, size_t keylen, + unsigned char *iv, size_t ivlen, + const unsigned char *salt, size_t saltlen, + const unsigned char *secret, size_t secretlen) +{ + unsigned char tmpkey[QUIC_TLS_KEY_LEN]; + const unsigned char key_label[] = "retry token key"; + const unsigned char iv_label[] = "retry token iv"; + + if (!quic_hkdf_extract(md, tmpkey, sizeof tmpkey, + secret, secretlen, salt, saltlen) || + !quic_hkdf_expand(md, key, keylen, tmpkey, sizeof tmpkey, + key_label, sizeof key_label - 1) || + !quic_hkdf_expand(md, iv, ivlen, tmpkey, sizeof tmpkey, + iv_label, sizeof iv_label - 1)) + return 0; + + return 1; +} + +/* Generate the AEAD tag for the Retry packet <pkt> of <pkt_len> bytes and + * write it to <tag>. The tag is written just after the <pkt> area. It should + * be at least 16 bytes longs. <odcid> is the CID of the Initial packet + * received which triggers the Retry. + * + * Returns non-zero on success else zero. + */ +int quic_tls_generate_retry_integrity_tag(unsigned char *odcid, unsigned char odcid_len, + unsigned char *pkt, size_t pkt_len, + const struct quic_version *qv) +{ + const EVP_CIPHER *evp = EVP_aes_128_gcm(); + EVP_CIPHER_CTX *ctx; + + /* encryption buffer - not used as only AEAD tag generation is proceed */ + unsigned char *out = NULL; + /* address to store the AEAD tag */ + unsigned char *tag = pkt + pkt_len; + int outlen, ret = 0; + + ctx = EVP_CIPHER_CTX_new(); + if (!ctx) + return 0; + + /* rfc9001 5.8. Retry Packet Integrity + * + * AEAD is proceed over a pseudo-Retry packet used as AAD. It contains + * the ODCID len + data and the Retry packet itself. + */ + if (!EVP_EncryptInit_ex(ctx, evp, NULL, qv->retry_tag_key, qv->retry_tag_nonce) || + /* specify pseudo-Retry as AAD */ + !EVP_EncryptUpdate(ctx, NULL, &outlen, &odcid_len, sizeof(odcid_len)) || + !EVP_EncryptUpdate(ctx, NULL, &outlen, odcid, odcid_len) || + !EVP_EncryptUpdate(ctx, NULL, &outlen, pkt, pkt_len) || + /* finalize */ + !EVP_EncryptFinal_ex(ctx, out, &outlen) || + /* store the tag */ + !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, QUIC_TLS_TAG_LEN, tag)) { + goto out; + } + ret = 1; + + out: + EVP_CIPHER_CTX_free(ctx); + return ret; +} + +/* Derive new keys and ivs required for Key Update feature for <qc> QUIC + * connection. + * Return 1 if succeeded, 0 if not. + */ +int quic_tls_key_update(struct quic_conn *qc) +{ + struct quic_tls_ctx *tls_ctx = &qc->ael->tls_ctx; + struct quic_tls_secrets *rx = &tls_ctx->rx; + struct quic_tls_secrets *tx = &tls_ctx->tx; + /* Used only for the traces */ + struct quic_kp_trace kp_trace = { + .rx_sec = rx->secret, + .rx_seclen = rx->secretlen, + .tx_sec = tx->secret, + .tx_seclen = tx->secretlen, + }; + /* The next key phase secrets to be derived */ + struct quic_tls_kp *nxt_rx = &qc->ku.nxt_rx; + struct quic_tls_kp *nxt_tx = &qc->ku.nxt_tx; + const struct quic_version *ver = + qc->negotiated_version ? qc->negotiated_version : qc->original_version; + int ret = 0; + + TRACE_ENTER(QUIC_EV_CONN_KP, qc); + + nxt_rx = &qc->ku.nxt_rx; + nxt_tx = &qc->ku.nxt_tx; + + TRACE_PRINTF(TRACE_LEVEL_DEVELOPER, QUIC_EV_CONN_SPPKTS, qc, 0, 0, 0, + "nxt_rx->secretlen=%llu rx->secretlen=%llu", + (ull)nxt_rx->secretlen, (ull)rx->secretlen); + /* Prepare new RX secrets */ + if (!quic_tls_sec_update(rx->md, ver, nxt_rx->secret, nxt_rx->secretlen, + rx->secret, rx->secretlen)) { + TRACE_ERROR("New RX secret update failed", QUIC_EV_CONN_KP, qc); + goto leave; + } + + if (!quic_tls_derive_keys(rx->aead, NULL, rx->md, ver, + nxt_rx->key, nxt_rx->keylen, + nxt_rx->iv, nxt_rx->ivlen, NULL, 0, + nxt_rx->secret, nxt_rx->secretlen)) { + TRACE_ERROR("New RX key derivation failed", QUIC_EV_CONN_KP, qc); + goto leave; + } + + kp_trace.rx = nxt_rx; + /* Prepare new TX secrets */ + if (!quic_tls_sec_update(tx->md, ver, nxt_tx->secret, nxt_tx->secretlen, + tx->secret, tx->secretlen)) { + TRACE_ERROR("New TX secret update failed", QUIC_EV_CONN_KP, qc); + goto leave; + } + + if (!quic_tls_derive_keys(tx->aead, NULL, tx->md, ver, + nxt_tx->key, nxt_tx->keylen, + nxt_tx->iv, nxt_tx->ivlen, NULL, 0, + nxt_tx->secret, nxt_tx->secretlen)) { + TRACE_ERROR("New TX key derivation failed", QUIC_EV_CONN_KP, qc); + goto leave; + } + + kp_trace.tx = nxt_tx; + if (nxt_rx->ctx) { + EVP_CIPHER_CTX_free(nxt_rx->ctx); + nxt_rx->ctx = NULL; + } + + if (!quic_tls_rx_ctx_init(&nxt_rx->ctx, tls_ctx->rx.aead, nxt_rx->key)) { + TRACE_ERROR("could not initialize RX TLS cipher context", QUIC_EV_CONN_KP, qc); + goto leave; + } + + if (nxt_tx->ctx) { + EVP_CIPHER_CTX_free(nxt_tx->ctx); + nxt_tx->ctx = NULL; + } + + if (!quic_tls_tx_ctx_init(&nxt_tx->ctx, tls_ctx->tx.aead, nxt_tx->key)) { + TRACE_ERROR("could not initialize TX TLS cipher context", QUIC_EV_CONN_KP, qc); + goto leave; + } + + ret = 1; + leave: + TRACE_PROTO("key update", QUIC_EV_CONN_KP, qc, &kp_trace); + TRACE_LEAVE(QUIC_EV_CONN_KP, qc); + return ret; +} + +/* Rotate the Key Update information for <qc> QUIC connection. + * Must be used after having updated them. + * Always succeeds. + */ +void quic_tls_rotate_keys(struct quic_conn *qc) +{ + struct quic_tls_ctx *tls_ctx = &qc->ael->tls_ctx; + unsigned char *curr_secret, *curr_iv, *curr_key; + EVP_CIPHER_CTX *curr_ctx; + + TRACE_ENTER(QUIC_EV_CONN_RXPKT, qc); + + /* Rotate the RX secrets */ + curr_ctx = tls_ctx->rx.ctx; + curr_secret = tls_ctx->rx.secret; + curr_iv = tls_ctx->rx.iv; + curr_key = tls_ctx->rx.key; + + tls_ctx->rx.ctx = qc->ku.nxt_rx.ctx; + tls_ctx->rx.secret = qc->ku.nxt_rx.secret; + tls_ctx->rx.iv = qc->ku.nxt_rx.iv; + tls_ctx->rx.key = qc->ku.nxt_rx.key; + + qc->ku.nxt_rx.ctx = qc->ku.prv_rx.ctx; + qc->ku.nxt_rx.secret = qc->ku.prv_rx.secret; + qc->ku.nxt_rx.iv = qc->ku.prv_rx.iv; + qc->ku.nxt_rx.key = qc->ku.prv_rx.key; + + qc->ku.prv_rx.ctx = curr_ctx; + qc->ku.prv_rx.secret = curr_secret; + qc->ku.prv_rx.iv = curr_iv; + qc->ku.prv_rx.key = curr_key; + qc->ku.prv_rx.pn = tls_ctx->rx.pn; + + /* Update the TX secrets */ + curr_ctx = tls_ctx->tx.ctx; + curr_secret = tls_ctx->tx.secret; + curr_iv = tls_ctx->tx.iv; + curr_key = tls_ctx->tx.key; + + tls_ctx->tx.ctx = qc->ku.nxt_tx.ctx; + tls_ctx->tx.secret = qc->ku.nxt_tx.secret; + tls_ctx->tx.iv = qc->ku.nxt_tx.iv; + tls_ctx->tx.key = qc->ku.nxt_tx.key; + + qc->ku.nxt_tx.ctx = curr_ctx; + qc->ku.nxt_tx.secret = curr_secret; + qc->ku.nxt_tx.iv = curr_iv; + qc->ku.nxt_tx.key = curr_key; + + TRACE_LEAVE(QUIC_EV_CONN_RXPKT, qc); +} + +/* Release the memory allocated for the QUIC TLS context with <ctx> as address. */ +void quic_tls_ctx_free(struct quic_tls_ctx **ctx) +{ + if (!*ctx) + return; + + quic_tls_ctx_secs_free(*ctx); + pool_free(pool_head_quic_tls_ctx, *ctx); + *ctx = NULL; +} + +/* Finalize <qc> QUIC connection: + * - allocated and initialize the Initial QUIC TLS context for negotiated + * version if needed, + * - derive the secrets for this context, + * - set them into the TLS stack, + * + * Return 1 if succeeded, 0 if not. + */ +int quic_tls_finalize(struct quic_conn *qc, int server) +{ + int ret = 0; + + TRACE_ENTER(QUIC_EV_CONN_NEW, qc); + + if (!qc->negotiated_version) + goto done; + + qc->nictx = pool_alloc(pool_head_quic_tls_ctx); + if (!qc->nictx) + goto err; + + quic_tls_ctx_reset(qc->nictx); + if (!qc_new_isecs(qc, qc->nictx, qc->negotiated_version, + qc->odcid.data, qc->odcid.len, server)) + goto err; + + done: + ret = 1; + out: + TRACE_LEAVE(QUIC_EV_CONN_NEW, qc); + return ret; + + err: + quic_tls_ctx_free(&qc->nictx); + goto out; +} |