summaryrefslogtreecommitdiffstats
path: root/doc/architecture.txt
diff options
context:
space:
mode:
Diffstat (limited to 'doc/architecture.txt')
-rw-r--r--doc/architecture.txt1448
1 files changed, 1448 insertions, 0 deletions
diff --git a/doc/architecture.txt b/doc/architecture.txt
new file mode 100644
index 0000000..c37632f
--- /dev/null
+++ b/doc/architecture.txt
@@ -0,0 +1,1448 @@
+ -------------------
+ HAProxy
+ Architecture Guide
+ -------------------
+ version 1.1.34
+ willy tarreau
+ 2006/01/29
+
+
+This document provides real world examples with working configurations.
+Please note that except stated otherwise, global configuration parameters
+such as logging, chrooting, limits and time-outs are not described here.
+
+===================================================
+1. Simple HTTP load-balancing with cookie insertion
+===================================================
+
+A web application often saturates the front-end server with high CPU loads,
+due to the scripting language involved. It also relies on a back-end database
+which is not much loaded. User contexts are stored on the server itself, and
+not in the database, so that simply adding another server with simple IP/TCP
+load-balancing would not work.
+
+ +-------+
+ |clients| clients and/or reverse-proxy
+ +---+---+
+ |
+ -+-----+--------+----
+ | _|_db
+ +--+--+ (___)
+ | web | (___)
+ +-----+ (___)
+ 192.168.1.1 192.168.1.2
+
+
+Replacing the web server with a bigger SMP system would cost much more than
+adding low-cost pizza boxes. The solution is to buy N cheap boxes and install
+the application on them. Install haproxy on the old one which will spread the
+load across the new boxes.
+
+ 192.168.1.1 192.168.1.11-192.168.1.14 192.168.1.2
+ -------+-----------+-----+-----+-----+--------+----
+ | | | | | _|_db
+ +--+--+ +-+-+ +-+-+ +-+-+ +-+-+ (___)
+ | LB1 | | A | | B | | C | | D | (___)
+ +-----+ +---+ +---+ +---+ +---+ (___)
+ haproxy 4 cheap web servers
+
+
+Config on haproxy (LB1) :
+-------------------------
+
+ listen webfarm 192.168.1.1:80
+ mode http
+ balance roundrobin
+ cookie SERVERID insert indirect
+ option httpchk HEAD /index.html HTTP/1.0
+ server webA 192.168.1.11:80 cookie A check
+ server webB 192.168.1.12:80 cookie B check
+ server webC 192.168.1.13:80 cookie C check
+ server webD 192.168.1.14:80 cookie D check
+
+
+Description :
+-------------
+ - LB1 will receive clients requests.
+ - if a request does not contain a cookie, it will be forwarded to a valid
+ server
+ - in return, a cookie "SERVERID" will be inserted in the response holding the
+ server name (eg: "A").
+ - when the client comes again with the cookie "SERVERID=A", LB1 will know that
+ it must be forwarded to server A. The cookie will be removed so that the
+ server does not see it.
+ - if server "webA" dies, the requests will be sent to another valid server
+ and a cookie will be reassigned.
+
+
+Flows :
+-------
+
+(client) (haproxy) (server A)
+ >-- GET /URI1 HTTP/1.0 ------------> |
+ ( no cookie, haproxy forwards in load-balancing mode. )
+ | >-- GET /URI1 HTTP/1.0 ---------->
+ | <-- HTTP/1.0 200 OK -------------<
+ ( the proxy now adds the server cookie in return )
+ <-- HTTP/1.0 200 OK ---------------< |
+ Set-Cookie: SERVERID=A |
+ >-- GET /URI2 HTTP/1.0 ------------> |
+ Cookie: SERVERID=A |
+ ( the proxy sees the cookie. it forwards to server A and deletes it )
+ | >-- GET /URI2 HTTP/1.0 ---------->
+ | <-- HTTP/1.0 200 OK -------------<
+ ( the proxy does not add the cookie in return because the client knows it )
+ <-- HTTP/1.0 200 OK ---------------< |
+ >-- GET /URI3 HTTP/1.0 ------------> |
+ Cookie: SERVERID=A |
+ ( ... )
+
+
+Limits :
+--------
+ - if clients use keep-alive (HTTP/1.1), only the first response will have
+ a cookie inserted, and only the first request of each session will be
+ analyzed. This does not cause trouble in insertion mode because the cookie
+ is put immediately in the first response, and the session is maintained to
+ the same server for all subsequent requests in the same session. However,
+ the cookie will not be removed from the requests forwarded to the servers,
+ so the server must not be sensitive to unknown cookies. If this causes
+ trouble, you can disable keep-alive by adding the following option :
+
+ option httpclose
+
+ - if for some reason the clients cannot learn more than one cookie (eg: the
+ clients are indeed some home-made applications or gateways), and the
+ application already produces a cookie, you can use the "prefix" mode (see
+ below).
+
+ - LB1 becomes a very sensible server. If LB1 dies, nothing works anymore.
+ => you can back it up using keepalived (see below)
+
+ - if the application needs to log the original client's IP, use the
+ "forwardfor" option which will add an "X-Forwarded-For" header with the
+ original client's IP address. You must also use "httpclose" to ensure
+ that you will rewrite every requests and not only the first one of each
+ session :
+
+ option httpclose
+ option forwardfor
+
+ - if the application needs to log the original destination IP, use the
+ "originalto" option which will add an "X-Original-To" header with the
+ original destination IP address. You must also use "httpclose" to ensure
+ that you will rewrite every requests and not only the first one of each
+ session :
+
+ option httpclose
+ option originalto
+
+ The web server will have to be configured to use this header instead.
+ For example, on apache, you can use LogFormat for this :
+
+ LogFormat "%{X-Forwarded-For}i %l %u %t \"%r\" %>s %b " combined
+ CustomLog /var/log/httpd/access_log combined
+
+Hints :
+-------
+Sometimes on the internet, you will find a few percent of the clients which
+disable cookies on their browser. Obviously they have troubles everywhere on
+the web, but you can still help them access your site by using the "source"
+balancing algorithm instead of the "roundrobin". It ensures that a given IP
+address always reaches the same server as long as the number of servers remains
+unchanged. Never use this behind a proxy or in a small network, because the
+distribution will be unfair. However, in large internal networks, and on the
+internet, it works quite well. Clients which have a dynamic address will not
+be affected as long as they accept the cookie, because the cookie always has
+precedence over load balancing :
+
+ listen webfarm 192.168.1.1:80
+ mode http
+ balance source
+ cookie SERVERID insert indirect
+ option httpchk HEAD /index.html HTTP/1.0
+ server webA 192.168.1.11:80 cookie A check
+ server webB 192.168.1.12:80 cookie B check
+ server webC 192.168.1.13:80 cookie C check
+ server webD 192.168.1.14:80 cookie D check
+
+
+==================================================================
+2. HTTP load-balancing with cookie prefixing and high availability
+==================================================================
+
+Now you don't want to add more cookies, but rather use existing ones. The
+application already generates a "JSESSIONID" cookie which is enough to track
+sessions, so we'll prefix this cookie with the server name when we see it.
+Since the load-balancer becomes critical, it will be backed up with a second
+one in VRRP mode using keepalived under Linux.
+
+Download the latest version of keepalived from this site and install it
+on each load-balancer LB1 and LB2 :
+
+ http://www.keepalived.org/
+
+You then have a shared IP between the two load-balancers (we will still use the
+original IP). It is active only on one of them at any moment. To allow the
+proxy to bind to the shared IP on Linux 2.4, you must enable it in /proc :
+
+# echo 1 >/proc/sys/net/ipv4/ip_nonlocal_bind
+
+
+ shared IP=192.168.1.1
+ 192.168.1.3 192.168.1.4 192.168.1.11-192.168.1.14 192.168.1.2
+ -------+------------+-----------+-----+-----+-----+--------+----
+ | | | | | | _|_db
+ +--+--+ +--+--+ +-+-+ +-+-+ +-+-+ +-+-+ (___)
+ | LB1 | | LB2 | | A | | B | | C | | D | (___)
+ +-----+ +-----+ +---+ +---+ +---+ +---+ (___)
+ haproxy haproxy 4 cheap web servers
+ keepalived keepalived
+
+
+Config on both proxies (LB1 and LB2) :
+--------------------------------------
+
+ listen webfarm 192.168.1.1:80
+ mode http
+ balance roundrobin
+ cookie JSESSIONID prefix
+ option httpclose
+ option forwardfor
+ option httpchk HEAD /index.html HTTP/1.0
+ server webA 192.168.1.11:80 cookie A check
+ server webB 192.168.1.12:80 cookie B check
+ server webC 192.168.1.13:80 cookie C check
+ server webD 192.168.1.14:80 cookie D check
+
+
+Notes: the proxy will modify EVERY cookie sent by the client and the server,
+so it is important that it can access to ALL cookies in ALL requests for
+each session. This implies that there is no keep-alive (HTTP/1.1), thus the
+"httpclose" option. Only if you know for sure that the client(s) will never
+use keep-alive (eg: Apache 1.3 in reverse-proxy mode), you can remove this
+option.
+
+
+Configuration for keepalived on LB1/LB2 :
+-----------------------------------------
+
+ vrrp_script chk_haproxy { # Requires keepalived-1.1.13
+ script "killall -0 haproxy" # cheaper than pidof
+ interval 2 # check every 2 seconds
+ weight 2 # add 2 points of prio if OK
+ }
+
+ vrrp_instance VI_1 {
+ interface eth0
+ state MASTER
+ virtual_router_id 51
+ priority 101 # 101 on master, 100 on backup
+ virtual_ipaddress {
+ 192.168.1.1
+ }
+ track_script {
+ chk_haproxy
+ }
+ }
+
+
+Description :
+-------------
+ - LB1 is VRRP master (keepalived), LB2 is backup. Both monitor the haproxy
+ process, and lower their prio if it fails, leading to a failover to the
+ other node.
+ - LB1 will receive clients requests on IP 192.168.1.1.
+ - both load-balancers send their checks from their native IP.
+ - if a request does not contain a cookie, it will be forwarded to a valid
+ server
+ - in return, if a JESSIONID cookie is seen, the server name will be prefixed
+ into it, followed by a delimiter ('~')
+ - when the client comes again with the cookie "JSESSIONID=A~xxx", LB1 will
+ know that it must be forwarded to server A. The server name will then be
+ extracted from cookie before it is sent to the server.
+ - if server "webA" dies, the requests will be sent to another valid server
+ and a cookie will be reassigned.
+
+
+Flows :
+-------
+
+(client) (haproxy) (server A)
+ >-- GET /URI1 HTTP/1.0 ------------> |
+ ( no cookie, haproxy forwards in load-balancing mode. )
+ | >-- GET /URI1 HTTP/1.0 ---------->
+ | X-Forwarded-For: 10.1.2.3
+ | <-- HTTP/1.0 200 OK -------------<
+ ( no cookie, nothing changed )
+ <-- HTTP/1.0 200 OK ---------------< |
+ >-- GET /URI2 HTTP/1.0 ------------> |
+ ( no cookie, haproxy forwards in lb mode, possibly to another server. )
+ | >-- GET /URI2 HTTP/1.0 ---------->
+ | X-Forwarded-For: 10.1.2.3
+ | <-- HTTP/1.0 200 OK -------------<
+ | Set-Cookie: JSESSIONID=123
+ ( the cookie is identified, it will be prefixed with the server name )
+ <-- HTTP/1.0 200 OK ---------------< |
+ Set-Cookie: JSESSIONID=A~123 |
+ >-- GET /URI3 HTTP/1.0 ------------> |
+ Cookie: JSESSIONID=A~123 |
+ ( the proxy sees the cookie, removes the server name and forwards
+ to server A which sees the same cookie as it previously sent )
+ | >-- GET /URI3 HTTP/1.0 ---------->
+ | Cookie: JSESSIONID=123
+ | X-Forwarded-For: 10.1.2.3
+ | <-- HTTP/1.0 200 OK -------------<
+ ( no cookie, nothing changed )
+ <-- HTTP/1.0 200 OK ---------------< |
+ ( ... )
+
+Hints :
+-------
+Sometimes, there will be some powerful servers in the farm, and some smaller
+ones. In this situation, it may be desirable to tell haproxy to respect the
+difference in performance. Let's consider that WebA and WebB are two old
+P3-1.2 GHz while WebC and WebD are shiny new Opteron-2.6 GHz. If your
+application scales with CPU, you may assume a very rough 2.6/1.2 performance
+ratio between the servers. You can inform haproxy about this using the "weight"
+keyword, with values between 1 and 256. It will then spread the load the most
+smoothly possible respecting those ratios :
+
+ server webA 192.168.1.11:80 cookie A weight 12 check
+ server webB 192.168.1.12:80 cookie B weight 12 check
+ server webC 192.168.1.13:80 cookie C weight 26 check
+ server webD 192.168.1.14:80 cookie D weight 26 check
+
+
+========================================================
+2.1 Variations involving external layer 4 load-balancers
+========================================================
+
+Instead of using a VRRP-based active/backup solution for the proxies,
+they can also be load-balanced by a layer4 load-balancer (eg: Alteon)
+which will also check that the services run fine on both proxies :
+
+ | VIP=192.168.1.1
+ +----+----+
+ | Alteon |
+ +----+----+
+ |
+ 192.168.1.3 | 192.168.1.4 192.168.1.11-192.168.1.14 192.168.1.2
+ -------+-----+------+-----------+-----+-----+-----+--------+----
+ | | | | | | _|_db
+ +--+--+ +--+--+ +-+-+ +-+-+ +-+-+ +-+-+ (___)
+ | LB1 | | LB2 | | A | | B | | C | | D | (___)
+ +-----+ +-----+ +---+ +---+ +---+ +---+ (___)
+ haproxy haproxy 4 cheap web servers
+
+
+Config on both proxies (LB1 and LB2) :
+--------------------------------------
+
+ listen webfarm 0.0.0.0:80
+ mode http
+ balance roundrobin
+ cookie JSESSIONID prefix
+ option httpclose
+ option forwardfor
+ option httplog
+ option dontlognull
+ option httpchk HEAD /index.html HTTP/1.0
+ server webA 192.168.1.11:80 cookie A check
+ server webB 192.168.1.12:80 cookie B check
+ server webC 192.168.1.13:80 cookie C check
+ server webD 192.168.1.14:80 cookie D check
+
+The "dontlognull" option is used to prevent the proxy from logging the health
+checks from the Alteon. If a session exchanges no data, then it will not be
+logged.
+
+Config on the Alteon :
+----------------------
+
+ /c/slb/real 11
+ ena
+ name "LB1"
+ rip 192.168.1.3
+ /c/slb/real 12
+ ena
+ name "LB2"
+ rip 192.168.1.4
+ /c/slb/group 10
+ name "LB1-2"
+ metric roundrobin
+ health tcp
+ add 11
+ add 12
+ /c/slb/virt 10
+ ena
+ vip 192.168.1.1
+ /c/slb/virt 10/service http
+ group 10
+
+
+Note: the health-check on the Alteon is set to "tcp" to prevent the proxy from
+forwarding the connections. It can also be set to "http", but for this the
+proxy must specify a "monitor-net" with the Alteons' addresses, so that the
+Alteon can really check that the proxies can talk HTTP but without forwarding
+the connections to the end servers. Check next section for an example on how to
+use monitor-net.
+
+
+============================================================
+2.2 Generic TCP relaying and external layer 4 load-balancers
+============================================================
+
+Sometimes it's useful to be able to relay generic TCP protocols (SMTP, TSE,
+VNC, etc...), for example to interconnect private networks. The problem comes
+when you use external load-balancers which need to send periodic health-checks
+to the proxies, because these health-checks get forwarded to the end servers.
+The solution is to specify a network which will be dedicated to monitoring
+systems and must not lead to a forwarding connection nor to any log, using the
+"monitor-net" keyword. Note: this feature expects a version of haproxy greater
+than or equal to 1.1.32 or 1.2.6.
+
+
+ | VIP=172.16.1.1 |
+ +----+----+ +----+----+
+ | Alteon1 | | Alteon2 |
+ +----+----+ +----+----+
+ 192.168.1.252 | GW=192.168.1.254 | 192.168.1.253
+ | |
+ ------+---+------------+--+-----------------> TSE farm : 192.168.1.10
+ 192.168.1.1 | | 192.168.1.2
+ +--+--+ +--+--+
+ | LB1 | | LB2 |
+ +-----+ +-----+
+ haproxy haproxy
+
+
+Config on both proxies (LB1 and LB2) :
+--------------------------------------
+
+ listen tse-proxy
+ bind :3389,:1494,:5900 # TSE, ICA and VNC at once.
+ mode tcp
+ balance roundrobin
+ server tse-farm 192.168.1.10
+ monitor-net 192.168.1.252/31
+
+The "monitor-net" option instructs the proxies that any connection coming from
+192.168.1.252 or 192.168.1.253 will not be logged nor forwarded and will be
+closed immediately. The Alteon load-balancers will then see the proxies alive
+without perturbating the service.
+
+Config on the Alteon :
+----------------------
+
+ /c/l3/if 1
+ ena
+ addr 192.168.1.252
+ mask 255.255.255.0
+ /c/slb/real 11
+ ena
+ name "LB1"
+ rip 192.168.1.1
+ /c/slb/real 12
+ ena
+ name "LB2"
+ rip 192.168.1.2
+ /c/slb/group 10
+ name "LB1-2"
+ metric roundrobin
+ health tcp
+ add 11
+ add 12
+ /c/slb/virt 10
+ ena
+ vip 172.16.1.1
+ /c/slb/virt 10/service 1494
+ group 10
+ /c/slb/virt 10/service 3389
+ group 10
+ /c/slb/virt 10/service 5900
+ group 10
+
+
+Special handling of SSL :
+-------------------------
+Sometimes, you want to send health-checks to remote systems, even in TCP mode,
+in order to be able to failover to a backup server in case the first one is
+dead. Of course, you can simply enable TCP health-checks, but it sometimes
+happens that intermediate firewalls between the proxies and the remote servers
+acknowledge the TCP connection themselves, showing an always-up server. Since
+this is generally encountered on long-distance communications, which often
+involve SSL, an SSL health-check has been implemented to work around this issue.
+It sends SSL Hello messages to the remote server, which in turns replies with
+SSL Hello messages. Setting it up is very easy :
+
+ listen tcp-syslog-proxy
+ bind :1514 # listen to TCP syslog traffic on this port (SSL)
+ mode tcp
+ balance roundrobin
+ option ssl-hello-chk
+ server syslog-prod-site 192.168.1.10 check
+ server syslog-back-site 192.168.2.10 check backup
+
+
+=========================================================
+3. Simple HTTP/HTTPS load-balancing with cookie insertion
+=========================================================
+
+This is the same context as in example 1 above, but the web
+server uses HTTPS.
+
+ +-------+
+ |clients| clients
+ +---+---+
+ |
+ -+-----+--------+----
+ | _|_db
+ +--+--+ (___)
+ | SSL | (___)
+ | web | (___)
+ +-----+
+ 192.168.1.1 192.168.1.2
+
+
+Since haproxy does not handle SSL, this part will have to be extracted from the
+servers (freeing even more resources) and installed on the load-balancer
+itself. Install haproxy and apache+mod_ssl on the old box which will spread the
+load between the new boxes. Apache will work in SSL reverse-proxy-cache. If the
+application is correctly developed, it might even lower its load. However,
+since there now is a cache between the clients and haproxy, some security
+measures must be taken to ensure that inserted cookies will not be cached.
+
+
+ 192.168.1.1 192.168.1.11-192.168.1.14 192.168.1.2
+ -------+-----------+-----+-----+-----+--------+----
+ | | | | | _|_db
+ +--+--+ +-+-+ +-+-+ +-+-+ +-+-+ (___)
+ | LB1 | | A | | B | | C | | D | (___)
+ +-----+ +---+ +---+ +---+ +---+ (___)
+ apache 4 cheap web servers
+ mod_ssl
+ haproxy
+
+
+Config on haproxy (LB1) :
+-------------------------
+
+ listen 127.0.0.1:8000
+ mode http
+ balance roundrobin
+ cookie SERVERID insert indirect nocache
+ option httpchk HEAD /index.html HTTP/1.0
+ server webA 192.168.1.11:80 cookie A check
+ server webB 192.168.1.12:80 cookie B check
+ server webC 192.168.1.13:80 cookie C check
+ server webD 192.168.1.14:80 cookie D check
+
+
+Description :
+-------------
+ - apache on LB1 will receive clients requests on port 443
+ - it forwards it to haproxy bound to 127.0.0.1:8000
+ - if a request does not contain a cookie, it will be forwarded to a valid
+ server
+ - in return, a cookie "SERVERID" will be inserted in the response holding the
+ server name (eg: "A"), and a "Cache-control: private" header will be added
+ so that the apache does not cache any page containing such cookie.
+ - when the client comes again with the cookie "SERVERID=A", LB1 will know that
+ it must be forwarded to server A. The cookie will be removed so that the
+ server does not see it.
+ - if server "webA" dies, the requests will be sent to another valid server
+ and a cookie will be reassigned.
+
+Notes :
+-------
+ - if the cookie works in "prefix" mode, there is no need to add the "nocache"
+ option because it is an application cookie which will be modified, and the
+ application flags will be preserved.
+ - if apache 1.3 is used as a front-end before haproxy, it always disables
+ HTTP keep-alive on the back-end, so there is no need for the "httpclose"
+ option on haproxy.
+ - configure apache to set the X-Forwarded-For header itself, and do not do
+ it on haproxy if you need the application to know about the client's IP.
+
+
+Flows :
+-------
+
+(apache) (haproxy) (server A)
+ >-- GET /URI1 HTTP/1.0 ------------> |
+ ( no cookie, haproxy forwards in load-balancing mode. )
+ | >-- GET /URI1 HTTP/1.0 ---------->
+ | <-- HTTP/1.0 200 OK -------------<
+ ( the proxy now adds the server cookie in return )
+ <-- HTTP/1.0 200 OK ---------------< |
+ Set-Cookie: SERVERID=A |
+ Cache-Control: private |
+ >-- GET /URI2 HTTP/1.0 ------------> |
+ Cookie: SERVERID=A |
+ ( the proxy sees the cookie. it forwards to server A and deletes it )
+ | >-- GET /URI2 HTTP/1.0 ---------->
+ | <-- HTTP/1.0 200 OK -------------<
+ ( the proxy does not add the cookie in return because the client knows it )
+ <-- HTTP/1.0 200 OK ---------------< |
+ >-- GET /URI3 HTTP/1.0 ------------> |
+ Cookie: SERVERID=A |
+ ( ... )
+
+
+
+========================================
+3.1. Alternate solution using Stunnel
+========================================
+
+When only SSL is required and cache is not needed, stunnel is a cheaper
+solution than Apache+mod_ssl. By default, stunnel does not process HTTP and
+does not add any X-Forwarded-For header, but there is a patch on the official
+haproxy site to provide this feature to recent stunnel versions.
+
+This time, stunnel will only process HTTPS and not HTTP. This means that
+haproxy will get all HTTP traffic, so haproxy will have to add the
+X-Forwarded-For header for HTTP traffic, but not for HTTPS traffic since
+stunnel will already have done it. We will use the "except" keyword to tell
+haproxy that connections from local host already have a valid header.
+
+
+ 192.168.1.1 192.168.1.11-192.168.1.14 192.168.1.2
+ -------+-----------+-----+-----+-----+--------+----
+ | | | | | _|_db
+ +--+--+ +-+-+ +-+-+ +-+-+ +-+-+ (___)
+ | LB1 | | A | | B | | C | | D | (___)
+ +-----+ +---+ +---+ +---+ +---+ (___)
+ stunnel 4 cheap web servers
+ haproxy
+
+
+Config on stunnel (LB1) :
+-------------------------
+
+ cert=/etc/stunnel/stunnel.pem
+ setuid=stunnel
+ setgid=proxy
+
+ socket=l:TCP_NODELAY=1
+ socket=r:TCP_NODELAY=1
+
+ [https]
+ accept=192.168.1.1:443
+ connect=192.168.1.1:80
+ xforwardedfor=yes
+
+
+Config on haproxy (LB1) :
+-------------------------
+
+ listen 192.168.1.1:80
+ mode http
+ balance roundrobin
+ option forwardfor except 192.168.1.1
+ cookie SERVERID insert indirect nocache
+ option httpchk HEAD /index.html HTTP/1.0
+ server webA 192.168.1.11:80 cookie A check
+ server webB 192.168.1.12:80 cookie B check
+ server webC 192.168.1.13:80 cookie C check
+ server webD 192.168.1.14:80 cookie D check
+
+Description :
+-------------
+ - stunnel on LB1 will receive clients requests on port 443
+ - it forwards them to haproxy bound to port 80
+ - haproxy will receive HTTP client requests on port 80 and decrypted SSL
+ requests from Stunnel on the same port.
+ - stunnel will add the X-Forwarded-For header
+ - haproxy will add the X-Forwarded-For header for everyone except the local
+ address (stunnel).
+
+
+========================================
+4. Soft-stop for application maintenance
+========================================
+
+When an application is spread across several servers, the time to update all
+instances increases, so the application seems jerky for a longer period.
+
+HAProxy offers several solutions for this. Although it cannot be reconfigured
+without being stopped, nor does it offer any external command, there are other
+working solutions.
+
+
+=========================================
+4.1 Soft-stop using a file on the servers
+=========================================
+
+This trick is quite common and very simple: put a file on the server which will
+be checked by the proxy. When you want to stop the server, first remove this
+file. The proxy will see the server as failed, and will not send it any new
+session, only the old ones if the "persist" option is used. Wait a bit then
+stop the server when it does not receive anymore connections.
+
+
+ listen 192.168.1.1:80
+ mode http
+ balance roundrobin
+ cookie SERVERID insert indirect
+ option httpchk HEAD /running HTTP/1.0
+ server webA 192.168.1.11:80 cookie A check inter 2000 rise 2 fall 2
+ server webB 192.168.1.12:80 cookie B check inter 2000 rise 2 fall 2
+ server webC 192.168.1.13:80 cookie C check inter 2000 rise 2 fall 2
+ server webD 192.168.1.14:80 cookie D check inter 2000 rise 2 fall 2
+ option persist
+ redispatch
+ contimeout 5000
+
+
+Description :
+-------------
+ - every 2 seconds, haproxy will try to access the file "/running" on the
+ servers, and declare the server as down after 2 attempts (4 seconds).
+ - only the servers which respond with a 200 or 3XX response will be used.
+ - if a request does not contain a cookie, it will be forwarded to a valid
+ server
+ - if a request contains a cookie for a failed server, haproxy will insist
+ on trying to reach the server anyway, to let the user finish what they were
+ doing. ("persist" option)
+ - if the server is totally stopped, the connection will fail and the proxy
+ will rebalance the client to another server ("redispatch")
+
+Usage on the web servers :
+--------------------------
+- to start the server :
+ # /etc/init.d/httpd start
+ # touch /home/httpd/www/running
+
+- to soft-stop the server
+ # rm -f /home/httpd/www/running
+
+- to completely stop the server :
+ # /etc/init.d/httpd stop
+
+Limits
+------
+If the server is totally powered down, the proxy will still try to reach it
+for those clients who still have a cookie referencing it, and the connection
+attempt will expire after 5 seconds ("contimeout"), and only after that, the
+client will be redispatched to another server. So this mode is only useful
+for software updates where the server will suddenly refuse the connection
+because the process is stopped. The problem is the same if the server suddenly
+crashes. All of its users will be fairly perturbated.
+
+
+==================================
+4.2 Soft-stop using backup servers
+==================================
+
+A better solution which covers every situation is to use backup servers.
+Version 1.1.30 fixed a bug which prevented a backup server from sharing
+the same cookie as a standard server.
+
+
+ listen 192.168.1.1:80
+ mode http
+ balance roundrobin
+ redispatch
+ cookie SERVERID insert indirect
+ option httpchk HEAD / HTTP/1.0
+ server webA 192.168.1.11:80 cookie A check port 81 inter 2000
+ server webB 192.168.1.12:80 cookie B check port 81 inter 2000
+ server webC 192.168.1.13:80 cookie C check port 81 inter 2000
+ server webD 192.168.1.14:80 cookie D check port 81 inter 2000
+
+ server bkpA 192.168.1.11:80 cookie A check port 80 inter 2000 backup
+ server bkpB 192.168.1.12:80 cookie B check port 80 inter 2000 backup
+ server bkpC 192.168.1.13:80 cookie C check port 80 inter 2000 backup
+ server bkpD 192.168.1.14:80 cookie D check port 80 inter 2000 backup
+
+Description
+-----------
+Four servers webA..D are checked on their port 81 every 2 seconds. The same
+servers named bkpA..D are checked on the port 80, and share the exact same
+cookies. Those servers will only be used when no other server is available
+for the same cookie.
+
+When the web servers are started, only the backup servers are seen as
+available. On the web servers, you need to redirect port 81 to local
+port 80, either with a local proxy (eg: a simple haproxy tcp instance),
+or with iptables (linux) or pf (openbsd). This is because we want the
+real web server to reply on this port, and not a fake one. Eg, with
+iptables :
+
+ # /etc/init.d/httpd start
+ # iptables -t nat -A PREROUTING -p tcp --dport 81 -j REDIRECT --to-port 80
+
+A few seconds later, the standard server is seen up and haproxy starts to send
+it new requests on its real port 80 (only new users with no cookie, of course).
+
+If a server completely crashes (even if it does not respond at the IP level),
+both the standard and backup servers will fail, so clients associated to this
+server will be redispatched to other live servers and will lose their sessions.
+
+Now if you want to enter a server into maintenance, simply stop it from
+responding on port 81 so that its standard instance will be seen as failed,
+but the backup will still work. Users will not notice anything since the
+service is still operational :
+
+ # iptables -t nat -D PREROUTING -p tcp --dport 81 -j REDIRECT --to-port 80
+
+The health checks on port 81 for this server will quickly fail, and the
+standard server will be seen as failed. No new session will be sent to this
+server, and existing clients with a valid cookie will still reach it because
+the backup server will still be up.
+
+Now wait as long as you want for the old users to stop using the service, and
+once you see that the server does not receive any traffic, simply stop it :
+
+ # /etc/init.d/httpd stop
+
+The associated backup server will in turn fail, and if any client still tries
+to access this particular server, they will be redispatched to any other valid
+server because of the "redispatch" option.
+
+This method has an advantage : you never touch the proxy when doing server
+maintenance. The people managing the servers can make them disappear smoothly.
+
+
+4.2.1 Variations for operating systems without any firewall software
+--------------------------------------------------------------------
+
+The downside is that you need a redirection solution on the server just for
+the health-checks. If the server OS does not support any firewall software,
+this redirection can also be handled by a simple haproxy in tcp mode :
+
+ global
+ daemon
+ quiet
+ pidfile /var/run/haproxy-checks.pid
+ listen 0.0.0.0:81
+ mode tcp
+ dispatch 127.0.0.1:80
+ contimeout 1000
+ clitimeout 10000
+ srvtimeout 10000
+
+To start the web service :
+
+ # /etc/init.d/httpd start
+ # haproxy -f /etc/haproxy/haproxy-checks.cfg
+
+To soft-stop the service :
+
+ # kill $(</var/run/haproxy-checks.pid)
+
+The port 81 will stop responding and the load-balancer will notice the failure.
+
+
+4.2.2 Centralizing the server management
+----------------------------------------
+
+If one finds it preferable to manage the servers from the load-balancer itself,
+the port redirector can be installed on the load-balancer itself. See the
+example with iptables below.
+
+Make the servers appear as operational :
+ # iptables -t nat -A OUTPUT -d 192.168.1.11 -p tcp --dport 81 -j DNAT --to-dest :80
+ # iptables -t nat -A OUTPUT -d 192.168.1.12 -p tcp --dport 81 -j DNAT --to-dest :80
+ # iptables -t nat -A OUTPUT -d 192.168.1.13 -p tcp --dport 81 -j DNAT --to-dest :80
+ # iptables -t nat -A OUTPUT -d 192.168.1.14 -p tcp --dport 81 -j DNAT --to-dest :80
+
+Soft stop one server :
+ # iptables -t nat -D OUTPUT -d 192.168.1.12 -p tcp --dport 81 -j DNAT --to-dest :80
+
+Another solution is to use the "COMAFILE" patch provided by Alexander Lazic,
+which is available for download here :
+
+ http://w.ods.org/tools/haproxy/contrib/
+
+
+4.2.3 Notes :
+-------------
+ - Never, ever, start a fake service on port 81 for the health-checks, because
+ a real web service failure will not be detected as long as the fake service
+ runs. You must really forward the check port to the real application.
+
+ - health-checks will be sent twice as often, once for each standard server,
+ and once for each backup server. All this will be multiplicated by the
+ number of processes if you use multi-process mode. You will have to ensure
+ that all the checks sent to the server do not overload it.
+
+=======================
+4.3 Hot reconfiguration
+=======================
+
+There are two types of haproxy users :
+ - those who can never do anything in production out of maintenance periods ;
+ - those who can do anything at any time provided that the consequences are
+ limited.
+
+The first ones have no problem stopping the server to change configuration
+because they got some maintenance periods during which they can break anything.
+So they will even prefer doing a clean stop/start sequence to ensure everything
+will work fine upon next reload. Since those have represented the majority of
+haproxy uses, there has been little effort trying to improve this.
+
+However, the second category is a bit different. They like to be able to fix an
+error in a configuration file without anyone noticing. This can sometimes also
+be the case for the first category because humans are not failsafe.
+
+For this reason, a new hot reconfiguration mechanism has been introduced in
+version 1.1.34. Its usage is very simple and works even in chrooted
+environments with lowered privileges. The principle is very simple : upon
+reception of a SIGTTOU signal, the proxy will stop listening to all the ports.
+This will release the ports so that a new instance can be started. Existing
+connections will not be broken at all. If the new instance fails to start,
+then sending a SIGTTIN signal back to the original processes will restore
+the listening ports. This is possible without any special privileges because
+the sockets will not have been closed, so the bind() is still valid. Otherwise,
+if the new process starts successfully, then sending a SIGUSR1 signal to the
+old one ensures that it will exit as soon as its last session ends.
+
+A hot reconfiguration script would look like this :
+
+ # save previous state
+ mv /etc/haproxy/config /etc/haproxy/config.old
+ mv /var/run/haproxy.pid /var/run/haproxy.pid.old
+
+ mv /etc/haproxy/config.new /etc/haproxy/config
+ kill -TTOU $(cat /var/run/haproxy.pid.old)
+ if haproxy -p /var/run/haproxy.pid -f /etc/haproxy/config; then
+ echo "New instance successfully loaded, stopping previous one."
+ kill -USR1 $(cat /var/run/haproxy.pid.old)
+ rm -f /var/run/haproxy.pid.old
+ exit 1
+ else
+ echo "New instance failed to start, resuming previous one."
+ kill -TTIN $(cat /var/run/haproxy.pid.old)
+ rm -f /var/run/haproxy.pid
+ mv /var/run/haproxy.pid.old /var/run/haproxy.pid
+ mv /etc/haproxy/config /etc/haproxy/config.new
+ mv /etc/haproxy/config.old /etc/haproxy/config
+ exit 0
+ fi
+
+After this, you can still force old connections to end by sending
+a SIGTERM to the old process if it still exists :
+
+ kill $(cat /var/run/haproxy.pid.old)
+ rm -f /var/run/haproxy.pid.old
+
+Be careful with this as in multi-process mode, some pids might already
+have been reallocated to completely different processes.
+
+
+==================================================
+5. Multi-site load-balancing with local preference
+==================================================
+
+5.1 Description of the problem
+==============================
+
+Consider a world-wide company with sites on several continents. There are two
+production sites SITE1 and SITE2 which host identical applications. There are
+many offices around the world. For speed and communication cost reasons, each
+office uses the nearest site by default, but can switch to the backup site in
+the event of a site or application failure. There also are users on the
+production sites, which use their local sites by default, but can switch to the
+other site in case of a local application failure.
+
+The main constraints are :
+
+ - application persistence : although the application is the same on both
+ sites, there is no session synchronisation between the sites. A failure
+ of one server or one site can cause a user to switch to another server
+ or site, but when the server or site comes back, the user must not switch
+ again.
+
+ - communication costs : inter-site communication should be reduced to the
+ minimum. Specifically, in case of a local application failure, every
+ office should be able to switch to the other site without continuing to
+ use the default site.
+
+5.2 Solution
+============
+ - Each production site will have two haproxy load-balancers in front of its
+ application servers to balance the load across them and provide local HA.
+ We will call them "S1L1" and "S1L2" on site 1, and "S2L1" and "S2L2" on
+ site 2. These proxies will extend the application's JSESSIONID cookie to
+ put the server name as a prefix.
+
+ - Each production site will have one front-end haproxy director to provide
+ the service to local users and to remote offices. It will load-balance
+ across the two local load-balancers, and will use the other site's
+ load-balancers as backup servers. It will insert the local site identifier
+ in a SITE cookie for the local load-balancers, and the remote site
+ identifier for the remote load-balancers. These front-end directors will
+ be called "SD1" and "SD2" for "Site Director".
+
+ - Each office will have one haproxy near the border gateway which will direct
+ local users to their preference site by default, or to the backup site in
+ the event of a previous failure. It will also analyze the SITE cookie, and
+ direct the users to the site referenced in the cookie. Thus, the preferred
+ site will be declared as a normal server, and the backup site will be
+ declared as a backup server only, which will only be used when the primary
+ site is unreachable, or when the primary site's director has forwarded
+ traffic to the second site. These proxies will be called "OP1".."OPXX"
+ for "Office Proxy #XX".
+
+
+5.3 Network diagram
+===================
+
+Note : offices 1 and 2 are on the same continent as site 1, while
+ office 3 is on the same continent as site 3. Each production
+ site can reach the second one either through the WAN or through
+ a dedicated link.
+
+
+ Office1 Office2 Office3
+ users users users
+192.168 # # # 192.168 # # # # # #
+.1.0/24 | | | .2.0/24 | | | 192.168.3.0/24 | | |
+ --+----+-+-+- --+----+-+-+- ---+----+-+-+-
+ | | .1 | | .1 | | .1
+ | +-+-+ | +-+-+ | +-+-+
+ | |OP1| | |OP2| | |OP3| ...
+ ,-:-. +---+ ,-:-. +---+ ,-:-. +---+
+ ( X ) ( X ) ( X )
+ `-:-' `-:-' ,---. `-:-'
+ --+---------------+------+----~~~( X )~~~~-------+---------+-
+ | `---' |
+ | |
+ +---+ ,-:-. +---+ ,-:-.
+ |SD1| ( X ) |SD2| ( X )
+ ( SITE 1 ) +-+-+ `-:-' ( SITE 2 ) +-+-+ `-:-'
+ |.1 | |.1 |
+ 10.1.1.0/24 | | ,---. 10.2.1.0/24 | |
+ -+-+-+-+-+-+-+-----+-+--( X )------+-+-+-+-+-+-+-----+-+--
+ | | | | | | | `---' | | | | | | |
+ ...# # # # # |.11 |.12 ...# # # # # |.11 |.12
+ Site 1 +-+--+ +-+--+ Site 2 +-+--+ +-+--+
+ Local |S1L1| |S1L2| Local |S2L1| |S2L2|
+ users +-+--+ +--+-+ users +-+--+ +--+-+
+ | | | |
+ 10.1.2.0/24 -+-+-+--+--++-- 10.2.2.0/24 -+-+-+--+--++--
+ |.1 |.4 |.1 |.4
+ +-+-+ +-+-+ +-+-+ +-+-+
+ |W11| ~~~ |W14| |W21| ~~~ |W24|
+ +---+ +---+ +---+ +---+
+ 4 application servers 4 application servers
+ on site 1 on site 2
+
+
+
+5.4 Description
+===============
+
+5.4.1 Local users
+-----------------
+ - Office 1 users connect to OP1 = 192.168.1.1
+ - Office 2 users connect to OP2 = 192.168.2.1
+ - Office 3 users connect to OP3 = 192.168.3.1
+ - Site 1 users connect to SD1 = 10.1.1.1
+ - Site 2 users connect to SD2 = 10.2.1.1
+
+5.4.2 Office proxies
+--------------------
+ - Office 1 connects to site 1 by default and uses site 2 as a backup.
+ - Office 2 connects to site 1 by default and uses site 2 as a backup.
+ - Office 3 connects to site 2 by default and uses site 1 as a backup.
+
+The offices check the local site's SD proxy every 30 seconds, and the
+remote one every 60 seconds.
+
+
+Configuration for Office Proxy OP1
+----------------------------------
+
+ listen 192.168.1.1:80
+ mode http
+ balance roundrobin
+ redispatch
+ cookie SITE
+ option httpchk HEAD / HTTP/1.0
+ server SD1 10.1.1.1:80 cookie SITE1 check inter 30000
+ server SD2 10.2.1.1:80 cookie SITE2 check inter 60000 backup
+
+
+Configuration for Office Proxy OP2
+----------------------------------
+
+ listen 192.168.2.1:80
+ mode http
+ balance roundrobin
+ redispatch
+ cookie SITE
+ option httpchk HEAD / HTTP/1.0
+ server SD1 10.1.1.1:80 cookie SITE1 check inter 30000
+ server SD2 10.2.1.1:80 cookie SITE2 check inter 60000 backup
+
+
+Configuration for Office Proxy OP3
+----------------------------------
+
+ listen 192.168.3.1:80
+ mode http
+ balance roundrobin
+ redispatch
+ cookie SITE
+ option httpchk HEAD / HTTP/1.0
+ server SD2 10.2.1.1:80 cookie SITE2 check inter 30000
+ server SD1 10.1.1.1:80 cookie SITE1 check inter 60000 backup
+
+
+5.4.3 Site directors ( SD1 and SD2 )
+------------------------------------
+The site directors forward traffic to the local load-balancers, and set a
+cookie to identify the site. If no local load-balancer is available, or if
+the local application servers are all down, it will redirect traffic to the
+remote site, and report this in the SITE cookie. In order not to uselessly
+load each site's WAN link, each SD will check the other site at a lower
+rate. The site directors will also insert their client's address so that
+the application server knows which local user or remote site accesses it.
+
+The SITE cookie which is set by these directors will also be understood
+by the office proxies. This is important because if SD1 decides to forward
+traffic to site 2, it will write "SITE2" in the "SITE" cookie, and on next
+request, the office proxy will automatically and directly talk to SITE2 if
+it can reach it. If it cannot, it will still send the traffic to SITE1
+where SD1 will in turn try to reach SITE2.
+
+The load-balancers checks are performed on port 81. As we'll see further,
+the load-balancers provide a health monitoring port 81 which reroutes to
+port 80 but which allows them to tell the SD that they are going down soon
+and that the SD must not use them anymore.
+
+
+Configuration for SD1
+---------------------
+
+ listen 10.1.1.1:80
+ mode http
+ balance roundrobin
+ redispatch
+ cookie SITE insert indirect
+ option httpchk HEAD / HTTP/1.0
+ option forwardfor
+ server S1L1 10.1.1.11:80 cookie SITE1 check port 81 inter 4000
+ server S1L2 10.1.1.12:80 cookie SITE1 check port 81 inter 4000
+ server S2L1 10.2.1.11:80 cookie SITE2 check port 81 inter 8000 backup
+ server S2L2 10.2.1.12:80 cookie SITE2 check port 81 inter 8000 backup
+
+Configuration for SD2
+---------------------
+
+ listen 10.2.1.1:80
+ mode http
+ balance roundrobin
+ redispatch
+ cookie SITE insert indirect
+ option httpchk HEAD / HTTP/1.0
+ option forwardfor
+ server S2L1 10.2.1.11:80 cookie SITE2 check port 81 inter 4000
+ server S2L2 10.2.1.12:80 cookie SITE2 check port 81 inter 4000
+ server S1L1 10.1.1.11:80 cookie SITE1 check port 81 inter 8000 backup
+ server S1L2 10.1.1.12:80 cookie SITE1 check port 81 inter 8000 backup
+
+
+5.4.4 Local load-balancers S1L1, S1L2, S2L1, S2L2
+-------------------------------------------------
+Please first note that because SD1 and SD2 use the same cookie for both
+servers on a same site, the second load-balancer of each site will only
+receive load-balanced requests, but as soon as the SITE cookie will be
+set, only the first LB will receive the requests because it will be the
+first one to match the cookie.
+
+The load-balancers will spread the load across 4 local web servers, and
+use the JSESSIONID provided by the application to provide server persistence
+using the new 'prefix' method. Soft-stop will also be implemented as described
+in section 4 above. Moreover, these proxies will provide their own maintenance
+soft-stop. Port 80 will be used for application traffic, while port 81 will
+only be used for health-checks and locally rerouted to port 80. A grace time
+will be specified to service on port 80, but not on port 81. This way, a soft
+kill (kill -USR1) on the proxy will only kill the health-check forwarder so
+that the site director knows it must not use this load-balancer anymore. But
+the service will still work for 20 seconds and as long as there are established
+sessions.
+
+These proxies will also be the only ones to disable HTTP keep-alive in the
+chain, because it is enough to do it at one place, and it's necessary to do
+it with 'prefix' cookies.
+
+Configuration for S1L1/S1L2
+---------------------------
+
+ listen 10.1.1.11:80 # 10.1.1.12:80 for S1L2
+ grace 20000 # don't kill us until 20 seconds have elapsed
+ mode http
+ balance roundrobin
+ cookie JSESSIONID prefix
+ option httpclose
+ option forwardfor
+ option httpchk HEAD / HTTP/1.0
+ server W11 10.1.2.1:80 cookie W11 check port 81 inter 2000
+ server W12 10.1.2.2:80 cookie W12 check port 81 inter 2000
+ server W13 10.1.2.3:80 cookie W13 check port 81 inter 2000
+ server W14 10.1.2.4:80 cookie W14 check port 81 inter 2000
+
+ server B11 10.1.2.1:80 cookie W11 check port 80 inter 4000 backup
+ server B12 10.1.2.2:80 cookie W12 check port 80 inter 4000 backup
+ server B13 10.1.2.3:80 cookie W13 check port 80 inter 4000 backup
+ server B14 10.1.2.4:80 cookie W14 check port 80 inter 4000 backup
+
+ listen 10.1.1.11:81 # 10.1.1.12:81 for S1L2
+ mode tcp
+ dispatch 10.1.1.11:80 # 10.1.1.12:80 for S1L2
+
+
+Configuration for S2L1/S2L2
+---------------------------
+
+ listen 10.2.1.11:80 # 10.2.1.12:80 for S2L2
+ grace 20000 # don't kill us until 20 seconds have elapsed
+ mode http
+ balance roundrobin
+ cookie JSESSIONID prefix
+ option httpclose
+ option forwardfor
+ option httpchk HEAD / HTTP/1.0
+ server W21 10.2.2.1:80 cookie W21 check port 81 inter 2000
+ server W22 10.2.2.2:80 cookie W22 check port 81 inter 2000
+ server W23 10.2.2.3:80 cookie W23 check port 81 inter 2000
+ server W24 10.2.2.4:80 cookie W24 check port 81 inter 2000
+
+ server B21 10.2.2.1:80 cookie W21 check port 80 inter 4000 backup
+ server B22 10.2.2.2:80 cookie W22 check port 80 inter 4000 backup
+ server B23 10.2.2.3:80 cookie W23 check port 80 inter 4000 backup
+ server B24 10.2.2.4:80 cookie W24 check port 80 inter 4000 backup
+
+ listen 10.2.1.11:81 # 10.2.1.12:81 for S2L2
+ mode tcp
+ dispatch 10.2.1.11:80 # 10.2.1.12:80 for S2L2
+
+
+5.5 Comments
+------------
+Since each site director sets a cookie identifying the site, remote office
+users will have their office proxies direct them to the right site and stick
+to this site as long as the user still uses the application and the site is
+available. Users on production sites will be directed to the right site by the
+site directors depending on the SITE cookie.
+
+If the WAN link dies on a production site, the remote office users will not
+see their site anymore, so they will redirect the traffic to the second site.
+If there are dedicated inter-site links as on the diagram above, the second
+SD will see the cookie and still be able to reach the original site. For
+example :
+
+Office 1 user sends the following to OP1 :
+ GET / HTTP/1.0
+ Cookie: SITE=SITE1; JSESSIONID=W14~123;
+
+OP1 cannot reach site 1 because its external router is dead. So the SD1 server
+is seen as dead, and OP1 will then forward the request to SD2 on site 2,
+regardless of the SITE cookie.
+
+SD2 on site 2 receives a SITE cookie containing "SITE1". Fortunately, it
+can reach Site 1's load balancers S1L1 and S1L2. So it forwards the request
+so S1L1 (the first one with the same cookie).
+
+S1L1 (on site 1) finds "W14" in the JSESSIONID cookie, so it can forward the
+request to the right server, and the user session will continue to work. Once
+the Site 1's WAN link comes back, OP1 will see SD1 again, and will not route
+through SITE 2 anymore.
+
+However, when a new user on Office 1 connects to the application during a
+site 1 failure, it does not contain any cookie. Since OP1 does not see SD1
+because of the network failure, it will direct the request to SD2 on site 2,
+which will by default direct the traffic to the local load-balancers, S2L1 and
+S2L2. So only initial users will load the inter-site link, not the new ones.
+
+
+===================
+6. Source balancing
+===================
+
+Sometimes it may reveal useful to access servers from a pool of IP addresses
+instead of only one or two. Some equipment (NAT firewalls, load-balancers)
+are sensible to source address, and often need many sources to distribute the
+load evenly amongst their internal hash buckets.
+
+To do this, you simply have to use several times the same server with a
+different source. Example :
+
+ listen 0.0.0.0:80
+ mode tcp
+ balance roundrobin
+ server from1to1 10.1.1.1:80 source 10.1.2.1
+ server from2to1 10.1.1.1:80 source 10.1.2.2
+ server from3to1 10.1.1.1:80 source 10.1.2.3
+ server from4to1 10.1.1.1:80 source 10.1.2.4
+ server from5to1 10.1.1.1:80 source 10.1.2.5
+ server from6to1 10.1.1.1:80 source 10.1.2.6
+ server from7to1 10.1.1.1:80 source 10.1.2.7
+ server from8to1 10.1.1.1:80 source 10.1.2.8
+
+
+=============================================
+7. Managing high loads on application servers
+=============================================
+
+One of the roles often expected from a load balancer is to mitigate the load on
+the servers during traffic peaks. More and more often, we see heavy frameworks
+used to deliver flexible and evolutive web designs, at the cost of high loads
+on the servers, or very low concurrency. Sometimes, response times are also
+rather high. People developing web sites relying on such frameworks very often
+look for a load balancer which is able to distribute the load in the most
+evenly fashion and which will be nice with the servers.
+
+There is a powerful feature in haproxy which achieves exactly this : request
+queueing associated with concurrent connections limit.
+
+Let's say you have an application server which supports at most 20 concurrent
+requests. You have 3 servers, so you can accept up to 60 concurrent HTTP
+connections, which often means 30 concurrent users in case of keep-alive (2
+persistent connections per user).
+
+Even if you disable keep-alive, if the server takes a long time to respond,
+you still have a high risk of multiple users clicking at the same time and
+having their requests unserved because of server saturation. To work around
+the problem, you increase the concurrent connection limit on the servers,
+but their performance stalls under higher loads.
+
+The solution is to limit the number of connections between the clients and the
+servers. You set haproxy to limit the number of connections on a per-server
+basis, and you let all the users you want connect to it. It will then fill all
+the servers up to the configured connection limit, and will put the remaining
+connections in a queue, waiting for a connection to be released on a server.
+
+This ensures five essential principles :
+
+ - all clients can be served whatever their number without crashing the
+ servers, the only impact it that the response time can be delayed.
+
+ - the servers can be used at full throttle without the risk of stalling,
+ and fine tuning can lead to optimal performance.
+
+ - response times can be reduced by making the servers work below the
+ congestion point, effectively leading to shorter response times even
+ under moderate loads.
+
+ - no domino effect when a server goes down or starts up. Requests will be
+ queued more or less, always respecting servers limits.
+
+ - it's easy to achieve high performance even on memory-limited hardware.
+ Indeed, heavy frameworks often consume huge amounts of RAM and not always
+ all the CPU available. In case of wrong sizing, reducing the number of
+ concurrent connections will protect against memory shortages while still
+ ensuring optimal CPU usage.
+
+
+Example :
+---------
+
+HAProxy is installed in front of an application servers farm. It will limit
+the concurrent connections to 4 per server (one thread per CPU), thus ensuring
+very fast response times.
+
+
+ 192.168.1.1 192.168.1.11-192.168.1.13 192.168.1.2
+ -------+-------------+-----+-----+------------+----
+ | | | | _|_db
+ +--+--+ +-+-+ +-+-+ +-+-+ (___)
+ | LB1 | | A | | B | | C | (___)
+ +-----+ +---+ +---+ +---+ (___)
+ haproxy 3 application servers
+ with heavy frameworks
+
+
+Config on haproxy (LB1) :
+-------------------------
+
+ listen appfarm 192.168.1.1:80
+ mode http
+ maxconn 10000
+ option httpclose
+ option forwardfor
+ balance roundrobin
+ cookie SERVERID insert indirect
+ option httpchk HEAD /index.html HTTP/1.0
+ server railsA 192.168.1.11:80 cookie A maxconn 4 check
+ server railsB 192.168.1.12:80 cookie B maxconn 4 check
+ server railsC 192.168.1.13:80 cookie C maxconn 4 check
+ contimeout 60000
+
+
+Description :
+-------------
+The proxy listens on IP 192.168.1.1, port 80, and expects HTTP requests. It
+can accept up to 10000 concurrent connections on this socket. It follows the
+roundrobin algorithm to assign servers to connections as long as servers are
+not saturated.
+
+It allows up to 4 concurrent connections per server, and will queue the
+requests above this value. The "contimeout" parameter is used to set the
+maximum time a connection may take to establish on a server, but here it
+is also used to set the maximum time a connection may stay unserved in the
+queue (1 minute here).
+
+If the servers can each process 4 requests in 10 ms on average, then at 3000
+connections, response times will be delayed by at most :
+
+ 3000 / 3 servers / 4 conns * 10 ms = 2.5 seconds
+
+Which is not that dramatic considering the huge number of users for such a low
+number of servers.
+
+When connection queues fill up and application servers are starving, response
+times will grow and users might abort by clicking on the "Stop" button. It is
+very undesirable to send aborted requests to servers, because they will eat
+CPU cycles for nothing.
+
+An option has been added to handle this specific case : "option abortonclose".
+By specifying it, you tell haproxy that if an input channel is closed on the
+client side AND the request is still waiting in the queue, then it is highly
+likely that the user has stopped, so we remove the request from the queue
+before it will get served.
+
+
+Managing unfair response times
+------------------------------
+
+Sometimes, the application server will be very slow for some requests (eg:
+login page) and faster for other requests. This may cause excessive queueing
+of expectedly fast requests when all threads on the server are blocked on a
+request to the database. Then the only solution is to increase the number of
+concurrent connections, so that the server can handle a large average number
+of slow connections with threads left to handle faster connections.
+
+But as we have seen, increasing the number of connections on the servers can
+be detrimental to performance (eg: Apache processes fighting for the accept()
+lock). To improve this situation, the "minconn" parameter has been introduced.
+When it is set, the maximum connection concurrency on the server will be bound
+by this value, and the limit will increase with the number of clients waiting
+in queue, till the clients connected to haproxy reach the proxy's maxconn, in
+which case the connections per server will reach the server's maxconn. It means
+that during low-to-medium loads, the minconn will be applied, and during surges
+the maxconn will be applied. It ensures both optimal response times under
+normal loads, and availability under very high loads.
+
+Example :
+---------
+
+ listen appfarm 192.168.1.1:80
+ mode http
+ maxconn 10000
+ option httpclose
+ option abortonclose
+ option forwardfor
+ balance roundrobin
+ # The servers will get 4 concurrent connections under low
+ # loads, and 12 when there will be 10000 clients.
+ server railsA 192.168.1.11:80 minconn 4 maxconn 12 check
+ server railsB 192.168.1.12:80 minconn 4 maxconn 12 check
+ server railsC 192.168.1.13:80 minconn 4 maxconn 12 check
+ contimeout 60000
+
+