summaryrefslogtreecommitdiffstats
path: root/include/haproxy/compiler.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/haproxy/compiler.h')
-rw-r--r--include/haproxy/compiler.h469
1 files changed, 469 insertions, 0 deletions
diff --git a/include/haproxy/compiler.h b/include/haproxy/compiler.h
new file mode 100644
index 0000000..d8e8a72
--- /dev/null
+++ b/include/haproxy/compiler.h
@@ -0,0 +1,469 @@
+/*
+ * include/haproxy/compiler.h
+ * This files contains some compiler-specific settings.
+ *
+ * Copyright (C) 2000-2020 Willy Tarreau - w@1wt.eu
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation, version 2.1
+ * exclusively.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#ifndef _HAPROXY_COMPILER_H
+#define _HAPROXY_COMPILER_H
+
+/* leave a chance to the compiler to bring its own definitions first; this
+ * will cause cdefs.h to be included on systems which have it.
+ */
+#include <inttypes.h>
+
+#ifdef DEBUG_USE_ABORT
+#include <stdlib.h>
+#endif
+
+/*
+ * Gcc before 3.0 needs [0] to declare a variable-size array
+ */
+#ifndef VAR_ARRAY
+#if defined(__GNUC__) && (__GNUC__ < 3)
+#define VAR_ARRAY 0
+#else
+#define VAR_ARRAY
+#endif
+#endif
+
+/* This is used to test if a macro is defined and equals 1. The principle is
+ * that the macro is passed as a value and its value concatenated to the word
+ * "comma_for_one" to form a new macro name. The macro "comma_for_one1" equals
+ * one comma, which, once used in an argument, will shift all of them by one,
+ * so that we can use this to concatenate both a 1 and a 0 and always pick the
+ * second one.
+ */
+#define comma_for_one1 ,
+#define _____equals_1(x, y, ...) (y)
+#define ____equals_1(x, ...) _____equals_1(x, 0)
+#define ___equals_1(x) ____equals_1(comma_for_one ## x 1)
+#define __equals_1(x) ___equals_1(x)
+
+/* gcc 5 and clang 3 brought __has_attribute(), which is not well documented in
+ * the case of gcc, but is convenient since handled at the preprocessor level.
+ * In both cases it's possible to test for __has_attribute() using ifdef. When
+ * not defined we remap this to the __has_attribute_<name> macro so that we'll
+ * later be able to implement on a per-compiler basis those which are missing,
+ * by defining __has_attribute_<name> to 1.
+ */
+#ifndef __has_attribute
+#define __has_attribute(x) __equals_1(__has_attribute_ ## x)
+#endif
+
+/* The fallthrough attribute arrived with gcc 7, the same version that started
+ * to emit the fallthrough warnings and to parse the comments. Comments do not
+ * manage to stop the warning when preprocessing is split from compiling (e.g.
+ * when building under distcc). Better encourage the use of a __fallthrough
+ * statement instead. There are still limitations in that clang doesn't accept
+ * it after a label; this is the reason why we're always preceding it with an
+ * empty do-while.
+ */
+#if __has_attribute(fallthrough)
+# define __fallthrough do { } while (0); __attribute__((fallthrough))
+#else
+# define __fallthrough do { } while (0)
+#endif
+
+#if !defined(__GNUC__)
+/* Some versions of glibc irresponsibly redefine __attribute__() to empty for
+ * non-gcc compilers, and as such, silently break all constructors with other
+ * other compilers. Let's make sure such incompatibilities are detected if any,
+ * or that the attribute is properly enforced.
+ */
+#undef __attribute__
+#define __attribute__(x) __attribute__(x)
+#endif
+
+/* attribute(warning) was added in gcc 4.3 */
+#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
+# define __has_attribute_warning 1
+#endif
+
+/* __attribute__warning(x) does __attribute__((warning(x))) if supported by the
+ * compiler, otherwise __attribute__((deprecated)). Clang supports it since v14
+ * but is a bit capricious in that it refuses a redefinition with a warning
+ * attribute that wasn't there the first time. However it's OK with deprecated(x)
+ * so better use this one. See: https://github.com/llvm/llvm-project/issues/56519
+ */
+#if defined(__clang__)
+# define __attribute__warning(x) __attribute__((deprecated(x)))
+#elif __has_attribute(warning)
+# define __attribute__warning(x) __attribute__((warning(x)))
+#else
+# define __attribute__warning(x) __attribute__((deprecated))
+#endif
+
+/* By default, gcc does not inline large chunks of code, but we want it to
+ * respect our choices.
+ */
+#if !defined(forceinline)
+#if !defined(__GNUC__) || (__GNUC__ < 3)
+#define forceinline inline
+#else
+#define forceinline inline __attribute__((always_inline))
+#endif
+#endif
+
+#ifndef __maybe_unused
+/* silence the "unused" warnings without having to place painful #ifdefs.
+ * For use with variables or functions.
+ */
+#define __maybe_unused __attribute__((unused))
+#endif
+
+/* TCC doesn't support weak attribute, sections etc and needs the more portable
+ * obsolete linker model instead.
+ */
+#if defined(__TINYC__) && !defined(USE_OBSOLETE_LINKER)
+#define USE_OBSOLETE_LINKER 1
+#endif
+
+/* These macros are used to declare a section name for a variable.
+ * WARNING: keep section names short, as MacOS limits them to 16 characters.
+ * The _START and _STOP attributes have to be placed after the start and stop
+ * weak symbol declarations, and are only used by MacOS.
+ */
+#if !defined(USE_OBSOLETE_LINKER)
+
+#ifdef __APPLE__
+#define HA_SECTION(s) __attribute__((__section__("__DATA, " s)))
+#define HA_SECTION_START(s) __asm("section$start$__DATA$" s)
+#define HA_SECTION_STOP(s) __asm("section$end$__DATA$" s)
+#else
+#define HA_SECTION(s) __attribute__((__section__(s)))
+#define HA_SECTION_START(s)
+#define HA_SECTION_STOP(s)
+#endif
+
+#else // obsolete linker below, let's just not force any section
+
+#define HA_SECTION(s)
+#define HA_SECTION_START(s)
+#define HA_SECTION_STOP(s)
+
+#endif // USE_OBSOLETE_LINKER
+
+/* Declare a symbol as weak if possible, otherwise global. Since we don't want to
+ * error on multiple definitions, the symbol is declared weak. On MacOS ".weak"
+ * does not exist and we must continue to use ".globl" instead. Note that
+ * ".global" is to be avoided on other platforms as llvm complains about it
+ * being used for symbols declared as weak elsewhere in the code. It may or may
+ * not work depending on linkers and assemblers, this is only for advanced use
+ * anyway (and most likely it will only work with !USE_OBSOLETE_LINKER).
+ */
+#if defined(__APPLE__)
+# define __HA_WEAK(sym) __asm__(".globl " #sym)
+#else
+# define __HA_WEAK(sym) __asm__(".weak " #sym)
+#endif
+#define HA_WEAK(sym) __HA_WEAK(sym)
+
+/* declare a symbol as global */
+#define __HA_GLOBL(sym) __asm__(".globl " #sym)
+#define HA_GLOBL(sym) __HA_GLOBL(sym)
+
+/* use this attribute on a variable to move it to the read_mostly section */
+#if !defined(__read_mostly)
+#define __read_mostly HA_SECTION("read_mostly")
+#endif
+
+/* This allows gcc to know that some locations are never reached, for example
+ * after a longjmp() in the Lua code, hence that some errors caught by such
+ * methods cannot propagate further. This is important with gcc versions 6 and
+ * above which can more aggressively detect null dereferences. The builtin
+ * below was introduced in gcc 4.5, and before it we didn't care.
+ */
+#ifdef DEBUG_USE_ABORT
+#define my_unreachable() abort()
+#else
+#if defined(__GNUC__) && (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
+#define my_unreachable() __builtin_unreachable()
+#else
+#define my_unreachable() do { } while (1)
+#endif
+#endif
+
+/* This prevents the compiler from folding multiple identical code paths into a
+ * single one, by adding a dependency on the line number in the path. This may
+ * typically happen on function tails, or purposely placed abort() before an
+ * unreachable() statement, due to the compiler performing an Identical Code
+ * Folding optimization. This macro is aimed at helping with code tracing in
+ * crash dumps and may also be used for specific optimizations. One known case
+ * is gcc-4.7 and 4.8 which aggressively fold multiple ABORT_NOW() exit points
+ * and which causes wrong line numbers to be reported by the debugger (note
+ * that even newer compilers do this when using abort()). Please keep in mind
+ * that nothing prevents the compiler from folding the code after that point,
+ * but at least it will not fold the code before.
+ */
+#define DO_NOT_FOLD() do { asm volatile("" :: "i"(__LINE__)); } while (0)
+
+/* This macro may be used to block constant propagation that lets the compiler
+ * detect a possible NULL dereference on a variable resulting from an explicit
+ * assignment in an impossible check. Sometimes a function is called which does
+ * safety checks and returns NULL if safe conditions are not met. The place
+ * where it's called cannot hit this condition and dereferencing the pointer
+ * without first checking it will make the compiler emit a warning about a
+ * "potential null pointer dereference" which is hard to work around. This
+ * macro "washes" the pointer and prevents the compiler from emitting tests
+ * branching to undefined instructions. It may only be used when the developer
+ * is absolutely certain that the conditions are guaranteed and that the
+ * pointer passed in argument cannot be NULL by design.
+ */
+#define ALREADY_CHECKED(p) do { asm("" : "=rm"(p) : "0"(p)); } while (0)
+
+/* same as above but to be used to pass the input value to the output but
+ * without letting the compiler know about its initial properties.
+ */
+#define DISGUISE(v) ({ typeof(v) __v = (v); ALREADY_CHECKED(__v); __v; })
+
+/* Implements a static event counter where it's used. This is typically made to
+ * report some warnings only once, either during boot or at runtime. It only
+ * returns true on the very first call, and zero later. It's thread-safe and
+ * uses a single byte of memory per call place. It relies on the atomic xchg
+ * defined in atomic.h which is also part of the common API.
+ */
+#define ONLY_ONCE() ({ static char __cnt; !_HA_ATOMIC_XCHG(&__cnt, 1); })
+
+/* makes a string from a constant (number or macro), avoids the need for
+ * printf("%d") format just to dump a setting limit or value in an error
+ * message. We use two levels so that macros are resolved.
+ */
+#define _TOSTR(x) #x
+#define TOSTR(x) _TOSTR(x)
+
+/*
+ * Gcc >= 3 provides the ability for the program to give hints to the
+ * compiler about what branch of an if is most likely to be taken. This
+ * helps the compiler produce the most compact critical paths, which is
+ * generally better for the cache and to reduce the number of jumps.
+ */
+#if !defined(likely)
+#if !defined(__GNUC__) || (__GNUC__ < 3)
+#define __builtin_expect(x,y) (x)
+#define likely(x) (x)
+#define unlikely(x) (x)
+#else
+#define likely(x) (__builtin_expect((x) != 0, 1))
+#define unlikely(x) (__builtin_expect((x) != 0, 0))
+#endif
+#endif
+
+#ifndef __GNUC_PREREQ__
+#if defined(__GNUC__) && !defined(__INTEL_COMPILER)
+#define __GNUC_PREREQ__(ma, mi) \
+ (__GNUC__ > (ma) || __GNUC__ == (ma) && __GNUC_MINOR__ >= (mi))
+#else
+#define __GNUC_PREREQ__(ma, mi) 0
+#endif
+#endif
+
+#ifndef offsetof
+#if __GNUC_PREREQ__(4, 1)
+#define offsetof(type, field) __builtin_offsetof(type, field)
+#else
+#define offsetof(type, field) \
+ ((size_t)(uintptr_t)((const volatile void *)&((type *)0)->field))
+#endif
+#endif
+
+/* Linux-like "container_of". It returns a pointer to the structure of type
+ * <type> which has its member <name> stored at address <ptr>.
+ */
+#ifndef container_of
+#define container_of(ptr, type, name) ((type *)(((void *)(ptr)) - ((long)&((type *)0)->name)))
+#endif
+
+/* returns a pointer to the structure of type <type> which has its member <name>
+ * stored at address <ptr>, unless <ptr> is 0, in which case 0 is returned.
+ */
+#ifndef container_of_safe
+#define container_of_safe(ptr, type, name) \
+ ({ void *__p = (ptr); \
+ __p ? (type *)(__p - ((long)&((type *)0)->name)) : (type *)0; \
+ })
+#endif
+
+
+/* From gcc 6 and above, enum values may have attributes */
+#if __GNUC_PREREQ__(6, 0)
+#define ENUM_ATTRIBUTE(x) __attribute__(x)
+#else
+#define ENUM_ATTRIBUTE(x)
+#endif
+
+/* Some architectures have a double-word CAS, sometimes even dual-8 bytes.
+ * Some architectures support unaligned accesses, others are fine with them
+ * but only for non-atomic operations. Also mention those supporting unaligned
+ * accesses and being little endian, and those where unaligned accesses are
+ * known to be fast (almost as fast as aligned ones).
+ */
+#if defined(__x86_64__)
+#define HA_UNALIGNED
+#define HA_UNALIGNED_LE
+#define HA_UNALIGNED_LE64
+#define HA_UNALIGNED_FAST
+#define HA_UNALIGNED_ATOMIC
+#define HA_HAVE_CAS_DW
+#define HA_CAS_IS_8B
+#elif defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__)
+#define HA_UNALIGNED
+#define HA_UNALIGNED_LE
+#define HA_UNALIGNED_ATOMIC
+#elif defined (__aarch64__) || defined(__ARM_ARCH_8A)
+#define HA_UNALIGNED
+#define HA_UNALIGNED_LE
+#define HA_UNALIGNED_LE64
+#define HA_UNALIGNED_FAST
+#define HA_HAVE_CAS_DW
+#define HA_CAS_IS_8B
+#elif defined(__arm__) && (defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__))
+#define HA_UNALIGNED
+#define HA_UNALIGNED_LE
+#define HA_UNALIGNED_FAST
+#define HA_HAVE_CAS_DW
+#endif
+
+/*********************** IMPORTANT NOTE ABOUT ALIGNMENT **********************\
+ * Alignment works fine for variables. It also works on types and struct *
+ * members by propagating the alignment to the container struct itself, *
+ * but this requires that variables of the affected type are properly *
+ * aligned themselves. While regular variables will always abide, those *
+ * allocated using malloc() will not! Most platforms provide posix_memalign()*
+ * for this, but it's not available everywhere. As such one ought not to use *
+ * these alignment declarations inside structures that are dynamically *
+ * allocated. If the purpose is only to avoid false sharing of cache lines *
+ * for multi_threading, see THREAD_PAD() below. *
+\*****************************************************************************/
+
+/* sets alignment for current field or variable */
+#ifndef ALIGNED
+#define ALIGNED(x) __attribute__((aligned(x)))
+#endif
+
+/* sets alignment only on architectures preventing unaligned atomic accesses */
+#ifndef MAYBE_ALIGNED
+#ifndef HA_UNALIGNED
+#define MAYBE_ALIGNED(x) ALIGNED(x)
+#else
+#define MAYBE_ALIGNED(x)
+#endif
+#endif
+
+/* sets alignment only on architectures preventing unaligned atomic accesses */
+#ifndef ATOMIC_ALIGNED
+#ifndef HA_UNALIGNED_ATOMIC
+#define ATOMIC_ALIGNED(x) ALIGNED(x)
+#else
+#define ATOMIC_ALIGNED(x)
+#endif
+#endif
+
+/* sets alignment for current field or variable only when threads are enabled.
+ * Typically used to respect cache line alignment to avoid false sharing.
+ */
+#ifndef THREAD_ALIGNED
+#ifdef USE_THREAD
+#define THREAD_ALIGNED(x) __attribute__((aligned(x)))
+#else
+#define THREAD_ALIGNED(x)
+#endif
+#endif
+
+/* add a mandatory alignment for next fields in a structure */
+#ifndef ALWAYS_ALIGN
+#define ALWAYS_ALIGN(x) union { } ALIGNED(x)
+#endif
+
+/* add an optional alignment for next fields in a structure, only for archs
+ * which do not support unaligned accesses.
+ */
+#ifndef MAYBE_ALIGN
+#ifndef HA_UNALIGNED
+#define MAYBE_ALIGN(x) union { } ALIGNED(x)
+#else
+#define MAYBE_ALIGN(x)
+#endif
+#endif
+
+/* add an optional alignment for next fields in a structure, only for archs
+ * which do not support unaligned accesses for atomic operations.
+ */
+#ifndef ATOMIC_ALIGN
+#ifndef HA_UNALIGNED_ATOMIC
+#define ATOMIC_ALIGN(x) union { } ALIGNED(x)
+#else
+#define ATOMIC_ALIGN(x)
+#endif
+#endif
+
+/* add an optional alignment for next fields in a structure, only when threads
+ * are enabled. Typically used to respect cache line alignment to avoid false
+ * sharing.
+ */
+#ifndef THREAD_ALIGN
+#ifdef USE_THREAD
+#define THREAD_ALIGN(x) union { } ALIGNED(x)
+#else
+#define THREAD_ALIGN(x)
+#endif
+#endif
+
+/* add optional padding of the specified size between fields in a structure,
+ * only when threads are enabled. This is used to avoid false sharing of cache
+ * lines for dynamically allocated structures which cannot guarantee alignment.
+ */
+#ifndef THREAD_PAD
+# ifdef USE_THREAD
+# define __THREAD_PAD(x,l) char __pad_##l[x]
+# define _THREAD_PAD(x,l) __THREAD_PAD(x, l)
+# define THREAD_PAD(x) _THREAD_PAD(x, __LINE__)
+# else
+# define THREAD_PAD(x)
+# endif
+#endif
+
+/* The THREAD_LOCAL type attribute defines thread-local storage and is defined
+ * to __thread when threads are enabled or empty when disabled.
+ */
+#ifdef USE_THREAD
+#define THREAD_LOCAL __thread
+#else
+#define THREAD_LOCAL
+#endif
+
+/* The __decl_thread() statement is shows the argument when threads are enabled
+ * or hides it when disabled. The purpose is to condition the presence of some
+ * variables or struct members to the fact that threads are enabled, without
+ * having to enclose them inside a #ifdef USE_THREAD/#endif clause.
+ */
+#ifdef USE_THREAD
+#define __decl_thread(decl) decl
+#else
+#define __decl_thread(decl)
+#endif
+
+/* clang has a __has_feature() macro which reports true/false on a number of
+ * internally supported features. Let's make sure this macro is always defined
+ * and returns zero when not supported.
+ */
+#ifndef __has_feature
+#define __has_feature(x) 0
+#endif
+
+#endif /* _HAPROXY_COMPILER_H */