summaryrefslogtreecommitdiffstats
path: root/include/import/ebimtree.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/import/ebimtree.h')
-rw-r--r--include/import/ebimtree.h324
1 files changed, 324 insertions, 0 deletions
diff --git a/include/import/ebimtree.h b/include/import/ebimtree.h
new file mode 100644
index 0000000..0afbdd1
--- /dev/null
+++ b/include/import/ebimtree.h
@@ -0,0 +1,324 @@
+/*
+ * Elastic Binary Trees - macros for Indirect Multi-Byte data nodes.
+ * Version 6.0.6
+ * (C) 2002-2011 - Willy Tarreau <w@1wt.eu>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation, version 2.1
+ * exclusively.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#ifndef _EBIMTREE_H
+#define _EBIMTREE_H
+
+#include <string.h>
+#include "ebtree.h"
+#include "ebpttree.h"
+
+/* These functions and macros rely on Pointer nodes and use the <key> entry as
+ * a pointer to an indirect key. Most operations are performed using ebpt_*.
+ */
+
+/* The following functions are not inlined by default. They are declared
+ * in ebimtree.c, which simply relies on their inline version.
+ */
+struct ebpt_node *ebim_lookup(struct eb_root *root, const void *x, unsigned int len);
+struct ebpt_node *ebim_insert(struct eb_root *root, struct ebpt_node *new, unsigned int len);
+
+/* Find the first occurrence of a key of a least <len> bytes matching <x> in the
+ * tree <root>. The caller is responsible for ensuring that <len> will not exceed
+ * the common parts between the tree's keys and <x>. In case of multiple matches,
+ * the leftmost node is returned. This means that this function can be used to
+ * lookup string keys by prefix if all keys in the tree are zero-terminated. If
+ * no match is found, NULL is returned. Returns first node if <len> is zero.
+ */
+static forceinline struct ebpt_node *
+__ebim_lookup(struct eb_root *root, const void *x, unsigned int len)
+{
+ struct ebpt_node *node;
+ eb_troot_t *troot;
+ int pos, side;
+ int node_bit;
+
+ troot = root->b[EB_LEFT];
+ if (unlikely(troot == NULL))
+ goto ret_null;
+
+ if (unlikely(len == 0))
+ goto walk_down;
+
+ pos = 0;
+ while (1) {
+ if (eb_gettag(troot) == EB_LEAF) {
+ node = container_of(eb_untag(troot, EB_LEAF),
+ struct ebpt_node, node.branches);
+ if (eb_memcmp(node->key + pos, x, len) != 0)
+ goto ret_null;
+ else
+ goto ret_node;
+ }
+ node = container_of(eb_untag(troot, EB_NODE),
+ struct ebpt_node, node.branches);
+
+ node_bit = node->node.bit;
+ if (node_bit < 0) {
+ /* We have a dup tree now. Either it's for the same
+ * value, and we walk down left, or it's a different
+ * one and we don't have our key.
+ */
+ if (eb_memcmp(node->key + pos, x, len) != 0)
+ goto ret_null;
+ else
+ goto walk_left;
+ }
+
+ /* OK, normal data node, let's walk down. We check if all full
+ * bytes are equal, and we start from the last one we did not
+ * completely check. We stop as soon as we reach the last byte,
+ * because we must decide to go left/right or abort.
+ */
+ node_bit = ~node_bit + (pos << 3) + 8; // = (pos<<3) + (7 - node_bit)
+ if (node_bit < 0) {
+ /* This surprising construction gives better performance
+ * because gcc does not try to reorder the loop. Tested to
+ * be fine with 2.95 to 4.2.
+ */
+ while (1) {
+ if (*(unsigned char*)(node->key + pos++) ^ *(unsigned char*)(x++))
+ goto ret_null; /* more than one full byte is different */
+ if (--len == 0)
+ goto walk_left; /* return first node if all bytes matched */
+ node_bit += 8;
+ if (node_bit >= 0)
+ break;
+ }
+ }
+
+ /* here we know that only the last byte differs, so node_bit < 8.
+ * We have 2 possibilities :
+ * - more than the last bit differs => return NULL
+ * - walk down on side = (x[pos] >> node_bit) & 1
+ */
+ side = *(unsigned char *)x >> node_bit;
+ if (((*(unsigned char*)(node->key + pos) >> node_bit) ^ side) > 1)
+ goto ret_null;
+ side &= 1;
+ troot = node->node.branches.b[side];
+ }
+ walk_left:
+ troot = node->node.branches.b[EB_LEFT];
+ walk_down:
+ while (eb_gettag(troot) != EB_LEAF)
+ troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
+ node = container_of(eb_untag(troot, EB_LEAF),
+ struct ebpt_node, node.branches);
+ ret_node:
+ return node;
+ ret_null:
+ return NULL;
+}
+
+/* Insert ebpt_node <new> into subtree starting at node root <root>.
+ * Only new->key needs be set with the key. The ebpt_node is returned.
+ * If root->b[EB_RGHT]==1, the tree may only contain unique keys. The
+ * len is specified in bytes.
+ */
+static forceinline struct ebpt_node *
+__ebim_insert(struct eb_root *root, struct ebpt_node *new, unsigned int len)
+{
+ struct ebpt_node *old;
+ unsigned int side;
+ eb_troot_t *troot;
+ eb_troot_t *root_right;
+ int diff;
+ int bit;
+ int old_node_bit;
+
+ side = EB_LEFT;
+ troot = root->b[EB_LEFT];
+ root_right = root->b[EB_RGHT];
+ if (unlikely(troot == NULL)) {
+ /* Tree is empty, insert the leaf part below the left branch */
+ root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
+ new->node.leaf_p = eb_dotag(root, EB_LEFT);
+ new->node.node_p = NULL; /* node part unused */
+ return new;
+ }
+
+ len <<= 3;
+
+ /* The tree descent is fairly easy :
+ * - first, check if we have reached a leaf node
+ * - second, check if we have gone too far
+ * - third, reiterate
+ * Everywhere, we use <new> for the node node we are inserting, <root>
+ * for the node we attach it to, and <old> for the node we are
+ * displacing below <new>. <troot> will always point to the future node
+ * (tagged with its type). <side> carries the side the node <new> is
+ * attached to below its parent, which is also where previous node
+ * was attached.
+ */
+
+ bit = 0;
+ while (1) {
+ if (unlikely(eb_gettag(troot) == EB_LEAF)) {
+ eb_troot_t *new_left, *new_rght;
+ eb_troot_t *new_leaf, *old_leaf;
+
+ old = container_of(eb_untag(troot, EB_LEAF),
+ struct ebpt_node, node.branches);
+
+ new_left = eb_dotag(&new->node.branches, EB_LEFT);
+ new_rght = eb_dotag(&new->node.branches, EB_RGHT);
+ new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
+ old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
+
+ new->node.node_p = old->node.leaf_p;
+
+ /* Right here, we have 3 possibilities :
+ * - the tree does not contain the key, and we have
+ * new->key < old->key. We insert new above old, on
+ * the left ;
+ *
+ * - the tree does not contain the key, and we have
+ * new->key > old->key. We insert new above old, on
+ * the right ;
+ *
+ * - the tree does contain the key, which implies it
+ * is alone. We add the new key next to it as a
+ * first duplicate.
+ *
+ * The last two cases can easily be partially merged.
+ */
+ bit = equal_bits(new->key, old->key, bit, len);
+
+ /* Note: we can compare more bits than the current node's because as
+ * long as they are identical, we know we descend along the correct
+ * side. However we don't want to start to compare past the end.
+ */
+ diff = 0;
+ if (((unsigned)bit >> 3) < len)
+ diff = cmp_bits(new->key, old->key, bit);
+
+ if (diff < 0) {
+ new->node.leaf_p = new_left;
+ old->node.leaf_p = new_rght;
+ new->node.branches.b[EB_LEFT] = new_leaf;
+ new->node.branches.b[EB_RGHT] = old_leaf;
+ } else {
+ /* we may refuse to duplicate this key if the tree is
+ * tagged as containing only unique keys.
+ */
+ if (diff == 0 && eb_gettag(root_right))
+ return old;
+
+ /* new->key >= old->key, new goes the right */
+ old->node.leaf_p = new_left;
+ new->node.leaf_p = new_rght;
+ new->node.branches.b[EB_LEFT] = old_leaf;
+ new->node.branches.b[EB_RGHT] = new_leaf;
+
+ if (diff == 0) {
+ new->node.bit = -1;
+ root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
+ return new;
+ }
+ }
+ break;
+ }
+
+ /* OK we're walking down this link */
+ old = container_of(eb_untag(troot, EB_NODE),
+ struct ebpt_node, node.branches);
+ old_node_bit = old->node.bit;
+
+ /* Stop going down when we don't have common bits anymore. We
+ * also stop in front of a duplicates tree because it means we
+ * have to insert above. Note: we can compare more bits than
+ * the current node's because as long as they are identical, we
+ * know we descend along the correct side.
+ */
+ if (old_node_bit < 0) {
+ /* we're above a duplicate tree, we must compare till the end */
+ bit = equal_bits(new->key, old->key, bit, len);
+ goto dup_tree;
+ }
+ else if (bit < old_node_bit) {
+ bit = equal_bits(new->key, old->key, bit, old_node_bit);
+ }
+
+ if (bit < old_node_bit) { /* we don't have all bits in common */
+ /* The tree did not contain the key, so we insert <new> before the node
+ * <old>, and set ->bit to designate the lowest bit position in <new>
+ * which applies to ->branches.b[].
+ */
+ eb_troot_t *new_left, *new_rght;
+ eb_troot_t *new_leaf, *old_node;
+
+ dup_tree:
+ new_left = eb_dotag(&new->node.branches, EB_LEFT);
+ new_rght = eb_dotag(&new->node.branches, EB_RGHT);
+ new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
+ old_node = eb_dotag(&old->node.branches, EB_NODE);
+
+ new->node.node_p = old->node.node_p;
+
+ /* Note: we can compare more bits than the current node's because as
+ * long as they are identical, we know we descend along the correct
+ * side. However we don't want to start to compare past the end.
+ */
+ diff = 0;
+ if (((unsigned)bit >> 3) < len)
+ diff = cmp_bits(new->key, old->key, bit);
+
+ if (diff < 0) {
+ new->node.leaf_p = new_left;
+ old->node.node_p = new_rght;
+ new->node.branches.b[EB_LEFT] = new_leaf;
+ new->node.branches.b[EB_RGHT] = old_node;
+ }
+ else if (diff > 0) {
+ old->node.node_p = new_left;
+ new->node.leaf_p = new_rght;
+ new->node.branches.b[EB_LEFT] = old_node;
+ new->node.branches.b[EB_RGHT] = new_leaf;
+ }
+ else {
+ struct eb_node *ret;
+ ret = eb_insert_dup(&old->node, &new->node);
+ return container_of(ret, struct ebpt_node, node);
+ }
+ break;
+ }
+
+ /* walk down */
+ root = &old->node.branches;
+ side = (((unsigned char *)new->key)[old_node_bit >> 3] >> (~old_node_bit & 7)) & 1;
+ troot = root->b[side];
+ }
+
+ /* Ok, now we are inserting <new> between <root> and <old>. <old>'s
+ * parent is already set to <new>, and the <root>'s branch is still in
+ * <side>. Update the root's leaf till we have it. Note that we can also
+ * find the side by checking the side of new->node.node_p.
+ */
+
+ /* We need the common higher bits between new->key and old->key.
+ * This number of bits is already in <bit>.
+ */
+ new->node.bit = bit;
+ root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
+ return new;
+}
+
+#endif /* _EBIMTREE_H */