diff options
Diffstat (limited to 'src/connection.c')
-rw-r--r-- | src/connection.c | 2748 |
1 files changed, 2748 insertions, 0 deletions
diff --git a/src/connection.c b/src/connection.c new file mode 100644 index 0000000..7930cc4 --- /dev/null +++ b/src/connection.c @@ -0,0 +1,2748 @@ +/* + * Connection management functions + * + * Copyright 2000-2012 Willy Tarreau <w@1wt.eu> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + * + */ + +#include <errno.h> + +#include <import/ebmbtree.h> + +#include <haproxy/api.h> +#include <haproxy/arg.h> +#include <haproxy/cfgparse.h> +#include <haproxy/connection.h> +#include <haproxy/fd.h> +#include <haproxy/frontend.h> +#include <haproxy/hash.h> +#include <haproxy/list.h> +#include <haproxy/log.h> +#include <haproxy/namespace.h> +#include <haproxy/net_helper.h> +#include <haproxy/proto_rhttp.h> +#include <haproxy/proto_tcp.h> +#include <haproxy/sample.h> +#include <haproxy/sc_strm.h> +#include <haproxy/server.h> +#include <haproxy/session.h> +#include <haproxy/ssl_sock.h> +#include <haproxy/stconn.h> +#include <haproxy/tools.h> +#include <haproxy/xxhash.h> + + +DECLARE_POOL(pool_head_connection, "connection", sizeof(struct connection)); +DECLARE_POOL(pool_head_conn_hash_node, "conn_hash_node", sizeof(struct conn_hash_node)); +DECLARE_POOL(pool_head_sockaddr, "sockaddr", sizeof(struct sockaddr_storage)); +DECLARE_POOL(pool_head_pp_tlv_128, "pp_tlv_128", sizeof(struct conn_tlv_list) + HA_PP2_TLV_VALUE_128); +DECLARE_POOL(pool_head_pp_tlv_256, "pp_tlv_256", sizeof(struct conn_tlv_list) + HA_PP2_TLV_VALUE_256); + +struct idle_conns idle_conns[MAX_THREADS] = { }; +struct xprt_ops *registered_xprt[XPRT_ENTRIES] = { NULL, }; + +/* List head of all known muxes for PROTO */ +struct mux_proto_list mux_proto_list = { + .list = LIST_HEAD_INIT(mux_proto_list.list) +}; + +struct mux_stopping_data mux_stopping_data[MAX_THREADS]; + +/* disables sending of proxy-protocol-v2's LOCAL command */ +static int pp2_never_send_local; + +/* find the value of a received TLV for a given type */ +struct conn_tlv_list *conn_get_tlv(struct connection *conn, int type) +{ + struct conn_tlv_list *tlv = NULL; + + if (!conn) + return NULL; + + list_for_each_entry(tlv, &conn->tlv_list, list) { + if (tlv->type == type) + return tlv; + } + + return NULL; +} + +/* Remove <conn> idle connection from its attached tree (idle, safe or avail). + * If also present in the secondary server idle list, conn is removed from it. + * + * Must be called with idle_conns_lock held. + */ +void conn_delete_from_tree(struct connection *conn) +{ + LIST_DEL_INIT(&conn->idle_list); + eb64_delete(&conn->hash_node->node); +} + +int conn_create_mux(struct connection *conn) +{ + if (conn_is_back(conn)) { + struct server *srv; + struct stconn *sc = conn->ctx; + struct session *sess = conn->owner; + + if (conn->flags & CO_FL_ERROR) + goto fail; + + if (sess && obj_type(sess->origin) == OBJ_TYPE_CHECK) { + if (conn_install_mux_chk(conn, conn->ctx, sess) < 0) + goto fail; + } + else if (conn_install_mux_be(conn, conn->ctx, sess, NULL) < 0) + goto fail; + srv = objt_server(conn->target); + + /* If we're doing http-reuse always, and the connection is not + * private with available streams (an http2 connection), add it + * to the available list, so that others can use it right + * away. If the connection is private, add it in the session + * server list. + */ + if (srv && ((srv->proxy->options & PR_O_REUSE_MASK) == PR_O_REUSE_ALWS) && + !(conn->flags & CO_FL_PRIVATE) && conn->mux->avail_streams(conn) > 0) { + srv_add_to_avail_list(srv, conn); + } + else if (conn->flags & CO_FL_PRIVATE) { + /* If it fail now, the same will be done in mux->detach() callback */ + session_add_conn(sess, conn, conn->target); + } + return 0; +fail: + /* let the upper layer know the connection failed */ + if (sc) { + sc->app_ops->wake(sc); + } + else if (conn_reverse_in_preconnect(conn)) { + struct listener *l = conn_active_reverse_listener(conn); + + /* If mux init failed, consider connection on error. + * This is necessary to ensure connection is freed by + * proto-rhttp receiver task. + */ + if (!conn->mux) + conn->flags |= CO_FL_ERROR; + + /* If connection is interrupted without CO_FL_ERROR, receiver task won't free it. */ + BUG_ON(!(conn->flags & CO_FL_ERROR)); + + task_wakeup(l->rx.rhttp.task, TASK_WOKEN_ANY); + } + return -1; + } else + return conn_complete_session(conn); + +} + +/* This is used at the end of the socket IOCB to possibly create the mux if it + * was not done yet, or wake it up if flags changed compared to old_flags or if + * need_wake insists on this. It returns <0 if the connection was destroyed and + * must not be used, >=0 otherwise. + */ +int conn_notify_mux(struct connection *conn, int old_flags, int forced_wake) +{ + int ret = 0; + + /* If we don't yet have a mux, that means we were waiting for + * information to create one, typically from the ALPN. If we're + * done with the handshake, attempt to create one. + */ + if (unlikely(!conn->mux) && !(conn->flags & CO_FL_WAIT_XPRT)) { + ret = conn_create_mux(conn); + if (ret < 0) + goto done; + } + + /* The wake callback is normally used to notify the data layer about + * data layer activity (successful send/recv), connection establishment, + * shutdown and fatal errors. We need to consider the following + * situations to wake up the data layer : + * - change among the CO_FL_NOTIFY_DONE flags : + * SOCK_{RD,WR}_SH, ERROR, + * - absence of any of {L4,L6}_CONN and CONNECTED, indicating the + * end of handshake and transition to CONNECTED + * - raise of CONNECTED with HANDSHAKE down + * - end of HANDSHAKE with CONNECTED set + * - regular data layer activity + * + * One tricky case is the wake up on read0 or error on an idle + * backend connection, that can happen on a connection that is still + * polled while at the same moment another thread is about to perform a + * takeover. The solution against this is to remove the connection from + * the idle list if it was in it, and possibly reinsert it at the end + * if the connection remains valid. The cost is non-null (locked tree + * removal) but remains low given that this is extremely rarely called. + * In any case it's guaranteed by the FD's thread_mask that we're + * called from the same thread the connection is queued in. + * + * Note that the wake callback is allowed to release the connection and + * the fd (and return < 0 in this case). + */ + if ((forced_wake || + ((conn->flags ^ old_flags) & CO_FL_NOTIFY_DONE) || + ((old_flags & CO_FL_WAIT_XPRT) && !(conn->flags & CO_FL_WAIT_XPRT))) && + conn->mux && conn->mux->wake) { + uint conn_in_list = conn->flags & CO_FL_LIST_MASK; + struct server *srv = objt_server(conn->target); + + if (conn_in_list) { + HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock); + conn_delete_from_tree(conn); + HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock); + } + + ret = conn->mux->wake(conn); + if (ret < 0) + goto done; + + if (conn_in_list) { + HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock); + _srv_add_idle(srv, conn, conn_in_list == CO_FL_SAFE_LIST); + HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock); + } + } + done: + return ret; +} + +/* Change the mux for the connection. + * The caller should make sure he's not subscribed to the underlying XPRT. + */ +int conn_upgrade_mux_fe(struct connection *conn, void *ctx, struct buffer *buf, + struct ist mux_proto, int mode) +{ + struct bind_conf *bind_conf = __objt_listener(conn->target)->bind_conf; + const struct mux_ops *old_mux, *new_mux; + void *old_mux_ctx; + const char *alpn_str = NULL; + int alpn_len = 0; + + if (!mux_proto.len) { + conn_get_alpn(conn, &alpn_str, &alpn_len); + mux_proto = ist2(alpn_str, alpn_len); + } + new_mux = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_FE, mode); + old_mux = conn->mux; + + /* No mux found */ + if (!new_mux) + return -1; + + /* Same mux, nothing to do */ + if (old_mux == new_mux) + return 0; + + old_mux_ctx = conn->ctx; + conn->mux = new_mux; + conn->ctx = ctx; + if (new_mux->init(conn, bind_conf->frontend, conn->owner, buf) == -1) { + /* The mux upgrade failed, so restore the old mux */ + conn->ctx = old_mux_ctx; + conn->mux = old_mux; + return -1; + } + + /* The mux was upgraded, destroy the old one */ + *buf = BUF_NULL; + old_mux->destroy(old_mux_ctx); + return 0; +} + +/* installs the best mux for incoming connection <conn> using the upper context + * <ctx>. If the mux protocol is forced, we use it to find the best + * mux. Otherwise we use the ALPN name, if any. Returns < 0 on error. + */ +int conn_install_mux_fe(struct connection *conn, void *ctx) +{ + struct bind_conf *bind_conf = __objt_listener(conn->target)->bind_conf; + const struct mux_ops *mux_ops; + + if (bind_conf->mux_proto) + mux_ops = bind_conf->mux_proto->mux; + else { + struct ist mux_proto; + const char *alpn_str = NULL; + int alpn_len = 0; + int mode; + + if (bind_conf->frontend->mode == PR_MODE_HTTP) + mode = PROTO_MODE_HTTP; + else + mode = PROTO_MODE_TCP; + + conn_get_alpn(conn, &alpn_str, &alpn_len); + mux_proto = ist2(alpn_str, alpn_len); + mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_FE, mode); + if (!mux_ops) + return -1; + } + + /* Ensure a valid protocol is selected if connection is targeted by a + * tcp-request session attach-srv rule. + */ + if (conn->reverse.target && !(mux_ops->flags & MX_FL_REVERSABLE)) { + conn->err_code = CO_ER_REVERSE; + return -1; + } + + return conn_install_mux(conn, mux_ops, ctx, bind_conf->frontend, conn->owner); +} + +/* installs the best mux for outgoing connection <conn> using the upper context + * <ctx>. If the server mux protocol is forced, we use it to find the best mux. + * It's also possible to specify an alternative mux protocol <force_mux_ops>, + * in which case it will be used instead of the default server mux protocol. + * + * Returns < 0 on error. + */ +int conn_install_mux_be(struct connection *conn, void *ctx, struct session *sess, + const struct mux_ops *force_mux_ops) +{ + struct server *srv = objt_server(conn->target); + struct proxy *prx = objt_proxy(conn->target); + const struct mux_ops *mux_ops; + + if (srv) + prx = srv->proxy; + + if (!prx) // target must be either proxy or server + return -1; + + if (srv && srv->mux_proto && likely(!force_mux_ops)) { + mux_ops = srv->mux_proto->mux; + } + else if (srv && unlikely(force_mux_ops)) { + mux_ops = force_mux_ops; + } + else { + struct ist mux_proto; + const char *alpn_str = NULL; + int alpn_len = 0; + int mode; + + if (prx->mode == PR_MODE_HTTP) + mode = PROTO_MODE_HTTP; + else + mode = PROTO_MODE_TCP; + + conn_get_alpn(conn, &alpn_str, &alpn_len); + mux_proto = ist2(alpn_str, alpn_len); + + mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_BE, mode); + if (!mux_ops) + return -1; + } + return conn_install_mux(conn, mux_ops, ctx, prx, sess); +} + +/* installs the best mux for outgoing connection <conn> for a check using the + * upper context <ctx>. If the mux protocol is forced by the check, we use it to + * find the best mux. Returns < 0 on error. + */ +int conn_install_mux_chk(struct connection *conn, void *ctx, struct session *sess) +{ + struct check *check = objt_check(sess->origin); + struct server *srv = objt_server(conn->target); + struct proxy *prx = objt_proxy(conn->target); + const struct mux_ops *mux_ops; + + if (!check) // Check must be defined + return -1; + + if (srv) + prx = srv->proxy; + + if (!prx) // target must be either proxy or server + return -1; + + if (check->mux_proto) + mux_ops = check->mux_proto->mux; + else { + struct ist mux_proto; + const char *alpn_str = NULL; + int alpn_len = 0; + int mode; + + if ((check->tcpcheck_rules->flags & TCPCHK_RULES_PROTO_CHK) == TCPCHK_RULES_HTTP_CHK) + mode = PROTO_MODE_HTTP; + else + mode = PROTO_MODE_TCP; + + conn_get_alpn(conn, &alpn_str, &alpn_len); + mux_proto = ist2(alpn_str, alpn_len); + + mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_BE, mode); + if (!mux_ops) + return -1; + } + return conn_install_mux(conn, mux_ops, ctx, prx, sess); +} + +/* Set the ALPN of connection <conn> to <alpn>. If force is false, <alpn> must + * be a subset or identical to the registered protos for the parent SSL_CTX. + * In this case <alpn> must be a single protocol value, not a list. + * + * Returns 0 if ALPN is updated else -1. + */ +int conn_update_alpn(struct connection *conn, const struct ist alpn, int force) +{ +#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation + size_t alpn_len = istlen(alpn); + char *ctx_alpn_str = NULL; + int ctx_alpn_len = 0, found = 0; + + /* if not force, first search if alpn is a subset or identical to the + * parent SSL_CTX. + */ + if (!force) { + /* retrieve the SSL_CTX according to the connection side. */ + if (conn_is_back(conn)) { + if (obj_type(conn->target) == OBJ_TYPE_SERVER) { + struct server *srv = __objt_server(conn->target); + ctx_alpn_str = srv->ssl_ctx.alpn_str; + ctx_alpn_len = srv->ssl_ctx.alpn_len; + } + } + else { + struct session *sess = conn->owner; + struct listener *li = sess->listener; + + if (li->bind_conf && li->bind_conf->options & BC_O_USE_SSL) { + ctx_alpn_str = li->bind_conf->ssl_conf.alpn_str; + ctx_alpn_len = li->bind_conf->ssl_conf.alpn_len; + } + } + + if (ctx_alpn_str) { + /* search if ALPN is present in SSL_CTX ALPN before + * using it. + */ + while (ctx_alpn_len) { + /* skip ALPN whose size is not 8 */ + if (*ctx_alpn_str != alpn_len - 1) { + ctx_alpn_len -= *ctx_alpn_str + 1; + } + else { + if (isteqi(ist2(ctx_alpn_str, alpn_len), alpn)) { + found = 1; + break; + } + } + ctx_alpn_str += *ctx_alpn_str + 1; + + /* This indicates an invalid ALPN formatted + * string and should never happen. */ + BUG_ON(ctx_alpn_len < 0); + } + } + } + + if (found || force) { + ssl_sock_set_alpn(conn, (const uchar *)istptr(alpn), istlen(alpn)); + return 0; + } + +#endif + return -1; +} + +/* Initializes all required fields for a new connection. Note that it does the + * minimum acceptable initialization for a connection that already exists and + * is about to be reused. It also leaves the addresses untouched, which makes + * it usable across connection retries to reset a connection to a known state. + */ +void conn_init(struct connection *conn, void *target) +{ + conn->obj_type = OBJ_TYPE_CONN; + conn->flags = CO_FL_NONE; + conn->mux = NULL; + conn->ctx = NULL; + conn->owner = NULL; + conn->send_proxy_ofs = 0; + conn->handle.fd = DEAD_FD_MAGIC; + conn->err_code = CO_ER_NONE; + conn->target = target; + conn->destroy_cb = NULL; + conn->proxy_netns = NULL; + MT_LIST_INIT(&conn->toremove_list); + if (conn_is_back(conn)) + LIST_INIT(&conn->session_list); + else + LIST_INIT(&conn->stopping_list); + LIST_INIT(&conn->tlv_list); + conn->subs = NULL; + conn->src = NULL; + conn->dst = NULL; + conn->hash_node = NULL; + conn->xprt = NULL; + conn->reverse.target = NULL; + conn->reverse.name = BUF_NULL; +} + +/* Initialize members used for backend connections. + * + * Returns 0 on success else non-zero. + */ +static int conn_backend_init(struct connection *conn) +{ + if (!sockaddr_alloc(&conn->dst, 0, 0)) + return 1; + + conn->hash_node = conn_alloc_hash_node(conn); + if (unlikely(!conn->hash_node)) + return 1; + + return 0; +} + +/* Release connection elements reserved for backend side usage. It also takes + * care to detach it if linked to a session or a server instance. + * + * This function is useful when freeing a connection or reversing it to the + * frontend side. + */ +static void conn_backend_deinit(struct connection *conn) +{ + /* If the connection is owned by the session, remove it from its list + */ + if (conn_is_back(conn) && LIST_INLIST(&conn->session_list)) { + session_unown_conn(conn->owner, conn); + } + else if (!(conn->flags & CO_FL_PRIVATE)) { + if (obj_type(conn->target) == OBJ_TYPE_SERVER) + srv_release_conn(__objt_server(conn->target), conn); + } + + /* Make sure the connection is not left in the idle connection tree */ + if (conn->hash_node != NULL) + BUG_ON(conn->hash_node->node.node.leaf_p != NULL); + + pool_free(pool_head_conn_hash_node, conn->hash_node); + conn->hash_node = NULL; + +} + +/* Tries to allocate a new connection and initialized its main fields. The + * connection is returned on success, NULL on failure. The connection must + * be released using pool_free() or conn_free(). + */ +struct connection *conn_new(void *target) +{ + struct connection *conn; + + conn = pool_alloc(pool_head_connection); + if (unlikely(!conn)) + return NULL; + + conn_init(conn, target); + + if (conn_is_back(conn)) { + if (obj_type(target) == OBJ_TYPE_SERVER) + srv_use_conn(__objt_server(target), conn); + + if (conn_backend_init(conn)) { + conn_free(conn); + return NULL; + } + } + + return conn; +} + +/* Releases a connection previously allocated by conn_new() */ +void conn_free(struct connection *conn) +{ + struct conn_tlv_list *tlv, *tlv_back = NULL; + + if (conn_is_back(conn)) + conn_backend_deinit(conn); + + /* Remove the conn from toremove_list. + * + * This is needed to prevent a double-free in case the connection was + * already scheduled from cleaning but is freed before via another + * call. + */ + MT_LIST_DELETE(&conn->toremove_list); + + sockaddr_free(&conn->src); + sockaddr_free(&conn->dst); + + /* Free all previously allocated TLVs */ + list_for_each_entry_safe(tlv, tlv_back, &conn->tlv_list, list) { + LIST_DELETE(&tlv->list); + if (tlv->len > HA_PP2_TLV_VALUE_256) + free(tlv); + else if (tlv->len <= HA_PP2_TLV_VALUE_128) + pool_free(pool_head_pp_tlv_128, tlv); + else + pool_free(pool_head_pp_tlv_256, tlv); + } + + ha_free(&conn->reverse.name.area); + + if (conn_reverse_in_preconnect(conn)) { + struct listener *l = conn_active_reverse_listener(conn); + rhttp_notify_preconn_err(l); + HA_ATOMIC_DEC(&th_ctx->nb_rhttp_conns); + } + else if (conn->flags & CO_FL_REVERSED) { + HA_ATOMIC_DEC(&th_ctx->nb_rhttp_conns); + } + + + conn_force_unsubscribe(conn); + pool_free(pool_head_connection, conn); +} + +struct conn_hash_node *conn_alloc_hash_node(struct connection *conn) +{ + struct conn_hash_node *hash_node = NULL; + + hash_node = pool_zalloc(pool_head_conn_hash_node); + if (unlikely(!hash_node)) + return NULL; + + hash_node->conn = conn; + + return hash_node; +} + +/* Allocates a struct sockaddr from the pool if needed, assigns it to *sap and + * returns it. If <sap> is NULL, the address is always allocated and returned. + * if <sap> is non-null, an address will only be allocated if it points to a + * non-null pointer. In this case the allocated address will be assigned there. + * If <orig> is non-null and <len> positive, the address in <sa> will be copied + * into the allocated address. In both situations the new pointer is returned. + */ +struct sockaddr_storage *sockaddr_alloc(struct sockaddr_storage **sap, const struct sockaddr_storage *orig, socklen_t len) +{ + struct sockaddr_storage *sa; + + if (sap && *sap) + return *sap; + + sa = pool_alloc(pool_head_sockaddr); + if (sa && orig && len > 0) + memcpy(sa, orig, len); + if (sap) + *sap = sa; + return sa; +} + +/* Releases the struct sockaddr potentially pointed to by <sap> to the pool. It + * may be NULL or may point to NULL. If <sap> is not NULL, a NULL is placed + * there. + */ +void sockaddr_free(struct sockaddr_storage **sap) +{ + if (!sap) + return; + pool_free(pool_head_sockaddr, *sap); + *sap = NULL; +} + +/* Try to add a handshake pseudo-XPRT. If the connection's first XPRT is + * raw_sock, then just use the new XPRT as the connection XPRT, otherwise + * call the xprt's add_xprt() method. + * Returns 0 on success, or non-zero on failure. + */ +int xprt_add_hs(struct connection *conn) +{ + void *xprt_ctx = NULL; + const struct xprt_ops *ops = xprt_get(XPRT_HANDSHAKE); + void *nextxprt_ctx = NULL; + const struct xprt_ops *nextxprt_ops = NULL; + + if (conn->flags & CO_FL_ERROR) + return -1; + if (ops->init(conn, &xprt_ctx) < 0) + return -1; + if (conn->xprt == xprt_get(XPRT_RAW)) { + nextxprt_ctx = conn->xprt_ctx; + nextxprt_ops = conn->xprt; + conn->xprt_ctx = xprt_ctx; + conn->xprt = ops; + } else { + if (conn->xprt->add_xprt(conn, conn->xprt_ctx, xprt_ctx, ops, + &nextxprt_ctx, &nextxprt_ops) != 0) { + ops->close(conn, xprt_ctx); + return -1; + } + } + if (ops->add_xprt(conn, xprt_ctx, nextxprt_ctx, nextxprt_ops, NULL, NULL) != 0) { + ops->close(conn, xprt_ctx); + return -1; + } + return 0; +} + +/* returns a human-readable error code for conn->err_code, or NULL if the code + * is unknown. + */ +const char *conn_err_code_str(struct connection *c) +{ + switch (c->err_code) { + case CO_ER_NONE: return "Success"; + + case CO_ER_CONF_FDLIM: return "Reached configured maxconn value"; + case CO_ER_PROC_FDLIM: return "Too many sockets on the process"; + case CO_ER_SYS_FDLIM: return "Too many sockets on the system"; + case CO_ER_SYS_MEMLIM: return "Out of system buffers"; + case CO_ER_NOPROTO: return "Protocol or address family not supported"; + case CO_ER_SOCK_ERR: return "General socket error"; + case CO_ER_PORT_RANGE: return "Source port range exhausted"; + case CO_ER_CANT_BIND: return "Can't bind to source address"; + case CO_ER_FREE_PORTS: return "Out of local source ports on the system"; + case CO_ER_ADDR_INUSE: return "Local source address already in use"; + + case CO_ER_PRX_EMPTY: return "Connection closed while waiting for PROXY protocol header"; + case CO_ER_PRX_ABORT: return "Connection error while waiting for PROXY protocol header"; + case CO_ER_PRX_TIMEOUT: return "Timeout while waiting for PROXY protocol header"; + case CO_ER_PRX_TRUNCATED: return "Truncated PROXY protocol header received"; + case CO_ER_PRX_NOT_HDR: return "Received something which does not look like a PROXY protocol header"; + case CO_ER_PRX_BAD_HDR: return "Received an invalid PROXY protocol header"; + case CO_ER_PRX_BAD_PROTO: return "Received an unhandled protocol in the PROXY protocol header"; + + case CO_ER_CIP_EMPTY: return "Connection closed while waiting for NetScaler Client IP header"; + case CO_ER_CIP_ABORT: return "Connection error while waiting for NetScaler Client IP header"; + case CO_ER_CIP_TIMEOUT: return "Timeout while waiting for a NetScaler Client IP header"; + case CO_ER_CIP_TRUNCATED: return "Truncated NetScaler Client IP header received"; + case CO_ER_CIP_BAD_MAGIC: return "Received an invalid NetScaler Client IP magic number"; + case CO_ER_CIP_BAD_PROTO: return "Received an unhandled protocol in the NetScaler Client IP header"; + + case CO_ER_SSL_EMPTY: return "Connection closed during SSL handshake"; + case CO_ER_SSL_ABORT: return "Connection error during SSL handshake"; + case CO_ER_SSL_TIMEOUT: return "Timeout during SSL handshake"; + case CO_ER_SSL_TOO_MANY: return "Too many SSL connections"; + case CO_ER_SSL_NO_MEM: return "Out of memory when initializing an SSL connection"; + case CO_ER_SSL_RENEG: return "Rejected a client-initiated SSL renegotiation attempt"; + case CO_ER_SSL_CA_FAIL: return "SSL client CA chain cannot be verified"; + case CO_ER_SSL_CRT_FAIL: return "SSL client certificate not trusted"; + case CO_ER_SSL_MISMATCH: return "Server presented an SSL certificate different from the configured one"; + case CO_ER_SSL_MISMATCH_SNI: return "Server presented an SSL certificate different from the expected one"; + case CO_ER_SSL_HANDSHAKE: return "SSL handshake failure"; + case CO_ER_SSL_HANDSHAKE_HB: return "SSL handshake failure after heartbeat"; + case CO_ER_SSL_KILLED_HB: return "Stopped a TLSv1 heartbeat attack (CVE-2014-0160)"; + case CO_ER_SSL_NO_TARGET: return "Attempt to use SSL on an unknown target (internal error)"; + case CO_ER_SSL_EARLY_FAILED: return "Server refused early data"; + + case CO_ER_SOCKS4_SEND: return "SOCKS4 Proxy write error during handshake"; + case CO_ER_SOCKS4_RECV: return "SOCKS4 Proxy read error during handshake"; + case CO_ER_SOCKS4_DENY: return "SOCKS4 Proxy deny the request"; + case CO_ER_SOCKS4_ABORT: return "SOCKS4 Proxy handshake aborted by server"; + + case CO_ERR_SSL_FATAL: return "SSL fatal error"; + + case CO_ER_REVERSE: return "Reverse connect failure"; + } + return NULL; +} + +/* Send a message over an established connection. It makes use of send() and + * returns the same return code and errno. If the socket layer is not ready yet + * then -1 is returned and ENOTSOCK is set into errno. If the fd is not marked + * as ready, or if EAGAIN or ENOTCONN is returned, then we return 0. It returns + * EMSGSIZE if called with a zero length message. The purpose is to simplify + * some rare attempts to directly write on the socket from above the connection + * (typically send_proxy). In case of EAGAIN, the fd is marked as "cant_send". + * It automatically retries on EINTR. Other errors cause the connection to be + * marked as in error state. It takes similar arguments as send() except the + * first one which is the connection instead of the file descriptor. <flags> + * only support CO_SFL_MSG_MORE. + */ +int conn_ctrl_send(struct connection *conn, const void *buf, int len, int flags) +{ + const struct buffer buffer = b_make((char*)buf, len, 0, len); + const struct xprt_ops *xprt = xprt_get(XPRT_RAW); + int ret; + + ret = -1; + errno = ENOTSOCK; + + if (conn->flags & CO_FL_SOCK_WR_SH) + goto fail; + + if (!conn_ctrl_ready(conn)) + goto fail; + + errno = EMSGSIZE; + if (!len) + goto fail; + + /* snd_buf() already takes care of updating conn->flags and handling + * the FD polling status. + */ + ret = xprt->snd_buf(conn, NULL, &buffer, buffer.data, flags); + if (conn->flags & CO_FL_ERROR) + ret = -1; + return ret; + fail: + conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH | CO_FL_ERROR; + return ret; +} + +/* Called from the upper layer, to unsubscribe <es> from events <event_type>. + * The event subscriber <es> is not allowed to change from a previous call as + * long as at least one event is still subscribed. The <event_type> must only + * be a combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0. + */ +int conn_unsubscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es) +{ + BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV)); + BUG_ON(conn->subs && conn->subs != es); + + es->events &= ~event_type; + if (!es->events) + conn->subs = NULL; + + if (conn_ctrl_ready(conn) && conn->ctrl->ignore_events) + conn->ctrl->ignore_events(conn, event_type); + + return 0; +} + +/* Called from the upper layer, to subscribe <es> to events <event_type>. + * The <es> struct is not allowed to differ from the one passed during a + * previous call to subscribe(). If the connection's ctrl layer is ready, + * the wait_event is immediately woken up and the subscription is cancelled. + * It always returns zero. + */ +int conn_subscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es) +{ + int ret = 0; + + BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV)); + BUG_ON(conn->subs && conn->subs != es); + + if (conn->subs && (conn->subs->events & event_type) == event_type) + return 0; + + if (conn_ctrl_ready(conn) && conn->ctrl->check_events) { + ret = conn->ctrl->check_events(conn, event_type); + if (ret) + tasklet_wakeup(es->tasklet); + } + + es->events = (es->events | event_type) & ~ret; + conn->subs = es->events ? es : NULL; + return 0; +} + +/* Drains possibly pending incoming data on the connection and update the flags + * accordingly. This is used to know whether we need to disable lingering on + * close. Returns non-zero if it is safe to close without disabling lingering, + * otherwise zero. The CO_FL_SOCK_RD_SH flag may also be updated if the incoming + * shutdown was reported by the ->drain() function. + */ +int conn_ctrl_drain(struct connection *conn) +{ + int ret = 0; + + if (!conn_ctrl_ready(conn) || conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH)) + ret = 1; + else if (conn->ctrl->drain) { + ret = conn->ctrl->drain(conn); + if (ret) + conn->flags |= CO_FL_SOCK_RD_SH; + } + return ret; +} + +/* + * Get data length from tlv + */ +static inline size_t get_tlv_length(const struct tlv *src) +{ + return (src->length_hi << 8) | src->length_lo; +} + +/* This handshake handler waits a PROXY protocol header at the beginning of the + * raw data stream. The header looks like this : + * + * "PROXY" <SP> PROTO <SP> SRC3 <SP> DST3 <SP> SRC4 <SP> <DST4> "\r\n" + * + * There must be exactly one space between each field. Fields are : + * - PROTO : layer 4 protocol, which must be "TCP4" or "TCP6". + * - SRC3 : layer 3 (eg: IP) source address in standard text form + * - DST3 : layer 3 (eg: IP) destination address in standard text form + * - SRC4 : layer 4 (eg: TCP port) source address in standard text form + * - DST4 : layer 4 (eg: TCP port) destination address in standard text form + * + * This line MUST be at the beginning of the buffer and MUST NOT wrap. + * + * The header line is small and in all cases smaller than the smallest normal + * TCP MSS. So it MUST always be delivered as one segment, which ensures we + * can safely use MSG_PEEK and avoid buffering. + * + * Once the data is fetched, the values are set in the connection's address + * fields, and data are removed from the socket's buffer. The function returns + * zero if it needs to wait for more data or if it fails, or 1 if it completed + * and removed itself. + */ +int conn_recv_proxy(struct connection *conn, int flag) +{ + struct session *sess = conn->owner; + char *line, *end; + struct proxy_hdr_v2 *hdr_v2; + const char v2sig[] = PP2_SIGNATURE; + size_t total_v2_len; + size_t tlv_offset = 0; + int ret; + + if (!conn_ctrl_ready(conn)) + goto fail; + + BUG_ON(conn->flags & CO_FL_FDLESS); + + if (!fd_recv_ready(conn->handle.fd)) + goto not_ready; + + while (1) { + ret = recv(conn->handle.fd, trash.area, trash.size, MSG_PEEK); + if (ret < 0) { + if (errno == EINTR) + continue; + if (errno == EAGAIN || errno == EWOULDBLOCK) { + fd_cant_recv(conn->handle.fd); + goto not_ready; + } + goto recv_abort; + } + trash.data = ret; + break; + } + + if (!trash.data) { + /* client shutdown */ + conn->err_code = CO_ER_PRX_EMPTY; + goto fail; + } + + conn->flags &= ~CO_FL_WAIT_L4_CONN; + + if (trash.data < 6) + goto missing; + + line = trash.area; + end = trash.area + trash.data; + + /* Decode a possible proxy request, fail early if it does not match */ + if (strncmp(line, "PROXY ", 6) != 0) + goto not_v1; + + line += 6; + if (trash.data < 9) /* shortest possible line */ + goto missing; + + if (memcmp(line, "TCP4 ", 5) == 0) { + u32 src3, dst3, sport, dport; + + line += 5; + + src3 = inetaddr_host_lim_ret(line, end, &line); + if (line == end) + goto missing; + if (*line++ != ' ') + goto bad_header; + + dst3 = inetaddr_host_lim_ret(line, end, &line); + if (line == end) + goto missing; + if (*line++ != ' ') + goto bad_header; + + sport = read_uint((const char **)&line, end); + if (line == end) + goto missing; + if (*line++ != ' ') + goto bad_header; + + dport = read_uint((const char **)&line, end); + if (line > end - 2) + goto missing; + if (*line++ != '\r') + goto bad_header; + if (*line++ != '\n') + goto bad_header; + + if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0)) + goto fail; + + /* update the session's addresses and mark them set */ + ((struct sockaddr_in *)sess->src)->sin_family = AF_INET; + ((struct sockaddr_in *)sess->src)->sin_addr.s_addr = htonl(src3); + ((struct sockaddr_in *)sess->src)->sin_port = htons(sport); + + ((struct sockaddr_in *)sess->dst)->sin_family = AF_INET; + ((struct sockaddr_in *)sess->dst)->sin_addr.s_addr = htonl(dst3); + ((struct sockaddr_in *)sess->dst)->sin_port = htons(dport); + } + else if (memcmp(line, "TCP6 ", 5) == 0) { + u32 sport, dport; + char *src_s; + char *dst_s, *sport_s, *dport_s; + struct in6_addr src3, dst3; + + line += 5; + + src_s = line; + dst_s = sport_s = dport_s = NULL; + while (1) { + if (line > end - 2) { + goto missing; + } + else if (*line == '\r') { + *line = 0; + line++; + if (*line++ != '\n') + goto bad_header; + break; + } + + if (*line == ' ') { + *line = 0; + if (!dst_s) + dst_s = line + 1; + else if (!sport_s) + sport_s = line + 1; + else if (!dport_s) + dport_s = line + 1; + } + line++; + } + + if (!dst_s || !sport_s || !dport_s) + goto bad_header; + + sport = read_uint((const char **)&sport_s,dport_s - 1); + if (*sport_s != 0) + goto bad_header; + + dport = read_uint((const char **)&dport_s,line - 2); + if (*dport_s != 0) + goto bad_header; + + if (inet_pton(AF_INET6, src_s, (void *)&src3) != 1) + goto bad_header; + + if (inet_pton(AF_INET6, dst_s, (void *)&dst3) != 1) + goto bad_header; + + if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0)) + goto fail; + + /* update the session's addresses and mark them set */ + ((struct sockaddr_in6 *)sess->src)->sin6_family = AF_INET6; + memcpy(&((struct sockaddr_in6 *)sess->src)->sin6_addr, &src3, sizeof(struct in6_addr)); + ((struct sockaddr_in6 *)sess->src)->sin6_port = htons(sport); + + ((struct sockaddr_in6 *)sess->dst)->sin6_family = AF_INET6; + memcpy(&((struct sockaddr_in6 *)sess->dst)->sin6_addr, &dst3, sizeof(struct in6_addr)); + ((struct sockaddr_in6 *)sess->dst)->sin6_port = htons(dport); + } + else if (memcmp(line, "UNKNOWN\r\n", 9) == 0) { + /* This can be a UNIX socket forwarded by an haproxy upstream */ + line += 9; + } + else { + /* The protocol does not match something known (TCP4/TCP6/UNKNOWN) */ + conn->err_code = CO_ER_PRX_BAD_PROTO; + goto fail; + } + + trash.data = line - trash.area; + goto eat_header; + + not_v1: + /* try PPv2 */ + if (trash.data < PP2_HEADER_LEN) + goto missing; + + hdr_v2 = (struct proxy_hdr_v2 *) trash.area; + + if (memcmp(hdr_v2->sig, v2sig, PP2_SIGNATURE_LEN) != 0 || + (hdr_v2->ver_cmd & PP2_VERSION_MASK) != PP2_VERSION) { + conn->err_code = CO_ER_PRX_NOT_HDR; + goto fail; + } + + total_v2_len = PP2_HEADER_LEN + ntohs(hdr_v2->len); + if (trash.data < total_v2_len) + goto missing; + + switch (hdr_v2->ver_cmd & PP2_CMD_MASK) { + case 0x01: /* PROXY command */ + switch (hdr_v2->fam) { + case 0x11: /* TCPv4 */ + if (ntohs(hdr_v2->len) < PP2_ADDR_LEN_INET) + goto bad_header; + + if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0)) + goto fail; + + ((struct sockaddr_in *)sess->src)->sin_family = AF_INET; + ((struct sockaddr_in *)sess->src)->sin_addr.s_addr = hdr_v2->addr.ip4.src_addr; + ((struct sockaddr_in *)sess->src)->sin_port = hdr_v2->addr.ip4.src_port; + ((struct sockaddr_in *)sess->dst)->sin_family = AF_INET; + ((struct sockaddr_in *)sess->dst)->sin_addr.s_addr = hdr_v2->addr.ip4.dst_addr; + ((struct sockaddr_in *)sess->dst)->sin_port = hdr_v2->addr.ip4.dst_port; + tlv_offset = PP2_HEADER_LEN + PP2_ADDR_LEN_INET; + break; + case 0x21: /* TCPv6 */ + if (ntohs(hdr_v2->len) < PP2_ADDR_LEN_INET6) + goto bad_header; + + if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0)) + goto fail; + + ((struct sockaddr_in6 *)sess->src)->sin6_family = AF_INET6; + memcpy(&((struct sockaddr_in6 *)sess->src)->sin6_addr, hdr_v2->addr.ip6.src_addr, 16); + ((struct sockaddr_in6 *)sess->src)->sin6_port = hdr_v2->addr.ip6.src_port; + ((struct sockaddr_in6 *)sess->dst)->sin6_family = AF_INET6; + memcpy(&((struct sockaddr_in6 *)sess->dst)->sin6_addr, hdr_v2->addr.ip6.dst_addr, 16); + ((struct sockaddr_in6 *)sess->dst)->sin6_port = hdr_v2->addr.ip6.dst_port; + tlv_offset = PP2_HEADER_LEN + PP2_ADDR_LEN_INET6; + break; + } + + /* TLV parsing */ + while (tlv_offset < total_v2_len) { + struct ist tlv; + struct tlv *tlv_packet = NULL; + struct conn_tlv_list *new_tlv = NULL; + size_t data_len = 0; + + /* Verify that we have at least TLV_HEADER_SIZE bytes left */ + if (tlv_offset + TLV_HEADER_SIZE > total_v2_len) + goto bad_header; + + tlv_packet = (struct tlv *) &trash.area[tlv_offset]; + tlv = ist2((const char *)tlv_packet->value, get_tlv_length(tlv_packet)); + tlv_offset += istlen(tlv) + TLV_HEADER_SIZE; + + /* Verify that the TLV length does not exceed the total PROXYv2 length */ + if (tlv_offset > total_v2_len) + goto bad_header; + + /* Prepare known TLV types */ + switch (tlv_packet->type) { + case PP2_TYPE_CRC32C: { + uint32_t n_crc32c; + + /* Verify that this TLV is exactly 4 bytes long */ + if (istlen(tlv) != PP2_CRC32C_LEN) + goto bad_header; + + n_crc32c = read_n32(istptr(tlv)); + write_n32(istptr(tlv), 0); // compute with CRC==0 + + if (hash_crc32c(trash.area, total_v2_len) != n_crc32c) + goto bad_header; + break; + } +#ifdef USE_NS + case PP2_TYPE_NETNS: { + const struct netns_entry *ns; + + ns = netns_store_lookup(istptr(tlv), istlen(tlv)); + if (ns) + conn->proxy_netns = ns; + break; + } +#endif + case PP2_TYPE_AUTHORITY: { + /* For now, keep the length restriction by HAProxy */ + if (istlen(tlv) > HA_PP2_AUTHORITY_MAX) + goto bad_header; + + break; + } + case PP2_TYPE_UNIQUE_ID: { + if (istlen(tlv) > UNIQUEID_LEN) + goto bad_header; + break; + } + default: + break; + } + + /* If we did not find a known TLV type that we can optimize for, we generically allocate it */ + data_len = get_tlv_length(tlv_packet); + + /* Prevent attackers from allocating too much memory */ + if (unlikely(data_len > HA_PP2_MAX_ALLOC)) + goto fail; + + /* Alloc memory based on data_len */ + if (data_len > HA_PP2_TLV_VALUE_256) + new_tlv = malloc(get_tlv_length(tlv_packet) + sizeof(struct conn_tlv_list)); + else if (data_len <= HA_PP2_TLV_VALUE_128) + new_tlv = pool_alloc(pool_head_pp_tlv_128); + else + new_tlv = pool_alloc(pool_head_pp_tlv_256); + + if (unlikely(!new_tlv)) + goto fail; + + new_tlv->type = tlv_packet->type; + + /* Save TLV to make it accessible via sample fetch */ + memcpy(new_tlv->value, tlv.ptr, data_len); + new_tlv->len = data_len; + + LIST_APPEND(&conn->tlv_list, &new_tlv->list); + } + + + /* Verify that the PROXYv2 header ends at a TLV boundary. + * This is can not be true, because the TLV parsing already + * verifies that a TLV does not exceed the total length and + * also that there is space for a TLV header. + */ + BUG_ON(tlv_offset != total_v2_len); + + /* unsupported protocol, keep local connection address */ + break; + case 0x00: /* LOCAL command */ + /* keep local connection address for LOCAL */ + break; + default: + goto bad_header; /* not a supported command */ + } + + trash.data = total_v2_len; + goto eat_header; + + eat_header: + /* remove the PROXY line from the request. For this we re-read the + * exact line at once. If we don't get the exact same result, we + * fail. + */ + while (1) { + ssize_t len2 = recv(conn->handle.fd, trash.area, trash.data, 0); + + if (len2 < 0 && errno == EINTR) + continue; + if (len2 != trash.data) + goto recv_abort; + break; + } + + conn->flags &= ~flag; + conn->flags |= CO_FL_RCVD_PROXY; + return 1; + + not_ready: + return 0; + + missing: + /* Missing data. Since we're using MSG_PEEK, we can only poll again if + * we have not read anything. Otherwise we need to fail because we won't + * be able to poll anymore. + */ + conn->err_code = CO_ER_PRX_TRUNCATED; + goto fail; + + bad_header: + /* This is not a valid proxy protocol header */ + conn->err_code = CO_ER_PRX_BAD_HDR; + goto fail; + + recv_abort: + conn->err_code = CO_ER_PRX_ABORT; + conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH; + goto fail; + + fail: + conn->flags |= CO_FL_ERROR; + return 0; +} + +/* This callback is used to send a valid PROXY protocol line to a socket being + * established. It returns 0 if it fails in a fatal way or needs to poll to go + * further, otherwise it returns non-zero and removes itself from the connection's + * flags (the bit is provided in <flag> by the caller). It is designed to be + * called by the connection handler and relies on it to commit polling changes. + * Note that it can emit a PROXY line by relying on the other end's address + * when the connection is attached to a stream connector, or by resolving the + * local address otherwise (also called a LOCAL line). + */ +int conn_send_proxy(struct connection *conn, unsigned int flag) +{ + if (!conn_ctrl_ready(conn)) + goto out_error; + + /* If we have a PROXY line to send, we'll use this to validate the + * connection, in which case the connection is validated only once + * we've sent the whole proxy line. Otherwise we use connect(). + */ + if (conn->send_proxy_ofs) { + struct stconn *sc; + int ret; + + /* If there is no mux attached to the connection, it means the + * connection context is a stream connector. + */ + sc = conn->mux ? conn_get_first_sc(conn) : conn->ctx; + + /* The target server expects a PROXY line to be sent first. + * If the send_proxy_ofs is negative, it corresponds to the + * offset to start sending from then end of the proxy string + * (which is recomputed every time since it's constant). If + * it is positive, it means we have to send from the start. + * We can only send a "normal" PROXY line when the connection + * is attached to a stream connector. Otherwise we can only + * send a LOCAL line (eg: for use with health checks). + */ + + if (sc && sc_strm(sc)) { + ret = make_proxy_line(trash.area, trash.size, + objt_server(conn->target), + sc_conn(sc_opposite(sc)), + __sc_strm(sc)); + } + else { + /* The target server expects a LOCAL line to be sent first. Retrieving + * local or remote addresses may fail until the connection is established. + */ + if (!conn_get_src(conn) || !conn_get_dst(conn)) + goto out_wait; + + ret = make_proxy_line(trash.area, trash.size, + objt_server(conn->target), conn, + NULL); + } + + if (!ret) + goto out_error; + + if (conn->send_proxy_ofs > 0) + conn->send_proxy_ofs = -ret; /* first call */ + + /* we have to send trash from (ret+sp for -sp bytes). If the + * data layer has a pending write, we'll also set MSG_MORE. + */ + ret = conn_ctrl_send(conn, + trash.area + ret + conn->send_proxy_ofs, + -conn->send_proxy_ofs, + (conn->subs && conn->subs->events & SUB_RETRY_SEND) ? CO_SFL_MSG_MORE : 0); + + if (ret < 0) + goto out_error; + + conn->send_proxy_ofs += ret; /* becomes zero once complete */ + if (conn->send_proxy_ofs != 0) + goto out_wait; + + /* OK we've sent the whole line, we're connected */ + } + + /* The connection is ready now, simply return and let the connection + * handler notify upper layers if needed. + */ + conn->flags &= ~CO_FL_WAIT_L4_CONN; + conn->flags &= ~flag; + return 1; + + out_error: + /* Write error on the file descriptor */ + conn->flags |= CO_FL_ERROR; + return 0; + + out_wait: + return 0; +} + +/* This handshake handler waits a NetScaler Client IP insertion header + * at the beginning of the raw data stream. The header format is + * described in doc/netscaler-client-ip-insertion-protocol.txt + * + * This line MUST be at the beginning of the buffer and MUST NOT be + * fragmented. + * + * The header line is small and in all cases smaller than the smallest normal + * TCP MSS. So it MUST always be delivered as one segment, which ensures we + * can safely use MSG_PEEK and avoid buffering. + * + * Once the data is fetched, the values are set in the connection's address + * fields, and data are removed from the socket's buffer. The function returns + * zero if it needs to wait for more data or if it fails, or 1 if it completed + * and removed itself. + */ +int conn_recv_netscaler_cip(struct connection *conn, int flag) +{ + struct session *sess = conn->owner; + char *line; + uint32_t hdr_len; + uint8_t ip_ver; + int ret; + + if (!conn_ctrl_ready(conn)) + goto fail; + + BUG_ON(conn->flags & CO_FL_FDLESS); + + if (!fd_recv_ready(conn->handle.fd)) + goto not_ready; + + while (1) { + ret = recv(conn->handle.fd, trash.area, trash.size, MSG_PEEK); + if (ret < 0) { + if (errno == EINTR) + continue; + if (errno == EAGAIN || errno == EWOULDBLOCK) { + fd_cant_recv(conn->handle.fd); + goto not_ready; + } + goto recv_abort; + } + trash.data = ret; + break; + } + + conn->flags &= ~CO_FL_WAIT_L4_CONN; + + if (!trash.data) { + /* client shutdown */ + conn->err_code = CO_ER_CIP_EMPTY; + goto fail; + } + + /* Fail if buffer length is not large enough to contain + * CIP magic, header length or + * CIP magic, CIP length, CIP type, header length */ + if (trash.data < 12) + goto missing; + + line = trash.area; + + /* Decode a possible NetScaler Client IP request, fail early if + * it does not match */ + if (ntohl(read_u32(line)) != __objt_listener(conn->target)->bind_conf->ns_cip_magic) + goto bad_magic; + + /* Legacy CIP protocol */ + if ((trash.area[8] & 0xD0) == 0x40) { + hdr_len = ntohl(read_u32((line+4))); + line += 8; + } + /* Standard CIP protocol */ + else if (trash.area[8] == 0x00) { + hdr_len = ntohs(read_u32((line+10))); + line += 12; + } + /* Unknown CIP protocol */ + else { + conn->err_code = CO_ER_CIP_BAD_PROTO; + goto fail; + } + + /* Fail if buffer length is not large enough to contain + * a minimal IP header */ + if (trash.data < 20) + goto missing; + + /* Get IP version from the first four bits */ + ip_ver = (*line & 0xf0) >> 4; + + if (ip_ver == 4) { + struct ip *hdr_ip4; + struct my_tcphdr *hdr_tcp; + + hdr_ip4 = (struct ip *)line; + + if (trash.data < 40 || trash.data < hdr_len) { + /* Fail if buffer length is not large enough to contain + * IPv4 header, TCP header */ + goto missing; + } + else if (hdr_ip4->ip_p != IPPROTO_TCP) { + /* The protocol does not include a TCP header */ + conn->err_code = CO_ER_CIP_BAD_PROTO; + goto fail; + } + + hdr_tcp = (struct my_tcphdr *)(line + (hdr_ip4->ip_hl * 4)); + + if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0)) + goto fail; + + /* update the session's addresses and mark them set */ + ((struct sockaddr_in *)sess->src)->sin_family = AF_INET; + ((struct sockaddr_in *)sess->src)->sin_addr.s_addr = hdr_ip4->ip_src.s_addr; + ((struct sockaddr_in *)sess->src)->sin_port = hdr_tcp->source; + + ((struct sockaddr_in *)sess->dst)->sin_family = AF_INET; + ((struct sockaddr_in *)sess->dst)->sin_addr.s_addr = hdr_ip4->ip_dst.s_addr; + ((struct sockaddr_in *)sess->dst)->sin_port = hdr_tcp->dest; + } + else if (ip_ver == 6) { + struct ip6_hdr *hdr_ip6; + struct my_tcphdr *hdr_tcp; + + hdr_ip6 = (struct ip6_hdr *)line; + + if (trash.data < 60 || trash.data < hdr_len) { + /* Fail if buffer length is not large enough to contain + * IPv6 header, TCP header */ + goto missing; + } + else if (hdr_ip6->ip6_nxt != IPPROTO_TCP) { + /* The protocol does not include a TCP header */ + conn->err_code = CO_ER_CIP_BAD_PROTO; + goto fail; + } + + hdr_tcp = (struct my_tcphdr *)(line + sizeof(struct ip6_hdr)); + + if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0)) + goto fail; + + /* update the session's addresses and mark them set */ + ((struct sockaddr_in6 *)sess->src)->sin6_family = AF_INET6; + ((struct sockaddr_in6 *)sess->src)->sin6_addr = hdr_ip6->ip6_src; + ((struct sockaddr_in6 *)sess->src)->sin6_port = hdr_tcp->source; + + ((struct sockaddr_in6 *)sess->dst)->sin6_family = AF_INET6; + ((struct sockaddr_in6 *)sess->dst)->sin6_addr = hdr_ip6->ip6_dst; + ((struct sockaddr_in6 *)sess->dst)->sin6_port = hdr_tcp->dest; + } + else { + /* The protocol does not match something known (IPv4/IPv6) */ + conn->err_code = CO_ER_CIP_BAD_PROTO; + goto fail; + } + + line += hdr_len; + trash.data = line - trash.area; + + /* remove the NetScaler Client IP header from the request. For this + * we re-read the exact line at once. If we don't get the exact same + * result, we fail. + */ + while (1) { + int len2 = recv(conn->handle.fd, trash.area, trash.data, 0); + if (len2 < 0 && errno == EINTR) + continue; + if (len2 != trash.data) + goto recv_abort; + break; + } + + conn->flags &= ~flag; + return 1; + + not_ready: + return 0; + + missing: + /* Missing data. Since we're using MSG_PEEK, we can only poll again if + * we have not read anything. Otherwise we need to fail because we won't + * be able to poll anymore. + */ + conn->err_code = CO_ER_CIP_TRUNCATED; + goto fail; + + bad_magic: + conn->err_code = CO_ER_CIP_BAD_MAGIC; + goto fail; + + recv_abort: + conn->err_code = CO_ER_CIP_ABORT; + conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH; + goto fail; + + fail: + conn->flags |= CO_FL_ERROR; + return 0; +} + + +int conn_send_socks4_proxy_request(struct connection *conn) +{ + struct socks4_request req_line; + + if (!conn_ctrl_ready(conn)) + goto out_error; + + if (!conn_get_dst(conn)) + goto out_error; + + req_line.version = 0x04; + req_line.command = 0x01; + req_line.port = get_net_port(conn->dst); + req_line.ip = is_inet_addr(conn->dst); + memcpy(req_line.user_id, "HAProxy\0", 8); + + if (conn->send_proxy_ofs > 0) { + /* + * This is the first call to send the request + */ + conn->send_proxy_ofs = -(int)sizeof(req_line); + } + + if (conn->send_proxy_ofs < 0) { + int ret = 0; + + /* we are sending the socks4_req_line here. If the data layer + * has a pending write, we'll also set MSG_MORE. + */ + ret = conn_ctrl_send( + conn, + ((char *)(&req_line)) + (sizeof(req_line)+conn->send_proxy_ofs), + -conn->send_proxy_ofs, + (conn->subs && conn->subs->events & SUB_RETRY_SEND) ? CO_SFL_MSG_MORE : 0); + + DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Before send remain is [%d], sent [%d]\n", + conn_fd(conn), -conn->send_proxy_ofs, ret); + + if (ret < 0) { + goto out_error; + } + + conn->send_proxy_ofs += ret; /* becomes zero once complete */ + if (conn->send_proxy_ofs != 0) { + goto out_wait; + } + } + + /* OK we've the whole request sent */ + conn->flags &= ~CO_FL_SOCKS4_SEND; + + /* The connection is ready now, simply return and let the connection + * handler notify upper layers if needed. + */ + conn->flags &= ~CO_FL_WAIT_L4_CONN; + + if (conn->flags & CO_FL_SEND_PROXY) { + /* + * Get the send_proxy_ofs ready for the send_proxy due to we are + * reusing the "send_proxy_ofs", and SOCKS4 handshake should be done + * before sending PROXY Protocol. + */ + conn->send_proxy_ofs = 1; + } + return 1; + + out_error: + /* Write error on the file descriptor */ + conn->flags |= CO_FL_ERROR; + if (conn->err_code == CO_ER_NONE) { + conn->err_code = CO_ER_SOCKS4_SEND; + } + return 0; + + out_wait: + return 0; +} + +int conn_recv_socks4_proxy_response(struct connection *conn) +{ + char line[SOCKS4_HS_RSP_LEN]; + int ret; + + if (!conn_ctrl_ready(conn)) + goto fail; + + BUG_ON(conn->flags & CO_FL_FDLESS); + + if (!fd_recv_ready(conn->handle.fd)) + goto not_ready; + + while (1) { + /* SOCKS4 Proxy will response with 8 bytes, 0x00 | 0x5A | 0x00 0x00 | 0x00 0x00 0x00 0x00 + * Try to peek into it, before all 8 bytes ready. + */ + ret = recv(conn->handle.fd, line, SOCKS4_HS_RSP_LEN, MSG_PEEK); + + if (ret == 0) { + /* the socket has been closed or shutdown for send */ + DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received ret[%d], errno[%d], looks like the socket has been closed or shutdown for send\n", + conn->handle.fd, ret, errno); + if (conn->err_code == CO_ER_NONE) { + conn->err_code = CO_ER_SOCKS4_RECV; + } + goto fail; + } + + if (ret > 0) { + if (ret == SOCKS4_HS_RSP_LEN) { + DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received 8 bytes, the response is [%02X|%02X|%02X %02X|%02X %02X %02X %02X]\n", + conn->handle.fd, line[0], line[1], line[2], line[3], line[4], line[5], line[6], line[7]); + }else{ + DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received ret[%d], first byte is [%02X], last bye is [%02X]\n", conn->handle.fd, ret, line[0], line[ret-1]); + } + } else { + DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received ret[%d], errno[%d]\n", conn->handle.fd, ret, errno); + } + + if (ret < 0) { + if (errno == EINTR) { + continue; + } + if (errno == EAGAIN || errno == EWOULDBLOCK) { + fd_cant_recv(conn->handle.fd); + goto not_ready; + } + goto recv_abort; + } + break; + } + + conn->flags &= ~CO_FL_WAIT_L4_CONN; + + if (ret < SOCKS4_HS_RSP_LEN) { + /* Missing data. Since we're using MSG_PEEK, we can only poll again if + * we are not able to read enough data. + */ + goto not_ready; + } + + /* + * Base on the SOCSK4 protocol: + * + * +----+----+----+----+----+----+----+----+ + * | VN | CD | DSTPORT | DSTIP | + * +----+----+----+----+----+----+----+----+ + * # of bytes: 1 1 2 4 + * VN is the version of the reply code and should be 0. CD is the result + * code with one of the following values: + * 90: request granted + * 91: request rejected or failed + * 92: request rejected because SOCKS server cannot connect to identd on the client + * 93: request rejected because the client program and identd report different user-ids + * The remaining fields are ignored. + */ + if (line[1] != 90) { + conn->flags &= ~CO_FL_SOCKS4_RECV; + + DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: FAIL, the response is [%02X|%02X|%02X %02X|%02X %02X %02X %02X]\n", + conn->handle.fd, line[0], line[1], line[2], line[3], line[4], line[5], line[6], line[7]); + if (conn->err_code == CO_ER_NONE) { + conn->err_code = CO_ER_SOCKS4_DENY; + } + goto fail; + } + + /* remove the 8 bytes response from the stream */ + while (1) { + ret = recv(conn->handle.fd, line, SOCKS4_HS_RSP_LEN, 0); + if (ret < 0 && errno == EINTR) { + continue; + } + if (ret != SOCKS4_HS_RSP_LEN) { + if (conn->err_code == CO_ER_NONE) { + conn->err_code = CO_ER_SOCKS4_RECV; + } + goto fail; + } + break; + } + + conn->flags &= ~CO_FL_SOCKS4_RECV; + return 1; + + not_ready: + return 0; + + recv_abort: + if (conn->err_code == CO_ER_NONE) { + conn->err_code = CO_ER_SOCKS4_ABORT; + } + conn->flags |= (CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH); + goto fail; + + fail: + conn->flags |= CO_FL_ERROR; + return 0; +} + +/* registers proto mux list <list>. Modifies the list element! */ +void register_mux_proto(struct mux_proto_list *list) +{ + LIST_APPEND(&mux_proto_list.list, &list->list); +} + +/* Lists the known proto mux on <out>. This function is used by "haproxy -vv" + * and is suitable for early boot just after the "REGISTER" stage because it + * doesn't depend on anything to be already allocated. + */ +void list_mux_proto(FILE *out) +{ + struct mux_proto_list *item; + struct ist proto; + char *mode, *side; + int done; + + fprintf(out, "Available multiplexer protocols :\n" + "(protocols marked as <default> cannot be specified using 'proto' keyword)\n"); + list_for_each_entry(item, &mux_proto_list.list, list) { + proto = item->token; + + if (item->mode == PROTO_MODE_ANY) + mode = "TCP|HTTP"; + else if (item->mode == PROTO_MODE_TCP) + mode = "TCP"; + else if (item->mode == PROTO_MODE_HTTP) + mode = "HTTP"; + else + mode = "NONE"; + + if (item->side == PROTO_SIDE_BOTH) + side = "FE|BE"; + else if (item->side == PROTO_SIDE_FE) + side = "FE"; + else if (item->side == PROTO_SIDE_BE) + side = "BE"; + else + side = "NONE"; + + fprintf(out, " %10s : mode=%-5s side=%-6s mux=%-5s flags=", + (proto.len ? proto.ptr : "<default>"), mode, side, item->mux->name); + + done = 0; + + /* note: the block below could be simplified using macros but for only + * 4 flags it's not worth it. + */ + if (item->mux->flags & MX_FL_HTX) + done |= fprintf(out, "%sHTX", done ? "|" : ""); + + if (item->mux->flags & MX_FL_HOL_RISK) + done |= fprintf(out, "%sHOL_RISK", done ? "|" : ""); + + if (item->mux->flags & MX_FL_NO_UPG) + done |= fprintf(out, "%sNO_UPG", done ? "|" : ""); + + if (item->mux->flags & MX_FL_FRAMED) + done |= fprintf(out, "%sFRAMED", done ? "|" : ""); + + fprintf(out, "\n"); + } +} + +/* Makes a PROXY protocol line from the two addresses. The output is sent to + * buffer <buf> for a maximum size of <buf_len> (including the trailing zero). + * It returns the number of bytes composing this line (including the trailing + * LF), or zero in case of failure (eg: not enough space). It supports TCP4, + * TCP6 and "UNKNOWN" formats. If any of <src> or <dst> is null, UNKNOWN is + * emitted as well. + */ +static int make_proxy_line_v1(char *buf, int buf_len, const struct sockaddr_storage *src, const struct sockaddr_storage *dst) +{ + int ret = 0; + char * protocol; + char src_str[MAX(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)]; + char dst_str[MAX(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)]; + in_port_t src_port; + in_port_t dst_port; + + if ( !src + || !dst + || (src->ss_family != AF_INET && src->ss_family != AF_INET6) + || (dst->ss_family != AF_INET && dst->ss_family != AF_INET6)) { + /* unknown family combination */ + ret = snprintf(buf, buf_len, "PROXY UNKNOWN\r\n"); + if (ret >= buf_len) + return 0; + + return ret; + } + + /* IPv4 for both src and dst */ + if (src->ss_family == AF_INET && dst->ss_family == AF_INET) { + protocol = "TCP4"; + if (!inet_ntop(AF_INET, &((struct sockaddr_in *)src)->sin_addr, src_str, sizeof(src_str))) + return 0; + src_port = ((struct sockaddr_in *)src)->sin_port; + if (!inet_ntop(AF_INET, &((struct sockaddr_in *)dst)->sin_addr, dst_str, sizeof(dst_str))) + return 0; + dst_port = ((struct sockaddr_in *)dst)->sin_port; + } + /* IPv6 for at least one of src and dst */ + else { + struct in6_addr tmp; + + protocol = "TCP6"; + + if (src->ss_family == AF_INET) { + /* Convert src to IPv6 */ + v4tov6(&tmp, &((struct sockaddr_in *)src)->sin_addr); + src_port = ((struct sockaddr_in *)src)->sin_port; + } + else { + tmp = ((struct sockaddr_in6 *)src)->sin6_addr; + src_port = ((struct sockaddr_in6 *)src)->sin6_port; + } + + if (!inet_ntop(AF_INET6, &tmp, src_str, sizeof(src_str))) + return 0; + + if (dst->ss_family == AF_INET) { + /* Convert dst to IPv6 */ + v4tov6(&tmp, &((struct sockaddr_in *)dst)->sin_addr); + dst_port = ((struct sockaddr_in *)dst)->sin_port; + } + else { + tmp = ((struct sockaddr_in6 *)dst)->sin6_addr; + dst_port = ((struct sockaddr_in6 *)dst)->sin6_port; + } + + if (!inet_ntop(AF_INET6, &tmp, dst_str, sizeof(dst_str))) + return 0; + } + + ret = snprintf(buf, buf_len, "PROXY %s %s %s %u %u\r\n", protocol, src_str, dst_str, ntohs(src_port), ntohs(dst_port)); + if (ret >= buf_len) + return 0; + + return ret; +} + +static int make_tlv(char *dest, int dest_len, char type, uint16_t length, const char *value) +{ + struct tlv *tlv; + + if (!dest || (length + sizeof(*tlv) > dest_len)) + return 0; + + tlv = (struct tlv *)dest; + + tlv->type = type; + tlv->length_hi = length >> 8; + tlv->length_lo = length & 0x00ff; + memcpy(tlv->value, value, length); + return length + sizeof(*tlv); +} + +/* Note: <remote> is explicitly allowed to be NULL */ +static int make_proxy_line_v2(char *buf, int buf_len, struct server *srv, struct connection *remote, struct stream *strm) +{ + const char pp2_signature[] = PP2_SIGNATURE; + void *tlv_crc32c_p = NULL; + int ret = 0; + struct proxy_hdr_v2 *hdr = (struct proxy_hdr_v2 *)buf; + struct sockaddr_storage null_addr = { .ss_family = 0 }; + struct srv_pp_tlv_list *srv_tlv = NULL; + const struct sockaddr_storage *src = &null_addr; + const struct sockaddr_storage *dst = &null_addr; + const char *value = ""; + int value_len = 0; + + if (buf_len < PP2_HEADER_LEN) + return 0; + memcpy(hdr->sig, pp2_signature, PP2_SIGNATURE_LEN); + + if (strm) { + src = sc_src(strm->scf); + dst = sc_dst(strm->scf); + } + else if (remote && conn_get_src(remote) && conn_get_dst(remote)) { + src = conn_src(remote); + dst = conn_dst(remote); + } + + /* At least one of src or dst is not of AF_INET or AF_INET6 */ + if ( !src + || !dst + || (!pp2_never_send_local && conn_is_back(remote)) // locally initiated connection + || (src->ss_family != AF_INET && src->ss_family != AF_INET6) + || (dst->ss_family != AF_INET && dst->ss_family != AF_INET6)) { + if (buf_len < PP2_HDR_LEN_UNSPEC) + return 0; + hdr->ver_cmd = PP2_VERSION | PP2_CMD_LOCAL; + hdr->fam = PP2_FAM_UNSPEC | PP2_TRANS_UNSPEC; + ret = PP2_HDR_LEN_UNSPEC; + } + else { + hdr->ver_cmd = PP2_VERSION | PP2_CMD_PROXY; + /* IPv4 for both src and dst */ + if (src->ss_family == AF_INET && dst->ss_family == AF_INET) { + if (buf_len < PP2_HDR_LEN_INET) + return 0; + hdr->fam = PP2_FAM_INET | PP2_TRANS_STREAM; + hdr->addr.ip4.src_addr = ((struct sockaddr_in *)src)->sin_addr.s_addr; + hdr->addr.ip4.src_port = ((struct sockaddr_in *)src)->sin_port; + hdr->addr.ip4.dst_addr = ((struct sockaddr_in *)dst)->sin_addr.s_addr; + hdr->addr.ip4.dst_port = ((struct sockaddr_in *)dst)->sin_port; + ret = PP2_HDR_LEN_INET; + } + /* IPv6 for at least one of src and dst */ + else { + struct in6_addr tmp; + + if (buf_len < PP2_HDR_LEN_INET6) + return 0; + hdr->fam = PP2_FAM_INET6 | PP2_TRANS_STREAM; + if (src->ss_family == AF_INET) { + v4tov6(&tmp, &((struct sockaddr_in *)src)->sin_addr); + memcpy(hdr->addr.ip6.src_addr, &tmp, 16); + hdr->addr.ip6.src_port = ((struct sockaddr_in *)src)->sin_port; + } + else { + memcpy(hdr->addr.ip6.src_addr, &((struct sockaddr_in6 *)src)->sin6_addr, 16); + hdr->addr.ip6.src_port = ((struct sockaddr_in6 *)src)->sin6_port; + } + if (dst->ss_family == AF_INET) { + v4tov6(&tmp, &((struct sockaddr_in *)dst)->sin_addr); + memcpy(hdr->addr.ip6.dst_addr, &tmp, 16); + hdr->addr.ip6.dst_port = ((struct sockaddr_in *)dst)->sin_port; + } + else { + memcpy(hdr->addr.ip6.dst_addr, &((struct sockaddr_in6 *)dst)->sin6_addr, 16); + hdr->addr.ip6.dst_port = ((struct sockaddr_in6 *)dst)->sin6_port; + } + + ret = PP2_HDR_LEN_INET6; + } + } + + if (strm) { + struct buffer *replace = NULL; + + list_for_each_entry(srv_tlv, &srv->pp_tlvs, list) { + replace = NULL; + + /* Users will always need to provide a value, in case of forwarding, they should use fc_pp_tlv. + * for generic types. Otherwise, we will send an empty TLV. + */ + if (!LIST_ISEMPTY(&srv_tlv->fmt)) { + replace = alloc_trash_chunk(); + if (unlikely(!replace)) + return 0; + + replace->data = build_logline(strm, replace->area, replace->size, &srv_tlv->fmt); + + if (unlikely((buf_len - ret) < sizeof(struct tlv))) { + free_trash_chunk(replace); + return 0; + } + ret += make_tlv(&buf[ret], (buf_len - ret), srv_tlv->type, replace->data, replace->area); + free_trash_chunk(replace); + } + else { + /* Create empty TLV as no value was specified */ + ret += make_tlv(&buf[ret], (buf_len - ret), srv_tlv->type, 0, NULL); + } + } + } + + /* Handle predefined TLVs as usual */ + if (srv->pp_opts & SRV_PP_V2_CRC32C) { + uint32_t zero_crc32c = 0; + + if ((buf_len - ret) < sizeof(struct tlv)) + return 0; + tlv_crc32c_p = (void *)((struct tlv *)&buf[ret])->value; + ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_CRC32C, sizeof(zero_crc32c), (const char *)&zero_crc32c); + } + + if (remote && conn_get_alpn(remote, &value, &value_len)) { + if ((buf_len - ret) < sizeof(struct tlv)) + return 0; + ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_ALPN, value_len, value); + } + + if (srv->pp_opts & SRV_PP_V2_AUTHORITY) { + struct conn_tlv_list *tlv = conn_get_tlv(remote, PP2_TYPE_AUTHORITY); + + value = NULL; + if (tlv) { + value_len = tlv->len; + value = tlv->value; + } +#ifdef USE_OPENSSL + else { + if ((value = ssl_sock_get_sni(remote))) + value_len = strlen(value); + } +#endif + if (value) { + if ((buf_len - ret) < sizeof(struct tlv)) + return 0; + ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_AUTHORITY, value_len, value); + } + } + + if (strm && (srv->pp_opts & SRV_PP_V2_UNIQUE_ID)) { + struct session* sess = strm_sess(strm); + struct ist unique_id = stream_generate_unique_id(strm, &sess->fe->format_unique_id); + + value = unique_id.ptr; + value_len = unique_id.len; + + if (value_len >= 0) { + if ((buf_len - ret) < sizeof(struct tlv)) + return 0; + ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_UNIQUE_ID, value_len, value); + } + } + +#ifdef USE_OPENSSL + if (srv->pp_opts & SRV_PP_V2_SSL) { + struct tlv_ssl *tlv; + int ssl_tlv_len = 0; + + if ((buf_len - ret) < sizeof(struct tlv_ssl)) + return 0; + tlv = (struct tlv_ssl *)&buf[ret]; + memset(tlv, 0, sizeof(struct tlv_ssl)); + ssl_tlv_len += sizeof(struct tlv_ssl); + tlv->tlv.type = PP2_TYPE_SSL; + if (conn_is_ssl(remote)) { + tlv->client |= PP2_CLIENT_SSL; + value = ssl_sock_get_proto_version(remote); + if (value) { + ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len-ret-ssl_tlv_len), PP2_SUBTYPE_SSL_VERSION, strlen(value), value); + } + if (ssl_sock_get_cert_used_sess(remote)) { + tlv->client |= PP2_CLIENT_CERT_SESS; + tlv->verify = htonl(ssl_sock_get_verify_result(remote)); + if (ssl_sock_get_cert_used_conn(remote)) + tlv->client |= PP2_CLIENT_CERT_CONN; + } + if (srv->pp_opts & SRV_PP_V2_SSL_CN) { + struct buffer *cn_trash = get_trash_chunk(); + if (ssl_sock_get_remote_common_name(remote, cn_trash) > 0) { + ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_CN, + cn_trash->data, + cn_trash->area); + } + } + if (srv->pp_opts & SRV_PP_V2_SSL_KEY_ALG) { + struct buffer *pkey_trash = get_trash_chunk(); + if (ssl_sock_get_pkey_algo(remote, pkey_trash) > 0) { + ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_KEY_ALG, + pkey_trash->data, + pkey_trash->area); + } + } + if (srv->pp_opts & SRV_PP_V2_SSL_SIG_ALG) { + value = ssl_sock_get_cert_sig(remote); + if (value) { + ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_SIG_ALG, strlen(value), value); + } + } + if (srv->pp_opts & SRV_PP_V2_SSL_CIPHER) { + value = ssl_sock_get_cipher_name(remote); + if (value) { + ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_CIPHER, strlen(value), value); + } + } + } + tlv->tlv.length_hi = (uint16_t)(ssl_tlv_len - sizeof(struct tlv)) >> 8; + tlv->tlv.length_lo = (uint16_t)(ssl_tlv_len - sizeof(struct tlv)) & 0x00ff; + ret += ssl_tlv_len; + } +#endif + +#ifdef USE_NS + if (remote && (remote->proxy_netns)) { + if ((buf_len - ret) < sizeof(struct tlv)) + return 0; + ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_NETNS, remote->proxy_netns->name_len, remote->proxy_netns->node.key); + } +#endif + + hdr->len = htons((uint16_t)(ret - PP2_HEADER_LEN)); + + if (tlv_crc32c_p) { + write_u32(tlv_crc32c_p, htonl(hash_crc32c(buf, ret))); + } + + return ret; +} + +/* Note: <remote> is explicitly allowed to be NULL */ +int make_proxy_line(char *buf, int buf_len, struct server *srv, struct connection *remote, struct stream *strm) +{ + int ret = 0; + + if (srv && (srv->pp_opts & SRV_PP_V2)) { + ret = make_proxy_line_v2(buf, buf_len, srv, remote, strm); + } + else { + const struct sockaddr_storage *src = NULL; + const struct sockaddr_storage *dst = NULL; + + if (strm) { + src = sc_src(strm->scf); + dst = sc_dst(strm->scf); + } + else if (remote && conn_get_src(remote) && conn_get_dst(remote)) { + src = conn_src(remote); + dst = conn_dst(remote); + } + + if (src && dst) + ret = make_proxy_line_v1(buf, buf_len, src, dst); + else + ret = make_proxy_line_v1(buf, buf_len, NULL, NULL); + } + + return ret; +} + +/* returns 0 on success */ +static int cfg_parse_pp2_never_send_local(char **args, int section_type, struct proxy *curpx, + const struct proxy *defpx, const char *file, int line, + char **err) +{ + if (too_many_args(0, args, err, NULL)) + return -1; + pp2_never_send_local = 1; + return 0; +} + +/* extracts some info from the connection and appends them to buffer <buf>. The + * connection's pointer, its direction, target (fe/be/srv), xprt/ctrl, source + * when set, destination when set, are printed in a compact human-readable format + * fitting on a single line. This is handy to complete traces or debug output. + * It is permitted to pass a NULL conn pointer. The number of characters emitted + * is returned. A prefix <pfx> might be prepended before the first field if not + * NULL. + */ +int conn_append_debug_info(struct buffer *buf, const struct connection *conn, const char *pfx) +{ + const struct listener *li; + const struct server *sv; + const struct proxy *px; + char addr[40]; + int old_len = buf->data; + + if (!conn) + return 0; + + chunk_appendf(buf, "%sconn=%p(%s)", pfx ? pfx : "", conn, conn_is_back(conn) ? "OUT" : "IN"); + + if ((li = objt_listener(conn->target))) + chunk_appendf(buf, " fe=%s", li->bind_conf->frontend->id); + else if ((sv = objt_server(conn->target))) + chunk_appendf(buf, " sv=%s/%s", sv->proxy->id, sv->id); + else if ((px = objt_proxy(conn->target))) + chunk_appendf(buf, " be=%s", px->id); + + chunk_appendf(buf, " %s/%s", conn_get_xprt_name(conn), conn_get_ctrl_name(conn)); + + if (conn->src && addr_to_str(conn->src, addr, sizeof(addr))) + chunk_appendf(buf, " src=%s:%d", addr, get_host_port(conn->src)); + + if (conn->dst && addr_to_str(conn->dst, addr, sizeof(addr))) + chunk_appendf(buf, " dst=%s:%d", addr, get_host_port(conn->dst)); + + return buf->data - old_len; +} + +/* return the major HTTP version as 1 or 2 depending on how the request arrived + * before being processed. + * + * WARNING: Should be updated if a new major HTTP version is added. + */ +static int +smp_fetch_fc_http_major(const struct arg *args, struct sample *smp, const char *kw, void *private) +{ + struct connection *conn = NULL; + const char *mux_name = NULL; + + if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) + conn = (kw[0] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; + else + conn = (kw[0] != 'b') ? objt_conn(smp->sess->origin) : + smp->strm ? sc_conn(smp->strm->scb) : NULL; + + /* No connection or a connection with a RAW muxx */ + if (!conn || (conn->mux && !(conn->mux->flags & MX_FL_HTX))) + return 0; + + /* No mux install, this may change */ + if (!conn->mux) { + smp->flags |= SMP_F_MAY_CHANGE; + return 0; + } + + mux_name = conn_get_mux_name(conn); + + smp->data.type = SMP_T_SINT; + if (strcmp(mux_name, "QUIC") == 0) + smp->data.u.sint = 3; + else if (strcmp(mux_name, "H2") == 0) + smp->data.u.sint = 2; + else + smp->data.u.sint = 1; + + return 1; +} + +/* fetch if the received connection used a PROXY protocol header */ +int smp_fetch_fc_rcvd_proxy(const struct arg *args, struct sample *smp, const char *kw, void *private) +{ + struct connection *conn; + + conn = objt_conn(smp->sess->origin); + if (!conn) + return 0; + + if (conn->flags & CO_FL_WAIT_XPRT) { + smp->flags |= SMP_F_MAY_CHANGE; + return 0; + } + + smp->flags = 0; + smp->data.type = SMP_T_BOOL; + smp->data.u.sint = (conn->flags & CO_FL_RCVD_PROXY) ? 1 : 0; + + return 1; +} + +/* + * This function checks the TLV type converter configuration. + * It expects the corresponding TLV type as a string representing the number + * or a constant. args[0] will be turned into the numerical value of the + * TLV type string. + */ +static int smp_check_tlv_type(struct arg *args, char **err) +{ + int type; + char *endp; + struct ist input = ist2(args[0].data.str.area, args[0].data.str.data); + + if (isteqi(input, ist("ALPN")) != 0) + type = PP2_TYPE_ALPN; + else if (isteqi(input, ist("AUTHORITY")) != 0) + type = PP2_TYPE_AUTHORITY; + else if (isteqi(input, ist("CRC32C")) != 0) + type = PP2_TYPE_CRC32C; + else if (isteqi(input, ist("NOOP")) != 0) + type = PP2_TYPE_NOOP; + else if (isteqi(input, ist("UNIQUE_ID")) != 0) + type = PP2_TYPE_UNIQUE_ID; + else if (isteqi(input, ist("SSL")) != 0) + type = PP2_TYPE_SSL; + else if (isteqi(input, ist("SSL_VERSION")) != 0) + type = PP2_SUBTYPE_SSL_VERSION; + else if (isteqi(input, ist("SSL_CN")) != 0) + type = PP2_SUBTYPE_SSL_CN; + else if (isteqi(input, ist("SSL_CIPHER")) != 0) + type = PP2_SUBTYPE_SSL_CIPHER; + else if (isteqi(input, ist("SSL_SIG_ALG")) != 0) + type = PP2_SUBTYPE_SSL_SIG_ALG; + else if (isteqi(input, ist("SSL_KEY_ALG")) != 0) + type = PP2_SUBTYPE_SSL_KEY_ALG; + else if (isteqi(input, ist("NETNS")) != 0) + type = PP2_TYPE_NETNS; + else { + type = strtoul(input.ptr, &endp, 0); + if (endp && *endp != '\0') { + memprintf(err, "Could not convert type '%s'", input.ptr); + return 0; + } + } + + if (type < 0 || type > 255) { + memprintf(err, "Invalid TLV Type '%s'", input.ptr); + return 0; + } + + chunk_destroy(&args[0].data.str); + args[0].type = ARGT_SINT; + args[0].data.sint = type; + + return 1; +} + +/* fetch an arbitrary TLV from a PROXY protocol v2 header */ +int smp_fetch_fc_pp_tlv(const struct arg *args, struct sample *smp, const char *kw, void *private) +{ + int idx; + struct connection *conn = NULL; + struct conn_tlv_list *conn_tlv = NULL; + + conn = objt_conn(smp->sess->origin); + if (!conn) + return 0; + + if (conn->flags & CO_FL_WAIT_XPRT) { + smp->flags |= SMP_F_MAY_CHANGE; + return 0; + } + + if (args[0].type != ARGT_SINT) + return 0; + + idx = args[0].data.sint; + conn_tlv = smp->ctx.p ? smp->ctx.p : LIST_ELEM(conn->tlv_list.n, struct conn_tlv_list *, list); + list_for_each_entry_from(conn_tlv, &conn->tlv_list, list) { + if (conn_tlv->type == idx) { + smp->flags |= SMP_F_NOT_LAST; + smp->data.type = SMP_T_STR; + smp->data.u.str.area = conn_tlv->value; + smp->data.u.str.data = conn_tlv->len; + smp->ctx.p = conn_tlv; + + return 1; + } + } + + smp->flags &= ~SMP_F_NOT_LAST; + + return 0; +} + +/* fetch the authority TLV from a PROXY protocol header */ +int smp_fetch_fc_pp_authority(const struct arg *args, struct sample *smp, const char *kw, void *private) +{ + struct arg tlv_arg; + int ret; + + set_tlv_arg(PP2_TYPE_AUTHORITY, &tlv_arg); + ret = smp_fetch_fc_pp_tlv(&tlv_arg, smp, kw, private); + smp->flags &= ~SMP_F_NOT_LAST; // return only the first authority + return ret; +} + +/* fetch the unique ID TLV from a PROXY protocol header */ +int smp_fetch_fc_pp_unique_id(const struct arg *args, struct sample *smp, const char *kw, void *private) +{ + struct arg tlv_arg; + int ret; + + set_tlv_arg(PP2_TYPE_UNIQUE_ID, &tlv_arg); + ret = smp_fetch_fc_pp_tlv(&tlv_arg, smp, kw, private); + smp->flags &= ~SMP_F_NOT_LAST; // return only the first unique ID + return ret; +} + +/* fetch the error code of a connection */ +int smp_fetch_fc_err(const struct arg *args, struct sample *smp, const char *kw, void *private) +{ + struct connection *conn; + + if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) + conn = (kw[0] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; + else + conn = (kw[0] != 'b') ? objt_conn(smp->sess->origin) : + smp->strm ? sc_conn(smp->strm->scb) : NULL; + + if (!conn) + return 0; + + if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { + smp->flags |= SMP_F_MAY_CHANGE; + return 0; + } + + smp->flags = 0; + smp->data.type = SMP_T_SINT; + smp->data.u.sint = (unsigned long long int)conn->err_code; + + return 1; +} + +/* fetch a string representation of the error code of a connection */ +int smp_fetch_fc_err_str(const struct arg *args, struct sample *smp, const char *kw, void *private) +{ + struct connection *conn; + const char *err_code_str; + + if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) + conn = (kw[0] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; + else + conn = (kw[0] != 'b') ? objt_conn(smp->sess->origin) : + smp->strm ? sc_conn(smp->strm->scb) : NULL; + + if (!conn) + return 0; + + if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { + smp->flags |= SMP_F_MAY_CHANGE; + return 0; + } + + err_code_str = conn_err_code_str(conn); + + if (!err_code_str) + return 0; + + smp->flags = 0; + smp->data.type = SMP_T_STR; + smp->data.u.str.area = (char*)err_code_str; + smp->data.u.str.data = strlen(err_code_str); + + return 1; +} + +/* Note: must not be declared <const> as its list will be overwritten. + * Note: fetches that may return multiple types should be declared using the + * appropriate pseudo-type. If not available it must be declared as the lowest + * common denominator, the type that can be casted into all other ones. + */ +static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, { + { "bc_err", smp_fetch_fc_err, 0, NULL, SMP_T_SINT, SMP_USE_L4SRV }, + { "bc_err_str", smp_fetch_fc_err_str, 0, NULL, SMP_T_STR, SMP_USE_L4SRV }, + { "bc_http_major", smp_fetch_fc_http_major, 0, NULL, SMP_T_SINT, SMP_USE_L4SRV }, + { "fc_err", smp_fetch_fc_err, 0, NULL, SMP_T_SINT, SMP_USE_L4CLI }, + { "fc_err_str", smp_fetch_fc_err_str, 0, NULL, SMP_T_STR, SMP_USE_L4CLI }, + { "fc_http_major", smp_fetch_fc_http_major, 0, NULL, SMP_T_SINT, SMP_USE_L4CLI }, + { "fc_rcvd_proxy", smp_fetch_fc_rcvd_proxy, 0, NULL, SMP_T_BOOL, SMP_USE_L4CLI }, + { "fc_pp_authority", smp_fetch_fc_pp_authority, 0, NULL, SMP_T_STR, SMP_USE_L4CLI }, + { "fc_pp_unique_id", smp_fetch_fc_pp_unique_id, 0, NULL, SMP_T_STR, SMP_USE_L4CLI }, + { "fc_pp_tlv", smp_fetch_fc_pp_tlv, ARG1(1, STR), smp_check_tlv_type, SMP_T_STR, SMP_USE_L4CLI }, + { /* END */ }, +}}; + +INITCALL1(STG_REGISTER, sample_register_fetches, &sample_fetch_keywords); + +static struct cfg_kw_list cfg_kws = {ILH, { + { CFG_GLOBAL, "pp2-never-send-local", cfg_parse_pp2_never_send_local }, + { /* END */ }, +}}; + +INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws); + +/* private function to handle sockaddr as input for connection hash */ +static void conn_calculate_hash_sockaddr(const struct sockaddr_storage *ss, + char *buf, size_t *idx, + enum conn_hash_params_t *hash_flags, + enum conn_hash_params_t param_type_addr, + enum conn_hash_params_t param_type_port) +{ + struct sockaddr_in *addr; + struct sockaddr_in6 *addr6; + + switch (ss->ss_family) { + case AF_INET: + addr = (struct sockaddr_in *)ss; + + conn_hash_update(buf, idx, + &addr->sin_addr, sizeof(addr->sin_addr), + hash_flags, param_type_addr); + + if (addr->sin_port) { + conn_hash_update(buf, idx, + &addr->sin_port, sizeof(addr->sin_port), + hash_flags, param_type_port); + } + + break; + + case AF_INET6: + addr6 = (struct sockaddr_in6 *)ss; + + conn_hash_update(buf, idx, + &addr6->sin6_addr, sizeof(addr6->sin6_addr), + hash_flags, param_type_addr); + + if (addr6->sin6_port) { + conn_hash_update(buf, idx, + &addr6->sin6_port, sizeof(addr6->sin6_port), + hash_flags, param_type_port); + } + + break; + } +} + +/* Generate the hash of a connection with params as input + * Each non-null field of params is taken into account for the hash calcul. + */ +uint64_t conn_hash_prehash(char *buf, size_t size) +{ + return XXH64(buf, size, 0); +} + +/* Append <data> into <buf> at <idx> offset in preparation for connection hash + * calcul. <idx> is incremented beyond data <size>. In the same time, <flags> + * are updated with <type> for the hash header. + */ +void conn_hash_update(char *buf, size_t *idx, + const void *data, size_t size, + enum conn_hash_params_t *flags, + enum conn_hash_params_t type) +{ + memcpy(&buf[*idx], data, size); + *idx += size; + *flags |= type; +} + +uint64_t conn_hash_digest(char *buf, size_t bufsize, + enum conn_hash_params_t flags) +{ + const uint64_t flags_u64 = (uint64_t)flags; + const uint64_t hash = XXH64(buf, bufsize, 0); + + return (flags_u64 << CONN_HASH_PAYLOAD_LEN) | CONN_HASH_GET_PAYLOAD(hash); +} + +uint64_t conn_calculate_hash(const struct conn_hash_params *params) +{ + char *buf; + size_t idx = 0; + uint64_t hash = 0; + enum conn_hash_params_t hash_flags = 0; + + buf = trash.area; + + conn_hash_update(buf, &idx, ¶ms->target, sizeof(params->target), &hash_flags, 0); + + if (params->sni_prehash) { + conn_hash_update(buf, &idx, + ¶ms->sni_prehash, sizeof(params->sni_prehash), + &hash_flags, CONN_HASH_PARAMS_TYPE_SNI); + } + + if (params->dst_addr) { + conn_calculate_hash_sockaddr(params->dst_addr, + buf, &idx, &hash_flags, + CONN_HASH_PARAMS_TYPE_DST_ADDR, + CONN_HASH_PARAMS_TYPE_DST_PORT); + } + + if (params->src_addr) { + conn_calculate_hash_sockaddr(params->src_addr, + buf, &idx, &hash_flags, + CONN_HASH_PARAMS_TYPE_SRC_ADDR, + CONN_HASH_PARAMS_TYPE_SRC_PORT); + } + + if (params->proxy_prehash) { + conn_hash_update(buf, &idx, + ¶ms->proxy_prehash, sizeof(params->proxy_prehash), + &hash_flags, CONN_HASH_PARAMS_TYPE_PROXY); + } + + hash = conn_hash_digest(buf, idx, hash_flags); + return hash; +} + +/* Reverse a <conn> connection instance. This effectively moves the connection + * from frontend to backend side or vice-versa depending on its initial status. + * + * For active reversal, 'reverse' member points to the listener used as the new + * connection target. Once transition is completed, the connection needs to be + * accepted on the listener to instantiate its parent session before using + * streams. + * + * For passive reversal, 'reverse' member points to the server used as the new + * connection target. Once transition is completed, the connection appears as a + * normal backend connection. + * + * Returns 0 on success else non-zero. + */ +int conn_reverse(struct connection *conn) +{ + struct conn_hash_params hash_params; + int64_t hash = 0; + struct session *sess = conn->owner; + + if (!conn_is_back(conn)) { + /* srv must have been set by a previous 'attach-srv' rule. */ + struct server *srv = objt_server(conn->reverse.target); + BUG_ON(!srv); + + if (conn_backend_init(conn)) + return 1; + + /* Initialize hash value for usage as idle conns. */ + memset(&hash_params, 0, sizeof(hash_params)); + hash_params.target = srv; + + if (b_data(&conn->reverse.name)) { + /* data cannot wrap else prehash usage is incorrect */ + BUG_ON(b_data(&conn->reverse.name) != b_contig_data(&conn->reverse.name, 0)); + + hash_params.sni_prehash = + conn_hash_prehash(b_head(&conn->reverse.name), + b_data(&conn->reverse.name)); + } + + hash = conn_calculate_hash(&hash_params); + conn->hash_node->node.key = hash; + + conn->target = &srv->obj_type; + srv_use_conn(srv, conn); + + /* Free the session after detaching the connection from it. */ + session_unown_conn(sess, conn); + sess->origin = NULL; + session_free(sess); + conn_set_owner(conn, NULL, NULL); + + conn->flags |= CO_FL_REVERSED; + } + else { + /* Wake up receiver to proceed to connection accept. */ + struct listener *l = __objt_listener(conn->reverse.target); + + conn_backend_deinit(conn); + + conn->target = &l->obj_type; + conn->flags |= CO_FL_ACT_REVERSING; + task_wakeup(l->rx.rhttp.task, TASK_WOKEN_ANY); + } + + /* Invert source and destination addresses if already set. */ + SWAP(conn->src, conn->dst); + + conn->reverse.target = NULL; + ha_free(&conn->reverse.name.area); + conn->reverse.name = BUF_NULL; + + return 0; +} + +/* Handler of the task of mux_stopping_data. + * Called on soft-stop. + */ +static struct task *mux_stopping_process(struct task *t, void *ctx, unsigned int state) +{ + struct connection *conn, *back; + + list_for_each_entry_safe(conn, back, &mux_stopping_data[tid].list, stopping_list) { + if (conn->mux && conn->mux->wake) + conn->mux->wake(conn); + } + + return t; +} + +static int allocate_mux_cleanup(void) +{ + /* allocates the thread bound mux_stopping_data task */ + mux_stopping_data[tid].task = task_new_here(); + if (!mux_stopping_data[tid].task) { + ha_alert("Failed to allocate the task for connection cleanup on thread %d.\n", tid); + return 0; + } + + mux_stopping_data[tid].task->process = mux_stopping_process; + LIST_INIT(&mux_stopping_data[tid].list); + + return 1; +} +REGISTER_PER_THREAD_ALLOC(allocate_mux_cleanup); + +static int deallocate_mux_cleanup(void) +{ + task_destroy(mux_stopping_data[tid].task); + return 1; +} +REGISTER_PER_THREAD_FREE(deallocate_mux_cleanup); + +static void deinit_idle_conns(void) +{ + int i; + + for (i = 0; i < global.nbthread; i++) { + task_destroy(idle_conns[i].cleanup_task); + } +} +REGISTER_POST_DEINIT(deinit_idle_conns); |