summaryrefslogtreecommitdiffstats
path: root/src/peers.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/peers.c')
-rw-r--r--src/peers.c4231
1 files changed, 4231 insertions, 0 deletions
diff --git a/src/peers.c b/src/peers.c
new file mode 100644
index 0000000..5eefd18
--- /dev/null
+++ b/src/peers.c
@@ -0,0 +1,4231 @@
+/*
+ * Peer synchro management.
+ *
+ * Copyright 2010 EXCELIANCE, Emeric Brun <ebrun@exceliance.fr>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ *
+ */
+
+#include <errno.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include <sys/socket.h>
+#include <sys/stat.h>
+#include <sys/types.h>
+
+#include <import/eb32tree.h>
+#include <import/ebmbtree.h>
+#include <import/ebpttree.h>
+
+#include <haproxy/api.h>
+#include <haproxy/applet.h>
+#include <haproxy/cfgparse.h>
+#include <haproxy/channel.h>
+#include <haproxy/cli.h>
+#include <haproxy/dict.h>
+#include <haproxy/errors.h>
+#include <haproxy/fd.h>
+#include <haproxy/frontend.h>
+#include <haproxy/net_helper.h>
+#include <haproxy/obj_type-t.h>
+#include <haproxy/peers.h>
+#include <haproxy/proxy.h>
+#include <haproxy/sc_strm.h>
+#include <haproxy/session-t.h>
+#include <haproxy/signal.h>
+#include <haproxy/stats-t.h>
+#include <haproxy/stconn.h>
+#include <haproxy/stick_table.h>
+#include <haproxy/stream.h>
+#include <haproxy/task.h>
+#include <haproxy/thread.h>
+#include <haproxy/time.h>
+#include <haproxy/tools.h>
+#include <haproxy/trace.h>
+
+
+/*******************************/
+/* Current peer learning state */
+/*******************************/
+
+/******************************/
+/* Current peers section resync state */
+/******************************/
+#define PEERS_F_RESYNC_LOCAL 0x00000001 /* Learn from local finished or no more needed */
+#define PEERS_F_RESYNC_REMOTE 0x00000002 /* Learn from remote finished or no more needed */
+#define PEERS_F_RESYNC_ASSIGN 0x00000004 /* A peer was assigned to learn our lesson */
+#define PEERS_F_RESYNC_PROCESS 0x00000008 /* The assigned peer was requested for resync */
+#define PEERS_F_RESYNC_LOCALTIMEOUT 0x00000010 /* Timeout waiting for a full resync from a local node */
+#define PEERS_F_RESYNC_REMOTETIMEOUT 0x00000020 /* Timeout waiting for a full resync from a remote node */
+#define PEERS_F_RESYNC_LOCALABORT 0x00000040 /* Session aborted learning from a local node */
+#define PEERS_F_RESYNC_REMOTEABORT 0x00000080 /* Session aborted learning from a remote node */
+#define PEERS_F_RESYNC_LOCALFINISHED 0x00000100 /* A local node teach us and was fully up to date */
+#define PEERS_F_RESYNC_REMOTEFINISHED 0x00000200 /* A remote node teach us and was fully up to date */
+#define PEERS_F_RESYNC_LOCALPARTIAL 0x00000400 /* A local node teach us but was partially up to date */
+#define PEERS_F_RESYNC_REMOTEPARTIAL 0x00000800 /* A remote node teach us but was partially up to date */
+#define PEERS_F_RESYNC_LOCALASSIGN 0x00001000 /* A local node was assigned for a full resync */
+#define PEERS_F_RESYNC_REMOTEASSIGN 0x00002000 /* A remote node was assigned for a full resync */
+#define PEERS_F_RESYNC_REQUESTED 0x00004000 /* A resync was explicitly requested */
+#define PEERS_F_DONOTSTOP 0x00010000 /* Main table sync task block process during soft stop
+ to push data to new process */
+
+#define PEERS_RESYNC_STATEMASK (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE)
+#define PEERS_RESYNC_FROMLOCAL 0x00000000
+#define PEERS_RESYNC_FROMREMOTE PEERS_F_RESYNC_LOCAL
+#define PEERS_RESYNC_FINISHED (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE)
+
+/***********************************/
+/* Current shared table sync state */
+/***********************************/
+#define SHTABLE_F_TEACH_STAGE1 0x00000001 /* Teach state 1 complete */
+#define SHTABLE_F_TEACH_STAGE2 0x00000002 /* Teach state 2 complete */
+
+/******************************/
+/* Remote peer teaching state */
+/******************************/
+#define PEER_F_TEACH_PROCESS 0x00000001 /* Teach a lesson to current peer */
+#define PEER_F_TEACH_FINISHED 0x00000008 /* Teach conclude, (wait for confirm) */
+#define PEER_F_TEACH_COMPLETE 0x00000010 /* All that we know already taught to current peer, used only for a local peer */
+#define PEER_F_LEARN_ASSIGN 0x00000100 /* Current peer was assigned for a lesson */
+#define PEER_F_LEARN_NOTUP2DATE 0x00000200 /* Learn from peer finished but peer is not up to date */
+#define PEER_F_ALIVE 0x20000000 /* Used to flag a peer a alive. */
+#define PEER_F_HEARTBEAT 0x40000000 /* Heartbeat message to send. */
+#define PEER_F_DWNGRD 0x80000000 /* When this flag is enabled, we must downgrade the supported version announced during peer sessions. */
+
+#define PEER_TEACH_RESET ~(PEER_F_TEACH_PROCESS|PEER_F_TEACH_FINISHED) /* PEER_F_TEACH_COMPLETE should never be reset */
+#define PEER_LEARN_RESET ~(PEER_F_LEARN_ASSIGN|PEER_F_LEARN_NOTUP2DATE)
+
+#define PEER_RESYNC_TIMEOUT 5000 /* 5 seconds */
+#define PEER_RECONNECT_TIMEOUT 5000 /* 5 seconds */
+#define PEER_LOCAL_RECONNECT_TIMEOUT 500 /* 500ms */
+#define PEER_HEARTBEAT_TIMEOUT 3000 /* 3 seconds */
+
+/* default maximum of updates sent at once */
+#define PEER_DEF_MAX_UPDATES_AT_ONCE 200
+
+/* flags for "show peers" */
+#define PEERS_SHOW_F_DICT 0x00000001 /* also show the contents of the dictionary */
+
+/*****************************/
+/* Sync message class */
+/*****************************/
+enum {
+ PEER_MSG_CLASS_CONTROL = 0,
+ PEER_MSG_CLASS_ERROR,
+ PEER_MSG_CLASS_STICKTABLE = 10,
+ PEER_MSG_CLASS_RESERVED = 255,
+};
+
+/*****************************/
+/* control message types */
+/*****************************/
+enum {
+ PEER_MSG_CTRL_RESYNCREQ = 0,
+ PEER_MSG_CTRL_RESYNCFINISHED,
+ PEER_MSG_CTRL_RESYNCPARTIAL,
+ PEER_MSG_CTRL_RESYNCCONFIRM,
+ PEER_MSG_CTRL_HEARTBEAT,
+};
+
+/*****************************/
+/* error message types */
+/*****************************/
+enum {
+ PEER_MSG_ERR_PROTOCOL = 0,
+ PEER_MSG_ERR_SIZELIMIT,
+};
+
+/* network key types;
+ * network types were directly and mistakenly
+ * mapped on sample types, to keep backward
+ * compatiblitiy we keep those values but
+ * we now use a internal/network mapping
+ * to avoid further mistakes adding or
+ * modifying internals types
+ */
+enum {
+ PEER_KT_ANY = 0, /* any type */
+ PEER_KT_RESV1, /* UNUSED */
+ PEER_KT_SINT, /* signed 64bits integer type */
+ PEER_KT_RESV3, /* UNUSED */
+ PEER_KT_IPV4, /* ipv4 type */
+ PEER_KT_IPV6, /* ipv6 type */
+ PEER_KT_STR, /* char string type */
+ PEER_KT_BIN, /* buffer type */
+ PEER_KT_TYPES /* number of types, must always be last */
+};
+
+/* Map used to retrieve network type from internal type
+ * Note: Undeclared mapping maps entry to PEER_KT_ANY == 0
+ */
+static int peer_net_key_type[SMP_TYPES] = {
+ [SMP_T_SINT] = PEER_KT_SINT,
+ [SMP_T_IPV4] = PEER_KT_IPV4,
+ [SMP_T_IPV6] = PEER_KT_IPV6,
+ [SMP_T_STR] = PEER_KT_STR,
+ [SMP_T_BIN] = PEER_KT_BIN,
+};
+
+/* Map used to retrieve internal type from external type
+ * Note: Undeclared mapping maps entry to SMP_T_ANY == 0
+ */
+static int peer_int_key_type[PEER_KT_TYPES] = {
+ [PEER_KT_SINT] = SMP_T_SINT,
+ [PEER_KT_IPV4] = SMP_T_IPV4,
+ [PEER_KT_IPV6] = SMP_T_IPV6,
+ [PEER_KT_STR] = SMP_T_STR,
+ [PEER_KT_BIN] = SMP_T_BIN,
+};
+
+/*
+ * Parameters used by functions to build peer protocol messages. */
+struct peer_prep_params {
+ struct {
+ struct peer *peer;
+ } hello;
+ struct {
+ unsigned int st1;
+ } error_status;
+ struct {
+ struct stksess *stksess;
+ struct shared_table *shared_table;
+ unsigned int updateid;
+ int use_identifier;
+ int use_timed;
+ struct peer *peer;
+ } updt;
+ struct {
+ struct shared_table *shared_table;
+ } swtch;
+ struct {
+ struct shared_table *shared_table;
+ } ack;
+ struct {
+ unsigned char head[2];
+ } control;
+ struct {
+ unsigned char head[2];
+ } error;
+};
+
+/*******************************/
+/* stick table sync mesg types */
+/* Note: ids >= 128 contains */
+/* id message contains data */
+/*******************************/
+#define PEER_MSG_STKT_UPDATE 0x80
+#define PEER_MSG_STKT_INCUPDATE 0x81
+#define PEER_MSG_STKT_DEFINE 0x82
+#define PEER_MSG_STKT_SWITCH 0x83
+#define PEER_MSG_STKT_ACK 0x84
+#define PEER_MSG_STKT_UPDATE_TIMED 0x85
+#define PEER_MSG_STKT_INCUPDATE_TIMED 0x86
+/* All the stick-table message identifiers abova have the #7 bit set */
+#define PEER_MSG_STKT_BIT 7
+#define PEER_MSG_STKT_BIT_MASK (1 << PEER_MSG_STKT_BIT)
+
+/* The maximum length of an encoded data length. */
+#define PEER_MSG_ENC_LENGTH_MAXLEN 5
+
+/* Minimum 64-bits value encoded with 2 bytes */
+#define PEER_ENC_2BYTES_MIN 0xf0 /* 0xf0 (or 240) */
+/* 3 bytes */
+#define PEER_ENC_3BYTES_MIN ((1ULL << 11) | PEER_ENC_2BYTES_MIN) /* 0x8f0 (or 2288) */
+/* 4 bytes */
+#define PEER_ENC_4BYTES_MIN ((1ULL << 18) | PEER_ENC_3BYTES_MIN) /* 0x408f0 (or 264432) */
+/* 5 bytes */
+#define PEER_ENC_5BYTES_MIN ((1ULL << 25) | PEER_ENC_4BYTES_MIN) /* 0x20408f0 (or 33818864) */
+/* 6 bytes */
+#define PEER_ENC_6BYTES_MIN ((1ULL << 32) | PEER_ENC_5BYTES_MIN) /* 0x1020408f0 (or 4328786160) */
+/* 7 bytes */
+#define PEER_ENC_7BYTES_MIN ((1ULL << 39) | PEER_ENC_6BYTES_MIN) /* 0x81020408f0 (or 554084600048) */
+/* 8 bytes */
+#define PEER_ENC_8BYTES_MIN ((1ULL << 46) | PEER_ENC_7BYTES_MIN) /* 0x4081020408f0 (or 70922828777712) */
+/* 9 bytes */
+#define PEER_ENC_9BYTES_MIN ((1ULL << 53) | PEER_ENC_8BYTES_MIN) /* 0x204081020408f0 (or 9078122083518704) */
+/* 10 bytes */
+#define PEER_ENC_10BYTES_MIN ((1ULL << 60) | PEER_ENC_9BYTES_MIN) /* 0x10204081020408f0 (or 1161999626690365680) */
+
+/* #7 bit used to detect the last byte to be encoded */
+#define PEER_ENC_STOP_BIT 7
+/* The byte minimum value with #7 bit set */
+#define PEER_ENC_STOP_BYTE (1 << PEER_ENC_STOP_BIT)
+/* The left most number of bits set for PEER_ENC_2BYTES_MIN */
+#define PEER_ENC_2BYTES_MIN_BITS 4
+
+#define PEER_MSG_HEADER_LEN 2
+
+#define PEER_STKT_CACHE_MAX_ENTRIES 128
+
+/**********************************/
+/* Peer Session IO handler states */
+/**********************************/
+
+enum {
+ PEER_SESS_ST_ACCEPT = 0, /* Initial state for session create by an accept, must be zero! */
+ PEER_SESS_ST_GETVERSION, /* Validate supported protocol version */
+ PEER_SESS_ST_GETHOST, /* Validate host ID correspond to local host id */
+ PEER_SESS_ST_GETPEER, /* Validate peer ID correspond to a known remote peer id */
+ /* after this point, data were possibly exchanged */
+ PEER_SESS_ST_SENDSUCCESS, /* Send ret code 200 (success) and wait for message */
+ PEER_SESS_ST_CONNECT, /* Initial state for session create on a connect, push presentation into buffer */
+ PEER_SESS_ST_GETSTATUS, /* Wait for the welcome message */
+ PEER_SESS_ST_WAITMSG, /* Wait for data messages */
+ PEER_SESS_ST_EXIT, /* Exit with status code */
+ PEER_SESS_ST_ERRPROTO, /* Send error proto message before exit */
+ PEER_SESS_ST_ERRSIZE, /* Send error size message before exit */
+ PEER_SESS_ST_END, /* Killed session */
+};
+
+/***************************************************/
+/* Peer Session status code - part of the protocol */
+/***************************************************/
+
+#define PEER_SESS_SC_CONNECTCODE 100 /* connect in progress */
+#define PEER_SESS_SC_CONNECTEDCODE 110 /* tcp connect success */
+
+#define PEER_SESS_SC_SUCCESSCODE 200 /* accept or connect successful */
+
+#define PEER_SESS_SC_TRYAGAIN 300 /* try again later */
+
+#define PEER_SESS_SC_ERRPROTO 501 /* error protocol */
+#define PEER_SESS_SC_ERRVERSION 502 /* unknown protocol version */
+#define PEER_SESS_SC_ERRHOST 503 /* bad host name */
+#define PEER_SESS_SC_ERRPEER 504 /* unknown peer */
+
+#define PEER_SESSION_PROTO_NAME "HAProxyS"
+#define PEER_MAJOR_VER 2
+#define PEER_MINOR_VER 1
+#define PEER_DWNGRD_MINOR_VER 0
+
+static size_t proto_len = sizeof(PEER_SESSION_PROTO_NAME) - 1;
+struct peers *cfg_peers = NULL;
+static int peers_max_updates_at_once = PEER_DEF_MAX_UPDATES_AT_ONCE;
+static void peer_session_forceshutdown(struct peer *peer);
+
+static struct ebpt_node *dcache_tx_insert(struct dcache *dc,
+ struct dcache_tx_entry *i);
+static inline void flush_dcache(struct peer *peer);
+
+/* trace source and events */
+static void peers_trace(enum trace_level level, uint64_t mask,
+ const struct trace_source *src,
+ const struct ist where, const struct ist func,
+ const void *a1, const void *a2, const void *a3, const void *a4);
+
+static const struct trace_event peers_trace_events[] = {
+#define PEERS_EV_UPDTMSG (1 << 0)
+ { .mask = PEERS_EV_UPDTMSG, .name = "updtmsg", .desc = "update message received" },
+#define PEERS_EV_ACKMSG (1 << 1)
+ { .mask = PEERS_EV_ACKMSG, .name = "ackmsg", .desc = "ack message received" },
+#define PEERS_EV_SWTCMSG (1 << 2)
+ { .mask = PEERS_EV_SWTCMSG, .name = "swtcmsg", .desc = "switch message received" },
+#define PEERS_EV_DEFMSG (1 << 3)
+ { .mask = PEERS_EV_DEFMSG, .name = "defmsg", .desc = "definition message received" },
+#define PEERS_EV_CTRLMSG (1 << 4)
+ { .mask = PEERS_EV_CTRLMSG, .name = "ctrlmsg", .desc = "control message sent/received" },
+#define PEERS_EV_SESSREL (1 << 5)
+ { .mask = PEERS_EV_SESSREL, .name = "sessrl", .desc = "peer session releasing" },
+#define PEERS_EV_PROTOERR (1 << 6)
+ { .mask = PEERS_EV_PROTOERR, .name = "protoerr", .desc = "protocol error" },
+};
+
+static const struct name_desc peers_trace_lockon_args[4] = {
+ /* arg1 */ { /* already used by the connection */ },
+ /* arg2 */ { .name="peers", .desc="Peers protocol" },
+ /* arg3 */ { },
+ /* arg4 */ { }
+};
+
+static const struct name_desc peers_trace_decoding[] = {
+#define PEERS_VERB_CLEAN 1
+ { .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
+ { /* end */ }
+};
+
+
+struct trace_source trace_peers = {
+ .name = IST("peers"),
+ .desc = "Peers protocol",
+ .arg_def = TRC_ARG1_CONN, /* TRACE()'s first argument is always a connection */
+ .default_cb = peers_trace,
+ .known_events = peers_trace_events,
+ .lockon_args = peers_trace_lockon_args,
+ .decoding = peers_trace_decoding,
+ .report_events = ~0, /* report everything by default */
+};
+
+/* Return peer control message types as strings (only for debugging purpose). */
+static inline char *ctrl_msg_type_str(unsigned int type)
+{
+ switch (type) {
+ case PEER_MSG_CTRL_RESYNCREQ:
+ return "RESYNCREQ";
+ case PEER_MSG_CTRL_RESYNCFINISHED:
+ return "RESYNCFINISHED";
+ case PEER_MSG_CTRL_RESYNCPARTIAL:
+ return "RESYNCPARTIAL";
+ case PEER_MSG_CTRL_RESYNCCONFIRM:
+ return "RESYNCCONFIRM";
+ case PEER_MSG_CTRL_HEARTBEAT:
+ return "HEARTBEAT";
+ default:
+ return "???";
+ }
+}
+
+#define TRACE_SOURCE &trace_peers
+INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
+
+static void peers_trace(enum trace_level level, uint64_t mask,
+ const struct trace_source *src,
+ const struct ist where, const struct ist func,
+ const void *a1, const void *a2, const void *a3, const void *a4)
+{
+ if (mask & (PEERS_EV_UPDTMSG|PEERS_EV_ACKMSG|PEERS_EV_SWTCMSG)) {
+ if (a2) {
+ const struct peer *peer = a2;
+
+ chunk_appendf(&trace_buf, " peer=%s", peer->id);
+ }
+ if (a3) {
+ const char *p = a3;
+
+ chunk_appendf(&trace_buf, " @%p", p);
+ }
+ if (a4) {
+ const size_t *val = a4;
+
+ chunk_appendf(&trace_buf, " %llu", (unsigned long long)*val);
+ }
+ }
+
+ if (mask & PEERS_EV_DEFMSG) {
+ if (a2) {
+ const struct peer *peer = a2;
+
+ chunk_appendf(&trace_buf, " peer=%s", peer->id);
+ }
+ if (a3) {
+ const char *p = a3;
+
+ chunk_appendf(&trace_buf, " @%p", p);
+ }
+ if (a4) {
+ const int *val = a4;
+
+ chunk_appendf(&trace_buf, " %d", *val);
+ }
+ }
+
+ if (mask & PEERS_EV_CTRLMSG) {
+ if (a2) {
+ const unsigned char *ctrl_msg_type = a2;
+
+ chunk_appendf(&trace_buf, " %s", ctrl_msg_type_str(*ctrl_msg_type));
+
+ }
+ if (a3) {
+ const char *local_peer = a3;
+
+ chunk_appendf(&trace_buf, " %s", local_peer);
+ }
+
+ if (a4) {
+ const char *remote_peer = a4;
+
+ chunk_appendf(&trace_buf, " -> %s", remote_peer);
+ }
+ }
+
+ if (mask & (PEERS_EV_SESSREL|PEERS_EV_PROTOERR)) {
+ if (a2) {
+ const struct peer *peer = a2;
+ struct peers *peers = NULL;
+
+ if (peer->appctx)
+ peers = peer->peers;
+
+ if (peers)
+ chunk_appendf(&trace_buf, " %s", peers->local->id);
+ chunk_appendf(&trace_buf, " -> %s", peer->id);
+ }
+
+ if (a3) {
+ const int *prev_state = a3;
+
+ chunk_appendf(&trace_buf, " prev_state=%d\n", *prev_state);
+ }
+ }
+}
+
+static const char *statuscode_str(int statuscode)
+{
+ switch (statuscode) {
+ case PEER_SESS_SC_CONNECTCODE:
+ return "CONN";
+ case PEER_SESS_SC_CONNECTEDCODE:
+ return "HSHK";
+ case PEER_SESS_SC_SUCCESSCODE:
+ return "ESTA";
+ case PEER_SESS_SC_TRYAGAIN:
+ return "RETR";
+ case PEER_SESS_SC_ERRPROTO:
+ return "PROT";
+ case PEER_SESS_SC_ERRVERSION:
+ return "VERS";
+ case PEER_SESS_SC_ERRHOST:
+ return "NAME";
+ case PEER_SESS_SC_ERRPEER:
+ return "UNKN";
+ default:
+ return "NONE";
+ }
+}
+
+/* This function encode an uint64 to 'dynamic' length format.
+ The encoded value is written at address *str, and the
+ caller must assure that size after *str is large enough.
+ At return, the *str is set at the next Byte after then
+ encoded integer. The function returns then length of the
+ encoded integer in Bytes */
+int intencode(uint64_t i, char **str) {
+ int idx = 0;
+ unsigned char *msg;
+
+ msg = (unsigned char *)*str;
+ if (i < PEER_ENC_2BYTES_MIN) {
+ msg[0] = (unsigned char)i;
+ *str = (char *)&msg[idx+1];
+ return (idx+1);
+ }
+
+ msg[idx] =(unsigned char)i | PEER_ENC_2BYTES_MIN;
+ i = (i - PEER_ENC_2BYTES_MIN) >> PEER_ENC_2BYTES_MIN_BITS;
+ while (i >= PEER_ENC_STOP_BYTE) {
+ msg[++idx] = (unsigned char)i | PEER_ENC_STOP_BYTE;
+ i = (i - PEER_ENC_STOP_BYTE) >> PEER_ENC_STOP_BIT;
+ }
+ msg[++idx] = (unsigned char)i;
+ *str = (char *)&msg[idx+1];
+ return (idx+1);
+}
+
+
+/* This function returns a decoded 64bits unsigned integer
+ * from a varint
+ *
+ * Calling:
+ * - *str must point on the first byte of the buffer to decode.
+ * - end must point on the next byte after the end of the buffer
+ * we are authorized to parse (buf + buflen)
+ *
+ * At return:
+ *
+ * On success *str will point at the byte following
+ * the fully decoded integer into the buffer. and
+ * the decoded value is returned.
+ *
+ * If end is reached before the integer was fully decoded,
+ * *str is set to NULL and the caller have to check this
+ * to know there is a decoding error. In this case
+ * the returned integer is also forced to 0
+ */
+uint64_t intdecode(char **str, char *end)
+{
+ unsigned char *msg;
+ uint64_t i;
+ int shift;
+
+ if (!*str)
+ return 0;
+
+ msg = (unsigned char *)*str;
+ if (msg >= (unsigned char *)end)
+ goto fail;
+
+ i = *(msg++);
+ if (i >= PEER_ENC_2BYTES_MIN) {
+ shift = PEER_ENC_2BYTES_MIN_BITS;
+ do {
+ if (msg >= (unsigned char *)end)
+ goto fail;
+ i += (uint64_t)*msg << shift;
+ shift += PEER_ENC_STOP_BIT;
+ } while (*(msg++) >= PEER_ENC_STOP_BYTE);
+ }
+ *str = (char *)msg;
+ return i;
+
+ fail:
+ *str = NULL;
+ return 0;
+}
+
+/*
+ * Build a "hello" peer protocol message.
+ * Return the number of written bytes written to build this messages if succeeded,
+ * 0 if not.
+ */
+static int peer_prepare_hellomsg(char *msg, size_t size, struct peer_prep_params *p)
+{
+ int min_ver, ret;
+ struct peer *peer;
+
+ peer = p->hello.peer;
+ min_ver = (peer->flags & PEER_F_DWNGRD) ? PEER_DWNGRD_MINOR_VER : PEER_MINOR_VER;
+ /* Prepare headers */
+ ret = snprintf(msg, size, PEER_SESSION_PROTO_NAME " %d.%d\n%s\n%s %d %d\n",
+ (int)PEER_MAJOR_VER, min_ver, peer->id, localpeer, (int)getpid(), (int)1);
+ if (ret >= size)
+ return 0;
+
+ return ret;
+}
+
+/*
+ * Build a "handshake succeeded" status message.
+ * Return the number of written bytes written to build this messages if succeeded,
+ * 0 if not.
+ */
+static int peer_prepare_status_successmsg(char *msg, size_t size, struct peer_prep_params *p)
+{
+ int ret;
+
+ ret = snprintf(msg, size, "%d\n", (int)PEER_SESS_SC_SUCCESSCODE);
+ if (ret >= size)
+ return 0;
+
+ return ret;
+}
+
+/*
+ * Build an error status message.
+ * Return the number of written bytes written to build this messages if succeeded,
+ * 0 if not.
+ */
+static int peer_prepare_status_errormsg(char *msg, size_t size, struct peer_prep_params *p)
+{
+ int ret;
+ unsigned int st1;
+
+ st1 = p->error_status.st1;
+ ret = snprintf(msg, size, "%u\n", st1);
+ if (ret >= size)
+ return 0;
+
+ return ret;
+}
+
+/* Set the stick-table UPDATE message type byte at <msg_type> address,
+ * depending on <use_identifier> and <use_timed> boolean parameters.
+ * Always successful.
+ */
+static inline void peer_set_update_msg_type(char *msg_type, int use_identifier, int use_timed)
+{
+ if (use_timed) {
+ if (use_identifier)
+ *msg_type = PEER_MSG_STKT_UPDATE_TIMED;
+ else
+ *msg_type = PEER_MSG_STKT_INCUPDATE_TIMED;
+ }
+ else {
+ if (use_identifier)
+ *msg_type = PEER_MSG_STKT_UPDATE;
+ else
+ *msg_type = PEER_MSG_STKT_INCUPDATE;
+ }
+}
+/*
+ * This prepare the data update message on the stick session <ts>, <st> is the considered
+ * stick table.
+ * <msg> is a buffer of <size> to receive data message content
+ * If function returns 0, the caller should consider we were unable to encode this message (TODO:
+ * check size)
+ */
+static int peer_prepare_updatemsg(char *msg, size_t size, struct peer_prep_params *p)
+{
+ uint32_t netinteger;
+ unsigned short datalen;
+ char *cursor, *datamsg;
+ unsigned int data_type;
+ void *data_ptr;
+ struct stksess *ts;
+ struct shared_table *st;
+ unsigned int updateid;
+ int use_identifier;
+ int use_timed;
+ struct peer *peer;
+
+ ts = p->updt.stksess;
+ st = p->updt.shared_table;
+ updateid = p->updt.updateid;
+ use_identifier = p->updt.use_identifier;
+ use_timed = p->updt.use_timed;
+ peer = p->updt.peer;
+
+ cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN;
+
+ /* construct message */
+
+ /* check if we need to send the update identifier */
+ if (!st->last_pushed || updateid < st->last_pushed || ((updateid - st->last_pushed) != 1)) {
+ use_identifier = 1;
+ }
+
+ /* encode update identifier if needed */
+ if (use_identifier) {
+ netinteger = htonl(updateid);
+ memcpy(cursor, &netinteger, sizeof(netinteger));
+ cursor += sizeof(netinteger);
+ }
+
+ if (use_timed) {
+ netinteger = htonl(tick_remain(now_ms, ts->expire));
+ memcpy(cursor, &netinteger, sizeof(netinteger));
+ cursor += sizeof(netinteger);
+ }
+
+ /* encode the key */
+ if (st->table->type == SMP_T_STR) {
+ int stlen = strlen((char *)ts->key.key);
+
+ intencode(stlen, &cursor);
+ memcpy(cursor, ts->key.key, stlen);
+ cursor += stlen;
+ }
+ else if (st->table->type == SMP_T_SINT) {
+ netinteger = htonl(read_u32(ts->key.key));
+ memcpy(cursor, &netinteger, sizeof(netinteger));
+ cursor += sizeof(netinteger);
+ }
+ else {
+ memcpy(cursor, ts->key.key, st->table->key_size);
+ cursor += st->table->key_size;
+ }
+
+ HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock);
+ /* encode values */
+ for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) {
+
+ data_ptr = stktable_data_ptr(st->table, ts, data_type);
+ if (data_ptr) {
+ /* in case of array all elements use
+ * the same std_type and they are linearly
+ * encoded.
+ */
+ if (stktable_data_types[data_type].is_array) {
+ unsigned int idx = 0;
+
+ switch (stktable_data_types[data_type].std_type) {
+ case STD_T_SINT: {
+ int data;
+
+ do {
+ data = stktable_data_cast(data_ptr, std_t_sint);
+ intencode(data, &cursor);
+
+ data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx);
+ } while(data_ptr);
+ break;
+ }
+ case STD_T_UINT: {
+ unsigned int data;
+
+ do {
+ data = stktable_data_cast(data_ptr, std_t_uint);
+ intencode(data, &cursor);
+
+ data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx);
+ } while(data_ptr);
+ break;
+ }
+ case STD_T_ULL: {
+ unsigned long long data;
+
+ do {
+ data = stktable_data_cast(data_ptr, std_t_ull);
+ intencode(data, &cursor);
+
+ data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx);
+ } while(data_ptr);
+ break;
+ }
+ case STD_T_FRQP: {
+ struct freq_ctr *frqp;
+
+ do {
+ frqp = &stktable_data_cast(data_ptr, std_t_frqp);
+ intencode((unsigned int)(now_ms - frqp->curr_tick), &cursor);
+ intencode(frqp->curr_ctr, &cursor);
+ intencode(frqp->prev_ctr, &cursor);
+
+ data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx);
+ } while(data_ptr);
+ break;
+ }
+ }
+
+ /* array elements fully encoded
+ * proceed next data_type.
+ */
+ continue;
+ }
+ switch (stktable_data_types[data_type].std_type) {
+ case STD_T_SINT: {
+ int data;
+
+ data = stktable_data_cast(data_ptr, std_t_sint);
+ intencode(data, &cursor);
+ break;
+ }
+ case STD_T_UINT: {
+ unsigned int data;
+
+ data = stktable_data_cast(data_ptr, std_t_uint);
+ intencode(data, &cursor);
+ break;
+ }
+ case STD_T_ULL: {
+ unsigned long long data;
+
+ data = stktable_data_cast(data_ptr, std_t_ull);
+ intencode(data, &cursor);
+ break;
+ }
+ case STD_T_FRQP: {
+ struct freq_ctr *frqp;
+
+ frqp = &stktable_data_cast(data_ptr, std_t_frqp);
+ intencode((unsigned int)(now_ms - frqp->curr_tick), &cursor);
+ intencode(frqp->curr_ctr, &cursor);
+ intencode(frqp->prev_ctr, &cursor);
+ break;
+ }
+ case STD_T_DICT: {
+ struct dict_entry *de;
+ struct ebpt_node *cached_de;
+ struct dcache_tx_entry cde = { };
+ char *beg, *end;
+ size_t value_len, data_len;
+ struct dcache *dc;
+
+ de = stktable_data_cast(data_ptr, std_t_dict);
+ if (!de) {
+ /* No entry */
+ intencode(0, &cursor);
+ break;
+ }
+
+ dc = peer->dcache;
+ cde.entry.key = de;
+ cached_de = dcache_tx_insert(dc, &cde);
+ if (cached_de == &cde.entry) {
+ if (cde.id + 1 >= PEER_ENC_2BYTES_MIN)
+ break;
+ /* Encode the length of the remaining data -> 1 */
+ intencode(1, &cursor);
+ /* Encode the cache entry ID */
+ intencode(cde.id + 1, &cursor);
+ }
+ else {
+ /* Leave enough room to encode the remaining data length. */
+ end = beg = cursor + PEER_MSG_ENC_LENGTH_MAXLEN;
+ /* Encode the dictionary entry key */
+ intencode(cde.id + 1, &end);
+ /* Encode the length of the dictionary entry data */
+ value_len = de->len;
+ intencode(value_len, &end);
+ /* Copy the data */
+ memcpy(end, de->value.key, value_len);
+ end += value_len;
+ /* Encode the length of the data */
+ data_len = end - beg;
+ intencode(data_len, &cursor);
+ memmove(cursor, beg, data_len);
+ cursor += data_len;
+ }
+ break;
+ }
+ }
+ }
+ }
+ HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock);
+
+ /* Compute datalen */
+ datalen = (cursor - datamsg);
+
+ /* prepare message header */
+ msg[0] = PEER_MSG_CLASS_STICKTABLE;
+ peer_set_update_msg_type(&msg[1], use_identifier, use_timed);
+ cursor = &msg[2];
+ intencode(datalen, &cursor);
+
+ /* move data after header */
+ memmove(cursor, datamsg, datalen);
+
+ /* return header size + data_len */
+ return (cursor - msg) + datalen;
+}
+
+/*
+ * This prepare the switch table message to targeted share table <st>.
+ * <msg> is a buffer of <size> to receive data message content
+ * If function returns 0, the caller should consider we were unable to encode this message (TODO:
+ * check size)
+ */
+static int peer_prepare_switchmsg(char *msg, size_t size, struct peer_prep_params *params)
+{
+ int len;
+ unsigned short datalen;
+ struct buffer *chunk;
+ char *cursor, *datamsg, *chunkp, *chunkq;
+ uint64_t data = 0;
+ unsigned int data_type;
+ struct shared_table *st;
+
+ st = params->swtch.shared_table;
+ cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN;
+
+ /* Encode data */
+
+ /* encode local id */
+ intencode(st->local_id, &cursor);
+
+ /* encode table name */
+ len = strlen(st->table->nid);
+ intencode(len, &cursor);
+ memcpy(cursor, st->table->nid, len);
+ cursor += len;
+
+ /* encode table type */
+
+ intencode(peer_net_key_type[st->table->type], &cursor);
+
+ /* encode table key size */
+ intencode(st->table->key_size, &cursor);
+
+ chunk = get_trash_chunk();
+ chunkp = chunkq = chunk->area;
+ /* encode available known data types in table */
+ for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) {
+ if (st->table->data_ofs[data_type]) {
+ /* stored data types parameters are all linearly encoded
+ * at the end of the 'table definition' message.
+ *
+ * Currently only array data_types and and data_types
+ * using freq_counter base type have parameters:
+ *
+ * - array has always at least one parameter set to the
+ * number of elements.
+ *
+ * - array of base-type freq_counters has an additional
+ * parameter set to the period used to compute those
+ * freq_counters.
+ *
+ * - simple freq counter has a parameter set to the period
+ * used to compute
+ *
+ * A set of parameter for a datatype MUST BE prefixed
+ * by the data-type id itself:
+ * This is useless because the data_types are ordered and
+ * the data_type bitfield already gives the information of
+ * stored types, but it was designed this way when the
+ * push of period parameter was added for freq counters
+ * and we don't want to break the compatibility.
+ *
+ */
+ if (stktable_data_types[data_type].is_array) {
+ /* This is an array type so we first encode
+ * the data_type itself to prefix parameters
+ */
+ intencode(data_type, &chunkq);
+
+ /* We encode the first parameter which is
+ * the number of elements of this array
+ */
+ intencode(st->table->data_nbelem[data_type], &chunkq);
+
+ /* for array of freq counters, there is an additional
+ * period parameter to encode
+ */
+ if (stktable_data_types[data_type].std_type == STD_T_FRQP)
+ intencode(st->table->data_arg[data_type].u, &chunkq);
+ }
+ else if (stktable_data_types[data_type].std_type == STD_T_FRQP) {
+ /* this datatype is a simple freq counter not part
+ * of an array. We encode the data_type itself
+ * to prefix the 'period' parameter
+ */
+ intencode(data_type, &chunkq);
+ intencode(st->table->data_arg[data_type].u, &chunkq);
+ }
+ /* set the bit corresponding to stored data type */
+ data |= 1ULL << data_type;
+ }
+ }
+ intencode(data, &cursor);
+
+ /* Encode stick-table entries duration. */
+ intencode(st->table->expire, &cursor);
+
+ if (chunkq > chunkp) {
+ chunk->data = chunkq - chunkp;
+ memcpy(cursor, chunk->area, chunk->data);
+ cursor += chunk->data;
+ }
+
+ /* Compute datalen */
+ datalen = (cursor - datamsg);
+
+ /* prepare message header */
+ msg[0] = PEER_MSG_CLASS_STICKTABLE;
+ msg[1] = PEER_MSG_STKT_DEFINE;
+ cursor = &msg[2];
+ intencode(datalen, &cursor);
+
+ /* move data after header */
+ memmove(cursor, datamsg, datalen);
+
+ /* return header size + data_len */
+ return (cursor - msg) + datalen;
+}
+
+/*
+ * This prepare the acknowledge message on the stick session <ts>, <st> is the considered
+ * stick table.
+ * <msg> is a buffer of <size> to receive data message content
+ * If function returns 0, the caller should consider we were unable to encode this message (TODO:
+ * check size)
+ */
+static int peer_prepare_ackmsg(char *msg, size_t size, struct peer_prep_params *p)
+{
+ unsigned short datalen;
+ char *cursor, *datamsg;
+ uint32_t netinteger;
+ struct shared_table *st;
+
+ cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN;
+
+ st = p->ack.shared_table;
+ intencode(st->remote_id, &cursor);
+ netinteger = htonl(st->last_get);
+ memcpy(cursor, &netinteger, sizeof(netinteger));
+ cursor += sizeof(netinteger);
+
+ /* Compute datalen */
+ datalen = (cursor - datamsg);
+
+ /* prepare message header */
+ msg[0] = PEER_MSG_CLASS_STICKTABLE;
+ msg[1] = PEER_MSG_STKT_ACK;
+ cursor = &msg[2];
+ intencode(datalen, &cursor);
+
+ /* move data after header */
+ memmove(cursor, datamsg, datalen);
+
+ /* return header size + data_len */
+ return (cursor - msg) + datalen;
+}
+
+/*
+ * Function to deinit connected peer
+ */
+void __peer_session_deinit(struct peer *peer)
+{
+ struct peers *peers = peer->peers;
+ int thr;
+
+ if (!peers || !peer->appctx)
+ return;
+
+ thr = peer->appctx->t->tid;
+ HA_ATOMIC_DEC(&peers->applet_count[thr]);
+
+ if (peer->appctx->st0 == PEER_SESS_ST_WAITMSG)
+ HA_ATOMIC_DEC(&connected_peers);
+
+ HA_ATOMIC_DEC(&active_peers);
+
+ flush_dcache(peer);
+
+ /* Re-init current table pointers to force announcement on re-connect */
+ peer->remote_table = peer->last_local_table = peer->stop_local_table = NULL;
+ peer->appctx = NULL;
+ if (peer->flags & PEER_F_LEARN_ASSIGN) {
+ /* unassign current peer for learning */
+ peer->flags &= ~(PEER_F_LEARN_ASSIGN);
+ peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS);
+
+ if (peer->local)
+ peers->flags |= PEERS_F_RESYNC_LOCALABORT;
+ else
+ peers->flags |= PEERS_F_RESYNC_REMOTEABORT;
+ /* reschedule a resync */
+ peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(5000));
+ }
+ /* reset teaching and learning flags to 0 */
+ peer->flags &= PEER_TEACH_RESET;
+ peer->flags &= PEER_LEARN_RESET;
+ task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
+}
+
+static int peer_session_init(struct appctx *appctx)
+{
+ struct peer *peer = appctx->svcctx;
+ struct stream *s;
+ struct sockaddr_storage *addr = NULL;
+
+ if (!sockaddr_alloc(&addr, &peer->addr, sizeof(peer->addr)))
+ goto out_error;
+
+ if (appctx_finalize_startup(appctx, peer->peers->peers_fe, &BUF_NULL) == -1)
+ goto out_free_addr;
+
+ s = appctx_strm(appctx);
+ /* applet is waiting for data */
+ applet_need_more_data(appctx);
+ appctx_wakeup(appctx);
+
+ /* initiate an outgoing connection */
+ s->scb->dst = addr;
+ s->scb->flags |= (SC_FL_RCV_ONCE|SC_FL_NOLINGER);
+ s->flags = SF_ASSIGNED;
+ s->target = peer_session_target(peer, s);
+
+ s->do_log = NULL;
+ s->uniq_id = 0;
+
+ _HA_ATOMIC_INC(&active_peers);
+ return 0;
+
+ out_free_addr:
+ sockaddr_free(&addr);
+ out_error:
+ return -1;
+}
+
+/*
+ * Callback to release a session with a peer
+ */
+static void peer_session_release(struct appctx *appctx)
+{
+ struct peer *peer = appctx->svcctx;
+
+ TRACE_PROTO("releasing peer session", PEERS_EV_SESSREL, NULL, peer);
+ /* appctx->svcctx is not a peer session */
+ if (appctx->st0 < PEER_SESS_ST_SENDSUCCESS)
+ return;
+
+ /* peer session identified */
+ if (peer) {
+ HA_SPIN_LOCK(PEER_LOCK, &peer->lock);
+ if (peer->appctx == appctx)
+ __peer_session_deinit(peer);
+ peer->flags &= ~PEER_F_ALIVE;
+ HA_SPIN_UNLOCK(PEER_LOCK, &peer->lock);
+ }
+}
+
+/* Retrieve the major and minor versions of peers protocol
+ * announced by a remote peer. <str> is a null-terminated
+ * string with the following format: "<maj_ver>.<min_ver>".
+ */
+static int peer_get_version(const char *str,
+ unsigned int *maj_ver, unsigned int *min_ver)
+{
+ unsigned int majv, minv;
+ const char *pos, *saved;
+ const char *end;
+
+ saved = pos = str;
+ end = str + strlen(str);
+
+ majv = read_uint(&pos, end);
+ if (saved == pos || *pos++ != '.')
+ return -1;
+
+ saved = pos;
+ minv = read_uint(&pos, end);
+ if (saved == pos || pos != end)
+ return -1;
+
+ *maj_ver = majv;
+ *min_ver = minv;
+
+ return 0;
+}
+
+/*
+ * Parse a line terminated by an optional '\r' character, followed by a mandatory
+ * '\n' character.
+ * Returns 1 if succeeded or 0 if a '\n' character could not be found, and -1 if
+ * a line could not be read because the communication channel is closed.
+ */
+static inline int peer_getline(struct appctx *appctx)
+{
+ struct stconn *sc = appctx_sc(appctx);
+ int n;
+
+ n = co_getline(sc_oc(sc), trash.area, trash.size);
+ if (!n)
+ return 0;
+
+ if (n < 0 || trash.area[n - 1] != '\n') {
+ appctx->st0 = PEER_SESS_ST_END;
+ return -1;
+ }
+
+ if (n > 1 && (trash.area[n - 2] == '\r'))
+ trash.area[n - 2] = 0;
+ else
+ trash.area[n - 1] = 0;
+
+ co_skip(sc_oc(sc), n);
+
+ return n;
+}
+
+/*
+ * Send a message after having called <peer_prepare_msg> to build it.
+ * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appcxt st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_msg(struct appctx *appctx,
+ int (*peer_prepare_msg)(char *, size_t, struct peer_prep_params *),
+ struct peer_prep_params *params)
+{
+ int ret, msglen;
+
+ msglen = peer_prepare_msg(trash.area, trash.size, params);
+ if (!msglen) {
+ /* internal error: message does not fit in trash */
+ appctx->st0 = PEER_SESS_ST_END;
+ return 0;
+ }
+
+ /* message to buffer */
+ ret = applet_putblk(appctx, trash.area, msglen);
+ if (ret <= 0) {
+ if (ret != -1)
+ appctx->st0 = PEER_SESS_ST_END;
+ }
+
+ return ret;
+}
+
+/*
+ * Send a hello message.
+ * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appcxt st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_hellomsg(struct appctx *appctx, struct peer *peer)
+{
+ struct peer_prep_params p = {
+ .hello.peer = peer,
+ };
+
+ return peer_send_msg(appctx, peer_prepare_hellomsg, &p);
+}
+
+/*
+ * Send a success peer handshake status message.
+ * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appcxt st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_status_successmsg(struct appctx *appctx)
+{
+ return peer_send_msg(appctx, peer_prepare_status_successmsg, NULL);
+}
+
+/*
+ * Send a peer handshake status error message.
+ * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appcxt st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_status_errormsg(struct appctx *appctx)
+{
+ struct peer_prep_params p = {
+ .error_status.st1 = appctx->st1,
+ };
+
+ return peer_send_msg(appctx, peer_prepare_status_errormsg, &p);
+}
+
+/*
+ * Send a stick-table switch message.
+ * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appcxt st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_switchmsg(struct shared_table *st, struct appctx *appctx)
+{
+ struct peer_prep_params p = {
+ .swtch.shared_table = st,
+ };
+
+ return peer_send_msg(appctx, peer_prepare_switchmsg, &p);
+}
+
+/*
+ * Send a stick-table update acknowledgement message.
+ * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appcxt st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_ackmsg(struct shared_table *st, struct appctx *appctx)
+{
+ struct peer_prep_params p = {
+ .ack.shared_table = st,
+ };
+
+ return peer_send_msg(appctx, peer_prepare_ackmsg, &p);
+}
+
+/*
+ * Send a stick-table update message.
+ * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appcxt st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_updatemsg(struct shared_table *st, struct appctx *appctx, struct stksess *ts,
+ unsigned int updateid, int use_identifier, int use_timed)
+{
+ struct peer_prep_params p = {
+ .updt = {
+ .stksess = ts,
+ .shared_table = st,
+ .updateid = updateid,
+ .use_identifier = use_identifier,
+ .use_timed = use_timed,
+ .peer = appctx->svcctx,
+ },
+ };
+
+ return peer_send_msg(appctx, peer_prepare_updatemsg, &p);
+}
+
+/*
+ * Build a peer protocol control class message.
+ * Returns the number of written bytes used to build the message if succeeded,
+ * 0 if not.
+ */
+static int peer_prepare_control_msg(char *msg, size_t size, struct peer_prep_params *p)
+{
+ if (size < sizeof p->control.head)
+ return 0;
+
+ msg[0] = p->control.head[0];
+ msg[1] = p->control.head[1];
+
+ return 2;
+}
+
+/*
+ * Send a stick-table synchronization request message.
+ * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appctx st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_resync_reqmsg(struct appctx *appctx,
+ struct peer *peer, struct peers *peers)
+{
+ struct peer_prep_params p = {
+ .control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_RESYNCREQ, },
+ };
+
+ TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
+ NULL, &p.control.head[1], peers->local->id, peer->id);
+
+ return peer_send_msg(appctx, peer_prepare_control_msg, &p);
+}
+
+/*
+ * Send a stick-table synchronization confirmation message.
+ * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appctx st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_resync_confirmsg(struct appctx *appctx,
+ struct peer *peer, struct peers *peers)
+{
+ struct peer_prep_params p = {
+ .control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_RESYNCCONFIRM, },
+ };
+
+ TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
+ NULL, &p.control.head[1], peers->local->id, peer->id);
+
+ return peer_send_msg(appctx, peer_prepare_control_msg, &p);
+}
+
+/*
+ * Send a stick-table synchronization finished message.
+ * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appctx st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_resync_finishedmsg(struct appctx *appctx,
+ struct peer *peer, struct peers *peers)
+{
+ struct peer_prep_params p = {
+ .control.head = { PEER_MSG_CLASS_CONTROL, },
+ };
+
+ p.control.head[1] = (peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FINISHED ?
+ PEER_MSG_CTRL_RESYNCFINISHED : PEER_MSG_CTRL_RESYNCPARTIAL;
+
+ TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
+ NULL, &p.control.head[1], peers->local->id, peer->id);
+
+ return peer_send_msg(appctx, peer_prepare_control_msg, &p);
+}
+
+/*
+ * Send a heartbeat message.
+ * Return 0 if the message could not be built modifying the appctx st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appctx st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_heartbeatmsg(struct appctx *appctx,
+ struct peer *peer, struct peers *peers)
+{
+ struct peer_prep_params p = {
+ .control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_HEARTBEAT, },
+ };
+
+ TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
+ NULL, &p.control.head[1], peers->local->id, peer->id);
+
+ return peer_send_msg(appctx, peer_prepare_control_msg, &p);
+}
+
+/*
+ * Build a peer protocol error class message.
+ * Returns the number of written bytes used to build the message if succeeded,
+ * 0 if not.
+ */
+static int peer_prepare_error_msg(char *msg, size_t size, struct peer_prep_params *p)
+{
+ if (size < sizeof p->error.head)
+ return 0;
+
+ msg[0] = p->error.head[0];
+ msg[1] = p->error.head[1];
+
+ return 2;
+}
+
+/*
+ * Send a "size limit reached" error message.
+ * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appctx st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_error_size_limitmsg(struct appctx *appctx)
+{
+ struct peer_prep_params p = {
+ .error.head = { PEER_MSG_CLASS_ERROR, PEER_MSG_ERR_SIZELIMIT, },
+ };
+
+ return peer_send_msg(appctx, peer_prepare_error_msg, &p);
+}
+
+/*
+ * Send a "peer protocol" error message.
+ * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appctx st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_error_protomsg(struct appctx *appctx)
+{
+ struct peer_prep_params p = {
+ .error.head = { PEER_MSG_CLASS_ERROR, PEER_MSG_ERR_PROTOCOL, },
+ };
+
+ return peer_send_msg(appctx, peer_prepare_error_msg, &p);
+}
+
+/*
+ * Function used to lookup for recent stick-table updates associated with
+ * <st> shared stick-table when a lesson must be taught a peer (PEER_F_LEARN_ASSIGN flag set).
+ */
+static inline struct stksess *peer_teach_process_stksess_lookup(struct shared_table *st)
+{
+ struct eb32_node *eb;
+
+ eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1);
+ if (!eb) {
+ eb = eb32_first(&st->table->updates);
+ if (!eb || (eb->key == st->last_pushed)) {
+ st->table->commitupdate = st->last_pushed = st->table->localupdate;
+ return NULL;
+ }
+ }
+
+ /* if distance between the last pushed and the retrieved key
+ * is greater than the distance last_pushed and the local_update
+ * this means we are beyond localupdate.
+ */
+ if ((eb->key - st->last_pushed) > (st->table->localupdate - st->last_pushed)) {
+ st->table->commitupdate = st->last_pushed = st->table->localupdate;
+ return NULL;
+ }
+
+ return eb32_entry(eb, struct stksess, upd);
+}
+
+/*
+ * Function used to lookup for recent stick-table updates associated with
+ * <st> shared stick-table during teach state 1 step.
+ */
+static inline struct stksess *peer_teach_stage1_stksess_lookup(struct shared_table *st)
+{
+ struct eb32_node *eb;
+
+ eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1);
+ if (!eb) {
+ st->flags |= SHTABLE_F_TEACH_STAGE1;
+ eb = eb32_first(&st->table->updates);
+ if (eb)
+ st->last_pushed = eb->key - 1;
+ return NULL;
+ }
+
+ return eb32_entry(eb, struct stksess, upd);
+}
+
+/*
+ * Function used to lookup for recent stick-table updates associated with
+ * <st> shared stick-table during teach state 2 step.
+ */
+static inline struct stksess *peer_teach_stage2_stksess_lookup(struct shared_table *st)
+{
+ struct eb32_node *eb;
+
+ eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1);
+ if (!eb || eb->key > st->teaching_origin) {
+ st->flags |= SHTABLE_F_TEACH_STAGE2;
+ return NULL;
+ }
+
+ return eb32_entry(eb, struct stksess, upd);
+}
+
+/*
+ * Generic function to emit update messages for <st> stick-table when a lesson must
+ * be taught to the peer <p>.
+ *
+ * This function temporary unlock/lock <st> when it sends stick-table updates or
+ * when decrementing its refcount in case of any error when it sends this updates.
+ * It must be called with the stick-table lock released.
+ *
+ * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appcxt st0
+ * returned value equal to PEER_SESS_ST_END.
+ * If it returns 0 or -1, this function leave <st> locked if already locked when entering this function
+ * unlocked if not already locked when entering this function.
+ */
+static inline int peer_send_teachmsgs(struct appctx *appctx, struct peer *p,
+ struct stksess *(*peer_stksess_lookup)(struct shared_table *),
+ struct shared_table *st)
+{
+ int ret, new_pushed, use_timed;
+ int updates_sent = 0;
+
+ ret = 1;
+ use_timed = 0;
+ if (st != p->last_local_table) {
+ ret = peer_send_switchmsg(st, appctx);
+ if (ret <= 0)
+ return ret;
+
+ p->last_local_table = st;
+ }
+
+ if (peer_stksess_lookup != peer_teach_process_stksess_lookup)
+ use_timed = !(p->flags & PEER_F_DWNGRD);
+
+ /* We force new pushed to 1 to force identifier in update message */
+ new_pushed = 1;
+
+ HA_RWLOCK_RDLOCK(STK_TABLE_LOCK, &st->table->updt_lock);
+
+ while (1) {
+ struct stksess *ts;
+ unsigned updateid;
+
+ /* push local updates */
+ ts = peer_stksess_lookup(st);
+ if (!ts) {
+ ret = 1; // done
+ break;
+ }
+
+ updateid = ts->upd.key;
+ if (p->srv->shard && ts->shard != p->srv->shard) {
+ /* Skip this entry */
+ st->last_pushed = updateid;
+ new_pushed = 1;
+ continue;
+ }
+
+ HA_ATOMIC_INC(&ts->ref_cnt);
+ HA_RWLOCK_RDUNLOCK(STK_TABLE_LOCK, &st->table->updt_lock);
+
+ ret = peer_send_updatemsg(st, appctx, ts, updateid, new_pushed, use_timed);
+ HA_RWLOCK_RDLOCK(STK_TABLE_LOCK, &st->table->updt_lock);
+ HA_ATOMIC_DEC(&ts->ref_cnt);
+ if (ret <= 0)
+ break;
+
+ st->last_pushed = updateid;
+
+ if (peer_stksess_lookup == peer_teach_process_stksess_lookup) {
+ uint commitid = _HA_ATOMIC_LOAD(&st->table->commitupdate);
+
+ while ((int)(updateid - commitid) > 0) {
+ if (_HA_ATOMIC_CAS(&st->table->commitupdate, &commitid, updateid))
+ break;
+ __ha_cpu_relax();
+ }
+ }
+
+ /* identifier may not needed in next update message */
+ new_pushed = 0;
+
+ updates_sent++;
+ if (updates_sent >= peers_max_updates_at_once) {
+ /* pretend we're full so that we get back ASAP */
+ struct stconn *sc = appctx_sc(appctx);
+
+ sc_need_room(sc, 0);
+ ret = -1;
+ break;
+ }
+ }
+
+ out:
+ HA_RWLOCK_RDUNLOCK(STK_TABLE_LOCK, &st->table->updt_lock);
+ return ret;
+}
+
+/*
+ * Function to emit update messages for <st> stick-table when a lesson must
+ * be taught to the peer <p> (PEER_F_LEARN_ASSIGN flag set).
+ *
+ * Note that <st> shared stick-table is locked when calling this function, and
+ * the lock is dropped then re-acquired.
+ *
+ * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appcxt st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_teach_process_msgs(struct appctx *appctx, struct peer *p,
+ struct shared_table *st)
+{
+ int ret;
+
+ HA_RWLOCK_WRUNLOCK(STK_TABLE_LOCK, &st->table->lock);
+ ret = peer_send_teachmsgs(appctx, p, peer_teach_process_stksess_lookup, st);
+ HA_RWLOCK_WRLOCK(STK_TABLE_LOCK, &st->table->lock);
+
+ return ret;
+}
+
+/*
+ * Function to emit update messages for <st> stick-table when a lesson must
+ * be taught to the peer <p> during teach state 1 step. It must be called with
+ * the stick-table lock released.
+ *
+ * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appcxt st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_teach_stage1_msgs(struct appctx *appctx, struct peer *p,
+ struct shared_table *st)
+{
+ return peer_send_teachmsgs(appctx, p, peer_teach_stage1_stksess_lookup, st);
+}
+
+/*
+ * Function to emit update messages for <st> stick-table when a lesson must
+ * be taught to the peer <p> during teach state 1 step. It must be called with
+ * the stick-table lock released.
+ *
+ * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
+ * Returns -1 if there was not enough room left to send the message,
+ * any other negative returned value must be considered as an error with an appcxt st0
+ * returned value equal to PEER_SESS_ST_END.
+ */
+static inline int peer_send_teach_stage2_msgs(struct appctx *appctx, struct peer *p,
+ struct shared_table *st)
+{
+ return peer_send_teachmsgs(appctx, p, peer_teach_stage2_stksess_lookup, st);
+}
+
+
+/*
+ * Function used to parse a stick-table update message after it has been received
+ * by <p> peer with <msg_cur> as address of the pointer to the position in the
+ * receipt buffer with <msg_end> being position of the end of the stick-table message.
+ * Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
+ * was encountered.
+ * <exp> must be set if the stick-table entry expires.
+ * <updt> must be set for PEER_MSG_STKT_UPDATE or PEER_MSG_STKT_UPDATE_TIMED stick-table
+ * messages, in this case the stick-table update message is received with a stick-table
+ * update ID.
+ * <totl> is the length of the stick-table update message computed upon receipt.
+ */
+static int peer_treat_updatemsg(struct appctx *appctx, struct peer *p, int updt, int exp,
+ char **msg_cur, char *msg_end, int msg_len, int totl)
+{
+ struct shared_table *st = p->remote_table;
+ struct stktable *table;
+ struct stksess *ts, *newts;
+ struct stksess *wts = NULL; /* write_to stksess */
+ uint32_t update;
+ int expire;
+ unsigned int data_type;
+ size_t keylen;
+ void *data_ptr;
+ char *msg_save;
+
+ TRACE_ENTER(PEERS_EV_UPDTMSG, NULL, p);
+ /* Here we have data message */
+ if (!st)
+ goto ignore_msg;
+
+ table = st->table;
+
+ expire = MS_TO_TICKS(table->expire);
+
+ if (updt) {
+ if (msg_len < sizeof(update)) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
+ goto malformed_exit;
+ }
+
+ memcpy(&update, *msg_cur, sizeof(update));
+ *msg_cur += sizeof(update);
+ st->last_get = htonl(update);
+ }
+ else {
+ st->last_get++;
+ }
+
+ if (exp) {
+ size_t expire_sz = sizeof expire;
+
+ if (*msg_cur + expire_sz > msg_end) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
+ NULL, p, *msg_cur);
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
+ NULL, p, msg_end, &expire_sz);
+ goto malformed_exit;
+ }
+
+ memcpy(&expire, *msg_cur, expire_sz);
+ *msg_cur += expire_sz;
+ expire = ntohl(expire);
+ }
+
+ newts = stksess_new(table, NULL);
+ if (!newts)
+ goto ignore_msg;
+
+ if (table->type == SMP_T_STR) {
+ unsigned int to_read, to_store;
+
+ to_read = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
+ goto malformed_free_newts;
+ }
+
+ to_store = MIN(to_read, table->key_size - 1);
+ if (*msg_cur + to_store > msg_end) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
+ NULL, p, *msg_cur);
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
+ NULL, p, msg_end, &to_store);
+ goto malformed_free_newts;
+ }
+
+ keylen = to_store;
+ memcpy(newts->key.key, *msg_cur, keylen);
+ newts->key.key[keylen] = 0;
+ *msg_cur += to_read;
+ }
+ else if (table->type == SMP_T_SINT) {
+ unsigned int netinteger;
+
+ if (*msg_cur + sizeof(netinteger) > msg_end) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
+ NULL, p, *msg_cur);
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
+ NULL, p, msg_end);
+ goto malformed_free_newts;
+ }
+
+ keylen = sizeof(netinteger);
+ memcpy(&netinteger, *msg_cur, keylen);
+ netinteger = ntohl(netinteger);
+ memcpy(newts->key.key, &netinteger, keylen);
+ *msg_cur += keylen;
+ }
+ else {
+ if (*msg_cur + table->key_size > msg_end) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
+ NULL, p, *msg_cur);
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
+ NULL, p, msg_end, &table->key_size);
+ goto malformed_free_newts;
+ }
+
+ keylen = table->key_size;
+ memcpy(newts->key.key, *msg_cur, keylen);
+ *msg_cur += keylen;
+ }
+
+ newts->shard = stktable_get_key_shard(table, newts->key.key, keylen);
+
+ /* lookup for existing entry */
+ ts = stktable_set_entry(table, newts);
+ if (ts != newts) {
+ stksess_free(table, newts);
+ newts = NULL;
+ }
+
+ msg_save = *msg_cur;
+
+ update_wts:
+
+ HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
+
+ for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) {
+ uint64_t decoded_int;
+ unsigned int idx;
+ int ignore = 0;
+
+ if (!((1ULL << data_type) & st->remote_data))
+ continue;
+
+ /* We shouldn't learn local-only values. Also, when handling the
+ * write_to table we must ignore types that can be processed
+ * so we don't interfere with any potential arithmetic logic
+ * performed on them (ie: cumulative counters).
+ */
+ if (stktable_data_types[data_type].is_local ||
+ (table != st->table && !stktable_data_types[data_type].as_is))
+ ignore = 1;
+
+ if (stktable_data_types[data_type].is_array) {
+ /* in case of array all elements
+ * use the same std_type and they
+ * are linearly encoded.
+ * The number of elements was provided
+ * by table definition message
+ */
+ switch (stktable_data_types[data_type].std_type) {
+ case STD_T_SINT:
+ for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) {
+ decoded_int = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
+ goto malformed_unlock;
+ }
+
+ data_ptr = stktable_data_ptr_idx(table, ts, data_type, idx);
+ if (data_ptr && !ignore)
+ stktable_data_cast(data_ptr, std_t_sint) = decoded_int;
+ }
+ break;
+ case STD_T_UINT:
+ for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) {
+ decoded_int = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
+ goto malformed_unlock;
+ }
+
+ data_ptr = stktable_data_ptr_idx(table, ts, data_type, idx);
+ if (data_ptr && !ignore)
+ stktable_data_cast(data_ptr, std_t_uint) = decoded_int;
+ }
+ break;
+ case STD_T_ULL:
+ for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) {
+ decoded_int = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
+ goto malformed_unlock;
+ }
+
+ data_ptr = stktable_data_ptr_idx(table, ts, data_type, idx);
+ if (data_ptr && !ignore)
+ stktable_data_cast(data_ptr, std_t_ull) = decoded_int;
+ }
+ break;
+ case STD_T_FRQP:
+ for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) {
+ struct freq_ctr data;
+
+ /* First bit is reserved for the freq_ctr lock
+ * Note: here we're still protected by the stksess lock
+ * so we don't need to update the update the freq_ctr
+ * using its internal lock.
+ */
+
+ decoded_int = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
+ goto malformed_unlock;
+ }
+
+ data.curr_tick = tick_add(now_ms, -decoded_int) & ~0x1;
+ data.curr_ctr = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
+ goto malformed_unlock;
+ }
+
+ data.prev_ctr = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
+ goto malformed_unlock;
+ }
+
+ data_ptr = stktable_data_ptr_idx(table, ts, data_type, idx);
+ if (data_ptr && !ignore)
+ stktable_data_cast(data_ptr, std_t_frqp) = data;
+ }
+ break;
+ }
+
+ /* array is fully decoded
+ * proceed next data_type.
+ */
+ continue;
+ }
+ decoded_int = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
+ goto malformed_unlock;
+ }
+
+ switch (stktable_data_types[data_type].std_type) {
+ case STD_T_SINT:
+ data_ptr = stktable_data_ptr(table, ts, data_type);
+ if (data_ptr && !ignore)
+ stktable_data_cast(data_ptr, std_t_sint) = decoded_int;
+ break;
+
+ case STD_T_UINT:
+ data_ptr = stktable_data_ptr(table, ts, data_type);
+ if (data_ptr && !ignore)
+ stktable_data_cast(data_ptr, std_t_uint) = decoded_int;
+ break;
+
+ case STD_T_ULL:
+ data_ptr = stktable_data_ptr(table, ts, data_type);
+ if (data_ptr && !ignore)
+ stktable_data_cast(data_ptr, std_t_ull) = decoded_int;
+ break;
+
+ case STD_T_FRQP: {
+ struct freq_ctr data;
+
+ /* First bit is reserved for the freq_ctr lock
+ Note: here we're still protected by the stksess lock
+ so we don't need to update the update the freq_ctr
+ using its internal lock.
+ */
+
+ data.curr_tick = tick_add(now_ms, -decoded_int) & ~0x1;
+ data.curr_ctr = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
+ goto malformed_unlock;
+ }
+
+ data.prev_ctr = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
+ goto malformed_unlock;
+ }
+
+ data_ptr = stktable_data_ptr(table, ts, data_type);
+ if (data_ptr && !ignore)
+ stktable_data_cast(data_ptr, std_t_frqp) = data;
+ break;
+ }
+ case STD_T_DICT: {
+ struct buffer *chunk;
+ size_t data_len, value_len;
+ unsigned int id;
+ struct dict_entry *de;
+ struct dcache *dc;
+ char *end;
+
+ if (!decoded_int) {
+ /* No entry. */
+ break;
+ }
+ data_len = decoded_int;
+ if (*msg_cur + data_len > msg_end) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
+ NULL, p, *msg_cur);
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
+ NULL, p, msg_end, &data_len);
+ goto malformed_unlock;
+ }
+
+ /* Compute the end of the current data, <msg_end> being at the end of
+ * the entire message.
+ */
+ end = *msg_cur + data_len;
+ id = intdecode(msg_cur, end);
+ if (!*msg_cur || !id) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
+ NULL, p, *msg_cur, &id);
+ goto malformed_unlock;
+ }
+
+ dc = p->dcache;
+ if (*msg_cur == end) {
+ /* Dictionary entry key without value. */
+ if (id > dc->max_entries) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
+ NULL, p, NULL, &id);
+ goto malformed_unlock;
+ }
+ /* IDs sent over the network are numbered from 1. */
+ de = dc->rx[id - 1].de;
+ }
+ else {
+ chunk = get_trash_chunk();
+ value_len = intdecode(msg_cur, end);
+ if (!*msg_cur || *msg_cur + value_len > end ||
+ unlikely(value_len + 1 >= chunk->size)) {
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
+ NULL, p, *msg_cur, &value_len);
+ TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
+ NULL, p, end, &chunk->size);
+ goto malformed_unlock;
+ }
+
+ chunk_memcpy(chunk, *msg_cur, value_len);
+ chunk->area[chunk->data] = '\0';
+ *msg_cur += value_len;
+
+ de = dict_insert(&server_key_dict, chunk->area);
+ dict_entry_unref(&server_key_dict, dc->rx[id - 1].de);
+ dc->rx[id - 1].de = de;
+ }
+ if (de) {
+ data_ptr = stktable_data_ptr(table, ts, data_type);
+ if (data_ptr && !ignore) {
+ HA_ATOMIC_INC(&de->refcount);
+ stktable_data_cast(data_ptr, std_t_dict) = de;
+ }
+ }
+ break;
+ }
+ }
+ }
+
+ if (st->table->write_to.t && table != st->table->write_to.t) {
+ struct stktable_key stkey = { .key = ts->key.key, .key_len = keylen };
+
+ /* While we're still under the main ts lock, try to get related
+ * write_to stksess with main ts key
+ */
+ wts = stktable_get_entry(st->table->write_to.t, &stkey);
+ }
+
+ /* Force new expiration */
+ ts->expire = tick_add(now_ms, expire);
+
+ HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
+ stktable_touch_remote(table, ts, 1);
+
+ if (wts) {
+ /* Start over the message decoding for wts as we got a valid stksess
+ * for write_to table, so we need to refresh the entry with supported
+ * values.
+ *
+ * We prefer to do the decoding a second time even though it might
+ * cost a bit more than copying from main ts to wts, but doing so
+ * enables us to get rid of main ts lock: we only need the wts lock
+ * since upstream data is still available in msg_cur
+ */
+ ts = wts;
+ table = st->table->write_to.t;
+ wts = NULL; /* so we don't get back here */
+ *msg_cur = msg_save;
+ goto update_wts;
+ }
+
+ ignore_msg:
+ TRACE_LEAVE(PEERS_EV_UPDTMSG, NULL, p);
+ return 1;
+
+ malformed_unlock:
+ /* malformed message */
+ HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
+ stktable_touch_remote(st->table, ts, 1);
+ appctx->st0 = PEER_SESS_ST_ERRPROTO;
+ TRACE_DEVEL("leaving in error", PEERS_EV_UPDTMSG);
+ return 0;
+
+ malformed_free_newts:
+ /* malformed message */
+ stksess_free(st->table, newts);
+ malformed_exit:
+ appctx->st0 = PEER_SESS_ST_ERRPROTO;
+ TRACE_DEVEL("leaving in error", PEERS_EV_UPDTMSG);
+ return 0;
+}
+
+/*
+ * Function used to parse a stick-table update acknowledgement message after it
+ * has been received by <p> peer with <msg_cur> as address of the pointer to the position in the
+ * receipt buffer with <msg_end> being the position of the end of the stick-table message.
+ * Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
+ * was encountered.
+ * Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO.
+ */
+static inline int peer_treat_ackmsg(struct appctx *appctx, struct peer *p,
+ char **msg_cur, char *msg_end)
+{
+ /* ack message */
+ uint32_t table_id ;
+ uint32_t update;
+ struct shared_table *st;
+
+ /* ignore ack during teaching process */
+ if (p->flags & PEER_F_TEACH_PROCESS)
+ return 1;
+
+ table_id = intdecode(msg_cur, msg_end);
+ if (!*msg_cur || (*msg_cur + sizeof(update) > msg_end)) {
+ /* malformed message */
+
+ TRACE_PROTO("malformed message", PEERS_EV_ACKMSG,
+ NULL, p, *msg_cur);
+ appctx->st0 = PEER_SESS_ST_ERRPROTO;
+ return 0;
+ }
+
+ memcpy(&update, *msg_cur, sizeof(update));
+ update = ntohl(update);
+
+ for (st = p->tables; st; st = st->next) {
+ if (st->local_id == table_id) {
+ st->update = update;
+ break;
+ }
+ }
+
+ return 1;
+}
+
+/*
+ * Function used to parse a stick-table switch message after it has been received
+ * by <p> peer with <msg_cur> as address of the pointer to the position in the
+ * receipt buffer with <msg_end> being the position of the end of the stick-table message.
+ * Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
+ * was encountered.
+ * Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO.
+ */
+static inline int peer_treat_switchmsg(struct appctx *appctx, struct peer *p,
+ char **msg_cur, char *msg_end)
+{
+ struct shared_table *st;
+ int table_id;
+
+ table_id = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_SWTCMSG, NULL, p);
+ /* malformed message */
+ appctx->st0 = PEER_SESS_ST_ERRPROTO;
+ return 0;
+ }
+
+ p->remote_table = NULL;
+ for (st = p->tables; st; st = st->next) {
+ if (st->remote_id == table_id) {
+ p->remote_table = st;
+ break;
+ }
+ }
+
+ return 1;
+}
+
+/*
+ * Function used to parse a stick-table definition message after it has been received
+ * by <p> peer with <msg_cur> as address of the pointer to the position in the
+ * receipt buffer with <msg_end> being the position of the end of the stick-table message.
+ * Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
+ * was encountered.
+ * <totl> is the length of the stick-table update message computed upon receipt.
+ * Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO.
+ */
+static inline int peer_treat_definemsg(struct appctx *appctx, struct peer *p,
+ char **msg_cur, char *msg_end, int totl)
+{
+ int table_id_len;
+ struct shared_table *st;
+ int table_type;
+ int table_keylen;
+ int table_id;
+ uint64_t table_data;
+
+ table_id = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
+ goto malformed_exit;
+ }
+
+ table_id_len = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p, *msg_cur);
+ goto malformed_exit;
+ }
+
+ p->remote_table = NULL;
+ if (!table_id_len || (*msg_cur + table_id_len) >= msg_end) {
+ TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p, *msg_cur, &table_id_len);
+ goto malformed_exit;
+ }
+
+ for (st = p->tables; st; st = st->next) {
+ /* Reset IDs */
+ if (st->remote_id == table_id)
+ st->remote_id = 0;
+
+ if (!p->remote_table && (table_id_len == strlen(st->table->nid)) &&
+ (memcmp(st->table->nid, *msg_cur, table_id_len) == 0))
+ p->remote_table = st;
+ }
+
+ if (!p->remote_table) {
+ TRACE_PROTO("ignored message", PEERS_EV_DEFMSG, NULL, p);
+ goto ignore_msg;
+ }
+
+ *msg_cur += table_id_len;
+ if (*msg_cur >= msg_end) {
+ TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
+ goto malformed_exit;
+ }
+
+ table_type = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
+ goto malformed_exit;
+ }
+
+ table_keylen = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
+ goto malformed_exit;
+ }
+
+ table_data = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
+ goto malformed_exit;
+ }
+
+ if (p->remote_table->table->type != peer_int_key_type[table_type]
+ || p->remote_table->table->key_size != table_keylen) {
+ p->remote_table = NULL;
+ TRACE_PROTO("ignored message", PEERS_EV_DEFMSG, NULL, p);
+ goto ignore_msg;
+ }
+
+ /* Check if there there is the additional expire data */
+ intdecode(msg_cur, msg_end);
+ if (*msg_cur) {
+ uint64_t data_type;
+ uint64_t type;
+
+ /* This define contains the expire data so we consider
+ * it also contain all data_types parameters.
+ */
+ for (data_type = 0; data_type < STKTABLE_DATA_TYPES; data_type++) {
+ if (table_data & (1ULL << data_type)) {
+ if (stktable_data_types[data_type].is_array) {
+ /* This should be an array
+ * so we parse the data_type prefix
+ * because we must have parameters.
+ */
+ type = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ p->remote_table = NULL;
+ TRACE_PROTO("missing meta data for array", PEERS_EV_DEFMSG, NULL, p);
+ goto ignore_msg;
+ }
+
+ /* check if the data_type match the current from the bitfield */
+ if (type != data_type) {
+ p->remote_table = NULL;
+ TRACE_PROTO("meta data mismatch type", PEERS_EV_DEFMSG, NULL, p);
+ goto ignore_msg;
+ }
+
+ /* decode the nbelem of the array */
+ p->remote_table->remote_data_nbelem[type] = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ p->remote_table = NULL;
+ TRACE_PROTO("missing array size meta data for array", PEERS_EV_DEFMSG, NULL, p);
+ goto ignore_msg;
+ }
+
+ /* if it is an array of frqp, we must also have the period to decode */
+ if (stktable_data_types[data_type].std_type == STD_T_FRQP) {
+ intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ p->remote_table = NULL;
+ TRACE_PROTO("missing period for frqp", PEERS_EV_DEFMSG, NULL, p);
+ goto ignore_msg;
+ }
+ }
+ }
+ else if (stktable_data_types[data_type].std_type == STD_T_FRQP) {
+ /* This should be a std freq counter data_type
+ * so we parse the data_type prefix
+ * because we must have parameters.
+ */
+ type = intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ p->remote_table = NULL;
+ TRACE_PROTO("missing meta data for frqp", PEERS_EV_DEFMSG, NULL, p);
+ goto ignore_msg;
+ }
+
+ /* check if the data_type match the current from the bitfield */
+ if (type != data_type) {
+ p->remote_table = NULL;
+ TRACE_PROTO("meta data mismatch type", PEERS_EV_DEFMSG, NULL, p);
+ goto ignore_msg;
+ }
+
+ /* decode the period */
+ intdecode(msg_cur, msg_end);
+ if (!*msg_cur) {
+ p->remote_table = NULL;
+ TRACE_PROTO("missing period for frqp", PEERS_EV_DEFMSG, NULL, p);
+ goto ignore_msg;
+ }
+ }
+ }
+ }
+ }
+ else {
+ uint64_t data_type;
+
+ /* There is not additional data but
+ * array size parameter is mandatory to parse array
+ * so we consider an error if an array data_type is define
+ * but there is no additional data.
+ */
+ for (data_type = 0; data_type < STKTABLE_DATA_TYPES; data_type++) {
+ if (table_data & (1ULL << data_type)) {
+ if (stktable_data_types[data_type].is_array) {
+ p->remote_table = NULL;
+ TRACE_PROTO("missing array size meta data for array", PEERS_EV_DEFMSG, NULL, p);
+ goto ignore_msg;
+ }
+ }
+ }
+ }
+
+ p->remote_table->remote_data = table_data;
+ p->remote_table->remote_id = table_id;
+
+ ignore_msg:
+ return 1;
+
+ malformed_exit:
+ /* malformed message */
+ appctx->st0 = PEER_SESS_ST_ERRPROTO;
+ return 0;
+}
+
+/*
+ * Receive a stick-table message or pre-parse any other message.
+ * The message's header will be sent into <msg_head> which must be at least
+ * <msg_head_sz> bytes long (at least 7 to store 32-bit variable lengths).
+ * The first two bytes are always read, and the rest is only read if the
+ * first bytes indicate a stick-table message. If the message is a stick-table
+ * message, the varint is decoded and the equivalent number of bytes will be
+ * copied into the trash at trash.area. <totl> is incremented by the number of
+ * bytes read EVEN IN CASE OF INCOMPLETE MESSAGES.
+ * Returns 1 if there was no error, if not, returns 0 if not enough data were available,
+ * -1 if there was an error updating the appctx state st0 accordingly.
+ */
+static inline int peer_recv_msg(struct appctx *appctx, char *msg_head, size_t msg_head_sz,
+ uint32_t *msg_len, int *totl)
+{
+ int reql;
+ struct stconn *sc = appctx_sc(appctx);
+ char *cur;
+
+ reql = co_getblk(sc_oc(sc), msg_head, 2 * sizeof(char), *totl);
+ if (reql <= 0) /* closed or EOL not found */
+ goto incomplete;
+
+ *totl += reql;
+
+ if (!(msg_head[1] & PEER_MSG_STKT_BIT_MASK))
+ return 1;
+
+ /* This is a stick-table message, let's go on */
+
+ /* Read and Decode message length */
+ msg_head += *totl;
+ msg_head_sz -= *totl;
+ reql = co_data(sc_oc(sc)) - *totl;
+ if (reql > msg_head_sz)
+ reql = msg_head_sz;
+
+ reql = co_getblk(sc_oc(sc), msg_head, reql, *totl);
+ if (reql <= 0) /* closed */
+ goto incomplete;
+
+ cur = msg_head;
+ *msg_len = intdecode(&cur, cur + reql);
+ if (!cur) {
+ /* the number is truncated, did we read enough ? */
+ if (reql < msg_head_sz)
+ goto incomplete;
+
+ /* malformed message */
+ TRACE_PROTO("malformed message: too large length encoding", PEERS_EV_UPDTMSG);
+ appctx->st0 = PEER_SESS_ST_ERRPROTO;
+ return -1;
+ }
+ *totl += cur - msg_head;
+
+ /* Read message content */
+ if (*msg_len) {
+ if (*msg_len > trash.size) {
+ /* Status code is not success, abort */
+ appctx->st0 = PEER_SESS_ST_ERRSIZE;
+ return -1;
+ }
+
+ reql = co_getblk(sc_oc(sc), trash.area, *msg_len, *totl);
+ if (reql <= 0) /* closed */
+ goto incomplete;
+ *totl += reql;
+ }
+
+ return 1;
+
+ incomplete:
+ if (reql < 0 || (sc->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED))) {
+ /* there was an error or the message was truncated */
+ appctx->st0 = PEER_SESS_ST_END;
+ return -1;
+ }
+
+ return 0;
+}
+
+/*
+ * Treat the awaited message with <msg_head> as header.*
+ * Return 1 if succeeded, 0 if not.
+ */
+static inline int peer_treat_awaited_msg(struct appctx *appctx, struct peer *peer, unsigned char *msg_head,
+ char **msg_cur, char *msg_end, int msg_len, int totl)
+{
+ struct peers *peers = peer->peers;
+
+ if (msg_head[0] == PEER_MSG_CLASS_CONTROL) {
+ if (msg_head[1] == PEER_MSG_CTRL_RESYNCREQ) {
+ struct shared_table *st;
+ /* Reset message: remote need resync */
+
+ TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
+ NULL, &msg_head[1], peers->local->id, peer->id);
+ /* prepare tables for a global push */
+ for (st = peer->tables; st; st = st->next) {
+ st->teaching_origin = st->last_pushed = st->update;
+ st->flags = 0;
+ }
+
+ /* reset teaching flags to 0 */
+ peer->flags &= PEER_TEACH_RESET;
+
+ /* flag to start to teach lesson */
+ peer->flags |= PEER_F_TEACH_PROCESS;
+ peers->flags |= PEERS_F_RESYNC_REQUESTED;
+ }
+ else if (msg_head[1] == PEER_MSG_CTRL_RESYNCFINISHED) {
+ TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
+ NULL, &msg_head[1], peers->local->id, peer->id);
+ if (peer->flags & PEER_F_LEARN_ASSIGN) {
+ int commit_a_finish = 1;
+
+ peer->flags &= ~PEER_F_LEARN_ASSIGN;
+ peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS);
+ if (peer->srv->shard) {
+ struct peer *ps;
+
+ peers->flags |= PEERS_F_RESYNC_REMOTEPARTIAL;
+ peer->flags |= PEER_F_LEARN_NOTUP2DATE;
+ for (ps = peers->remote; ps; ps = ps->next) {
+ if (ps->srv->shard == peer->srv->shard) {
+ /* flag all peers from same shard
+ * notup2date to disable request
+ * of a resync frm them
+ */
+ ps->flags |= PEER_F_LEARN_NOTUP2DATE;
+ }
+ else if (ps->srv->shard && !(ps->flags & PEER_F_LEARN_NOTUP2DATE)) {
+ /* it remains some other shards not requested
+ * we don't commit a resync finish to request
+ * the other shards
+ */
+ commit_a_finish = 0;
+ }
+ }
+
+ if (!commit_a_finish) {
+ /* it remains some shard to request, we schedule a new request
+ */
+ peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
+ task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
+ }
+ }
+
+ if (commit_a_finish) {
+ peers->flags |= (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE);
+ if (peer->local)
+ peers->flags |= PEERS_F_RESYNC_LOCALFINISHED;
+ else
+ peers->flags |= PEERS_F_RESYNC_REMOTEFINISHED;
+ }
+ }
+ peer->confirm++;
+ }
+ else if (msg_head[1] == PEER_MSG_CTRL_RESYNCPARTIAL) {
+ TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
+ NULL, &msg_head[1], peers->local->id, peer->id);
+ if (peer->flags & PEER_F_LEARN_ASSIGN) {
+ peer->flags &= ~PEER_F_LEARN_ASSIGN;
+ peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS);
+
+ if (peer->local)
+ peers->flags |= PEERS_F_RESYNC_LOCALPARTIAL;
+ else
+ peers->flags |= PEERS_F_RESYNC_REMOTEPARTIAL;
+ peer->flags |= PEER_F_LEARN_NOTUP2DATE;
+ peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
+ task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
+ }
+ peer->confirm++;
+ }
+ else if (msg_head[1] == PEER_MSG_CTRL_RESYNCCONFIRM) {
+ struct shared_table *st;
+
+ TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
+ NULL, &msg_head[1], peers->local->id, peer->id);
+ /* If stopping state */
+ if (stopping) {
+ /* Close session, push resync no more needed */
+ peer->flags |= PEER_F_TEACH_COMPLETE;
+ appctx->st0 = PEER_SESS_ST_END;
+ return 0;
+ }
+ for (st = peer->tables; st; st = st->next) {
+ st->update = st->last_pushed = st->teaching_origin;
+ st->flags = 0;
+ }
+
+ /* reset teaching flags to 0 */
+ peer->flags &= PEER_TEACH_RESET;
+ }
+ else if (msg_head[1] == PEER_MSG_CTRL_HEARTBEAT) {
+ TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
+ NULL, &msg_head[1], peers->local->id, peer->id);
+ peer->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT));
+ peer->rx_hbt++;
+ }
+ }
+ else if (msg_head[0] == PEER_MSG_CLASS_STICKTABLE) {
+ if (msg_head[1] == PEER_MSG_STKT_DEFINE) {
+ if (!peer_treat_definemsg(appctx, peer, msg_cur, msg_end, totl))
+ return 0;
+ }
+ else if (msg_head[1] == PEER_MSG_STKT_SWITCH) {
+ if (!peer_treat_switchmsg(appctx, peer, msg_cur, msg_end))
+ return 0;
+ }
+ else if (msg_head[1] == PEER_MSG_STKT_UPDATE ||
+ msg_head[1] == PEER_MSG_STKT_INCUPDATE ||
+ msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED ||
+ msg_head[1] == PEER_MSG_STKT_INCUPDATE_TIMED) {
+ int update, expire;
+
+ update = msg_head[1] == PEER_MSG_STKT_UPDATE || msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED;
+ expire = msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED || msg_head[1] == PEER_MSG_STKT_INCUPDATE_TIMED;
+ if (!peer_treat_updatemsg(appctx, peer, update, expire,
+ msg_cur, msg_end, msg_len, totl))
+ return 0;
+
+ }
+ else if (msg_head[1] == PEER_MSG_STKT_ACK) {
+ if (!peer_treat_ackmsg(appctx, peer, msg_cur, msg_end))
+ return 0;
+ }
+ }
+ else if (msg_head[0] == PEER_MSG_CLASS_RESERVED) {
+ appctx->st0 = PEER_SESS_ST_ERRPROTO;
+ return 0;
+ }
+
+ return 1;
+}
+
+
+/*
+ * Send any message to <peer> peer.
+ * Returns 1 if succeeded, or -1 or 0 if failed.
+ * -1 means an internal error occurred, 0 is for a peer protocol error leading
+ * to a peer state change (from the peer I/O handler point of view).
+ *
+ * - peer->last_local_table is the last table for which we send an update
+ * messages.
+ *
+ * - peer->stop_local_table is the last evaluated table. It is unset when the
+ * teaching process starts. But we use it as a
+ * restart point when the loop is interrupted. It is
+ * especially useful when the number of tables exceeds
+ * peers_max_updates_at_once value.
+ *
+ * When a teaching lopp is started, the peer's last_local_table is saved in a
+ * local variable. This variable is used as a finish point. When the crrent
+ * table is equal to it, it means all tables were evaluated, all updates where
+ * sent and the teaching process is finished.
+ *
+ * peer->stop_local_table is always NULL when the teaching process begins. It is
+ * only reset at the end. In the mean time, it always point on a table.
+ */
+
+static inline int peer_send_msgs(struct appctx *appctx,
+ struct peer *peer, struct peers *peers)
+{
+ int repl;
+
+ /* Need to request a resync */
+ if ((peer->flags & PEER_F_LEARN_ASSIGN) &&
+ (peers->flags & PEERS_F_RESYNC_ASSIGN) &&
+ !(peers->flags & PEERS_F_RESYNC_PROCESS)) {
+
+ repl = peer_send_resync_reqmsg(appctx, peer, peers);
+ if (repl <= 0)
+ return repl;
+
+ peers->flags |= PEERS_F_RESYNC_PROCESS;
+ }
+
+ /* Nothing to read, now we start to write */
+ if (peer->tables) {
+ struct shared_table *st;
+ struct shared_table *last_local_table;
+ int updates = 0;
+
+ last_local_table = peer->last_local_table;
+ if (!last_local_table)
+ last_local_table = peer->tables;
+ if (!peer->stop_local_table)
+ peer->stop_local_table = last_local_table;
+ st = peer->stop_local_table->next;
+
+ while (1) {
+ if (!st)
+ st = peer->tables;
+ /* It remains some updates to ack */
+ if (st->last_get != st->last_acked) {
+ repl = peer_send_ackmsg(st, appctx);
+ if (repl <= 0)
+ return repl;
+
+ st->last_acked = st->last_get;
+ }
+
+ if (!(peer->flags & PEER_F_TEACH_PROCESS)) {
+ HA_RWLOCK_WRLOCK(STK_TABLE_LOCK, &st->table->lock);
+ if (!(peer->flags & PEER_F_LEARN_ASSIGN) &&
+ (st->last_pushed != st->table->localupdate)) {
+
+ repl = peer_send_teach_process_msgs(appctx, peer, st);
+ if (repl <= 0) {
+ HA_RWLOCK_WRUNLOCK(STK_TABLE_LOCK, &st->table->lock);
+ peer->stop_local_table = peer->last_local_table;
+ return repl;
+ }
+ }
+ HA_RWLOCK_WRUNLOCK(STK_TABLE_LOCK, &st->table->lock);
+ }
+ else if (!(peer->flags & PEER_F_TEACH_FINISHED)) {
+ if (!(st->flags & SHTABLE_F_TEACH_STAGE1)) {
+ repl = peer_send_teach_stage1_msgs(appctx, peer, st);
+ if (repl <= 0) {
+ peer->stop_local_table = peer->last_local_table;
+ return repl;
+ }
+ }
+
+ if (!(st->flags & SHTABLE_F_TEACH_STAGE2)) {
+ repl = peer_send_teach_stage2_msgs(appctx, peer, st);
+ if (repl <= 0) {
+ peer->stop_local_table = peer->last_local_table;
+ return repl;
+ }
+ }
+ }
+
+ if (st == last_local_table) {
+ peer->stop_local_table = NULL;
+ break;
+ }
+
+ /* This one is to be sure to restart from <st->next> if we are interrupted
+ * because of peer_send_teach_stage2_msgs or because buffer is full
+ * when sedning an ackmsg. In both cases current <st> was evaluated and
+ * we must restart from <st->next>
+ */
+ peer->stop_local_table = st;
+
+ updates++;
+ if (updates >= peers_max_updates_at_once) {
+ /* pretend we're full so that we get back ASAP */
+ struct stconn *sc = appctx_sc(appctx);
+
+ sc_need_room(sc, 0);
+ return -1;
+ }
+
+ st = st->next;
+ }
+ }
+
+ if ((peer->flags & PEER_F_TEACH_PROCESS) && !(peer->flags & PEER_F_TEACH_FINISHED)) {
+ repl = peer_send_resync_finishedmsg(appctx, peer, peers);
+ if (repl <= 0)
+ return repl;
+
+ /* flag finished message sent */
+ peer->flags |= PEER_F_TEACH_FINISHED;
+ }
+
+ /* Confirm finished or partial messages */
+ while (peer->confirm) {
+ repl = peer_send_resync_confirmsg(appctx, peer, peers);
+ if (repl <= 0)
+ return repl;
+
+ peer->confirm--;
+ }
+
+ return 1;
+}
+
+/*
+ * Read and parse a first line of a "hello" peer protocol message.
+ * Returns 0 if could not read a line, -1 if there was a read error or
+ * the line is malformed, 1 if succeeded.
+ */
+static inline int peer_getline_version(struct appctx *appctx,
+ unsigned int *maj_ver, unsigned int *min_ver)
+{
+ int reql;
+
+ reql = peer_getline(appctx);
+ if (!reql)
+ return 0;
+
+ if (reql < 0)
+ return -1;
+
+ /* test protocol */
+ if (strncmp(PEER_SESSION_PROTO_NAME " ", trash.area, proto_len + 1) != 0) {
+ appctx->st0 = PEER_SESS_ST_EXIT;
+ appctx->st1 = PEER_SESS_SC_ERRPROTO;
+ return -1;
+ }
+ if (peer_get_version(trash.area + proto_len + 1, maj_ver, min_ver) == -1 ||
+ *maj_ver != PEER_MAJOR_VER || *min_ver > PEER_MINOR_VER) {
+ appctx->st0 = PEER_SESS_ST_EXIT;
+ appctx->st1 = PEER_SESS_SC_ERRVERSION;
+ return -1;
+ }
+
+ return 1;
+}
+
+/*
+ * Read and parse a second line of a "hello" peer protocol message.
+ * Returns 0 if could not read a line, -1 if there was a read error or
+ * the line is malformed, 1 if succeeded.
+ */
+static inline int peer_getline_host(struct appctx *appctx)
+{
+ int reql;
+
+ reql = peer_getline(appctx);
+ if (!reql)
+ return 0;
+
+ if (reql < 0)
+ return -1;
+
+ /* test hostname match */
+ if (strcmp(localpeer, trash.area) != 0) {
+ appctx->st0 = PEER_SESS_ST_EXIT;
+ appctx->st1 = PEER_SESS_SC_ERRHOST;
+ return -1;
+ }
+
+ return 1;
+}
+
+/*
+ * Read and parse a last line of a "hello" peer protocol message.
+ * Returns 0 if could not read a character, -1 if there was a read error or
+ * the line is malformed, 1 if succeeded.
+ * Set <curpeer> accordingly (the remote peer sending the "hello" message).
+ */
+static inline int peer_getline_last(struct appctx *appctx, struct peer **curpeer)
+{
+ char *p;
+ int reql;
+ struct peer *peer;
+ struct stream *s = appctx_strm(appctx);
+ struct peers *peers = strm_fe(s)->parent;
+
+ reql = peer_getline(appctx);
+ if (!reql)
+ return 0;
+
+ if (reql < 0)
+ return -1;
+
+ /* parse line "<peer name> <pid> <relative_pid>" */
+ p = strchr(trash.area, ' ');
+ if (!p) {
+ appctx->st0 = PEER_SESS_ST_EXIT;
+ appctx->st1 = PEER_SESS_SC_ERRPROTO;
+ return -1;
+ }
+ *p = 0;
+
+ /* lookup known peer */
+ for (peer = peers->remote; peer; peer = peer->next) {
+ if (strcmp(peer->id, trash.area) == 0)
+ break;
+ }
+
+ /* if unknown peer */
+ if (!peer) {
+ appctx->st0 = PEER_SESS_ST_EXIT;
+ appctx->st1 = PEER_SESS_SC_ERRPEER;
+ return -1;
+ }
+ *curpeer = peer;
+
+ return 1;
+}
+
+/*
+ * Init <peer> peer after having accepted it at peer protocol level.
+ */
+static inline void init_accepted_peer(struct peer *peer, struct peers *peers)
+{
+ struct shared_table *st;
+
+ peer->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
+ /* Register status code */
+ peer->statuscode = PEER_SESS_SC_SUCCESSCODE;
+ peer->last_hdshk = now_ms;
+
+ /* Awake main task */
+ task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
+
+ /* Init confirm counter */
+ peer->confirm = 0;
+
+ /* Init cursors */
+ for (st = peer->tables; st ; st = st->next) {
+ uint commitid, updateid;
+
+ st->last_get = st->last_acked = 0;
+ HA_RWLOCK_WRLOCK(STK_TABLE_LOCK, &st->table->lock);
+ /* if st->update appears to be in future it means
+ * that the last acked value is very old and we
+ * remain unconnected a too long time to use this
+ * acknowledgement as a reset.
+ * We should update the protocol to be able to
+ * signal the remote peer that it needs a full resync.
+ * Here a partial fix consist to set st->update at
+ * the max past value
+ */
+ if ((int)(st->table->localupdate - st->update) < 0)
+ st->update = st->table->localupdate + (2147483648U);
+ st->teaching_origin = st->last_pushed = st->update;
+ st->flags = 0;
+
+ updateid = st->last_pushed;
+ commitid = _HA_ATOMIC_LOAD(&st->table->commitupdate);
+
+ while ((int)(updateid - commitid) > 0) {
+ if (_HA_ATOMIC_CAS(&st->table->commitupdate, &commitid, updateid))
+ break;
+ __ha_cpu_relax();
+ }
+
+ HA_RWLOCK_WRUNLOCK(STK_TABLE_LOCK, &st->table->lock);
+ }
+
+ /* reset teaching and learning flags to 0 */
+ peer->flags &= PEER_TEACH_RESET;
+ peer->flags &= PEER_LEARN_RESET;
+
+ /* if current peer is local */
+ if (peer->local) {
+ /* if current host need resyncfrom local and no process assigned */
+ if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMLOCAL &&
+ !(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
+ /* assign local peer for a lesson, consider lesson already requested */
+ peer->flags |= PEER_F_LEARN_ASSIGN;
+ peers->flags |= (PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS);
+ peers->flags |= PEERS_F_RESYNC_LOCALASSIGN;
+ }
+
+ }
+ else if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE &&
+ !(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
+ /* assign peer for a lesson */
+ peer->flags |= PEER_F_LEARN_ASSIGN;
+ peers->flags |= PEERS_F_RESYNC_ASSIGN;
+ peers->flags |= PEERS_F_RESYNC_REMOTEASSIGN;
+ }
+}
+
+/*
+ * Init <peer> peer after having connected it at peer protocol level.
+ */
+static inline void init_connected_peer(struct peer *peer, struct peers *peers)
+{
+ struct shared_table *st;
+
+ peer->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
+ /* Init cursors */
+ for (st = peer->tables; st ; st = st->next) {
+ uint updateid, commitid;
+
+ st->last_get = st->last_acked = 0;
+ HA_RWLOCK_WRLOCK(STK_TABLE_LOCK, &st->table->lock);
+ /* if st->update appears to be in future it means
+ * that the last acked value is very old and we
+ * remain unconnected a too long time to use this
+ * acknowledgement as a reset.
+ * We should update the protocol to be able to
+ * signal the remote peer that it needs a full resync.
+ * Here a partial fix consist to set st->update at
+ * the max past value.
+ */
+ if ((int)(st->table->localupdate - st->update) < 0)
+ st->update = st->table->localupdate + (2147483648U);
+ st->teaching_origin = st->last_pushed = st->update;
+ st->flags = 0;
+
+ updateid = st->last_pushed;
+ commitid = _HA_ATOMIC_LOAD(&st->table->commitupdate);
+
+ while ((int)(updateid - commitid) > 0) {
+ if (_HA_ATOMIC_CAS(&st->table->commitupdate, &commitid, updateid))
+ break;
+ __ha_cpu_relax();
+ }
+
+ HA_RWLOCK_WRUNLOCK(STK_TABLE_LOCK, &st->table->lock);
+ }
+
+ /* Init confirm counter */
+ peer->confirm = 0;
+
+ /* reset teaching and learning flags to 0 */
+ peer->flags &= PEER_TEACH_RESET;
+ peer->flags &= PEER_LEARN_RESET;
+
+ /* If current peer is local */
+ if (peer->local) {
+ /* flag to start to teach lesson */
+ peer->flags |= PEER_F_TEACH_PROCESS;
+ }
+ else if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE &&
+ !(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
+ /* If peer is remote and resync from remote is needed,
+ and no peer currently assigned */
+
+ /* assign peer for a lesson */
+ peer->flags |= PEER_F_LEARN_ASSIGN;
+ peers->flags |= PEERS_F_RESYNC_ASSIGN;
+ peers->flags |= PEERS_F_RESYNC_REMOTEASSIGN;
+ }
+}
+
+/*
+ * IO Handler to handle message exchange with a peer
+ */
+static void peer_io_handler(struct appctx *appctx)
+{
+ struct stconn *sc = appctx_sc(appctx);
+ struct stream *s = __sc_strm(sc);
+ struct peers *curpeers = strm_fe(s)->parent;
+ struct peer *curpeer = NULL;
+ int reql = 0;
+ int repl = 0;
+ unsigned int maj_ver, min_ver;
+ int prev_state;
+
+ if (unlikely(se_fl_test(appctx->sedesc, (SE_FL_EOS|SE_FL_ERROR|SE_FL_SHR|SE_FL_SHW)))) {
+ co_skip(sc_oc(sc), co_data(sc_oc(sc)));
+ goto out;
+ }
+
+ /* Check if the input buffer is available. */
+ if (sc_ib(sc)->size == 0) {
+ sc_need_room(sc, 0);
+ goto out;
+ }
+
+ while (1) {
+ prev_state = appctx->st0;
+switchstate:
+ maj_ver = min_ver = (unsigned int)-1;
+ switch(appctx->st0) {
+ case PEER_SESS_ST_ACCEPT:
+ prev_state = appctx->st0;
+ appctx->svcctx = NULL;
+ appctx->st0 = PEER_SESS_ST_GETVERSION;
+ __fallthrough;
+ case PEER_SESS_ST_GETVERSION:
+ prev_state = appctx->st0;
+ reql = peer_getline_version(appctx, &maj_ver, &min_ver);
+ if (reql <= 0) {
+ if (!reql)
+ goto out;
+ goto switchstate;
+ }
+
+ appctx->st0 = PEER_SESS_ST_GETHOST;
+ __fallthrough;
+ case PEER_SESS_ST_GETHOST:
+ prev_state = appctx->st0;
+ reql = peer_getline_host(appctx);
+ if (reql <= 0) {
+ if (!reql)
+ goto out;
+ goto switchstate;
+ }
+
+ appctx->st0 = PEER_SESS_ST_GETPEER;
+ __fallthrough;
+ case PEER_SESS_ST_GETPEER: {
+ prev_state = appctx->st0;
+ reql = peer_getline_last(appctx, &curpeer);
+ if (reql <= 0) {
+ if (!reql)
+ goto out;
+ goto switchstate;
+ }
+
+ HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
+ if (curpeer->appctx && curpeer->appctx != appctx) {
+ if (curpeer->local) {
+ /* Local connection, reply a retry */
+ appctx->st0 = PEER_SESS_ST_EXIT;
+ appctx->st1 = PEER_SESS_SC_TRYAGAIN;
+ goto switchstate;
+ }
+
+ /* we're killing a connection, we must apply a random delay before
+ * retrying otherwise the other end will do the same and we can loop
+ * for a while.
+ */
+ curpeer->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000));
+ peer_session_forceshutdown(curpeer);
+ curpeer->heartbeat = TICK_ETERNITY;
+ curpeer->coll++;
+ }
+ if (maj_ver != (unsigned int)-1 && min_ver != (unsigned int)-1) {
+ if (min_ver == PEER_DWNGRD_MINOR_VER) {
+ curpeer->flags |= PEER_F_DWNGRD;
+ }
+ else {
+ curpeer->flags &= ~PEER_F_DWNGRD;
+ }
+ }
+ curpeer->appctx = appctx;
+ curpeer->flags |= PEER_F_ALIVE;
+ appctx->svcctx = curpeer;
+ appctx->st0 = PEER_SESS_ST_SENDSUCCESS;
+ _HA_ATOMIC_INC(&active_peers);
+ }
+ __fallthrough;
+ case PEER_SESS_ST_SENDSUCCESS: {
+ prev_state = appctx->st0;
+ if (!curpeer) {
+ curpeer = appctx->svcctx;
+ HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
+ if (curpeer->appctx != appctx) {
+ appctx->st0 = PEER_SESS_ST_END;
+ goto switchstate;
+ }
+ }
+
+ repl = peer_send_status_successmsg(appctx);
+ if (repl <= 0) {
+ if (repl == -1)
+ goto out;
+ goto switchstate;
+ }
+
+ init_accepted_peer(curpeer, curpeers);
+
+ /* switch to waiting message state */
+ _HA_ATOMIC_INC(&connected_peers);
+ appctx->st0 = PEER_SESS_ST_WAITMSG;
+ goto switchstate;
+ }
+ case PEER_SESS_ST_CONNECT: {
+ prev_state = appctx->st0;
+ if (!curpeer) {
+ curpeer = appctx->svcctx;
+ HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
+ if (curpeer->appctx != appctx) {
+ appctx->st0 = PEER_SESS_ST_END;
+ goto switchstate;
+ }
+ }
+
+ repl = peer_send_hellomsg(appctx, curpeer);
+ if (repl <= 0) {
+ if (repl == -1)
+ goto out;
+ goto switchstate;
+ }
+
+ /* switch to the waiting statuscode state */
+ appctx->st0 = PEER_SESS_ST_GETSTATUS;
+ }
+ __fallthrough;
+ case PEER_SESS_ST_GETSTATUS: {
+ prev_state = appctx->st0;
+ if (!curpeer) {
+ curpeer = appctx->svcctx;
+ HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
+ if (curpeer->appctx != appctx) {
+ appctx->st0 = PEER_SESS_ST_END;
+ goto switchstate;
+ }
+ }
+
+ if (sc_ic(sc)->flags & CF_WROTE_DATA)
+ curpeer->statuscode = PEER_SESS_SC_CONNECTEDCODE;
+
+ reql = peer_getline(appctx);
+ if (!reql)
+ goto out;
+
+ if (reql < 0)
+ goto switchstate;
+
+ /* Register status code */
+ curpeer->statuscode = atoi(trash.area);
+ curpeer->last_hdshk = now_ms;
+
+ /* Awake main task */
+ task_wakeup(curpeers->sync_task, TASK_WOKEN_MSG);
+
+ /* If status code is success */
+ if (curpeer->statuscode == PEER_SESS_SC_SUCCESSCODE) {
+ init_connected_peer(curpeer, curpeers);
+ }
+ else {
+ if (curpeer->statuscode == PEER_SESS_SC_ERRVERSION)
+ curpeer->flags |= PEER_F_DWNGRD;
+ /* Status code is not success, abort */
+ appctx->st0 = PEER_SESS_ST_END;
+ goto switchstate;
+ }
+ _HA_ATOMIC_INC(&connected_peers);
+ appctx->st0 = PEER_SESS_ST_WAITMSG;
+ }
+ __fallthrough;
+ case PEER_SESS_ST_WAITMSG: {
+ uint32_t msg_len = 0;
+ char *msg_cur = trash.area;
+ char *msg_end = trash.area;
+ unsigned char msg_head[7]; // 2 + 5 for varint32
+ int totl = 0;
+
+ prev_state = appctx->st0;
+ if (!curpeer) {
+ curpeer = appctx->svcctx;
+ HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
+ if (curpeer->appctx != appctx) {
+ appctx->st0 = PEER_SESS_ST_END;
+ goto switchstate;
+ }
+ }
+
+ reql = peer_recv_msg(appctx, (char *)msg_head, sizeof msg_head, &msg_len, &totl);
+ if (reql <= 0) {
+ if (reql == -1)
+ goto switchstate;
+ goto send_msgs;
+ }
+
+ msg_end += msg_len;
+ if (!peer_treat_awaited_msg(appctx, curpeer, msg_head, &msg_cur, msg_end, msg_len, totl))
+ goto switchstate;
+
+ curpeer->flags |= PEER_F_ALIVE;
+
+ /* skip consumed message */
+ co_skip(sc_oc(sc), totl);
+ /* loop on that state to peek next message */
+ goto switchstate;
+
+send_msgs:
+ if (curpeer->flags & PEER_F_HEARTBEAT) {
+ curpeer->flags &= ~PEER_F_HEARTBEAT;
+ repl = peer_send_heartbeatmsg(appctx, curpeer, curpeers);
+ if (repl <= 0) {
+ if (repl == -1)
+ goto out;
+ goto switchstate;
+ }
+ curpeer->tx_hbt++;
+ }
+ /* we get here when a peer_recv_msg() returns 0 in reql */
+ repl = peer_send_msgs(appctx, curpeer, curpeers);
+ if (repl <= 0) {
+ if (repl == -1)
+ goto out;
+ goto switchstate;
+ }
+
+ /* noting more to do */
+ goto out;
+ }
+ case PEER_SESS_ST_EXIT:
+ if (prev_state == PEER_SESS_ST_WAITMSG)
+ _HA_ATOMIC_DEC(&connected_peers);
+ prev_state = appctx->st0;
+ if (peer_send_status_errormsg(appctx) == -1)
+ goto out;
+ appctx->st0 = PEER_SESS_ST_END;
+ goto switchstate;
+ case PEER_SESS_ST_ERRSIZE: {
+ if (prev_state == PEER_SESS_ST_WAITMSG)
+ _HA_ATOMIC_DEC(&connected_peers);
+ prev_state = appctx->st0;
+ if (peer_send_error_size_limitmsg(appctx) == -1)
+ goto out;
+ appctx->st0 = PEER_SESS_ST_END;
+ goto switchstate;
+ }
+ case PEER_SESS_ST_ERRPROTO: {
+ TRACE_PROTO("protocol error", PEERS_EV_PROTOERR,
+ NULL, curpeer, &prev_state);
+ if (curpeer)
+ curpeer->proto_err++;
+ if (prev_state == PEER_SESS_ST_WAITMSG)
+ _HA_ATOMIC_DEC(&connected_peers);
+ prev_state = appctx->st0;
+ if (peer_send_error_protomsg(appctx) == -1) {
+ TRACE_PROTO("could not send error message", PEERS_EV_PROTOERR);
+ goto out;
+ }
+ appctx->st0 = PEER_SESS_ST_END;
+ prev_state = appctx->st0;
+ }
+ __fallthrough;
+ case PEER_SESS_ST_END: {
+ if (prev_state == PEER_SESS_ST_WAITMSG)
+ _HA_ATOMIC_DEC(&connected_peers);
+ prev_state = appctx->st0;
+ if (curpeer) {
+ HA_SPIN_UNLOCK(PEER_LOCK, &curpeer->lock);
+ curpeer = NULL;
+ }
+ se_fl_set(appctx->sedesc, SE_FL_EOS|SE_FL_EOI);
+ co_skip(sc_oc(sc), co_data(sc_oc(sc)));
+ goto out;
+ }
+ }
+ }
+out:
+ sc_opposite(sc)->flags |= SC_FL_RCV_ONCE;
+
+ if (curpeer)
+ HA_SPIN_UNLOCK(PEER_LOCK, &curpeer->lock);
+ return;
+}
+
+static struct applet peer_applet = {
+ .obj_type = OBJ_TYPE_APPLET,
+ .name = "<PEER>", /* used for logging */
+ .fct = peer_io_handler,
+ .init = peer_session_init,
+ .release = peer_session_release,
+};
+
+
+/*
+ * Use this function to force a close of a peer session
+ */
+static void peer_session_forceshutdown(struct peer *peer)
+{
+ struct appctx *appctx = peer->appctx;
+
+ /* Note that the peer sessions which have just been created
+ * (->st0 == PEER_SESS_ST_CONNECT) must not
+ * be shutdown, if not, the TCP session will never be closed
+ * and stay in CLOSE_WAIT state after having been closed by
+ * the remote side.
+ */
+ if (!appctx || appctx->st0 == PEER_SESS_ST_CONNECT)
+ return;
+
+ if (appctx->applet != &peer_applet)
+ return;
+
+ __peer_session_deinit(peer);
+
+ appctx->st0 = PEER_SESS_ST_END;
+ appctx_wakeup(appctx);
+}
+
+/* Pre-configures a peers frontend to accept incoming connections */
+void peers_setup_frontend(struct proxy *fe)
+{
+ fe->last_change = ns_to_sec(now_ns);
+ fe->cap = PR_CAP_FE | PR_CAP_BE;
+ fe->mode = PR_MODE_PEERS;
+ fe->maxconn = 0;
+ fe->conn_retries = CONN_RETRIES;
+ fe->timeout.connect = MS_TO_TICKS(1000);
+ fe->timeout.client = MS_TO_TICKS(5000);
+ fe->timeout.server = MS_TO_TICKS(5000);
+ fe->accept = frontend_accept;
+ fe->default_target = &peer_applet.obj_type;
+ fe->options2 |= PR_O2_INDEPSTR | PR_O2_SMARTCON | PR_O2_SMARTACC;
+}
+
+/*
+ * Create a new peer session in assigned state (connect will start automatically)
+ */
+static struct appctx *peer_session_create(struct peers *peers, struct peer *peer)
+{
+ struct appctx *appctx;
+ unsigned int thr = 0;
+ int idx;
+
+ peer->new_conn++;
+ peer->reconnect = tick_add(now_ms, (stopping ? MS_TO_TICKS(PEER_LOCAL_RECONNECT_TIMEOUT) : MS_TO_TICKS(PEER_RECONNECT_TIMEOUT)));
+ peer->heartbeat = TICK_ETERNITY;
+ peer->statuscode = PEER_SESS_SC_CONNECTCODE;
+ peer->last_hdshk = now_ms;
+
+ for (idx = 0; idx < global.nbthread; idx++)
+ thr = peers->applet_count[idx] < peers->applet_count[thr] ? idx : thr;
+ appctx = appctx_new_on(&peer_applet, NULL, thr);
+ if (!appctx)
+ goto out_close;
+ appctx->svcctx = (void *)peer;
+
+ appctx->st0 = PEER_SESS_ST_CONNECT;
+ peer->appctx = appctx;
+
+ HA_ATOMIC_INC(&peers->applet_count[thr]);
+ appctx_wakeup(appctx);
+ return appctx;
+
+ out_close:
+ return NULL;
+}
+
+/*
+ * Task processing function to manage re-connect, peer session
+ * tasks wakeup on local update and heartbeat. Let's keep it exported so that it
+ * resolves in stack traces and "show tasks".
+ */
+struct task *process_peer_sync(struct task * task, void *context, unsigned int state)
+{
+ struct peers *peers = context;
+ struct peer *ps;
+ struct shared_table *st;
+
+ task->expire = TICK_ETERNITY;
+
+ /* Acquire lock for all peers of the section */
+ for (ps = peers->remote; ps; ps = ps->next)
+ HA_SPIN_LOCK(PEER_LOCK, &ps->lock);
+
+ if (!stopping) {
+ /* Normal case (not soft stop)*/
+
+ /* resync timeout set to TICK_ETERNITY means we just start
+ * a new process and timer was not initialized.
+ * We must arm this timer to switch to a request to a remote
+ * node if incoming connection from old local process never
+ * comes.
+ */
+ if (peers->resync_timeout == TICK_ETERNITY)
+ peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
+
+ if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMLOCAL) &&
+ (!nb_oldpids || tick_is_expired(peers->resync_timeout, now_ms)) &&
+ !(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
+ /* Resync from local peer needed
+ no peer was assigned for the lesson
+ and no old local peer found
+ or resync timeout expire */
+
+ /* flag no more resync from local, to try resync from remotes */
+ peers->flags |= PEERS_F_RESYNC_LOCAL;
+ peers->flags |= PEERS_F_RESYNC_LOCALTIMEOUT;
+
+ /* reschedule a resync */
+ peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
+ }
+
+ /* For each session */
+ for (ps = peers->remote; ps; ps = ps->next) {
+ /* For each remote peers */
+ if (!ps->local) {
+ if (!ps->appctx) {
+ /* no active peer connection */
+ if (ps->statuscode == 0 ||
+ ((ps->statuscode == PEER_SESS_SC_CONNECTCODE ||
+ ps->statuscode == PEER_SESS_SC_SUCCESSCODE ||
+ ps->statuscode == PEER_SESS_SC_CONNECTEDCODE) &&
+ tick_is_expired(ps->reconnect, now_ms))) {
+ /* connection never tried
+ * or previous peer connection established with success
+ * or previous peer connection failed while connecting
+ * and reconnection timer is expired */
+
+ /* retry a connect */
+ ps->appctx = peer_session_create(peers, ps);
+ }
+ else if (!tick_is_expired(ps->reconnect, now_ms)) {
+ /* If previous session failed during connection
+ * but reconnection timer is not expired */
+
+ /* reschedule task for reconnect */
+ task->expire = tick_first(task->expire, ps->reconnect);
+ }
+ /* else do nothing */
+ } /* !ps->appctx */
+ else if (ps->statuscode == PEER_SESS_SC_SUCCESSCODE) {
+ /* current peer connection is active and established */
+ if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE) &&
+ !(peers->flags & PEERS_F_RESYNC_ASSIGN) &&
+ !(ps->flags & PEER_F_LEARN_NOTUP2DATE)) {
+ /* Resync from a remote is needed
+ * and no peer was assigned for lesson
+ * and current peer may be up2date */
+
+ /* assign peer for the lesson */
+ ps->flags |= PEER_F_LEARN_ASSIGN;
+ peers->flags |= PEERS_F_RESYNC_ASSIGN;
+ peers->flags |= PEERS_F_RESYNC_REMOTEASSIGN;
+
+ /* wake up peer handler to handle a request of resync */
+ appctx_wakeup(ps->appctx);
+ }
+ else {
+ int update_to_push = 0;
+
+ /* Awake session if there is data to push */
+ for (st = ps->tables; st ; st = st->next) {
+ if (st->last_pushed != st->table->localupdate) {
+ /* wake up the peer handler to push local updates */
+ update_to_push = 1;
+ /* There is no need to send a heartbeat message
+ * when some updates must be pushed. The remote
+ * peer will consider <ps> peer as alive when it will
+ * receive these updates.
+ */
+ ps->flags &= ~PEER_F_HEARTBEAT;
+ /* Re-schedule another one later. */
+ ps->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
+ /* Refresh reconnect if necessary */
+ if (tick_is_expired(ps->reconnect, now_ms))
+ ps->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT));
+ /* We are going to send updates, let's ensure we will
+ * come back to send heartbeat messages or to reconnect.
+ */
+ task->expire = tick_first(ps->reconnect, ps->heartbeat);
+ appctx_wakeup(ps->appctx);
+ break;
+ }
+ }
+ /* When there are updates to send we do not reconnect
+ * and do not send heartbeat message either.
+ */
+ if (!update_to_push) {
+ if (tick_is_expired(ps->reconnect, now_ms)) {
+ if (ps->flags & PEER_F_ALIVE) {
+ /* This peer was alive during a 'reconnect' period.
+ * Flag it as not alive again for the next period.
+ */
+ ps->flags &= ~PEER_F_ALIVE;
+ ps->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT));
+ }
+ else {
+ ps->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000));
+ ps->heartbeat = TICK_ETERNITY;
+ peer_session_forceshutdown(ps);
+ ps->no_hbt++;
+ }
+ }
+ else if (tick_is_expired(ps->heartbeat, now_ms)) {
+ ps->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
+ ps->flags |= PEER_F_HEARTBEAT;
+ appctx_wakeup(ps->appctx);
+ }
+ task->expire = tick_first(ps->reconnect, ps->heartbeat);
+ }
+ }
+ /* else do nothing */
+ } /* SUCCESSCODE */
+ } /* !ps->peer->local */
+ } /* for */
+
+ /* Resync from remotes expired: consider resync is finished */
+ if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE) &&
+ !(peers->flags & PEERS_F_RESYNC_ASSIGN) &&
+ tick_is_expired(peers->resync_timeout, now_ms)) {
+ /* Resync from remote peer needed
+ * no peer was assigned for the lesson
+ * and resync timeout expire */
+
+ /* flag no more resync from remote, consider resync is finished */
+ peers->flags |= PEERS_F_RESYNC_REMOTE;
+ peers->flags |= PEERS_F_RESYNC_REMOTETIMEOUT;
+ }
+
+ if ((peers->flags & PEERS_RESYNC_STATEMASK) != PEERS_RESYNC_FINISHED) {
+ /* Resync not finished*/
+ /* reschedule task to resync timeout if not expired, to ended resync if needed */
+ if (!tick_is_expired(peers->resync_timeout, now_ms))
+ task->expire = tick_first(task->expire, peers->resync_timeout);
+ }
+ } /* !stopping */
+ else {
+ /* soft stop case */
+ if (state & TASK_WOKEN_SIGNAL) {
+ /* We've just received the signal */
+ if (!(peers->flags & PEERS_F_DONOTSTOP)) {
+ /* add DO NOT STOP flag if not present */
+ _HA_ATOMIC_INC(&jobs);
+ peers->flags |= PEERS_F_DONOTSTOP;
+
+ /* disconnect all connected peers to process a local sync
+ * this must be done only the first time we are switching
+ * in stopping state
+ */
+ for (ps = peers->remote; ps; ps = ps->next) {
+ /* we're killing a connection, we must apply a random delay before
+ * retrying otherwise the other end will do the same and we can loop
+ * for a while.
+ */
+ ps->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000));
+ if (ps->appctx) {
+ peer_session_forceshutdown(ps);
+ }
+ }
+
+ /* Set resync timeout for the local peer and request a immediate reconnect */
+ peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
+ peers->local->reconnect = now_ms;
+ }
+ }
+
+ ps = peers->local;
+ if (ps->flags & PEER_F_TEACH_COMPLETE) {
+ if (peers->flags & PEERS_F_DONOTSTOP) {
+ /* resync of new process was complete, current process can die now */
+ _HA_ATOMIC_DEC(&jobs);
+ peers->flags &= ~PEERS_F_DONOTSTOP;
+ for (st = ps->tables; st ; st = st->next)
+ HA_ATOMIC_DEC(&st->table->refcnt);
+ }
+ }
+ else if (!ps->appctx) {
+ /* Re-arm resync timeout if necessary */
+ if (!tick_isset(peers->resync_timeout))
+ peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
+
+ /* If there's no active peer connection */
+ if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FINISHED &&
+ !tick_is_expired(peers->resync_timeout, now_ms) &&
+ (ps->statuscode == 0 ||
+ ps->statuscode == PEER_SESS_SC_SUCCESSCODE ||
+ ps->statuscode == PEER_SESS_SC_CONNECTEDCODE ||
+ ps->statuscode == PEER_SESS_SC_TRYAGAIN)) {
+ /* The resync is finished for the local peer and
+ * the resync timeout is not expired and
+ * connection never tried
+ * or previous peer connection was successfully established
+ * or previous tcp connect succeeded but init state incomplete
+ * or during previous connect, peer replies a try again statuscode */
+
+ if (!tick_is_expired(ps->reconnect, now_ms)) {
+ /* reconnection timer is not expired. reschedule task for reconnect */
+ task->expire = tick_first(task->expire, ps->reconnect);
+ }
+ else {
+ /* connect to the local peer if we must push a local sync */
+ if (peers->flags & PEERS_F_DONOTSTOP) {
+ peer_session_create(peers, ps);
+ }
+ }
+ }
+ else {
+ /* Other error cases */
+ if (peers->flags & PEERS_F_DONOTSTOP) {
+ /* unable to resync new process, current process can die now */
+ _HA_ATOMIC_DEC(&jobs);
+ peers->flags &= ~PEERS_F_DONOTSTOP;
+ for (st = ps->tables; st ; st = st->next)
+ HA_ATOMIC_DEC(&st->table->refcnt);
+ }
+ }
+ }
+ else if (ps->statuscode == PEER_SESS_SC_SUCCESSCODE ) {
+ /* Reset resync timeout during a resync */
+ peers->resync_timeout = TICK_ETERNITY;
+
+ /* current peer connection is active and established
+ * wake up all peer handlers to push remaining local updates */
+ for (st = ps->tables; st ; st = st->next) {
+ if (st->last_pushed != st->table->localupdate) {
+ appctx_wakeup(ps->appctx);
+ break;
+ }
+ }
+ }
+ } /* stopping */
+
+ /* Release lock for all peers of the section */
+ for (ps = peers->remote; ps; ps = ps->next)
+ HA_SPIN_UNLOCK(PEER_LOCK, &ps->lock);
+
+ /* Wakeup for re-connect */
+ return task;
+}
+
+
+/*
+ * returns 0 in case of error.
+ */
+int peers_init_sync(struct peers *peers)
+{
+ struct peer * curpeer;
+
+ for (curpeer = peers->remote; curpeer; curpeer = curpeer->next) {
+ peers->peers_fe->maxconn += 3;
+ }
+
+ peers->sync_task = task_new_anywhere();
+ if (!peers->sync_task)
+ return 0;
+
+ memset(peers->applet_count, 0, sizeof(peers->applet_count));
+ peers->sync_task->process = process_peer_sync;
+ peers->sync_task->context = (void *)peers;
+ peers->sighandler = signal_register_task(0, peers->sync_task, 0);
+ task_wakeup(peers->sync_task, TASK_WOKEN_INIT);
+ return 1;
+}
+
+/*
+ * Allocate a cache a dictionary entries used upon transmission.
+ */
+static struct dcache_tx *new_dcache_tx(size_t max_entries)
+{
+ struct dcache_tx *d;
+ struct ebpt_node *entries;
+
+ d = malloc(sizeof *d);
+ entries = calloc(max_entries, sizeof *entries);
+ if (!d || !entries)
+ goto err;
+
+ d->lru_key = 0;
+ d->prev_lookup = NULL;
+ d->cached_entries = EB_ROOT_UNIQUE;
+ d->entries = entries;
+
+ return d;
+
+ err:
+ free(d);
+ free(entries);
+ return NULL;
+}
+
+/*
+ * Allocate a cache of dictionary entries with <name> as name and <max_entries>
+ * as maximum of entries.
+ * Return the dictionary cache if succeeded, NULL if not.
+ * Must be deallocated calling free_dcache().
+ */
+static struct dcache *new_dcache(size_t max_entries)
+{
+ struct dcache_tx *dc_tx;
+ struct dcache *dc;
+ struct dcache_rx *dc_rx;
+
+ dc = calloc(1, sizeof *dc);
+ dc_tx = new_dcache_tx(max_entries);
+ dc_rx = calloc(max_entries, sizeof *dc_rx);
+ if (!dc || !dc_tx || !dc_rx)
+ goto err;
+
+ dc->tx = dc_tx;
+ dc->rx = dc_rx;
+ dc->max_entries = max_entries;
+
+ return dc;
+
+ err:
+ free(dc);
+ free(dc_tx);
+ free(dc_rx);
+ return NULL;
+}
+
+/*
+ * Look for the dictionary entry with the value of <i> in <d> cache of dictionary
+ * entries used upon transmission.
+ * Return the entry if found, NULL if not.
+ */
+static struct ebpt_node *dcache_tx_lookup_value(struct dcache_tx *d,
+ struct dcache_tx_entry *i)
+{
+ return ebpt_lookup(&d->cached_entries, i->entry.key);
+}
+
+/*
+ * Flush <dc> cache.
+ * Always succeeds.
+ */
+static inline void flush_dcache(struct peer *peer)
+{
+ int i;
+ struct dcache *dc = peer->dcache;
+
+ for (i = 0; i < dc->max_entries; i++) {
+ ebpt_delete(&dc->tx->entries[i]);
+ dc->tx->entries[i].key = NULL;
+ dict_entry_unref(&server_key_dict, dc->rx[i].de);
+ dc->rx[i].de = NULL;
+ }
+ dc->tx->prev_lookup = NULL;
+ dc->tx->lru_key = 0;
+
+ memset(dc->rx, 0, dc->max_entries * sizeof *dc->rx);
+}
+
+/*
+ * Insert a dictionary entry in <dc> cache part used upon transmission (->tx)
+ * with information provided by <i> dictionary cache entry (especially the value
+ * to be inserted if not already). Return <i> if already present in the cache
+ * or something different of <i> if not.
+ */
+static struct ebpt_node *dcache_tx_insert(struct dcache *dc, struct dcache_tx_entry *i)
+{
+ struct dcache_tx *dc_tx;
+ struct ebpt_node *o;
+
+ dc_tx = dc->tx;
+
+ if (dc_tx->prev_lookup && dc_tx->prev_lookup->key == i->entry.key) {
+ o = dc_tx->prev_lookup;
+ } else {
+ o = dcache_tx_lookup_value(dc_tx, i);
+ if (o) {
+ /* Save it */
+ dc_tx->prev_lookup = o;
+ }
+ }
+
+ if (o) {
+ /* Copy the ID. */
+ i->id = o - dc->tx->entries;
+ return &i->entry;
+ }
+
+ /* The new entry to put in cache */
+ dc_tx->prev_lookup = o = &dc_tx->entries[dc_tx->lru_key];
+
+ ebpt_delete(o);
+ o->key = i->entry.key;
+ ebpt_insert(&dc_tx->cached_entries, o);
+ i->id = dc_tx->lru_key;
+
+ /* Update the index for the next entry to put in cache */
+ dc_tx->lru_key = (dc_tx->lru_key + 1) & (dc->max_entries - 1);
+
+ return o;
+}
+
+/*
+ * Allocate a dictionary cache for each peer of <peers> section.
+ * Return 1 if succeeded, 0 if not.
+ */
+int peers_alloc_dcache(struct peers *peers)
+{
+ struct peer *p;
+
+ for (p = peers->remote; p; p = p->next) {
+ p->dcache = new_dcache(PEER_STKT_CACHE_MAX_ENTRIES);
+ if (!p->dcache)
+ return 0;
+ }
+
+ return 1;
+}
+
+/*
+ * Function used to register a table for sync on a group of peers
+ * Returns 0 in case of success.
+ */
+int peers_register_table(struct peers *peers, struct stktable *table)
+{
+ struct shared_table *st;
+ struct peer * curpeer;
+ int id = 0;
+ int retval = 0;
+
+ for (curpeer = peers->remote; curpeer; curpeer = curpeer->next) {
+ st = calloc(1,sizeof(*st));
+ if (!st) {
+ retval = 1;
+ break;
+ }
+ st->table = table;
+ st->next = curpeer->tables;
+ if (curpeer->tables)
+ id = curpeer->tables->local_id;
+ st->local_id = id + 1;
+
+ /* If peer is local we inc table
+ * refcnt to protect against flush
+ * until this process pushed all
+ * table content to the new one
+ */
+ if (curpeer->local)
+ HA_ATOMIC_INC(&st->table->refcnt);
+ curpeer->tables = st;
+ }
+
+ table->sync_task = peers->sync_task;
+
+ return retval;
+}
+
+/* context used by a "show peers" command */
+struct show_peers_ctx {
+ void *target; /* if non-null, dump only this section and stop */
+ struct peers *peers; /* "peers" section being currently dumped. */
+ struct peer *peer; /* "peer" being currently dumped. */
+ int flags; /* non-zero if "dict" dump requested */
+ enum {
+ STATE_HEAD = 0, /* dump the section's header */
+ STATE_PEER, /* dump the whole peer */
+ STATE_DONE, /* finished */
+ } state; /* parser's state */
+};
+
+/*
+ * Parse the "show peers" command arguments.
+ * Returns 0 if succeeded, 1 if not with the ->msg of the appctx set as
+ * error message.
+ */
+static int cli_parse_show_peers(char **args, char *payload, struct appctx *appctx, void *private)
+{
+ struct show_peers_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
+
+ if (strcmp(args[2], "dict") == 0) {
+ /* show the dictionaries (large dump) */
+ ctx->flags |= PEERS_SHOW_F_DICT;
+ args++;
+ } else if (strcmp(args[2], "-") == 0)
+ args++; // allows to show a section called "dict"
+
+ if (*args[2]) {
+ struct peers *p;
+
+ for (p = cfg_peers; p; p = p->next) {
+ if (strcmp(p->id, args[2]) == 0) {
+ ctx->target = p;
+ break;
+ }
+ }
+
+ if (!p)
+ return cli_err(appctx, "No such peers\n");
+ }
+
+ /* where to start from */
+ ctx->peers = ctx->target ? ctx->target : cfg_peers;
+ return 0;
+}
+
+/*
+ * This function dumps the peer state information of <peers> "peers" section.
+ * Returns 0 if the output buffer is full and needs to be called again, non-zero if not.
+ * Dedicated to be called by cli_io_handler_show_peers() cli I/O handler.
+ */
+static int peers_dump_head(struct buffer *msg, struct appctx *appctx, struct peers *peers)
+{
+ struct tm tm;
+
+ get_localtime(peers->last_change, &tm);
+ chunk_appendf(msg, "%p: [%02d/%s/%04d:%02d:%02d:%02d] id=%s disabled=%d flags=0x%x resync_timeout=%s task_calls=%u\n",
+ peers,
+ tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
+ tm.tm_hour, tm.tm_min, tm.tm_sec,
+ peers->id, peers->disabled, peers->flags,
+ peers->resync_timeout ?
+ tick_is_expired(peers->resync_timeout, now_ms) ? "<PAST>" :
+ human_time(TICKS_TO_MS(peers->resync_timeout - now_ms),
+ TICKS_TO_MS(1000)) : "<NEVER>",
+ peers->sync_task ? peers->sync_task->calls : 0);
+
+ if (applet_putchk(appctx, msg) == -1)
+ return 0;
+
+ return 1;
+}
+
+/*
+ * This function dumps <peer> state information.
+ * Returns 0 if the output buffer is full and needs to be called again, non-zero
+ * if not. Dedicated to be called by cli_io_handler_show_peers() cli I/O handler.
+ */
+static int peers_dump_peer(struct buffer *msg, struct appctx *appctx, struct peer *peer, int flags)
+{
+ struct connection *conn;
+ char pn[INET6_ADDRSTRLEN];
+ struct stconn *peer_cs;
+ struct stream *peer_s;
+ struct shared_table *st;
+
+ addr_to_str(&peer->addr, pn, sizeof pn);
+ chunk_appendf(msg, " %p: id=%s(%s,%s) addr=%s:%d last_status=%s",
+ peer, peer->id,
+ peer->local ? "local" : "remote",
+ peer->appctx ? "active" : "inactive",
+ pn, get_host_port(&peer->addr),
+ statuscode_str(peer->statuscode));
+
+ chunk_appendf(msg, " last_hdshk=%s\n",
+ peer->last_hdshk ? human_time(TICKS_TO_MS(now_ms - peer->last_hdshk),
+ TICKS_TO_MS(1000)) : "<NEVER>");
+
+ chunk_appendf(msg, " reconnect=%s",
+ peer->reconnect ?
+ tick_is_expired(peer->reconnect, now_ms) ? "<PAST>" :
+ human_time(TICKS_TO_MS(peer->reconnect - now_ms),
+ TICKS_TO_MS(1000)) : "<NEVER>");
+
+ chunk_appendf(msg, " heartbeat=%s",
+ peer->heartbeat ?
+ tick_is_expired(peer->heartbeat, now_ms) ? "<PAST>" :
+ human_time(TICKS_TO_MS(peer->heartbeat - now_ms),
+ TICKS_TO_MS(1000)) : "<NEVER>");
+
+ chunk_appendf(msg, " confirm=%u tx_hbt=%u rx_hbt=%u no_hbt=%u new_conn=%u proto_err=%u coll=%u\n",
+ peer->confirm, peer->tx_hbt, peer->rx_hbt,
+ peer->no_hbt, peer->new_conn, peer->proto_err, peer->coll);
+
+ chunk_appendf(&trash, " flags=0x%x", peer->flags);
+
+ if (!peer->appctx)
+ goto table_info;
+
+ chunk_appendf(&trash, " appctx:%p st0=%d st1=%d task_calls=%u",
+ peer->appctx, peer->appctx->st0, peer->appctx->st1,
+ peer->appctx->t ? peer->appctx->t->calls : 0);
+
+ peer_cs = appctx_sc(peer->appctx);
+ if (!peer_cs) {
+ /* the appctx might exist but not yet be initialized due to
+ * deferred initialization used to balance applets across
+ * threads.
+ */
+ goto table_info;
+ }
+
+ peer_s = __sc_strm(peer_cs);
+
+ chunk_appendf(&trash, " state=%s", sc_state_str(sc_opposite(peer_cs)->state));
+
+ conn = objt_conn(strm_orig(peer_s));
+ if (conn)
+ chunk_appendf(&trash, "\n xprt=%s", conn_get_xprt_name(conn));
+
+ switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
+ case AF_INET:
+ case AF_INET6:
+ chunk_appendf(&trash, " src=%s:%d", pn, get_host_port(conn->src));
+ break;
+ case AF_UNIX:
+ chunk_appendf(&trash, " src=unix:%d", strm_li(peer_s)->luid);
+ break;
+ }
+
+ switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) {
+ case AF_INET:
+ case AF_INET6:
+ chunk_appendf(&trash, " addr=%s:%d", pn, get_host_port(conn->dst));
+ break;
+ case AF_UNIX:
+ chunk_appendf(&trash, " addr=unix:%d", strm_li(peer_s)->luid);
+ break;
+ }
+
+ table_info:
+ if (peer->remote_table)
+ chunk_appendf(&trash, "\n remote_table:%p id=%s local_id=%d remote_id=%d",
+ peer->remote_table,
+ peer->remote_table->table->id,
+ peer->remote_table->local_id,
+ peer->remote_table->remote_id);
+
+ if (peer->last_local_table)
+ chunk_appendf(&trash, "\n last_local_table:%p id=%s local_id=%d remote_id=%d",
+ peer->last_local_table,
+ peer->last_local_table->table->id,
+ peer->last_local_table->local_id,
+ peer->last_local_table->remote_id);
+
+ if (peer->tables) {
+ chunk_appendf(&trash, "\n shared tables:");
+ for (st = peer->tables; st; st = st->next) {
+ int i, count;
+ struct stktable *t;
+ struct dcache *dcache;
+
+ t = st->table;
+ dcache = peer->dcache;
+
+ chunk_appendf(&trash, "\n %p local_id=%d remote_id=%d "
+ "flags=0x%x remote_data=0x%llx",
+ st, st->local_id, st->remote_id,
+ st->flags, (unsigned long long)st->remote_data);
+ chunk_appendf(&trash, "\n last_acked=%u last_pushed=%u last_get=%u"
+ " teaching_origin=%u update=%u",
+ st->last_acked, st->last_pushed, st->last_get,
+ st->teaching_origin, st->update);
+ chunk_appendf(&trash, "\n table:%p id=%s update=%u localupdate=%u"
+ " commitupdate=%u refcnt=%u",
+ t, t->id, t->update, t->localupdate, _HA_ATOMIC_LOAD(&t->commitupdate), t->refcnt);
+ if (flags & PEERS_SHOW_F_DICT) {
+ chunk_appendf(&trash, "\n TX dictionary cache:");
+ count = 0;
+ for (i = 0; i < dcache->max_entries; i++) {
+ struct ebpt_node *node;
+ struct dict_entry *de;
+
+ node = &dcache->tx->entries[i];
+ if (!node->key)
+ break;
+
+ if (!count++)
+ chunk_appendf(&trash, "\n ");
+ de = node->key;
+ chunk_appendf(&trash, " %3u -> %s", i, (char *)de->value.key);
+ count &= 0x3;
+ }
+ chunk_appendf(&trash, "\n RX dictionary cache:");
+ count = 0;
+ for (i = 0; i < dcache->max_entries; i++) {
+ if (!count++)
+ chunk_appendf(&trash, "\n ");
+ chunk_appendf(&trash, " %3u -> %s", i,
+ dcache->rx[i].de ?
+ (char *)dcache->rx[i].de->value.key : "-");
+ count &= 0x3;
+ }
+ } else {
+ chunk_appendf(&trash, "\n Dictionary cache not dumped (use \"show peers dict\")");
+ }
+ }
+ }
+
+ end:
+ chunk_appendf(&trash, "\n");
+ if (applet_putchk(appctx, msg) == -1)
+ return 0;
+
+ return 1;
+}
+
+/*
+ * This function dumps all the peers of "peers" section.
+ * Returns 0 if the output buffer is full and needs to be called
+ * again, non-zero if not. It proceeds in an isolated thread, so
+ * there is no thread safety issue here.
+ */
+static int cli_io_handler_show_peers(struct appctx *appctx)
+{
+ struct show_peers_ctx *ctx = appctx->svcctx;
+ int ret = 0, first_peers = 1;
+
+ thread_isolate();
+
+ chunk_reset(&trash);
+
+ while (ctx->state != STATE_DONE) {
+ switch (ctx->state) {
+ case STATE_HEAD:
+ if (!ctx->peers) {
+ /* No more peers list. */
+ ctx->state = STATE_DONE;
+ }
+ else {
+ if (!first_peers)
+ chunk_appendf(&trash, "\n");
+ else
+ first_peers = 0;
+ if (!peers_dump_head(&trash, appctx, ctx->peers))
+ goto out;
+
+ ctx->peer = ctx->peers->remote;
+ ctx->peers = ctx->peers->next;
+ ctx->state = STATE_PEER;
+ }
+ break;
+
+ case STATE_PEER:
+ if (!ctx->peer) {
+ /* End of peer list */
+ if (!ctx->target)
+ ctx->state = STATE_HEAD; // next one
+ else
+ ctx->state = STATE_DONE;
+ }
+ else {
+ if (!peers_dump_peer(&trash, appctx, ctx->peer, ctx->flags))
+ goto out;
+
+ ctx->peer = ctx->peer->next;
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+ ret = 1;
+ out:
+ thread_release();
+ return ret;
+}
+
+
+struct peers_kw_list peers_keywords = {
+ .list = LIST_HEAD_INIT(peers_keywords.list)
+};
+
+void peers_register_keywords(struct peers_kw_list *pkwl)
+{
+ LIST_APPEND(&peers_keywords.list, &pkwl->list);
+}
+
+/* config parser for global "tune.peers.max-updates-at-once" */
+static int cfg_parse_max_updt_at_once(char **args, int section_type, struct proxy *curpx,
+ const struct proxy *defpx, const char *file, int line,
+ char **err)
+{
+ int arg = -1;
+
+ if (too_many_args(1, args, err, NULL))
+ return -1;
+
+ if (*(args[1]) != 0)
+ arg = atoi(args[1]);
+
+ if (arg < 1) {
+ memprintf(err, "'%s' expects an integer argument greater than 0.", args[0]);
+ return -1;
+ }
+
+ peers_max_updates_at_once = arg;
+ return 0;
+}
+
+/* config keyword parsers */
+static struct cfg_kw_list cfg_kws = {ILH, {
+ { CFG_GLOBAL, "tune.peers.max-updates-at-once", cfg_parse_max_updt_at_once },
+ { 0, NULL, NULL }
+}};
+
+INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
+
+/*
+ * CLI keywords.
+ */
+static struct cli_kw_list cli_kws = {{ }, {
+ { { "show", "peers", NULL }, "show peers [dict|-] [section] : dump some information about all the peers or this peers section", cli_parse_show_peers, cli_io_handler_show_peers, },
+ {},
+}};
+
+/* Register cli keywords */
+INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);