From b46aad6df449445a9fc4aa7b32bd40005438e3f7 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 13 Apr 2024 14:18:05 +0200 Subject: Adding upstream version 2.9.5. Signed-off-by: Daniel Baumann --- src/thread.c | 1864 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1864 insertions(+) create mode 100644 src/thread.c (limited to 'src/thread.c') diff --git a/src/thread.c b/src/thread.c new file mode 100644 index 0000000..ab4342d --- /dev/null +++ b/src/thread.c @@ -0,0 +1,1864 @@ +/* + * functions about threads. + * + * Copyright (C) 2017 Christopher Fauet - cfaulet@haproxy.com + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + * + */ + +#define _GNU_SOURCE +#include +#include + +#include +#include +#ifdef _POSIX_PRIORITY_SCHEDULING +#include +#endif + +#ifdef USE_THREAD +# include +#endif + +#ifdef USE_CPU_AFFINITY +# include +# if defined(__FreeBSD__) || defined(__DragonFly__) +# include +# ifdef __FreeBSD__ +# include +# endif +# include +# endif +# ifdef __APPLE__ +# include +# include +# include +# endif +# include +#endif + +#include +#include +#include +#include +#include +#include +#include + +struct tgroup_info ha_tgroup_info[MAX_TGROUPS] = { }; +THREAD_LOCAL const struct tgroup_info *tg = &ha_tgroup_info[0]; + +struct thread_info ha_thread_info[MAX_THREADS] = { }; +THREAD_LOCAL const struct thread_info *ti = &ha_thread_info[0]; + +struct tgroup_ctx ha_tgroup_ctx[MAX_TGROUPS] = { }; +THREAD_LOCAL struct tgroup_ctx *tg_ctx = &ha_tgroup_ctx[0]; + +struct thread_ctx ha_thread_ctx[MAX_THREADS] = { }; +THREAD_LOCAL struct thread_ctx *th_ctx = &ha_thread_ctx[0]; + +#ifdef USE_THREAD + +volatile unsigned long all_tgroups_mask __read_mostly = 1; // nbtgroup 1 assumed by default +volatile unsigned int rdv_requests = 0; // total number of threads requesting RDV +volatile unsigned int isolated_thread = ~0; // ID of the isolated thread, or ~0 when none +THREAD_LOCAL unsigned int tgid = 1; // thread ID starts at 1 +THREAD_LOCAL unsigned int tid = 0; +int thread_cpus_enabled_at_boot = 1; +static pthread_t ha_pthread[MAX_THREADS] = { }; + +/* Marks the thread as harmless until the last thread using the rendez-vous + * point quits. Given that we can wait for a long time, sched_yield() is + * used when available to offer the CPU resources to competing threads if + * needed. + */ +void thread_harmless_till_end() +{ + _HA_ATOMIC_OR(&tg_ctx->threads_harmless, ti->ltid_bit); + while (_HA_ATOMIC_LOAD(&rdv_requests) != 0) { + ha_thread_relax(); + } +} + +/* Isolates the current thread : request the ability to work while all other + * threads are harmless, as defined by thread_harmless_now() (i.e. they're not + * going to touch any visible memory area). Only returns once all of them are + * harmless, with the current thread's bit in &tg_ctx->threads_harmless cleared. + * Needs to be completed using thread_release(). + */ +void thread_isolate() +{ + uint tgrp, thr; + + _HA_ATOMIC_OR(&tg_ctx->threads_harmless, ti->ltid_bit); + __ha_barrier_atomic_store(); + _HA_ATOMIC_INC(&rdv_requests); + + /* wait for all threads to become harmless. They cannot change their + * mind once seen thanks to rdv_requests above, unless they pass in + * front of us. For this reason we proceed in 4 steps: + * 1) wait for all threads to declare themselves harmless + * 2) try to grab the isolated_thread exclusivity + * 3) verify again that all threads are harmless, since another one + * that was isolating between 1 and 2 could have dropped its + * harmless state there. + * 4) drop harmless flag (which also has the benefit of leaving + * all other threads wait on reads instead of writes. + */ + while (1) { + for (tgrp = 0; tgrp < global.nbtgroups; tgrp++) { + do { + ulong te = _HA_ATOMIC_LOAD(&ha_tgroup_info[tgrp].threads_enabled); + ulong th = _HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp].threads_harmless); + + if ((th & te) == te) + break; + ha_thread_relax(); + } while (1); + } + + /* all other ones are harmless. isolated_thread will contain + * ~0U if no other one competes, !=tid if another one got it, + * tid if the current thread already grabbed it on the previous + * round. + */ + thr = _HA_ATOMIC_LOAD(&isolated_thread); + if (thr == tid) + break; // we won and we're certain everyone is harmless + + /* try to win the race against others */ + if (thr != ~0U || !_HA_ATOMIC_CAS(&isolated_thread, &thr, tid)) + ha_thread_relax(); + } + + /* the thread is no longer harmless as it runs */ + _HA_ATOMIC_AND(&tg_ctx->threads_harmless, ~ti->ltid_bit); + + /* the thread is isolated until it calls thread_release() which will + * 1) reset isolated_thread to ~0; + * 2) decrement rdv_requests. + */ +} + +/* Isolates the current thread : request the ability to work while all other + * threads are idle, as defined by thread_idle_now(). It only returns once + * all of them are both harmless and idle, with the current thread's bit in + * &tg_ctx->threads_harmless and idle_mask cleared. Needs to be completed using + * thread_release(). By doing so the thread also engages in being safe against + * any actions that other threads might be about to start under the same + * conditions. This specifically targets destruction of any internal structure, + * which implies that the current thread may not hold references to any object. + * + * Note that a concurrent thread_isolate() will usually win against + * thread_isolate_full() as it doesn't consider the idle_mask, allowing it to + * get back to the poller or any other fully idle location, that will + * ultimately release this one. + */ +void thread_isolate_full() +{ + uint tgrp, thr; + + _HA_ATOMIC_OR(&tg_ctx->threads_idle, ti->ltid_bit); + _HA_ATOMIC_OR(&tg_ctx->threads_harmless, ti->ltid_bit); + __ha_barrier_atomic_store(); + _HA_ATOMIC_INC(&rdv_requests); + + /* wait for all threads to become harmless. They cannot change their + * mind once seen thanks to rdv_requests above, unless they pass in + * front of us. For this reason we proceed in 4 steps: + * 1) wait for all threads to declare themselves harmless + * 2) try to grab the isolated_thread exclusivity + * 3) verify again that all threads are harmless, since another one + * that was isolating between 1 and 2 could have dropped its + * harmless state there. + * 4) drop harmless flag (which also has the benefit of leaving + * all other threads wait on reads instead of writes. + */ + while (1) { + for (tgrp = 0; tgrp < global.nbtgroups; tgrp++) { + do { + ulong te = _HA_ATOMIC_LOAD(&ha_tgroup_info[tgrp].threads_enabled); + ulong th = _HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp].threads_harmless); + ulong id = _HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp].threads_idle); + + if ((th & id & te) == te) + break; + ha_thread_relax(); + } while (1); + } + + /* all other ones are harmless and idle. isolated_thread will + * contain ~0U if no other one competes, !=tid if another one + * got it, tid if the current thread already grabbed it on the + * previous round. + */ + thr = _HA_ATOMIC_LOAD(&isolated_thread); + if (thr == tid) + break; // we won and we're certain everyone is harmless + + if (thr != ~0U || !_HA_ATOMIC_CAS(&isolated_thread, &thr, tid)) + ha_thread_relax(); + } + + /* we're not idle nor harmless anymore at this point. Other threads + * waiting on this condition will need to wait until out next pass to + * the poller, or our next call to thread_isolate_full(). + */ + _HA_ATOMIC_AND(&tg_ctx->threads_idle, ~ti->ltid_bit); + _HA_ATOMIC_AND(&tg_ctx->threads_harmless, ~ti->ltid_bit); + + /* the thread is isolated until it calls thread_release() which will + * 1) reset isolated_thread to ~0; + * 2) decrement rdv_requests. + */ +} + +/* Cancels the effect of thread_isolate() by resetting the ID of the isolated + * thread and decrementing the number of RDV requesters. This immediately allows + * other threads to expect to be executed, though they will first have to wait + * for this thread to become harmless again (possibly by reaching the poller + * again). + */ +void thread_release() +{ + HA_ATOMIC_STORE(&isolated_thread, ~0U); + HA_ATOMIC_DEC(&rdv_requests); +} + +/* Sets up threads, signals and masks, and starts threads 2 and above. + * Does nothing when threads are disabled. + */ +void setup_extra_threads(void *(*handler)(void *)) +{ + sigset_t blocked_sig, old_sig; + int i; + + /* ensure the signals will be blocked in every thread */ + sigfillset(&blocked_sig); + sigdelset(&blocked_sig, SIGPROF); + sigdelset(&blocked_sig, SIGBUS); + sigdelset(&blocked_sig, SIGFPE); + sigdelset(&blocked_sig, SIGILL); + sigdelset(&blocked_sig, SIGSEGV); + pthread_sigmask(SIG_SETMASK, &blocked_sig, &old_sig); + + /* Create nbthread-1 thread. The first thread is the current process */ + ha_pthread[0] = pthread_self(); + for (i = 1; i < global.nbthread; i++) + pthread_create(&ha_pthread[i], NULL, handler, &ha_thread_info[i]); +} + +/* waits for all threads to terminate. Does nothing when threads are + * disabled. + */ +void wait_for_threads_completion() +{ + int i; + + /* Wait the end of other threads */ + for (i = 1; i < global.nbthread; i++) + pthread_join(ha_pthread[i], NULL); + +#if defined(DEBUG_THREAD) || defined(DEBUG_FULL) + show_lock_stats(); +#endif +} + +/* Tries to set the current thread's CPU affinity according to the cpu_map */ +void set_thread_cpu_affinity() +{ +#if defined(USE_CPU_AFFINITY) + /* no affinity setting for the master process */ + if (master) + return; + + /* Now the CPU affinity for all threads */ + if (ha_cpuset_count(&cpu_map[tgid - 1].thread[ti->ltid])) {/* only do this if the thread has a THREAD map */ +# if defined(__APPLE__) + /* Note: this API is limited to the first 32/64 CPUs */ + unsigned long set = cpu_map[tgid - 1].thread[ti->ltid].cpuset; + int j; + + while ((j = ffsl(set)) > 0) { + thread_affinity_policy_data_t cpu_set = { j - 1 }; + thread_port_t mthread; + + mthread = pthread_mach_thread_np(ha_pthread[tid]); + thread_policy_set(mthread, THREAD_AFFINITY_POLICY, (thread_policy_t)&cpu_set, 1); + set &= ~(1UL << (j - 1)); + } +# else + struct hap_cpuset *set = &cpu_map[tgid - 1].thread[ti->ltid]; + + pthread_setaffinity_np(ha_pthread[tid], sizeof(set->cpuset), &set->cpuset); +# endif + } +#endif /* USE_CPU_AFFINITY */ +} + +/* Retrieves the opaque pthread_t of thread cast to an unsigned long long + * since POSIX took great care of not specifying its representation, making it + * hard to export for post-mortem analysis. For this reason we copy it into a + * union and will use the smallest scalar type at least as large as its size, + * which will keep endianness and alignment for all regular sizes. As a last + * resort we end up with a long long ligned to the first bytes in memory, which + * will be endian-dependent if pthread_t is larger than a long long (not seen + * yet). + */ +unsigned long long ha_get_pthread_id(unsigned int thr) +{ + union { + pthread_t t; + unsigned long long ll; + unsigned int i; + unsigned short s; + unsigned char c; + } u = { 0 }; + + u.t = ha_pthread[thr]; + + if (sizeof(u.t) <= sizeof(u.c)) + return u.c; + else if (sizeof(u.t) <= sizeof(u.s)) + return u.s; + else if (sizeof(u.t) <= sizeof(u.i)) + return u.i; + return u.ll; +} + +/* send signal to thread */ +void ha_tkill(unsigned int thr, int sig) +{ + pthread_kill(ha_pthread[thr], sig); +} + +/* send signal to all threads. The calling thread is signaled last in + * order to allow all threads to synchronize in the handler. + */ +void ha_tkillall(int sig) +{ + unsigned int thr; + + for (thr = 0; thr < global.nbthread; thr++) { + if (!(ha_thread_info[thr].tg->threads_enabled & ha_thread_info[thr].ltid_bit)) + continue; + if (thr == tid) + continue; + pthread_kill(ha_pthread[thr], sig); + } + raise(sig); +} + +void ha_thread_relax(void) +{ +#ifdef _POSIX_PRIORITY_SCHEDULING + sched_yield(); +#else + pl_cpu_relax(); +#endif +} + +/* these calls are used as callbacks at init time when debugging is on */ +void ha_spin_init(HA_SPINLOCK_T *l) +{ + HA_SPIN_INIT(l); +} + +/* these calls are used as callbacks at init time when debugging is on */ +void ha_rwlock_init(HA_RWLOCK_T *l) +{ + HA_RWLOCK_INIT(l); +} + +/* returns the number of CPUs the current process is enabled to run on, + * regardless of any MAX_THREADS limitation. + */ +static int thread_cpus_enabled() +{ + int ret = 1; + +#ifdef USE_CPU_AFFINITY +#if defined(__linux__) && defined(CPU_COUNT) + cpu_set_t mask; + + if (sched_getaffinity(0, sizeof(mask), &mask) == 0) + ret = CPU_COUNT(&mask); +#elif defined(__FreeBSD__) && defined(USE_CPU_AFFINITY) + cpuset_t cpuset; + if (cpuset_getaffinity(CPU_LEVEL_CPUSET, CPU_WHICH_PID, -1, + sizeof(cpuset), &cpuset) == 0) + ret = CPU_COUNT(&cpuset); +#elif defined(__APPLE__) + ret = (int)sysconf(_SC_NPROCESSORS_ONLN); +#endif +#endif + ret = MAX(ret, 1); + return ret; +} + +/* Returns 1 if the cpu set is currently restricted for the process else 0. + * Currently only implemented for the Linux platform. + */ +int thread_cpu_mask_forced() +{ +#if defined(__linux__) + const int cpus_avail = sysconf(_SC_NPROCESSORS_ONLN); + return cpus_avail != thread_cpus_enabled(); +#else + return 0; +#endif +} + +/* Below come the lock-debugging functions */ + +#if defined(DEBUG_THREAD) || defined(DEBUG_FULL) + +struct lock_stat lock_stats[LOCK_LABELS]; + +/* this is only used below */ +static const char *lock_label(enum lock_label label) +{ + switch (label) { + case TASK_RQ_LOCK: return "TASK_RQ"; + case TASK_WQ_LOCK: return "TASK_WQ"; + case LISTENER_LOCK: return "LISTENER"; + case PROXY_LOCK: return "PROXY"; + case SERVER_LOCK: return "SERVER"; + case LBPRM_LOCK: return "LBPRM"; + case SIGNALS_LOCK: return "SIGNALS"; + case STK_TABLE_LOCK: return "STK_TABLE"; + case STK_SESS_LOCK: return "STK_SESS"; + case APPLETS_LOCK: return "APPLETS"; + case PEER_LOCK: return "PEER"; + case SHCTX_LOCK: return "SHCTX"; + case SSL_LOCK: return "SSL"; + case SSL_GEN_CERTS_LOCK: return "SSL_GEN_CERTS"; + case PATREF_LOCK: return "PATREF"; + case PATEXP_LOCK: return "PATEXP"; + case VARS_LOCK: return "VARS"; + case COMP_POOL_LOCK: return "COMP_POOL"; + case LUA_LOCK: return "LUA"; + case NOTIF_LOCK: return "NOTIF"; + case SPOE_APPLET_LOCK: return "SPOE_APPLET"; + case DNS_LOCK: return "DNS"; + case PID_LIST_LOCK: return "PID_LIST"; + case EMAIL_ALERTS_LOCK: return "EMAIL_ALERTS"; + case PIPES_LOCK: return "PIPES"; + case TLSKEYS_REF_LOCK: return "TLSKEYS_REF"; + case AUTH_LOCK: return "AUTH"; + case RING_LOCK: return "RING"; + case DICT_LOCK: return "DICT"; + case PROTO_LOCK: return "PROTO"; + case QUEUE_LOCK: return "QUEUE"; + case CKCH_LOCK: return "CKCH"; + case SNI_LOCK: return "SNI"; + case SSL_SERVER_LOCK: return "SSL_SERVER"; + case SFT_LOCK: return "SFT"; + case IDLE_CONNS_LOCK: return "IDLE_CONNS"; + case OCSP_LOCK: return "OCSP"; + case QC_CID_LOCK: return "QC_CID"; + case CACHE_LOCK: return "CACHE"; + case OTHER_LOCK: return "OTHER"; + case DEBUG1_LOCK: return "DEBUG1"; + case DEBUG2_LOCK: return "DEBUG2"; + case DEBUG3_LOCK: return "DEBUG3"; + case DEBUG4_LOCK: return "DEBUG4"; + case DEBUG5_LOCK: return "DEBUG5"; + case LOCK_LABELS: break; /* keep compiler happy */ + }; + /* only way to come here is consecutive to an internal bug */ + abort(); +} + +void show_lock_stats() +{ + int lbl; + + for (lbl = 0; lbl < LOCK_LABELS; lbl++) { + if (!lock_stats[lbl].num_write_locked && + !lock_stats[lbl].num_seek_locked && + !lock_stats[lbl].num_read_locked) { + fprintf(stderr, + "Stats about Lock %s: not used\n", + lock_label(lbl)); + continue; + } + + fprintf(stderr, + "Stats about Lock %s: \n", + lock_label(lbl)); + + if (lock_stats[lbl].num_write_locked) + fprintf(stderr, + "\t # write lock : %llu\n" + "\t # write unlock: %llu (%lld)\n" + "\t # wait time for write : %.3f msec\n" + "\t # wait time for write/lock: %.3f nsec\n", + (ullong)lock_stats[lbl].num_write_locked, + (ullong)lock_stats[lbl].num_write_unlocked, + (llong)(lock_stats[lbl].num_write_unlocked - lock_stats[lbl].num_write_locked), + (double)lock_stats[lbl].nsec_wait_for_write / 1000000.0, + lock_stats[lbl].num_write_locked ? ((double)lock_stats[lbl].nsec_wait_for_write / (double)lock_stats[lbl].num_write_locked) : 0); + + if (lock_stats[lbl].num_seek_locked) + fprintf(stderr, + "\t # seek lock : %llu\n" + "\t # seek unlock : %llu (%lld)\n" + "\t # wait time for seek : %.3f msec\n" + "\t # wait time for seek/lock : %.3f nsec\n", + (ullong)lock_stats[lbl].num_seek_locked, + (ullong)lock_stats[lbl].num_seek_unlocked, + (llong)(lock_stats[lbl].num_seek_unlocked - lock_stats[lbl].num_seek_locked), + (double)lock_stats[lbl].nsec_wait_for_seek / 1000000.0, + lock_stats[lbl].num_seek_locked ? ((double)lock_stats[lbl].nsec_wait_for_seek / (double)lock_stats[lbl].num_seek_locked) : 0); + + if (lock_stats[lbl].num_read_locked) + fprintf(stderr, + "\t # read lock : %llu\n" + "\t # read unlock : %llu (%lld)\n" + "\t # wait time for read : %.3f msec\n" + "\t # wait time for read/lock : %.3f nsec\n", + (ullong)lock_stats[lbl].num_read_locked, + (ullong)lock_stats[lbl].num_read_unlocked, + (llong)(lock_stats[lbl].num_read_unlocked - lock_stats[lbl].num_read_locked), + (double)lock_stats[lbl].nsec_wait_for_read / 1000000.0, + lock_stats[lbl].num_read_locked ? ((double)lock_stats[lbl].nsec_wait_for_read / (double)lock_stats[lbl].num_read_locked) : 0); + } +} + +void __ha_rwlock_init(struct ha_rwlock *l) +{ + memset(l, 0, sizeof(struct ha_rwlock)); + __RWLOCK_INIT(&l->lock); +} + +void __ha_rwlock_destroy(struct ha_rwlock *l) +{ + __RWLOCK_DESTROY(&l->lock); + memset(l, 0, sizeof(struct ha_rwlock)); +} + + +void __ha_rwlock_wrlock(enum lock_label lbl, struct ha_rwlock *l, + const char *func, const char *file, int line) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_rwlock_state *st = &l->info.st[tgid-1]; + uint64_t start_time; + + if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) + abort(); + + HA_ATOMIC_OR(&st->wait_writers, tbit); + + start_time = now_mono_time(); + __RWLOCK_WRLOCK(&l->lock); + HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); + + HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); + + st->cur_writer = tbit; + l->info.last_location.function = func; + l->info.last_location.file = file; + l->info.last_location.line = line; + + HA_ATOMIC_AND(&st->wait_writers, ~tbit); +} + +int __ha_rwlock_trywrlock(enum lock_label lbl, struct ha_rwlock *l, + const char *func, const char *file, int line) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_rwlock_state *st = &l->info.st[tgid-1]; + uint64_t start_time; + int r; + + if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) + abort(); + + /* We set waiting writer because trywrlock could wait for readers to quit */ + HA_ATOMIC_OR(&st->wait_writers, tbit); + + start_time = now_mono_time(); + r = __RWLOCK_TRYWRLOCK(&l->lock); + HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); + if (unlikely(r)) { + HA_ATOMIC_AND(&st->wait_writers, ~tbit); + return r; + } + HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); + + st->cur_writer = tbit; + l->info.last_location.function = func; + l->info.last_location.file = file; + l->info.last_location.line = line; + + HA_ATOMIC_AND(&st->wait_writers, ~tbit); + + return 0; +} + +void __ha_rwlock_wrunlock(enum lock_label lbl,struct ha_rwlock *l, + const char *func, const char *file, int line) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_rwlock_state *st = &l->info.st[tgid-1]; + + if (unlikely(!(st->cur_writer & tbit))) { + /* the thread is not owning the lock for write */ + abort(); + } + + st->cur_writer = 0; + l->info.last_location.function = func; + l->info.last_location.file = file; + l->info.last_location.line = line; + + __RWLOCK_WRUNLOCK(&l->lock); + + HA_ATOMIC_INC(&lock_stats[lbl].num_write_unlocked); +} + +void __ha_rwlock_rdlock(enum lock_label lbl,struct ha_rwlock *l) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_rwlock_state *st = &l->info.st[tgid-1]; + uint64_t start_time; + + if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) + abort(); + + HA_ATOMIC_OR(&st->wait_readers, tbit); + + start_time = now_mono_time(); + __RWLOCK_RDLOCK(&l->lock); + HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time)); + HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); + + HA_ATOMIC_OR(&st->cur_readers, tbit); + + HA_ATOMIC_AND(&st->wait_readers, ~tbit); +} + +int __ha_rwlock_tryrdlock(enum lock_label lbl,struct ha_rwlock *l) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_rwlock_state *st = &l->info.st[tgid-1]; + int r; + + if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) + abort(); + + /* try read should never wait */ + r = __RWLOCK_TRYRDLOCK(&l->lock); + if (unlikely(r)) + return r; + HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); + + HA_ATOMIC_OR(&st->cur_readers, tbit); + + return 0; +} + +void __ha_rwlock_rdunlock(enum lock_label lbl,struct ha_rwlock *l) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_rwlock_state *st = &l->info.st[tgid-1]; + + if (unlikely(!(st->cur_readers & tbit))) { + /* the thread is not owning the lock for read */ + abort(); + } + + HA_ATOMIC_AND(&st->cur_readers, ~tbit); + + __RWLOCK_RDUNLOCK(&l->lock); + + HA_ATOMIC_INC(&lock_stats[lbl].num_read_unlocked); +} + +void __ha_rwlock_wrtord(enum lock_label lbl, struct ha_rwlock *l, + const char *func, const char *file, int line) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_rwlock_state *st = &l->info.st[tgid-1]; + uint64_t start_time; + + if ((st->cur_readers | st->cur_seeker) & tbit) + abort(); + + if (!(st->cur_writer & tbit)) + abort(); + + HA_ATOMIC_OR(&st->wait_readers, tbit); + + start_time = now_mono_time(); + __RWLOCK_WRTORD(&l->lock); + HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time)); + + HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); + + HA_ATOMIC_OR(&st->cur_readers, tbit); + HA_ATOMIC_AND(&st->cur_writer, ~tbit); + l->info.last_location.function = func; + l->info.last_location.file = file; + l->info.last_location.line = line; + + HA_ATOMIC_AND(&st->wait_readers, ~tbit); +} + +void __ha_rwlock_wrtosk(enum lock_label lbl, struct ha_rwlock *l, + const char *func, const char *file, int line) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_rwlock_state *st = &l->info.st[tgid-1]; + uint64_t start_time; + + if ((st->cur_readers | st->cur_seeker) & tbit) + abort(); + + if (!(st->cur_writer & tbit)) + abort(); + + HA_ATOMIC_OR(&st->wait_seekers, tbit); + + start_time = now_mono_time(); + __RWLOCK_WRTOSK(&l->lock); + HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); + + HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); + + HA_ATOMIC_OR(&st->cur_seeker, tbit); + HA_ATOMIC_AND(&st->cur_writer, ~tbit); + l->info.last_location.function = func; + l->info.last_location.file = file; + l->info.last_location.line = line; + + HA_ATOMIC_AND(&st->wait_seekers, ~tbit); +} + +void __ha_rwlock_sklock(enum lock_label lbl, struct ha_rwlock *l, + const char *func, const char *file, int line) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_rwlock_state *st = &l->info.st[tgid-1]; + uint64_t start_time; + + if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) + abort(); + + HA_ATOMIC_OR(&st->wait_seekers, tbit); + + start_time = now_mono_time(); + __RWLOCK_SKLOCK(&l->lock); + HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); + + HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); + + HA_ATOMIC_OR(&st->cur_seeker, tbit); + l->info.last_location.function = func; + l->info.last_location.file = file; + l->info.last_location.line = line; + + HA_ATOMIC_AND(&st->wait_seekers, ~tbit); +} + +void __ha_rwlock_sktowr(enum lock_label lbl, struct ha_rwlock *l, + const char *func, const char *file, int line) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_rwlock_state *st = &l->info.st[tgid-1]; + uint64_t start_time; + + if ((st->cur_readers | st->cur_writer) & tbit) + abort(); + + if (!(st->cur_seeker & tbit)) + abort(); + + HA_ATOMIC_OR(&st->wait_writers, tbit); + + start_time = now_mono_time(); + __RWLOCK_SKTOWR(&l->lock); + HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); + + HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); + + HA_ATOMIC_OR(&st->cur_writer, tbit); + HA_ATOMIC_AND(&st->cur_seeker, ~tbit); + l->info.last_location.function = func; + l->info.last_location.file = file; + l->info.last_location.line = line; + + HA_ATOMIC_AND(&st->wait_writers, ~tbit); +} + +void __ha_rwlock_sktord(enum lock_label lbl, struct ha_rwlock *l, + const char *func, const char *file, int line) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_rwlock_state *st = &l->info.st[tgid-1]; + uint64_t start_time; + + if ((st->cur_readers | st->cur_writer) & tbit) + abort(); + + if (!(st->cur_seeker & tbit)) + abort(); + + HA_ATOMIC_OR(&st->wait_readers, tbit); + + start_time = now_mono_time(); + __RWLOCK_SKTORD(&l->lock); + HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time)); + + HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); + + HA_ATOMIC_OR(&st->cur_readers, tbit); + HA_ATOMIC_AND(&st->cur_seeker, ~tbit); + l->info.last_location.function = func; + l->info.last_location.file = file; + l->info.last_location.line = line; + + HA_ATOMIC_AND(&st->wait_readers, ~tbit); +} + +void __ha_rwlock_skunlock(enum lock_label lbl,struct ha_rwlock *l, + const char *func, const char *file, int line) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_rwlock_state *st = &l->info.st[tgid-1]; + if (!(st->cur_seeker & tbit)) + abort(); + + HA_ATOMIC_AND(&st->cur_seeker, ~tbit); + l->info.last_location.function = func; + l->info.last_location.file = file; + l->info.last_location.line = line; + + __RWLOCK_SKUNLOCK(&l->lock); + + HA_ATOMIC_INC(&lock_stats[lbl].num_seek_unlocked); +} + +int __ha_rwlock_trysklock(enum lock_label lbl, struct ha_rwlock *l, + const char *func, const char *file, int line) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_rwlock_state *st = &l->info.st[tgid-1]; + uint64_t start_time; + int r; + + if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) + abort(); + + HA_ATOMIC_OR(&st->wait_seekers, tbit); + + start_time = now_mono_time(); + r = __RWLOCK_TRYSKLOCK(&l->lock); + HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); + + if (likely(!r)) { + /* got the lock ! */ + HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); + HA_ATOMIC_OR(&st->cur_seeker, tbit); + l->info.last_location.function = func; + l->info.last_location.file = file; + l->info.last_location.line = line; + } + + HA_ATOMIC_AND(&st->wait_seekers, ~tbit); + return r; +} + +int __ha_rwlock_tryrdtosk(enum lock_label lbl, struct ha_rwlock *l, + const char *func, const char *file, int line) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_rwlock_state *st = &l->info.st[tgid-1]; + uint64_t start_time; + int r; + + if ((st->cur_writer | st->cur_seeker) & tbit) + abort(); + + if (!(st->cur_readers & tbit)) + abort(); + + HA_ATOMIC_OR(&st->wait_seekers, tbit); + + start_time = now_mono_time(); + r = __RWLOCK_TRYRDTOSK(&l->lock); + HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); + + if (likely(!r)) { + /* got the lock ! */ + HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); + HA_ATOMIC_OR(&st->cur_seeker, tbit); + HA_ATOMIC_AND(&st->cur_readers, ~tbit); + l->info.last_location.function = func; + l->info.last_location.file = file; + l->info.last_location.line = line; + } + + HA_ATOMIC_AND(&st->wait_seekers, ~tbit); + return r; +} + +void __spin_init(struct ha_spinlock *l) +{ + memset(l, 0, sizeof(struct ha_spinlock)); + __SPIN_INIT(&l->lock); +} + +void __spin_destroy(struct ha_spinlock *l) +{ + __SPIN_DESTROY(&l->lock); + memset(l, 0, sizeof(struct ha_spinlock)); +} + +void __spin_lock(enum lock_label lbl, struct ha_spinlock *l, + const char *func, const char *file, int line) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_spinlock_state *st = &l->info.st[tgid-1]; + uint64_t start_time; + + if (unlikely(st->owner & tbit)) { + /* the thread is already owning the lock */ + abort(); + } + + HA_ATOMIC_OR(&st->waiters, tbit); + + start_time = now_mono_time(); + __SPIN_LOCK(&l->lock); + HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); + + HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); + + + st->owner = tbit; + l->info.last_location.function = func; + l->info.last_location.file = file; + l->info.last_location.line = line; + + HA_ATOMIC_AND(&st->waiters, ~tbit); +} + +int __spin_trylock(enum lock_label lbl, struct ha_spinlock *l, + const char *func, const char *file, int line) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_spinlock_state *st = &l->info.st[tgid-1]; + int r; + + if (unlikely(st->owner & tbit)) { + /* the thread is already owning the lock */ + abort(); + } + + /* try read should never wait */ + r = __SPIN_TRYLOCK(&l->lock); + if (unlikely(r)) + return r; + HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); + + st->owner = tbit; + l->info.last_location.function = func; + l->info.last_location.file = file; + l->info.last_location.line = line; + + return 0; +} + +void __spin_unlock(enum lock_label lbl, struct ha_spinlock *l, + const char *func, const char *file, int line) +{ + ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; + struct ha_spinlock_state *st = &l->info.st[tgid-1]; + + if (unlikely(!(st->owner & tbit))) { + /* the thread is not owning the lock */ + abort(); + } + + st->owner = 0; + l->info.last_location.function = func; + l->info.last_location.file = file; + l->info.last_location.line = line; + + __SPIN_UNLOCK(&l->lock); + HA_ATOMIC_INC(&lock_stats[lbl].num_write_unlocked); +} + +#endif // defined(DEBUG_THREAD) || defined(DEBUG_FULL) + + +#if defined(USE_PTHREAD_EMULATION) + +/* pthread rwlock emulation using plocks (to avoid expensive futexes). + * these are a direct mapping on Progressive Locks, with the exception that + * since there's a common unlock operation in pthreads, we need to know if + * we need to unlock for reads or writes, so we set the topmost bit to 1 when + * a write lock is acquired to indicate that a write unlock needs to be + * performed. It's not a problem since this bit will never be used given that + * haproxy won't support as many threads as the plocks. + * + * The storage is the pthread_rwlock_t cast as an ulong + */ + +int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr) +{ + ulong *lock = (ulong *)rwlock; + + *lock = 0; + return 0; +} + +int pthread_rwlock_destroy(pthread_rwlock_t *rwlock) +{ + ulong *lock = (ulong *)rwlock; + + *lock = 0; + return 0; +} + +int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock) +{ + pl_lorw_rdlock((unsigned long *)rwlock); + return 0; +} + +int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock) +{ + return !!pl_cmpxchg((unsigned long *)rwlock, 0, PLOCK_LORW_SHR_BASE); +} + +int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock, const struct timespec *restrict abstime) +{ + return pthread_rwlock_tryrdlock(rwlock); +} + +int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock) +{ + pl_lorw_wrlock((unsigned long *)rwlock); + return 0; +} + +int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock) +{ + return !!pl_cmpxchg((unsigned long *)rwlock, 0, PLOCK_LORW_EXC_BASE); +} + +int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock, const struct timespec *restrict abstime) +{ + return pthread_rwlock_trywrlock(rwlock); +} + +int pthread_rwlock_unlock(pthread_rwlock_t *rwlock) +{ + pl_lorw_unlock((unsigned long *)rwlock); + return 0; +} +#endif // defined(USE_PTHREAD_EMULATION) + +/* Depending on the platform and how libpthread was built, pthread_exit() may + * involve some code in libgcc_s that would be loaded on exit for the first + * time, causing aborts if the process is chrooted. It's harmless bit very + * dirty. There isn't much we can do to make sure libgcc_s is loaded only if + * needed, so what we do here is that during early boot we create a dummy + * thread that immediately exits. This will lead to libgcc_s being loaded + * during boot on the platforms where it's required. + */ +static void *dummy_thread_function(void *data) +{ + pthread_exit(NULL); + return NULL; +} + +static inline void preload_libgcc_s(void) +{ + pthread_t dummy_thread; + if (pthread_create(&dummy_thread, NULL, dummy_thread_function, NULL) == 0) + pthread_join(dummy_thread, NULL); +} + +static void __thread_init(void) +{ + char *ptr = NULL; + + preload_libgcc_s(); + + thread_cpus_enabled_at_boot = thread_cpus_enabled(); + thread_cpus_enabled_at_boot = MIN(thread_cpus_enabled_at_boot, MAX_THREADS); + + memprintf(&ptr, "Built with multi-threading support (MAX_TGROUPS=%d, MAX_THREADS=%d, default=%d).", + MAX_TGROUPS, MAX_THREADS, thread_cpus_enabled_at_boot); + hap_register_build_opts(ptr, 1); + +#if defined(DEBUG_THREAD) || defined(DEBUG_FULL) + memset(lock_stats, 0, sizeof(lock_stats)); +#endif +} +INITCALL0(STG_PREPARE, __thread_init); + +#else + +/* send signal to thread (send to process in fact) */ +void ha_tkill(unsigned int thr, int sig) +{ + raise(sig); +} + +/* send signal to all threads (send to process in fact) */ +void ha_tkillall(int sig) +{ + raise(sig); +} + +void ha_thread_relax(void) +{ +#ifdef _POSIX_PRIORITY_SCHEDULING + sched_yield(); +#endif +} + +REGISTER_BUILD_OPTS("Built without multi-threading support (USE_THREAD not set)."); + +#endif // USE_THREAD + + +/* Returns non-zero on anomaly (bound vs unbound), and emits a warning in this + * case. + */ +int thread_detect_binding_discrepancies(void) +{ +#if defined(USE_CPU_AFFINITY) + uint th, tg, id; + uint tot_b = 0, tot_u = 0; + int first_b = -1; + int first_u = -1; + + for (th = 0; th < global.nbthread; th++) { + tg = ha_thread_info[th].tgid; + id = ha_thread_info[th].ltid; + + if (ha_cpuset_count(&cpu_map[tg - 1].thread[id]) == 0) { + tot_u++; + if (first_u < 0) + first_u = th; + } else { + tot_b++; + if (first_b < 0) + first_b = th; + } + } + + if (tot_u > 0 && tot_b > 0) { + ha_warning("Found %u thread(s) mapped to a CPU and %u thread(s) not mapped to any CPU. " + "This will result in some threads being randomly assigned to the same CPU, " + "which will occasionally cause severe performance degradation. First thread " + "bound is %d and first thread not bound is %d. Please either bind all threads " + "or none (maybe some cpu-map directives are missing?).\n", + tot_b, tot_u, first_b, first_u); + return 1; + } +#endif + return 0; +} + +/* Returns non-zero on anomaly (more threads than CPUs), and emits a warning in + * this case. It checks against configured cpu-map if any, otherwise against + * the number of CPUs at boot if known. It's better to run it only after + * thread_detect_binding_discrepancies() so that mixed cases can be eliminated. + */ +int thread_detect_more_than_cpus(void) +{ +#if defined(USE_CPU_AFFINITY) + struct hap_cpuset cpuset_map, cpuset_boot, cpuset_all; + uint th, tg, id; + int bound; + int tot_map, tot_all; + + ha_cpuset_zero(&cpuset_boot); + ha_cpuset_zero(&cpuset_map); + ha_cpuset_zero(&cpuset_all); + bound = 0; + for (th = 0; th < global.nbthread; th++) { + tg = ha_thread_info[th].tgid; + id = ha_thread_info[th].ltid; + if (ha_cpuset_count(&cpu_map[tg - 1].thread[id])) { + ha_cpuset_or(&cpuset_map, &cpu_map[tg - 1].thread[id]); + bound++; + } + } + + ha_cpuset_assign(&cpuset_all, &cpuset_map); + if (bound != global.nbthread) { + if (ha_cpuset_detect_bound(&cpuset_boot)) + ha_cpuset_or(&cpuset_all, &cpuset_boot); + } + + tot_map = ha_cpuset_count(&cpuset_map); + tot_all = ha_cpuset_count(&cpuset_all); + + if (tot_map && bound > tot_map) { + ha_warning("This configuration binds %d threads to a total of %d CPUs via cpu-map " + "directives. This means that some threads will compete for the same CPU, " + "which will cause severe performance degradation. Please fix either the " + "'cpu-map' directives or set the global 'nbthread' value accordingly.\n", + bound, tot_map); + return 1; + } + else if (tot_all && global.nbthread > tot_all) { + ha_warning("This configuration enables %d threads running on a total of %d CPUs. " + "This means that some threads will compete for the same CPU, which will cause " + "severe performance degradation. Please either the 'cpu-map' directives to " + "adjust the CPUs to use, or fix the global 'nbthread' value.\n", + global.nbthread, tot_all); + return 1; + } +#endif + return 0; +} + + +/* scans the configured thread mapping and establishes the final one. Returns <0 + * on failure, >=0 on success. + */ +int thread_map_to_groups() +{ + int t, g, ut, ug; + int q, r; + ulong m __maybe_unused; + + ut = ug = 0; // unassigned threads & groups + + for (t = 0; t < global.nbthread; t++) { + if (!ha_thread_info[t].tg) + ut++; + } + + for (g = 0; g < global.nbtgroups; g++) { + if (!ha_tgroup_info[g].count) + ug++; + ha_tgroup_info[g].tgid_bit = 1UL << g; + } + + if (ug > ut) { + ha_alert("More unassigned thread-groups (%d) than threads (%d). Please reduce thread-groups\n", ug, ut); + return -1; + } + + /* look for first unassigned thread */ + for (t = 0; t < global.nbthread && ha_thread_info[t].tg; t++) + ; + + /* assign threads to empty groups */ + for (g = 0; ug && ut; ) { + /* due to sparse thread assignment we can end up with more threads + * per group on last assigned groups than former ones, so we must + * always try to pack the maximum remaining ones together first. + */ + q = ut / ug; + r = ut % ug; + if ((q + !!r) > MAX_THREADS_PER_GROUP) { + ha_alert("Too many remaining unassigned threads (%d) for thread groups (%d). Please increase thread-groups or make sure to keep thread numbers contiguous\n", ut, ug); + return -1; + } + + /* thread is the next unassigned one. Let's look for next + * unassigned group, we know there are some left + */ + while (ut >= ug && ha_tgroup_info[g].count) + g++; + + /* group g is unassigned, try to fill it with consecutive threads */ + while (ut && ut >= ug && ha_tgroup_info[g].count < q + !!r && + (!ha_tgroup_info[g].count || t == ha_tgroup_info[g].base + ha_tgroup_info[g].count)) { + + if (!ha_tgroup_info[g].count) { + /* assign new group */ + ha_tgroup_info[g].base = t; + ug--; + } + + ha_tgroup_info[g].count++; + ha_thread_info[t].tgid = g + 1; + ha_thread_info[t].tg = &ha_tgroup_info[g]; + ha_thread_info[t].tg_ctx = &ha_tgroup_ctx[g]; + + ut--; + /* switch to next unassigned thread */ + while (++t < global.nbthread && ha_thread_info[t].tg) + ; + } + } + + if (ut) { + ha_alert("Remaining unassigned threads found (%d) because all groups are in use. Please increase 'thread-groups', reduce 'nbthreads' or remove or extend 'thread-group' enumerations.\n", ut); + return -1; + } + + for (t = 0; t < global.nbthread; t++) { + ha_thread_info[t].tid = t; + ha_thread_info[t].ltid = t - ha_thread_info[t].tg->base; + ha_thread_info[t].ltid_bit = 1UL << ha_thread_info[t].ltid; + } + + m = 0; + for (g = 0; g < global.nbtgroups; g++) { + ha_tgroup_info[g].threads_enabled = nbits(ha_tgroup_info[g].count); + /* for now, additional threads are not started, so we should + * consider them as harmless and idle. + * This will get automatically updated when such threads are + * started in run_thread_poll_loop() + * Without this, thread_isolate() and thread_isolate_full() + * will fail to work as long as secondary threads did not enter + * the polling loop at least once. + */ + ha_tgroup_ctx[g].threads_harmless = ha_tgroup_info[g].threads_enabled; + ha_tgroup_ctx[g].threads_idle = ha_tgroup_info[g].threads_enabled; + if (!ha_tgroup_info[g].count) + continue; + m |= 1UL << g; + + } + +#ifdef USE_THREAD + all_tgroups_mask = m; +#endif + return 0; +} + +/* Converts a configuration thread set based on either absolute or relative + * thread numbers into a global group+mask. This is essentially for use with + * the "thread" directive on "bind" lines, where "thread 4-6,10-12" might be + * turned to "2/1-3,4/1-3". It cannot be used before the thread mapping above + * was completed and the thread group numbers configured. The thread_set is + * replaced by the resolved group-based one. It is possible to force a single + * default group for unspecified sets instead of enabling all groups by passing + * this group's non-zero value to defgrp. + * + * Returns <0 on failure, >=0 on success. + */ +int thread_resolve_group_mask(struct thread_set *ts, int defgrp, char **err) +{ + struct thread_set new_ts = { }; + ulong mask, imask; + uint g; + + if (!ts->grps) { + /* unspecified group, IDs are global */ + if (thread_set_is_empty(ts)) { + /* all threads of all groups, unless defgrp is set and + * we then set it as the only group. + */ + for (g = defgrp ? defgrp-1 : 0; g < (defgrp ? defgrp : global.nbtgroups); g++) { + new_ts.rel[g] = ha_tgroup_info[g].threads_enabled; + if (new_ts.rel[g]) + new_ts.grps |= 1UL << g; + } + } else { + /* some absolute threads are set, we must remap them to + * relative ones. Each group cannot have more than + * LONGBITS threads, thus it spans at most two absolute + * blocks. + */ + for (g = 0; g < global.nbtgroups; g++) { + uint block = ha_tgroup_info[g].base / LONGBITS; + uint base = ha_tgroup_info[g].base % LONGBITS; + + mask = ts->abs[block] >> base; + if (base && + (block + 1) < sizeof(ts->abs) / sizeof(ts->abs[0]) && + ha_tgroup_info[g].count > (LONGBITS - base)) + mask |= ts->abs[block + 1] << (LONGBITS - base); + mask &= nbits(ha_tgroup_info[g].count); + mask &= ha_tgroup_info[g].threads_enabled; + + /* now the mask exactly matches the threads to be enabled + * in this group. + */ + new_ts.rel[g] |= mask; + if (new_ts.rel[g]) + new_ts.grps |= 1UL << g; + } + } + } else { + /* groups were specified */ + for (g = 0; g < MAX_TGROUPS; g++) { + imask = ts->rel[g]; + if (!imask) + continue; + + if (g >= global.nbtgroups) { + memprintf(err, "'thread' directive references non-existing thread group %u", g+1); + return -1; + } + + /* some relative threads are set. Keep only existing ones for this group */ + mask = nbits(ha_tgroup_info[g].count); + + if (!(mask & imask)) { + /* no intersection between the thread group's + * threads and the bind line's. + */ +#ifdef THREAD_AUTO_ADJUST_GROUPS + unsigned long new_mask = 0; + + while (imask) { + new_mask |= imask & mask; + imask >>= ha_tgroup_info[g].count; + } + imask = new_mask; +#else + memprintf(err, "'thread' directive only references threads not belonging to group %u", g+1); + return -1; +#endif + } + + new_ts.rel[g] = imask & mask; + if (new_ts.rel[g]) + new_ts.grps |= 1UL << g; + } + } + + /* update the thread_set */ + if (!thread_set_nth_group(&new_ts, 0)) { + memprintf(err, "'thread' directive only references non-existing threads"); + return -1; + } + + *ts = new_ts; + return 0; +} + +/* Parse a string representing a thread set in one of the following forms: + * + * - { "all" | "odd" | "even" | [ "-" ] }[,...] + * => these are (lists of) absolute thread numbers + * + * - "/" { "all" | "odd" | "even" | [ "-" ][,...] + * => these are (lists of) per-group relative thread numbers. All numbers + * must be lower than or equal to LONGBITS. When multiple list elements + * are provided, each of them must contain the thread group number. + * + * Minimum value for a thread or group number is always 1. Maximum value for an + * absolute thread number is MAX_THREADS, maximum value for a relative thread + * number is MAX_THREADS_PER_GROUP, an maximum value for a thread group is + * MAX_TGROUPS. "all", "even" and "odd" will be bound by MAX_THREADS and/or + * MAX_THREADS_PER_GROUP in any case. In ranges, a missing digit before "-" + * is implicitly 1, and a missing digit after "-" is implicitly the highest of + * its class. As such "-" is equivalent to "all", allowing to build strings + * such as "${MIN}-${MAX}" where both MIN and MAX are optional. + * + * It is not valid to mix absolute and relative numbers. As such: + * - all valid (all absolute threads) + * - 12-19,24-31 valid (abs threads 12 to 19 and 24 to 31) + * - 1/all valid (all 32 or 64 threads of group 1) + * - 1/1-4,1/8-10,2/1 valid + * - 1/1-4,8-10 invalid (mixes relatve "1/1-4" with absolute "8-10") + * - 1-4,8-10,2/1 invalid (mixes absolute "1-4,8-10" with relative "2/1") + * - 1/odd-4 invalid (mixes range with boundary) + * + * The target thread set is *completed* with supported threads, which means + * that it's the caller's responsibility for pre-initializing it. If the target + * thread set is NULL, it's not updated and the function only verifies that the + * input parses. + * + * On success, it returns 0. otherwise it returns non-zero with an error + * message in . + */ +int parse_thread_set(const char *arg, struct thread_set *ts, char **err) +{ + const char *set; + const char *sep; + int v, min, max, tg; + int is_rel; + + /* search for the first delimiter (',', '-' or '/') to decide whether + * we're facing an absolute or relative form. The relative form always + * starts with a number followed by a slash. + */ + for (sep = arg; isdigit((uchar)*sep); sep++) + ; + + is_rel = (/*sep > arg &&*/ *sep == '/'); /* relative form */ + + /* from there we have to cut the thread spec around commas */ + + set = arg; + tg = 0; + while (*set) { + /* note: we can't use strtol() here because "-3" would parse as + * (-3) while we want to stop before the "-", so we find the + * separator ourselves and rely on atoi() whose value we may + * ignore depending where the separator is. + */ + for (sep = set; isdigit((uchar)*sep); sep++) + ; + + if (sep != set && *sep && *sep != '/' && *sep != '-' && *sep != ',') { + memprintf(err, "invalid character '%c' in thread set specification: '%s'.", *sep, set); + return -1; + } + + v = (sep != set) ? atoi(set) : 0; + + /* Now we know that the string is made of an optional series of digits + * optionally followed by one of the delimiters above, or that it + * starts with a different character. + */ + + /* first, let's search for the thread group (digits before '/') */ + + if (tg || !is_rel) { + /* thread group already specified or not expected if absolute spec */ + if (*sep == '/') { + if (tg) + memprintf(err, "redundant thread group specification '%s' for group %d", set, tg); + else + memprintf(err, "group-relative thread specification '%s' is not permitted after a absolute thread range.", set); + return -1; + } + } else { + /* this is a group-relative spec, first field is the group number */ + if (sep == set && *sep == '/') { + memprintf(err, "thread group number expected before '%s'.", set); + return -1; + } + + if (*sep != '/') { + memprintf(err, "absolute thread specification '%s' is not permitted after a group-relative thread range.", set); + return -1; + } + + if (v < 1 || v > MAX_TGROUPS) { + memprintf(err, "invalid thread group number '%d', permitted range is 1..%d in '%s'.", v, MAX_TGROUPS, set); + return -1; + } + + tg = v; + + /* skip group number and go on with set,sep,v as if + * there was no group number. + */ + set = sep + 1; + continue; + } + + /* Now 'set' starts at the min thread number, whose value is in v if any, + * and preset the max to it, unless the range is filled at once via "all" + * (stored as 1:0), "odd" (stored as) 1:-1, or "even" (stored as 1:-2). + * 'sep' points to the next non-digit which may be set itself e.g. for + * "all" etc or "-xx". + */ + + if (!*set) { + /* empty set sets no restriction */ + min = 1; + max = is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS; + } + else { + if (sep != set && *sep && *sep != '-' && *sep != ',') { + // Only delimiters are permitted around digits. + memprintf(err, "invalid character '%c' in thread set specification: '%s'.", *sep, set); + return -1; + } + + /* for non-digits, find next delim */ + for (; *sep && *sep != '-' && *sep != ','; sep++) + ; + + min = max = 1; + if (sep != set) { + /* non-empty first thread */ + if (isteq(ist2(set, sep-set), ist("all"))) + max = 0; + else if (isteq(ist2(set, sep-set), ist("odd"))) + max = -1; + else if (isteq(ist2(set, sep-set), ist("even"))) + max = -2; + else if (v) + min = max = v; + else + max = min = 0; // throw an error below + } + + if (min < 1 || min > MAX_THREADS || (is_rel && min > MAX_THREADS_PER_GROUP)) { + memprintf(err, "invalid first thread number '%s', permitted range is 1..%d, or 'all', 'odd', 'even'.", + set, is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS); + return -1; + } + + /* is this a range ? */ + if (*sep == '-') { + if (min != max) { + memprintf(err, "extraneous range after 'all', 'odd' or 'even': '%s'.", set); + return -1; + } + + /* this is a seemingly valid range, there may be another number */ + for (set = ++sep; isdigit((uchar)*sep); sep++) + ; + v = atoi(set); + + if (sep == set) { // no digit: to the max + max = is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS; + if (*sep && *sep != ',') + max = 0; // throw an error below + } else + max = v; + + if (max < 1 || max > MAX_THREADS || (is_rel && max > MAX_THREADS_PER_GROUP)) { + memprintf(err, "invalid last thread number '%s', permitted range is 1..%d.", + set, is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS); + return -1; + } + } + + /* here sep points to the first non-digit after the thread spec, + * must be a valid delimiter. + */ + if (*sep && *sep != ',') { + memprintf(err, "invalid character '%c' after thread set specification: '%s'.", *sep, set); + return -1; + } + } + + /* store values */ + if (ts) { + if (is_rel) { + /* group-relative thread numbers */ + ts->grps |= 1UL << (tg - 1); + + if (max >= min) { + for (v = min; v <= max; v++) + ts->rel[tg - 1] |= 1UL << (v - 1); + } else { + memset(&ts->rel[tg - 1], + (max == 0) ? 0xff /* all */ : (max == -1) ? 0x55 /* odd */: 0xaa /* even */, + sizeof(ts->rel[tg - 1])); + } + } else { + /* absolute thread numbers */ + if (max >= min) { + for (v = min; v <= max; v++) + ts->abs[(v - 1) / LONGBITS] |= 1UL << ((v - 1) % LONGBITS); + } else { + memset(&ts->abs, + (max == 0) ? 0xff /* all */ : (max == -1) ? 0x55 /* odd */: 0xaa /* even */, + sizeof(ts->abs)); + } + } + } + + set = *sep ? sep + 1 : sep; + tg = 0; + } + return 0; +} + +/* Parse the "nbthread" global directive, which takes an integer argument that + * contains the desired number of threads. + */ +static int cfg_parse_nbthread(char **args, int section_type, struct proxy *curpx, + const struct proxy *defpx, const char *file, int line, + char **err) +{ + long nbthread; + char *errptr; + + if (too_many_args(1, args, err, NULL)) + return -1; + + if (non_global_section_parsed == 1) { + memprintf(err, "'%s' not allowed if a non-global section was previously defined. This parameter must be declared in the first global section", args[0]); + return -1; + } + + nbthread = strtol(args[1], &errptr, 10); + if (!*args[1] || *errptr) { + memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]); + return -1; + } + +#ifndef USE_THREAD + if (nbthread != 1) { + memprintf(err, "'%s' specified with a value other than 1 while HAProxy is not compiled with threads support. Please check build options for USE_THREAD", args[0]); + return -1; + } +#else + if (nbthread < 1 || nbthread > MAX_THREADS) { + memprintf(err, "'%s' value must be between 1 and %d (was %ld)", args[0], MAX_THREADS, nbthread); + return -1; + } +#endif + + HA_DIAG_WARNING_COND(global.nbthread, + "parsing [%s:%d] : '%s' is already defined and will be overridden.\n", + file, line, args[0]); + + global.nbthread = nbthread; + return 0; +} + +/* Parse the "thread-group" global directive, which takes an integer argument + * that designates a thread group, and a list of threads to put into that group. + */ +static int cfg_parse_thread_group(char **args, int section_type, struct proxy *curpx, + const struct proxy *defpx, const char *file, int line, + char **err) +{ + char *errptr; + long tnum, tend, tgroup; + int arg, tot; + + if (non_global_section_parsed == 1) { + memprintf(err, "'%s' not allowed if a non-global section was previously defined. This parameter must be declared in the first global section", args[0]); + return -1; + } + + tgroup = strtol(args[1], &errptr, 10); + if (!*args[1] || *errptr) { + memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]); + return -1; + } + + if (tgroup < 1 || tgroup > MAX_TGROUPS) { + memprintf(err, "'%s' thread-group number must be between 1 and %d (was %ld)", args[0], MAX_TGROUPS, tgroup); + return -1; + } + + /* look for a preliminary definition of any thread pointing to this + * group, and remove them. + */ + if (ha_tgroup_info[tgroup-1].count) { + ha_warning("parsing [%s:%d] : '%s %ld' was already defined and will be overridden.\n", + file, line, args[0], tgroup); + + for (tnum = ha_tgroup_info[tgroup-1].base; + tnum < ha_tgroup_info[tgroup-1].base + ha_tgroup_info[tgroup-1].count; + tnum++) { + if (ha_thread_info[tnum-1].tg == &ha_tgroup_info[tgroup-1]) { + ha_thread_info[tnum-1].tg = NULL; + ha_thread_info[tnum-1].tgid = 0; + ha_thread_info[tnum-1].tg_ctx = NULL; + } + } + ha_tgroup_info[tgroup-1].count = ha_tgroup_info[tgroup-1].base = 0; + } + + tot = 0; + for (arg = 2; args[arg] && *args[arg]; arg++) { + tend = tnum = strtol(args[arg], &errptr, 10); + + if (*errptr == '-') + tend = strtol(errptr + 1, &errptr, 10); + + if (*errptr || tnum < 1 || tend < 1 || tnum > MAX_THREADS || tend > MAX_THREADS) { + memprintf(err, "'%s %ld' passed an unparsable or invalid thread number '%s' (valid range is 1 to %d)", args[0], tgroup, args[arg], MAX_THREADS); + return -1; + } + + for(; tnum <= tend; tnum++) { + if (ha_thread_info[tnum-1].tg == &ha_tgroup_info[tgroup-1]) { + ha_warning("parsing [%s:%d] : '%s %ld': thread %ld assigned more than once on the same line.\n", + file, line, args[0], tgroup, tnum); + } else if (ha_thread_info[tnum-1].tg) { + ha_warning("parsing [%s:%d] : '%s %ld': thread %ld was previously assigned to thread group %ld and will be overridden.\n", + file, line, args[0], tgroup, tnum, + (long)(ha_thread_info[tnum-1].tg - &ha_tgroup_info[0] + 1)); + } + + if (!ha_tgroup_info[tgroup-1].count) { + ha_tgroup_info[tgroup-1].base = tnum-1; + ha_tgroup_info[tgroup-1].count = 1; + } + else if (tnum >= ha_tgroup_info[tgroup-1].base + ha_tgroup_info[tgroup-1].count) { + ha_tgroup_info[tgroup-1].count = tnum - ha_tgroup_info[tgroup-1].base; + } + else if (tnum < ha_tgroup_info[tgroup-1].base) { + ha_tgroup_info[tgroup-1].count += ha_tgroup_info[tgroup-1].base - tnum-1; + ha_tgroup_info[tgroup-1].base = tnum - 1; + } + + ha_thread_info[tnum-1].tgid = tgroup; + ha_thread_info[tnum-1].tg = &ha_tgroup_info[tgroup-1]; + ha_thread_info[tnum-1].tg_ctx = &ha_tgroup_ctx[tgroup-1]; + tot++; + } + } + + if (ha_tgroup_info[tgroup-1].count > tot) { + memprintf(err, "'%s %ld' assigned sparse threads, only contiguous supported", args[0], tgroup); + return -1; + } + + if (ha_tgroup_info[tgroup-1].count > MAX_THREADS_PER_GROUP) { + memprintf(err, "'%s %ld' assigned too many threads (%d, max=%d)", args[0], tgroup, tot, MAX_THREADS_PER_GROUP); + return -1; + } + + return 0; +} + +/* Parse the "thread-groups" global directive, which takes an integer argument + * that contains the desired number of thread groups. + */ +static int cfg_parse_thread_groups(char **args, int section_type, struct proxy *curpx, + const struct proxy *defpx, const char *file, int line, + char **err) +{ + long nbtgroups; + char *errptr; + + if (too_many_args(1, args, err, NULL)) + return -1; + + if (non_global_section_parsed == 1) { + memprintf(err, "'%s' not allowed if a non-global section was previously defined. This parameter must be declared in the first global section", args[0]); + return -1; + } + + nbtgroups = strtol(args[1], &errptr, 10); + if (!*args[1] || *errptr) { + memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]); + return -1; + } + +#ifndef USE_THREAD + if (nbtgroups != 1) { + memprintf(err, "'%s' specified with a value other than 1 while HAProxy is not compiled with threads support. Please check build options for USE_THREAD", args[0]); + return -1; + } +#else + if (nbtgroups < 1 || nbtgroups > MAX_TGROUPS) { + memprintf(err, "'%s' value must be between 1 and %d (was %ld)", args[0], MAX_TGROUPS, nbtgroups); + return -1; + } +#endif + + HA_DIAG_WARNING_COND(global.nbtgroups, + "parsing [%s:%d] : '%s' is already defined and will be overridden.\n", + file, line, args[0]); + + global.nbtgroups = nbtgroups; + return 0; +} + +/* config keyword parsers */ +static struct cfg_kw_list cfg_kws = {ILH, { + { CFG_GLOBAL, "nbthread", cfg_parse_nbthread, 0 }, + { CFG_GLOBAL, "thread-group", cfg_parse_thread_group, 0 }, + { CFG_GLOBAL, "thread-groups", cfg_parse_thread_groups, 0 }, + { 0, NULL, NULL } +}}; + +INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws); -- cgit v1.2.3