/* * Process debugging functions. * * Copyright 2000-2019 Willy Tarreau . * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef USE_EPOLL #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* The dump state is made of: * - num_thread on the lowest 15 bits * - a SYNC flag on bit 15 (waiting for sync start) * - number of participating threads on bits 16-30 * Initiating a dump consists in setting it to SYNC and incrementing the * num_thread part when entering the function. The first thread periodically * recounts active threads and compares it to the ready ones, and clears SYNC * and sets the number of participants to the value found, which serves as a * start signal. A thread finished dumping looks up the TID of the next active * thread after it and writes it in the lowest part. If there's none, it sets * the thread counter to the number of participants and resets that part, * which serves as an end-of-dump signal. All threads decrement the num_thread * part. Then all threads wait for the value to reach zero. Only used when * USE_THREAD_DUMP is set. */ #define THREAD_DUMP_TMASK 0x00007FFFU #define THREAD_DUMP_FSYNC 0x00008000U #define THREAD_DUMP_PMASK 0x7FFF0000U /* Description of a component with name, version, path, build options etc. E.g. * one of them is haproxy. Others might be some clearly identified shared libs. * They're intentionally self-contained and to be placed into an array to make * it easier to find them in a core. The important fields (name and version) * are locally allocated, other ones are dynamic. */ struct post_mortem_component { char name[32]; // symbolic short name char version[32]; // exact version char *toolchain; // compiler and version (e.g. gcc-11.4.0) char *toolchain_opts; // optims, arch-specific options (e.g. CFLAGS) char *build_settings; // build options (e.g. USE_*, TARGET, etc) char *path; // path if known. }; /* This is a collection of information that are centralized to help with core * dump analysis. It must be used with a public variable and gather elements * as much as possible without dereferences so that even when identified in a * core dump it's possible to get the most out of it even if the core file is * not much exploitable. It's aligned to 256 so that it's easy to spot, given * that being that large it will not change its size much. */ struct post_mortem { /* platform-specific information */ struct { struct utsname utsname; // OS name+ver+arch+hostname char hw_vendor[64]; // hardware/hypervisor vendor when known char hw_family[64]; // hardware/hypervisor product family when known char hw_model[64]; // hardware/hypervisor product/model when known char brd_vendor[64]; // mainboard vendor when known char brd_model[64]; // mainboard model when known char soc_vendor[64]; // SoC/CPU vendor from cpuinfo char soc_model[64]; // SoC model when known and relevant char cpu_model[64]; // CPU model when different from SoC char virt_techno[16]; // when provided by cpuid char cont_techno[16]; // empty, "no", "yes", "docker" or others } platform; /* process-specific information */ struct { pid_t pid; uid_t boot_uid; gid_t boot_gid; struct rlimit limit_fd; // RLIMIT_NOFILE struct rlimit limit_ram; // RLIMIT_AS or RLIMIT_DATA #if defined(USE_THREAD) struct { ullong pth_id; // pthread_t cast to a ullong void *stack_top; // top of the stack } thread_info[MAX_THREADS]; #endif } process; #if defined(HA_HAVE_DUMP_LIBS) /* information about dynamic shared libraries involved */ char *libs; // dump of one addr / path per line, or NULL #endif /* info about identified distinct components (executable, shared libs, etc). * These can be all listed at once in gdb using: * p *post_mortem.components@post_mortem.nb_components */ uint nb_components; // # of components below struct post_mortem_component *components; // NULL or array } post_mortem ALIGNED(256) = { }; /* Points to a copy of the buffer where the dump functions should write, when * non-null. It's only used by debuggers for core dump analysis. */ struct buffer *thread_dump_buffer = NULL; unsigned int debug_commands_issued = 0; /* dumps a backtrace of the current thread that is appended to buffer . * Lines are prefixed with the string which may be empty (used for * indenting). It is recommended to use this at a function's tail so that * the function does not appear in the call stack. The argument * indicates what dump state to start from, and should usually be zero. It * may be among the following values: * - 0: search usual callers before step 1, or directly jump to 2 * - 1: skip usual callers before step 2 * - 2: dump until polling loop, scheduler, or main() (excluded) * - 3: end * - 4-7: like 0 but stops *after* main. */ void ha_dump_backtrace(struct buffer *buf, const char *prefix, int dump) { struct buffer bak; char pfx2[100]; void *callers[100]; int j, nptrs; const void *addr; nptrs = my_backtrace(callers, sizeof(callers)/sizeof(*callers)); if (!nptrs) return; if (snprintf(pfx2, sizeof(pfx2), "%s| ", prefix) > sizeof(pfx2)) pfx2[0] = 0; /* The call backtrace_symbols_fd(callers, nptrs, STDOUT_FILENO would * produce similar output to the following: */ chunk_appendf(buf, "%scall trace(%d):\n", prefix, nptrs); for (j = 0; (j < nptrs || (dump & 3) < 2); j++) { if (j == nptrs && !(dump & 3)) { /* we failed to spot the starting point of the * dump, let's start over dumping everything we * have. */ dump += 2; j = 0; } bak = *buf; dump_addr_and_bytes(buf, pfx2, callers[j], 8); addr = resolve_sym_name(buf, ": ", callers[j]); if ((dump & 3) == 0) { /* dump not started, will start *after* ha_thread_dump_one(), * ha_panic and ha_backtrace_to_stderr */ if (addr == ha_panic || addr == ha_backtrace_to_stderr || addr == ha_thread_dump_one) dump++; *buf = bak; continue; } if ((dump & 3) == 1) { /* starting */ if (addr == ha_panic || addr == ha_backtrace_to_stderr || addr == ha_thread_dump_one) { *buf = bak; continue; } dump++; } if ((dump & 3) == 2) { /* still dumping */ if (dump == 6) { /* we only stop *after* main and we must send the LF */ if (addr == main) { j = nptrs; dump++; } } else if (addr == run_poll_loop || addr == main || addr == run_tasks_from_lists) { dump++; *buf = bak; break; } } /* OK, line dumped */ chunk_appendf(buf, "\n"); } } /* dump a backtrace of current thread's stack to stderr. */ void ha_backtrace_to_stderr(void) { char area[2048]; struct buffer b = b_make(area, sizeof(area), 0, 0); ha_dump_backtrace(&b, " ", 4); if (b.data) DISGUISE(write(2, b.area, b.data)); } /* Dumps to the thread's buffer some known information for the desired thread, * and optionally extra info when it's safe to do so (current thread or * isolated). The dump will be appended to the buffer, so the caller is * responsible for preliminary initializing it. The argument will * indicate if the function is called from the debug signal handler, indicating * the thread was dumped upon request from another one, otherwise if the thread * it the current one, a star ('*') will be displayed in front of the thread to * indicate the requesting one. Any stuck thread is also prefixed with a '>'. * The caller is responsible for atomically setting up the thread's dump buffer * to point to a valid buffer with enough room. Output will be truncated if it * does not fit. When the dump is complete, the dump buffer will be switched to * (void*)0x1 that the caller must turn to 0x0 once the contents are collected. */ void ha_thread_dump_one(int thr, int from_signal) { struct buffer *buf = HA_ATOMIC_LOAD(&ha_thread_ctx[thr].thread_dump_buffer); unsigned long __maybe_unused thr_bit = ha_thread_info[thr].ltid_bit; int __maybe_unused tgrp = ha_thread_info[thr].tgid; unsigned long long p = ha_thread_ctx[thr].prev_cpu_time; unsigned long long n = now_cpu_time_thread(thr); int stuck = !!(ha_thread_ctx[thr].flags & TH_FL_STUCK); chunk_appendf(buf, "%c%cThread %-2u: id=0x%llx act=%d glob=%d wq=%d rq=%d tl=%d tlsz=%d rqsz=%d\n" " %2u/%-2u stuck=%d prof=%d", (thr == tid && !from_signal) ? '*' : ' ', stuck ? '>' : ' ', thr + 1, ha_get_pthread_id(thr), thread_has_tasks(), !eb_is_empty(&ha_thread_ctx[thr].rqueue_shared), !eb_is_empty(&ha_thread_ctx[thr].timers), !eb_is_empty(&ha_thread_ctx[thr].rqueue), !(LIST_ISEMPTY(&ha_thread_ctx[thr].tasklets[TL_URGENT]) && LIST_ISEMPTY(&ha_thread_ctx[thr].tasklets[TL_NORMAL]) && LIST_ISEMPTY(&ha_thread_ctx[thr].tasklets[TL_BULK]) && MT_LIST_ISEMPTY(&ha_thread_ctx[thr].shared_tasklet_list)), ha_thread_ctx[thr].tasks_in_list, ha_thread_ctx[thr].rq_total, ha_thread_info[thr].tgid, ha_thread_info[thr].ltid + 1, stuck, !!(ha_thread_ctx[thr].flags & TH_FL_TASK_PROFILING)); #if defined(USE_THREAD) chunk_appendf(buf, " harmless=%d isolated=%d", !!(_HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp-1].threads_harmless) & thr_bit), isolated_thread == thr); #endif chunk_appendf(buf, "\n"); chunk_appendf(buf, " cpu_ns: poll=%llu now=%llu diff=%llu\n", p, n, n-p); /* this is the end of what we can dump from outside the current thread */ if (thr != tid && !thread_isolated()) goto leave; chunk_appendf(buf, " curr_task="); ha_task_dump(buf, th_ctx->current, " "); if (stuck && thr == tid) { #ifdef USE_LUA if (th_ctx->current && th_ctx->current->process == process_stream && th_ctx->current->context) { const struct stream *s = (const struct stream *)th_ctx->current->context; struct hlua *hlua = NULL; if (s) { if (s->hlua[0] && HLUA_IS_BUSY(s->hlua[0])) hlua = s->hlua[0]; else if (s->hlua[1] && HLUA_IS_BUSY(s->hlua[1])) hlua = s->hlua[1]; } if (hlua) { mark_tainted(TAINTED_LUA_STUCK); if (hlua->state_id == 0) mark_tainted(TAINTED_LUA_STUCK_SHARED); } } #endif if (HA_ATOMIC_LOAD(&pool_trim_in_progress)) mark_tainted(TAINTED_MEM_TRIMMING_STUCK); /* We only emit the backtrace for stuck threads in order not to * waste precious output buffer space with non-interesting data. * Please leave this as the last instruction in this function * so that the compiler uses tail merging and the current * function does not appear in the stack. */ ha_dump_backtrace(buf, " ", 0); } leave: /* end of dump, setting the buffer to 0x1 will tell the caller we're done */ HA_ATOMIC_STORE(&ha_thread_ctx[thr].thread_dump_buffer, (void*)0x1UL); } /* Triggers a thread dump from thread , either directly if it's the * current thread or if thread dump signals are not implemented, or by sending * a signal if it's a remote one and the feature is supported. The buffer * will get the dump appended, and the caller is responsible for making sure * there is enough room otherwise some contents will be truncated. */ void ha_thread_dump(struct buffer *buf, int thr) { struct buffer *old = NULL; /* try to impose our dump buffer and to reserve the target thread's * next dump for us. */ do { if (old) ha_thread_relax(); old = NULL; } while (!HA_ATOMIC_CAS(&ha_thread_ctx[thr].thread_dump_buffer, &old, buf)); #ifdef USE_THREAD_DUMP /* asking the remote thread to dump itself allows to get more details * including a backtrace. */ if (thr != tid) ha_tkill(thr, DEBUGSIG); else #endif ha_thread_dump_one(thr, thr != tid); /* now wait for the dump to be done, and release it */ do { if (old) ha_thread_relax(); old = (void*)0x01; } while (!HA_ATOMIC_CAS(&ha_thread_ctx[thr].thread_dump_buffer, &old, 0)); } /* dumps into the buffer some information related to task (which may * either be a task or a tasklet, and prepend each line except the first one * with . The buffer is only appended and the first output starts by the * pointer itself. The caller is responsible for making sure the task is not * going to vanish during the dump. */ void ha_task_dump(struct buffer *buf, const struct task *task, const char *pfx) { const struct stream *s = NULL; const struct appctx __maybe_unused *appctx = NULL; struct hlua __maybe_unused *hlua = NULL; const struct stconn *sc; if (!task) { chunk_appendf(buf, "0\n"); return; } if (TASK_IS_TASKLET(task)) chunk_appendf(buf, "%p (tasklet) calls=%u\n", task, task->calls); else chunk_appendf(buf, "%p (task) calls=%u last=%llu%s\n", task, task->calls, task->wake_date ? (unsigned long long)(now_mono_time() - task->wake_date) : 0, task->wake_date ? " ns ago" : ""); chunk_appendf(buf, "%s fct=%p(", pfx, task->process); resolve_sym_name(buf, NULL, task->process); chunk_appendf(buf,") ctx=%p", task->context); if (task->process == task_run_applet && (appctx = task->context)) chunk_appendf(buf, "(%s)\n", appctx->applet->name); else chunk_appendf(buf, "\n"); if (task->process == process_stream && task->context) s = (struct stream *)task->context; else if (task->process == task_run_applet && task->context && (sc = appctx_sc((struct appctx *)task->context))) s = sc_strm(sc); else if (task->process == sc_conn_io_cb && task->context) s = sc_strm(((struct stconn *)task->context)); if (s) { chunk_appendf(buf, "%sstream=", pfx); strm_dump_to_buffer(buf, s, pfx, HA_ATOMIC_LOAD(&global.anon_key)); } #ifdef USE_LUA hlua = NULL; if (s && ((s->hlua[0] && HLUA_IS_BUSY(s->hlua[0])) || (s->hlua[1] && HLUA_IS_BUSY(s->hlua[1])))) { hlua = (s->hlua[0] && HLUA_IS_BUSY(s->hlua[0])) ? s->hlua[0] : s->hlua[1]; chunk_appendf(buf, "%sCurrent executing Lua from a stream analyser -- ", pfx); } else if (task->process == hlua_process_task && (hlua = task->context)) { chunk_appendf(buf, "%sCurrent executing a Lua task -- ", pfx); } else if (task->process == task_run_applet && (appctx = task->context) && (appctx->applet->fct == hlua_applet_tcp_fct)) { chunk_appendf(buf, "%sCurrent executing a Lua TCP service -- ", pfx); } else if (task->process == task_run_applet && (appctx = task->context) && (appctx->applet->fct == hlua_applet_http_fct)) { chunk_appendf(buf, "%sCurrent executing a Lua HTTP service -- ", pfx); } if (hlua && hlua->T) { chunk_appendf(buf, "stack traceback:\n "); append_prefixed_str(buf, hlua_traceback(hlua->T, "\n "), pfx, '\n', 0); } /* we may need to terminate the current line */ if (*b_peek(buf, b_data(buf)-1) != '\n') b_putchr(buf, '\n'); #endif } /* This function dumps all profiling settings. It returns 0 if the output * buffer is full and it needs to be called again, otherwise non-zero. */ static int cli_io_handler_show_threads(struct appctx *appctx) { struct stconn *sc = appctx_sc(appctx); int thr; /* FIXME: Don't watch the other side !*/ if (unlikely(sc_opposite(sc)->flags & SC_FL_SHUT_DONE)) return 1; if (appctx->st0) thr = appctx->st1; else thr = 0; do { chunk_reset(&trash); ha_thread_dump(&trash, thr); if (applet_putchk(appctx, &trash) == -1) { /* failed, try again */ appctx->st1 = thr; return 0; } thr++; } while (thr < global.nbthread); return 1; } #if defined(HA_HAVE_DUMP_LIBS) /* parse a "show libs" command. It returns 1 if it emits anything otherwise zero. */ static int debug_parse_cli_show_libs(char **args, char *payload, struct appctx *appctx, void *private) { if (!cli_has_level(appctx, ACCESS_LVL_OPER)) return 1; chunk_reset(&trash); if (dump_libs(&trash, 1)) return cli_msg(appctx, LOG_INFO, trash.area); else return 0; } #endif /* parse a "show dev" command. It returns 1 if it emits anything otherwise zero. */ static int debug_parse_cli_show_dev(char **args, char *payload, struct appctx *appctx, void *private) { const char **build_opt; if (*args[2]) return cli_err(appctx, "This command takes no argument.\n"); chunk_reset(&trash); chunk_appendf(&trash, "Features\n %s\n", build_features); chunk_appendf(&trash, "Build options\n"); for (build_opt = NULL; (build_opt = hap_get_next_build_opt(build_opt)); ) if (append_prefixed_str(&trash, *build_opt, " ", '\n', 0) == 0) chunk_strcat(&trash, "\n"); chunk_appendf(&trash, "Platform info\n"); if (*post_mortem.platform.hw_vendor) chunk_appendf(&trash, " machine vendor: %s\n", post_mortem.platform.hw_vendor); if (*post_mortem.platform.hw_family) chunk_appendf(&trash, " machine family: %s\n", post_mortem.platform.hw_family); if (*post_mortem.platform.hw_model) chunk_appendf(&trash, " machine model: %s\n", post_mortem.platform.hw_model); if (*post_mortem.platform.brd_vendor) chunk_appendf(&trash, " board vendor: %s\n", post_mortem.platform.brd_vendor); if (*post_mortem.platform.brd_model) chunk_appendf(&trash, " board model: %s\n", post_mortem.platform.brd_model); if (*post_mortem.platform.soc_vendor) chunk_appendf(&trash, " soc vendor: %s\n", post_mortem.platform.soc_vendor); if (*post_mortem.platform.soc_model) chunk_appendf(&trash, " soc model: %s\n", post_mortem.platform.soc_model); if (*post_mortem.platform.cpu_model) chunk_appendf(&trash, " cpu model: %s\n", post_mortem.platform.cpu_model); if (*post_mortem.platform.virt_techno) chunk_appendf(&trash, " virtual machine: %s\n", post_mortem.platform.virt_techno); if (*post_mortem.platform.cont_techno) chunk_appendf(&trash, " container: %s\n", post_mortem.platform.cont_techno); if (*post_mortem.platform.utsname.sysname) chunk_appendf(&trash, " OS name: %s\n", post_mortem.platform.utsname.sysname); if (*post_mortem.platform.utsname.release) chunk_appendf(&trash, " OS release: %s\n", post_mortem.platform.utsname.release); if (*post_mortem.platform.utsname.version) chunk_appendf(&trash, " OS version: %s\n", post_mortem.platform.utsname.version); if (*post_mortem.platform.utsname.machine) chunk_appendf(&trash, " OS architecture: %s\n", post_mortem.platform.utsname.machine); if (*post_mortem.platform.utsname.nodename) chunk_appendf(&trash, " node name: %s\n", HA_ANON_CLI(post_mortem.platform.utsname.nodename)); chunk_appendf(&trash, "Process info\n"); chunk_appendf(&trash, " pid: %d\n", post_mortem.process.pid); chunk_appendf(&trash, " boot uid: %d\n", post_mortem.process.boot_uid); chunk_appendf(&trash, " boot gid: %d\n", post_mortem.process.boot_gid); if ((ulong)post_mortem.process.limit_fd.rlim_cur != RLIM_INFINITY) chunk_appendf(&trash, " fd limit (soft): %lu\n", (ulong)post_mortem.process.limit_fd.rlim_cur); if ((ulong)post_mortem.process.limit_fd.rlim_max != RLIM_INFINITY) chunk_appendf(&trash, " fd limit (hard): %lu\n", (ulong)post_mortem.process.limit_fd.rlim_max); if ((ulong)post_mortem.process.limit_ram.rlim_cur != RLIM_INFINITY) chunk_appendf(&trash, " ram limit (soft): %lu\n", (ulong)post_mortem.process.limit_ram.rlim_cur); if ((ulong)post_mortem.process.limit_ram.rlim_max != RLIM_INFINITY) chunk_appendf(&trash, " ram limit (hard): %lu\n", (ulong)post_mortem.process.limit_ram.rlim_max); return cli_msg(appctx, LOG_INFO, trash.area); } /* Dumps a state of all threads into the trash and on fd #2, then aborts. * A copy will be put into a trash chunk that's assigned to thread_dump_buffer * so that the debugger can easily find it. This buffer might be truncated if * too many threads are being dumped, but at least we'll dump them all on stderr. * If thread_dump_buffer is set, it means that a panic has already begun. */ void ha_panic() { struct buffer *old; unsigned int thr; mark_tainted(TAINTED_PANIC); old = NULL; if (!HA_ATOMIC_CAS(&thread_dump_buffer, &old, get_trash_chunk())) { /* a panic dump is already in progress, let's not disturb it, * we'll be called via signal DEBUGSIG. By returning we may be * able to leave a current signal handler (e.g. WDT) so that * this will ensure more reliable signal delivery. */ return; } chunk_reset(&trash); chunk_appendf(&trash, "Thread %u is about to kill the process.\n", tid + 1); for (thr = 0; thr < global.nbthread; thr++) { ha_thread_dump(&trash, thr); DISGUISE(write(2, trash.area, trash.data)); b_force_xfer(thread_dump_buffer, &trash, b_room(thread_dump_buffer)); chunk_reset(&trash); } #ifdef USE_LUA if (get_tainted() & TAINTED_LUA_STUCK_SHARED && global.nbthread > 1) { chunk_printf(&trash, "### Note: at least one thread was stuck in a Lua context loaded using the\n" " 'lua-load' directive, which is known for causing heavy contention\n" " when used with threads. Please consider using 'lua-load-per-thread'\n" " instead if your code is safe to run in parallel on multiple threads.\n"); DISGUISE(write(2, trash.area, trash.data)); } else if (get_tainted() & TAINTED_LUA_STUCK) { chunk_printf(&trash, "### Note: at least one thread was stuck in a Lua context in a way that suggests\n" " heavy processing inside a dependency or a long loop that can't yield.\n" " Please make sure any external code you may rely on is safe for use in\n" " an event-driven engine.\n"); DISGUISE(write(2, trash.area, trash.data)); } #endif if (get_tainted() & TAINTED_MEM_TRIMMING_STUCK) { chunk_printf(&trash, "### Note: one thread was found stuck under malloc_trim(), which can run for a\n" " very long time on large memory systems. You way want to disable this\n" " memory reclaiming feature by setting 'no-memory-trimming' in the\n" " 'global' section of your configuration to avoid this in the future.\n"); DISGUISE(write(2, trash.area, trash.data)); } for (;;) abort(); } /* Complain with message on stderr. If is not NULL, it is * atomically incremented, and the message is only printed when the counter * was zero, so that the message is only printed once. is only checked * on bit 1, and will taint the process either for a bug (2) or warn (0). */ void complain(int *counter, const char *msg, int taint) { if (counter && _HA_ATOMIC_FETCH_ADD(counter, 1)) return; DISGUISE(write(2, msg, strlen(msg))); if (taint & 2) mark_tainted(TAINTED_BUG); else mark_tainted(TAINTED_WARN); } /* parse a "debug dev exit" command. It always returns 1, though it should never return. */ static int debug_parse_cli_exit(char **args, char *payload, struct appctx *appctx, void *private) { int code = atoi(args[3]); if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; _HA_ATOMIC_INC(&debug_commands_issued); exit(code); return 1; } /* parse a "debug dev bug" command. It always returns 1, though it should never return. * Note: we make sure not to make the function static so that it appears in the trace. */ int debug_parse_cli_bug(char **args, char *payload, struct appctx *appctx, void *private) { if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; _HA_ATOMIC_INC(&debug_commands_issued); BUG_ON(one > zero); return 1; } /* parse a "debug dev warn" command. It always returns 1. * Note: we make sure not to make the function static so that it appears in the trace. */ int debug_parse_cli_warn(char **args, char *payload, struct appctx *appctx, void *private) { if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; _HA_ATOMIC_INC(&debug_commands_issued); WARN_ON(one > zero); return 1; } /* parse a "debug dev check" command. It always returns 1. * Note: we make sure not to make the function static so that it appears in the trace. */ int debug_parse_cli_check(char **args, char *payload, struct appctx *appctx, void *private) { if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; _HA_ATOMIC_INC(&debug_commands_issued); CHECK_IF(one > zero); return 1; } /* parse a "debug dev close" command. It always returns 1. */ static int debug_parse_cli_close(char **args, char *payload, struct appctx *appctx, void *private) { int fd; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; if (!*args[3]) return cli_err(appctx, "Missing file descriptor number.\n"); fd = atoi(args[3]); if (fd < 0 || fd >= global.maxsock) return cli_err(appctx, "File descriptor out of range.\n"); if (!fdtab[fd].owner) return cli_msg(appctx, LOG_INFO, "File descriptor was already closed.\n"); _HA_ATOMIC_INC(&debug_commands_issued); fd_delete(fd); return 1; } /* this is meant to cause a deadlock when more than one task is running it or when run twice */ static struct task *debug_run_cli_deadlock(struct task *task, void *ctx, unsigned int state) { static HA_SPINLOCK_T lock __maybe_unused; HA_SPIN_LOCK(OTHER_LOCK, &lock); return NULL; } /* parse a "debug dev deadlock" command. It always returns 1. */ static int debug_parse_cli_deadlock(char **args, char *payload, struct appctx *appctx, void *private) { int tasks; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; _HA_ATOMIC_INC(&debug_commands_issued); for (tasks = atoi(args[3]); tasks > 0; tasks--) { struct task *t = task_new_on(tasks % global.nbthread); if (!t) continue; t->process = debug_run_cli_deadlock; t->context = NULL; task_wakeup(t, TASK_WOKEN_INIT); } return 1; } /* parse a "debug dev delay" command. It always returns 1. */ static int debug_parse_cli_delay(char **args, char *payload, struct appctx *appctx, void *private) { int delay = atoi(args[3]); if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; _HA_ATOMIC_INC(&debug_commands_issued); usleep((long)delay * 1000); return 1; } /* parse a "debug dev log" command. It always returns 1. */ static int debug_parse_cli_log(char **args, char *payload, struct appctx *appctx, void *private) { int arg; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; _HA_ATOMIC_INC(&debug_commands_issued); chunk_reset(&trash); for (arg = 3; *args[arg]; arg++) { if (arg > 3) chunk_strcat(&trash, " "); chunk_strcat(&trash, args[arg]); } send_log(NULL, LOG_INFO, "%s\n", trash.area); return 1; } /* parse a "debug dev loop" command. It always returns 1. */ static int debug_parse_cli_loop(char **args, char *payload, struct appctx *appctx, void *private) { struct timeval deadline, curr; int loop = atoi(args[3]); int isolate; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; isolate = strcmp(args[4], "isolated") == 0; _HA_ATOMIC_INC(&debug_commands_issued); gettimeofday(&curr, NULL); tv_ms_add(&deadline, &curr, loop); if (isolate) thread_isolate(); while (tv_ms_cmp(&curr, &deadline) < 0) gettimeofday(&curr, NULL); if (isolate) thread_release(); return 1; } /* parse a "debug dev panic" command. It always returns 1, though it should never return. */ static int debug_parse_cli_panic(char **args, char *payload, struct appctx *appctx, void *private) { if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; _HA_ATOMIC_INC(&debug_commands_issued); ha_panic(); return 1; } /* parse a "debug dev exec" command. It always returns 1. */ #if defined(DEBUG_DEV) static int debug_parse_cli_exec(char **args, char *payload, struct appctx *appctx, void *private) { int pipefd[2]; int arg; int pid; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; _HA_ATOMIC_INC(&debug_commands_issued); chunk_reset(&trash); for (arg = 3; *args[arg]; arg++) { if (arg > 3) chunk_strcat(&trash, " "); chunk_strcat(&trash, args[arg]); } thread_isolate(); if (pipe(pipefd) < 0) goto fail_pipe; if (fd_set_cloexec(pipefd[0]) == -1) goto fail_fcntl; if (fd_set_cloexec(pipefd[1]) == -1) goto fail_fcntl; pid = fork(); if (pid < 0) goto fail_fork; else if (pid == 0) { /* child */ char *cmd[4] = { "/bin/sh", "-c", 0, 0 }; close(0); dup2(pipefd[1], 1); dup2(pipefd[1], 2); cmd[2] = trash.area; execvp(cmd[0], cmd); printf("execvp() failed\n"); exit(1); } /* parent */ thread_release(); close(pipefd[1]); chunk_reset(&trash); while (1) { size_t ret = read(pipefd[0], trash.area + trash.data, trash.size - 20 - trash.data); if (ret <= 0) break; trash.data += ret; if (trash.data + 20 == trash.size) { chunk_strcat(&trash, "\n[[[TRUNCATED]]]\n"); break; } } close(pipefd[0]); waitpid(pid, NULL, WNOHANG); trash.area[trash.data] = 0; return cli_msg(appctx, LOG_INFO, trash.area); fail_fork: fail_fcntl: close(pipefd[0]); close(pipefd[1]); fail_pipe: thread_release(); return cli_err(appctx, "Failed to execute command.\n"); } /* handles SIGRTMAX to inject random delays on the receiving thread in order * to try to increase the likelihood to reproduce inter-thread races. The * signal is periodically sent by a task initiated by "debug dev delay-inj". */ void debug_delay_inj_sighandler(int sig, siginfo_t *si, void *arg) { volatile int i = statistical_prng_range(10000); while (i--) __ha_cpu_relax(); } #endif /* parse a "debug dev hex" command. It always returns 1. */ static int debug_parse_cli_hex(char **args, char *payload, struct appctx *appctx, void *private) { unsigned long start, len; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; if (!*args[3]) return cli_err(appctx, "Missing memory address to dump from.\n"); start = strtoul(args[3], NULL, 0); if (!start) return cli_err(appctx, "Will not dump from NULL address.\n"); _HA_ATOMIC_INC(&debug_commands_issued); /* by default, dump ~128 till next block of 16 */ len = strtoul(args[4], NULL, 0); if (!len) len = ((start + 128) & -16) - start; chunk_reset(&trash); dump_hex(&trash, " ", (const void *)start, len, 1); trash.area[trash.data] = 0; return cli_msg(appctx, LOG_INFO, trash.area); } /* parse a "debug dev sym " command. It always returns 1. */ static int debug_parse_cli_sym(char **args, char *payload, struct appctx *appctx, void *private) { unsigned long addr; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; if (!*args[3]) return cli_err(appctx, "Missing memory address to be resolved.\n"); _HA_ATOMIC_INC(&debug_commands_issued); addr = strtoul(args[3], NULL, 0); chunk_printf(&trash, "%#lx resolves to ", addr); resolve_sym_name(&trash, NULL, (const void *)addr); chunk_appendf(&trash, "\n"); return cli_msg(appctx, LOG_INFO, trash.area); } /* parse a "debug dev tkill" command. It always returns 1. */ static int debug_parse_cli_tkill(char **args, char *payload, struct appctx *appctx, void *private) { int thr = 0; int sig = SIGABRT; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; if (*args[3]) thr = atoi(args[3]); if (thr < 0 || thr > global.nbthread) return cli_err(appctx, "Thread number out of range (use 0 for current).\n"); if (*args[4]) sig = atoi(args[4]); _HA_ATOMIC_INC(&debug_commands_issued); if (thr) ha_tkill(thr - 1, sig); else raise(sig); return 1; } /* hashes 'word' in "debug dev hash 'word' ". */ static int debug_parse_cli_hash(char **args, char *payload, struct appctx *appctx, void *private) { char *msg = NULL; cli_dynmsg(appctx, LOG_INFO, memprintf(&msg, "%s\n", HA_ANON_CLI(args[3]))); return 1; } /* parse a "debug dev write" command. It always returns 1. */ static int debug_parse_cli_write(char **args, char *payload, struct appctx *appctx, void *private) { unsigned long len; if (!*args[3]) return cli_err(appctx, "Missing output size.\n"); len = strtoul(args[3], NULL, 0); if (len >= trash.size) return cli_err(appctx, "Output too large, must be ] [strm.f[{+-=}]] [txn.f[{+-=}]] \ * [req.f[{+-=}]] [res.f[{+-=}]] \ * [sif.f[{+-=]] [sib.f[{+-=]] \ * [sif.s[=]] [sib.s[=]] */ static int debug_parse_cli_stream(char **args, char *payload, struct appctx *appctx, void *private) { struct stream *s = appctx_strm(appctx); int arg; void *ptr; int size; const char *word, *end; struct ist name; char *msg = NULL; char *endarg; unsigned long long old, new; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; ptr = NULL; size = 0; if (!*args[3]) { return cli_err(appctx, "Usage: debug dev stream [ strm= ] { | wake }*\n" " = { strm.f | strm.x | scf.s | scb.s | txn.f | req.f | res.f }\n" " = {'' (show) | '=' (assign) | '^' (xor) | '+' (or) | '-' (andnot)}\n" " = 'now' | 64-bit dec/hex integer (0x prefix supported)\n" " 'wake' wakes the stream assigned to 'strm' (default: current)\n" ); } _HA_ATOMIC_INC(&debug_commands_issued); for (arg = 3; *args[arg]; arg++) { old = 0; end = word = args[arg]; while (*end && *end != '=' && *end != '^' && *end != '+' && *end != '-') end++; name = ist2(word, end - word); if (isteq(name, ist("strm"))) { ptr = (!s || !may_access(s)) ? NULL : &s; size = sizeof(s); } else if (isteq(name, ist("strm.f"))) { ptr = (!s || !may_access(s)) ? NULL : &s->flags; size = sizeof(s->flags); } else if (isteq(name, ist("strm.x"))) { ptr = (!s || !may_access(s)) ? NULL : &s->conn_exp; size = sizeof(s->conn_exp); } else if (isteq(name, ist("txn.f"))) { ptr = (!s || !may_access(s)) ? NULL : &s->txn->flags; size = sizeof(s->txn->flags); } else if (isteq(name, ist("req.f"))) { ptr = (!s || !may_access(s)) ? NULL : &s->req.flags; size = sizeof(s->req.flags); } else if (isteq(name, ist("res.f"))) { ptr = (!s || !may_access(s)) ? NULL : &s->res.flags; size = sizeof(s->res.flags); } else if (isteq(name, ist("scf.s"))) { ptr = (!s || !may_access(s)) ? NULL : &s->scf->state; size = sizeof(s->scf->state); } else if (isteq(name, ist("scb.s"))) { ptr = (!s || !may_access(s)) ? NULL : &s->scf->state; size = sizeof(s->scb->state); } else if (isteq(name, ist("wake"))) { if (s && may_access(s) && may_access((void *)s + sizeof(*s) - 1)) task_wakeup(s->task, TASK_WOKEN_TIMER|TASK_WOKEN_IO|TASK_WOKEN_MSG); continue; } else return cli_dynerr(appctx, memprintf(&msg, "Unsupported field name: '%s'.\n", word)); /* read previous value */ if ((s || ptr == &s) && ptr && may_access(ptr) && may_access(ptr + size - 1)) { if (size == 8) old = read_u64(ptr); else if (size == 4) old = read_u32(ptr); else if (size == 2) old = read_u16(ptr); else old = *(const uint8_t *)ptr; } else { memprintf(&msg, "%sSkipping inaccessible pointer %p for field '%.*s'.\n", msg ? msg : "", ptr, (int)(end - word), word); continue; } /* parse the new value . */ new = strtoll(end + 1, &endarg, 0); if (end[1] && *endarg) { if (strcmp(end + 1, "now") == 0) new = now_ms; else { memprintf(&msg, "%sIgnoring unparsable value '%s' for field '%.*s'.\n", msg ? msg : "", end + 1, (int)(end - word), word); continue; } } switch (*end) { case '\0': /* show */ memprintf(&msg, "%s%.*s=%#llx ", msg ? msg : "", (int)(end - word), word, old); new = old; // do not change the value break; case '=': /* set */ break; case '^': /* XOR */ new = old ^ new; break; case '+': /* OR */ new = old | new; break; case '-': /* AND NOT */ new = old & ~new; break; default: break; } /* write the new value */ if (new != old) { if (size == 8) write_u64(ptr, new); else if (size == 4) write_u32(ptr, new); else if (size == 2) write_u16(ptr, new); else *(uint8_t *)ptr = new; } } if (msg && *msg) return cli_dynmsg(appctx, LOG_INFO, msg); return 1; } /* parse a "debug dev stream" command */ /* * debug dev task [ "wake" | "expire" | "kill" ] * Show/change status of a task/tasklet */ static int debug_parse_cli_task(char **args, char *payload, struct appctx *appctx, void *private) { const struct ha_caller *caller; struct task *t; char *endarg; char *msg; void *ptr; int ret = 1; int task_ok; int arg; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; /* parse the pointer value */ ptr = (void *)strtoul(args[3], &endarg, 0); if (!*args[3] || *endarg) goto usage; _HA_ATOMIC_INC(&debug_commands_issued); /* everything below must run under thread isolation till reaching label "leave" */ thread_isolate(); /* struct tasklet is smaller than struct task and is sufficient to check * the TASK_COMMON part. */ if (!may_access(ptr) || !may_access(ptr + sizeof(struct tasklet) - 1) || ((const struct tasklet *)ptr)->tid < -1 || ((const struct tasklet *)ptr)->tid >= (int)MAX_THREADS) { ret = cli_err(appctx, "The designated memory area doesn't look like a valid task/tasklet\n"); goto leave; } t = ptr; caller = t->caller; msg = NULL; task_ok = may_access(ptr + sizeof(*t) - 1); chunk_reset(&trash); resolve_sym_name(&trash, NULL, (const void *)t->process); /* we need to be careful here because we may dump a freed task that's * still in the pool cache, containing garbage in pointers. */ if (!*args[4]) { memprintf(&msg, "%s%p: %s state=%#x tid=%d process=%s ctx=%p calls=%d last=%s:%d intl=%d", msg ? msg : "", t, (t->state & TASK_F_TASKLET) ? "tasklet" : "task", t->state, t->tid, trash.area, t->context, t->calls, caller && may_access(caller) && may_access(caller->func) && isalnum((uchar)*caller->func) ? caller->func : "0", caller ? t->caller->line : 0, (t->state & TASK_F_TASKLET) ? LIST_INLIST(&((const struct tasklet *)t)->list) : 0); if (task_ok && !(t->state & TASK_F_TASKLET)) memprintf(&msg, "%s inrq=%d inwq=%d exp=%d nice=%d", msg ? msg : "", task_in_rq(t), task_in_wq(t), t->expire, t->nice); memprintf(&msg, "%s\n", msg ? msg : ""); } for (arg = 4; *args[arg]; arg++) { if (strcmp(args[arg], "expire") == 0) { if (t->state & TASK_F_TASKLET) { /* do nothing for tasklets */ } else if (task_ok) { /* unlink task and wake with timer flag */ __task_unlink_wq(t); t->expire = now_ms; task_wakeup(t, TASK_WOKEN_TIMER); } } else if (strcmp(args[arg], "wake") == 0) { /* wake with all flags but init / timer */ if (t->state & TASK_F_TASKLET) tasklet_wakeup((struct tasklet *)t); else if (task_ok) task_wakeup(t, TASK_WOKEN_ANY & ~(TASK_WOKEN_INIT|TASK_WOKEN_TIMER)); } else if (strcmp(args[arg], "kill") == 0) { /* Kill the task. This is not idempotent! */ if (!(t->state & TASK_KILLED)) { if (t->state & TASK_F_TASKLET) tasklet_kill((struct tasklet *)t); else if (task_ok) task_kill(t); } } else { thread_release(); goto usage; } } if (msg && *msg) ret = cli_dynmsg(appctx, LOG_INFO, msg); leave: thread_release(); return ret; usage: return cli_err(appctx, "Usage: debug dev task [ wake | expire | kill ]\n" " By default, dumps some info on task/tasklet . 'wake' will wake it up\n" " with all conditions flags but init/exp. 'expire' will expire the entry, and\n" " 'kill' will kill it (warning: may crash since later not idempotent!). All\n" " changes may crash the process if performed on a wrong object!\n" ); } #if defined(DEBUG_DEV) static struct task *debug_delay_inj_task(struct task *t, void *ctx, unsigned int state) { unsigned long *tctx = ctx; // [0] = interval, [1] = nbwakeups unsigned long inter = tctx[0]; unsigned long count = tctx[1]; unsigned long rnd; if (inter) t->expire = tick_add(now_ms, inter); else task_wakeup(t, TASK_WOKEN_MSG); /* wake a random thread */ while (count--) { rnd = statistical_prng_range(global.nbthread); ha_tkill(rnd, SIGRTMAX); } return t; } /* parse a "debug dev delay-inj" command * debug dev delay-inj */ static int debug_parse_delay_inj(char **args, char *payload, struct appctx *appctx, void *private) { unsigned long *tctx; // [0] = inter, [2] = count struct task *task; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; if (!*args[4]) return cli_err(appctx, "Usage: debug dev delay-inj *\n"); _HA_ATOMIC_INC(&debug_commands_issued); tctx = calloc(2, sizeof(*tctx)); if (!tctx) goto fail; tctx[0] = atoi(args[3]); tctx[1] = atoi(args[4]); task = task_new_here/*anywhere*/(); if (!task) goto fail; task->process = debug_delay_inj_task; task->context = tctx; task_wakeup(task, TASK_WOKEN_INIT); return 1; fail: free(tctx); return cli_err(appctx, "Not enough memory"); } #endif // DEBUG_DEV static struct task *debug_task_handler(struct task *t, void *ctx, unsigned int state) { unsigned long *tctx = ctx; // [0] = #tasks, [1] = inter, [2+] = { tl | (tsk+1) } unsigned long inter = tctx[1]; unsigned long rnd; t->expire = tick_add(now_ms, inter); /* half of the calls will wake up another entry */ rnd = statistical_prng(); if (rnd & 1) { rnd >>= 1; rnd %= tctx[0]; rnd = tctx[rnd + 2]; if (rnd & 1) task_wakeup((struct task *)(rnd - 1), TASK_WOKEN_MSG); else tasklet_wakeup((struct tasklet *)rnd); } return t; } static struct task *debug_tasklet_handler(struct task *t, void *ctx, unsigned int state) { unsigned long *tctx = ctx; // [0] = #tasks, [1] = inter, [2+] = { tl | (tsk+1) } unsigned long rnd; int i; /* wake up two random entries */ for (i = 0; i < 2; i++) { rnd = statistical_prng() % tctx[0]; rnd = tctx[rnd + 2]; if (rnd & 1) task_wakeup((struct task *)(rnd - 1), TASK_WOKEN_MSG); else tasklet_wakeup((struct tasklet *)rnd); } return t; } /* parse a "debug dev sched" command * debug dev sched {task|tasklet} [count=] [mask=] [single=] [inter=] */ static int debug_parse_cli_sched(char **args, char *payload, struct appctx *appctx, void *private) { int arg; void *ptr; int size; const char *word, *end; struct ist name; char *msg = NULL; char *endarg; unsigned long long new; unsigned long count = 0; unsigned long thrid = tid; unsigned int inter = 0; unsigned long i; int mode = 0; // 0 = tasklet; 1 = task unsigned long *tctx; // [0] = #tasks, [1] = inter, [2+] = { tl | (tsk+1) } if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; ptr = NULL; size = 0; if (strcmp(args[3], "task") != 0 && strcmp(args[3], "tasklet") != 0) { return cli_err(appctx, "Usage: debug dev sched {task|tasklet} { = }*\n" " = {count | tid | inter }\n" " = 64-bit dec/hex integer (0x prefix supported)\n" ); } mode = strcmp(args[3], "task") == 0; _HA_ATOMIC_INC(&debug_commands_issued); for (arg = 4; *args[arg]; arg++) { end = word = args[arg]; while (*end && *end != '=' && *end != '^' && *end != '+' && *end != '-') end++; name = ist2(word, end - word); if (isteq(name, ist("count"))) { ptr = &count; size = sizeof(count); } else if (isteq(name, ist("tid"))) { ptr = &thrid; size = sizeof(thrid); } else if (isteq(name, ist("inter"))) { ptr = &inter; size = sizeof(inter); } else return cli_dynerr(appctx, memprintf(&msg, "Unsupported setting: '%s'.\n", word)); /* parse the new value . */ new = strtoll(end + 1, &endarg, 0); if (end[1] && *endarg) { memprintf(&msg, "%sIgnoring unparsable value '%s' for field '%.*s'.\n", msg ? msg : "", end + 1, (int)(end - word), word); continue; } /* write the new value */ if (size == 8) write_u64(ptr, new); else if (size == 4) write_u32(ptr, new); else if (size == 2) write_u16(ptr, new); else *(uint8_t *)ptr = new; } tctx = calloc(count + 2, sizeof(*tctx)); if (!tctx) goto fail; tctx[0] = (unsigned long)count; tctx[1] = (unsigned long)inter; if (thrid >= global.nbthread) thrid = tid; for (i = 0; i < count; i++) { /* now, if poly or mask was set, tmask corresponds to the * valid thread mask to use, otherwise it remains zero. */ //printf("%lu: mode=%d mask=%#lx\n", i, mode, tmask); if (mode == 0) { struct tasklet *tl = tasklet_new(); if (!tl) goto fail; tl->tid = thrid; tl->process = debug_tasklet_handler; tl->context = tctx; tctx[i + 2] = (unsigned long)tl; } else { struct task *task = task_new_on(thrid); if (!task) goto fail; task->process = debug_task_handler; task->context = tctx; tctx[i + 2] = (unsigned long)task + 1; } } /* start the tasks and tasklets */ for (i = 0; i < count; i++) { unsigned long ctx = tctx[i + 2]; if (ctx & 1) task_wakeup((struct task *)(ctx - 1), TASK_WOKEN_INIT); else tasklet_wakeup((struct tasklet *)ctx); } if (msg && *msg) return cli_dynmsg(appctx, LOG_INFO, msg); return 1; fail: /* free partially allocated entries */ for (i = 0; tctx && i < count; i++) { unsigned long ctx = tctx[i + 2]; if (!ctx) break; if (ctx & 1) task_destroy((struct task *)(ctx - 1)); else tasklet_free((struct tasklet *)ctx); } free(tctx); return cli_err(appctx, "Not enough memory"); } /* CLI state for "debug dev fd" */ struct dev_fd_ctx { int start_fd; }; /* CLI parser for the "debug dev fd" command. The current FD to restart from is * stored in a struct dev_fd_ctx pointed to by svcctx. */ static int debug_parse_cli_fd(char **args, char *payload, struct appctx *appctx, void *private) { struct dev_fd_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx)); if (!cli_has_level(appctx, ACCESS_LVL_OPER)) return 1; /* start at fd #0 */ ctx->start_fd = 0; return 0; } /* CLI I/O handler for the "debug dev fd" command. Dumps all FDs that are * accessible from the process but not known from fdtab. The FD number to * restart from is stored in a struct dev_fd_ctx pointed to by svcctx. */ static int debug_iohandler_fd(struct appctx *appctx) { struct dev_fd_ctx *ctx = appctx->svcctx; struct stconn *sc = appctx_sc(appctx); struct sockaddr_storage sa; struct stat statbuf; socklen_t salen, vlen; int ret1, ret2, port; char *addrstr; int ret = 1; int i, fd; /* FIXME: Don't watch the other side !*/ if (unlikely(sc_opposite(sc)->flags & SC_FL_SHUT_DONE)) goto end; chunk_reset(&trash); thread_isolate(); /* we have two inner loops here, one for the proxy, the other one for * the buffer. */ for (fd = ctx->start_fd; fd < global.maxsock; fd++) { /* check for FD's existence */ ret1 = fcntl(fd, F_GETFD, 0); if (ret1 == -1) continue; // not known to the process if (fdtab[fd].owner) continue; // well-known /* OK we're seeing an orphan let's try to retrieve as much * information as possible about it. */ chunk_printf(&trash, "%5d", fd); if (fstat(fd, &statbuf) != -1) { chunk_appendf(&trash, " type=%s mod=%04o dev=%#llx siz=%#llx uid=%lld gid=%lld fs=%#llx ino=%#llx", isatty(fd) ? "tty.": S_ISREG(statbuf.st_mode) ? "file": S_ISDIR(statbuf.st_mode) ? "dir.": S_ISCHR(statbuf.st_mode) ? "chr.": S_ISBLK(statbuf.st_mode) ? "blk.": S_ISFIFO(statbuf.st_mode) ? "pipe": S_ISLNK(statbuf.st_mode) ? "link": S_ISSOCK(statbuf.st_mode) ? "sock": #ifdef USE_EPOLL /* trick: epoll_ctl() will return -ENOENT when trying * to remove from a valid epoll FD an FD that was not * registered against it. But we don't want to risk * disabling a random FD. Instead we'll create a new * one by duplicating 0 (it should be valid since * pointing to a terminal or /dev/null), and try to * remove it. */ ({ int fd2 = dup(0); int ret = fd2; if (ret >= 0) { ret = epoll_ctl(fd, EPOLL_CTL_DEL, fd2, NULL); if (ret == -1 && errno == ENOENT) ret = 0; // that's a real epoll else ret = -1; // it's something else close(fd2); } ret; }) == 0 ? "epol" : #endif "????", (uint)statbuf.st_mode & 07777, (ullong)statbuf.st_rdev, (ullong)statbuf.st_size, (ullong)statbuf.st_uid, (ullong)statbuf.st_gid, (ullong)statbuf.st_dev, (ullong)statbuf.st_ino); } chunk_appendf(&trash, " getfd=%s+%#x", (ret1 & FD_CLOEXEC) ? "cloex" : "", ret1 &~ FD_CLOEXEC); /* FD options */ ret2 = fcntl(fd, F_GETFL, 0); if (ret2) { chunk_appendf(&trash, " getfl=%s", (ret1 & 3) >= 2 ? "O_RDWR" : (ret1 & 1) ? "O_WRONLY" : "O_RDONLY"); for (i = 2; i < 32; i++) { if (!(ret2 & (1UL << i))) continue; switch (1UL << i) { case O_CREAT: chunk_appendf(&trash, ",O_CREAT"); break; case O_EXCL: chunk_appendf(&trash, ",O_EXCL"); break; case O_NOCTTY: chunk_appendf(&trash, ",O_NOCTTY"); break; case O_TRUNC: chunk_appendf(&trash, ",O_TRUNC"); break; case O_APPEND: chunk_appendf(&trash, ",O_APPEND"); break; #ifdef O_ASYNC case O_ASYNC: chunk_appendf(&trash, ",O_ASYNC"); break; #endif #ifdef O_DIRECT case O_DIRECT: chunk_appendf(&trash, ",O_DIRECT"); break; #endif #ifdef O_NOATIME case O_NOATIME: chunk_appendf(&trash, ",O_NOATIME"); break; #endif } } } vlen = sizeof(ret2); ret1 = getsockopt(fd, SOL_SOCKET, SO_TYPE, &ret2, &vlen); if (ret1 != -1) chunk_appendf(&trash, " so_type=%d", ret2); vlen = sizeof(ret2); ret1 = getsockopt(fd, SOL_SOCKET, SO_ACCEPTCONN, &ret2, &vlen); if (ret1 != -1) chunk_appendf(&trash, " so_accept=%d", ret2); vlen = sizeof(ret2); ret1 = getsockopt(fd, SOL_SOCKET, SO_ERROR, &ret2, &vlen); if (ret1 != -1) chunk_appendf(&trash, " so_error=%d", ret2); salen = sizeof(sa); if (getsockname(fd, (struct sockaddr *)&sa, &salen) != -1) { if (sa.ss_family == AF_INET) port = ntohs(((const struct sockaddr_in *)&sa)->sin_port); else if (sa.ss_family == AF_INET6) port = ntohs(((const struct sockaddr_in6 *)&sa)->sin6_port); else port = 0; addrstr = sa2str(&sa, port, 0); chunk_appendf(&trash, " laddr=%s", addrstr); free(addrstr); } salen = sizeof(sa); if (getpeername(fd, (struct sockaddr *)&sa, &salen) != -1) { if (sa.ss_family == AF_INET) port = ntohs(((const struct sockaddr_in *)&sa)->sin_port); else if (sa.ss_family == AF_INET6) port = ntohs(((const struct sockaddr_in6 *)&sa)->sin6_port); else port = 0; addrstr = sa2str(&sa, port, 0); chunk_appendf(&trash, " raddr=%s", addrstr); free(addrstr); } chunk_appendf(&trash, "\n"); if (applet_putchk(appctx, &trash) == -1) { ctx->start_fd = fd; ret = 0; break; } } thread_release(); end: return ret; } #if defined(DEBUG_MEM_STATS) /* CLI state for "debug dev memstats" */ struct dev_mem_ctx { struct mem_stats *start, *stop; /* begin/end of dump */ char *match; /* non-null if a name prefix is specified */ int show_all; /* show all entries if non-null */ int width; /* 1st column width */ long tot_size; /* sum of alloc-free */ ulong tot_calls; /* sum of calls */ }; /* CLI parser for the "debug dev memstats" command. Sets a dev_mem_ctx shown above. */ static int debug_parse_cli_memstats(char **args, char *payload, struct appctx *appctx, void *private) { struct dev_mem_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx)); int arg; extern __attribute__((__weak__)) struct mem_stats __start_mem_stats; extern __attribute__((__weak__)) struct mem_stats __stop_mem_stats; if (!cli_has_level(appctx, ACCESS_LVL_OPER)) return 1; for (arg = 3; *args[arg]; arg++) { if (strcmp(args[arg], "reset") == 0) { struct mem_stats *ptr; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; for (ptr = &__start_mem_stats; ptr < &__stop_mem_stats; ptr++) { _HA_ATOMIC_STORE(&ptr->calls, 0); _HA_ATOMIC_STORE(&ptr->size, 0); } return 1; } else if (strcmp(args[arg], "all") == 0) { ctx->show_all = 1; continue; } else if (strcmp(args[arg], "match") == 0 && *args[arg + 1]) { ha_free(&ctx->match); ctx->match = strdup(args[arg + 1]); arg++; continue; } else return cli_err(appctx, "Expects either 'reset', 'all', or 'match '.\n"); } /* otherwise proceed with the dump from p0 to p1 */ ctx->start = &__start_mem_stats; ctx->stop = &__stop_mem_stats; ctx->width = 0; return 0; } /* CLI I/O handler for the "debug dev memstats" command using a dev_mem_ctx * found in appctx->svcctx. Dumps all mem_stats structs referenced by pointers * located between ->start and ->stop. Dumps all entries if ->show_all != 0, * otherwise only non-zero calls. */ static int debug_iohandler_memstats(struct appctx *appctx) { struct dev_mem_ctx *ctx = appctx->svcctx; struct stconn *sc = appctx_sc(appctx); struct mem_stats *ptr; const char *pfx = ctx->match; int ret = 1; /* FIXME: Don't watch the other side !*/ if (unlikely(sc_opposite(sc)->flags & SC_FL_SHUT_DONE)) goto end; if (!ctx->width) { /* we don't know the first column's width, let's compute it * now based on a first pass on printable entries and their * expected width (approximated). */ for (ptr = ctx->start; ptr != ctx->stop; ptr++) { const char *p, *name; int w = 0; char tmp; if (!ptr->size && !ptr->calls && !ctx->show_all) continue; for (p = name = ptr->caller.file; *p; p++) { if (*p == '/') name = p + 1; } if (ctx->show_all) w = snprintf(&tmp, 0, "%s(%s:%d) ", ptr->caller.func, name, ptr->caller.line); else w = snprintf(&tmp, 0, "%s:%d ", name, ptr->caller.line); if (w > ctx->width) ctx->width = w; } } /* we have two inner loops here, one for the proxy, the other one for * the buffer. */ for (ptr = ctx->start; ptr != ctx->stop; ptr++) { const char *type; const char *name; const char *p; const char *info = NULL; const char *func = NULL; int direction = 0; // neither alloc nor free (e.g. realloc) if (!ptr->size && !ptr->calls && !ctx->show_all) continue; /* basename only */ for (p = name = ptr->caller.file; *p; p++) { if (*p == '/') name = p + 1; } func = ptr->caller.func; switch (ptr->caller.what) { case MEM_STATS_TYPE_CALLOC: type = "CALLOC"; direction = 1; break; case MEM_STATS_TYPE_FREE: type = "FREE"; direction = -1; break; case MEM_STATS_TYPE_MALLOC: type = "MALLOC"; direction = 1; break; case MEM_STATS_TYPE_REALLOC: type = "REALLOC"; break; case MEM_STATS_TYPE_STRDUP: type = "STRDUP"; direction = 1; break; case MEM_STATS_TYPE_P_ALLOC: type = "P_ALLOC"; direction = 1; if (ptr->extra) info = ((const struct pool_head *)ptr->extra)->name; break; case MEM_STATS_TYPE_P_FREE: type = "P_FREE"; direction = -1; if (ptr->extra) info = ((const struct pool_head *)ptr->extra)->name; break; default: type = "UNSET"; break; } //chunk_printf(&trash, // "%20s:%-5d %7s size: %12lu calls: %9lu size/call: %6lu\n", // name, ptr->line, type, // (unsigned long)ptr->size, (unsigned long)ptr->calls, // (unsigned long)(ptr->calls ? (ptr->size / ptr->calls) : 0)); /* only match requested prefixes */ if (pfx && (!info || strncmp(info, pfx, strlen(pfx)) != 0)) continue; chunk_reset(&trash); if (ctx->show_all) chunk_appendf(&trash, "%s(", func); chunk_appendf(&trash, "%s:%d", name, ptr->caller.line); if (ctx->show_all) chunk_appendf(&trash, ")"); while (trash.data < ctx->width) trash.area[trash.data++] = ' '; chunk_appendf(&trash, "%7s size: %12lu calls: %9lu size/call: %6lu %s\n", type, (unsigned long)ptr->size, (unsigned long)ptr->calls, (unsigned long)(ptr->calls ? (ptr->size / ptr->calls) : 0), info ? info : ""); if (applet_putchk(appctx, &trash) == -1) { ctx->start = ptr; ret = 0; goto end; } if (direction > 0) { ctx->tot_size += (ulong)ptr->size; ctx->tot_calls += (ulong)ptr->calls; } else if (direction < 0) { ctx->tot_size -= (ulong)ptr->size; ctx->tot_calls += (ulong)ptr->calls; } } /* now dump a summary */ chunk_reset(&trash); chunk_appendf(&trash, "Total"); while (trash.data < ctx->width) trash.area[trash.data++] = ' '; chunk_appendf(&trash, "%7s size: %12ld calls: %9lu size/call: %6ld %s\n", "BALANCE", ctx->tot_size, ctx->tot_calls, (long)(ctx->tot_calls ? (ctx->tot_size / ctx->tot_calls) : 0), "(excl. realloc)"); if (applet_putchk(appctx, &trash) == -1) { ctx->start = ptr; ret = 0; goto end; } end: return ret; } /* release the "show pools" context */ static void debug_release_memstats(struct appctx *appctx) { struct dev_mem_ctx *ctx = appctx->svcctx; ha_free(&ctx->match); } #endif #ifdef USE_THREAD_DUMP /* handles DEBUGSIG to dump the state of the thread it's working on. This is * appended at the end of thread_dump_buffer which must be protected against * reentrance from different threads (a thread-local buffer works fine). */ void debug_handler(int sig, siginfo_t *si, void *arg) { struct buffer *buf = HA_ATOMIC_LOAD(&th_ctx->thread_dump_buffer); int harmless = is_thread_harmless(); /* first, let's check it's really for us and that we didn't just get * a spurious DEBUGSIG. */ if (!buf || buf == (void*)(0x1UL)) return; /* now dump the current state into the designated buffer, and indicate * we come from a sig handler. */ ha_thread_dump_one(tid, 1); /* mark the current thread as stuck to detect it upon next invocation * if it didn't move. */ if (!harmless && !(_HA_ATOMIC_LOAD(&th_ctx->flags) & TH_FL_SLEEPING)) _HA_ATOMIC_OR(&th_ctx->flags, TH_FL_STUCK); } static int init_debug_per_thread() { sigset_t set; /* unblock the DEBUGSIG signal we intend to use */ sigemptyset(&set); sigaddset(&set, DEBUGSIG); #if defined(DEBUG_DEV) sigaddset(&set, SIGRTMAX); #endif ha_sigmask(SIG_UNBLOCK, &set, NULL); return 1; } static int init_debug() { struct sigaction sa; void *callers[1]; /* calling backtrace() will access libgcc at runtime. We don't want to * do it after the chroot, so let's perform a first call to have it * ready in memory for later use. */ my_backtrace(callers, sizeof(callers)/sizeof(*callers)); sa.sa_handler = NULL; sa.sa_sigaction = debug_handler; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_SIGINFO; sigaction(DEBUGSIG, &sa, NULL); #if defined(DEBUG_DEV) sa.sa_handler = NULL; sa.sa_sigaction = debug_delay_inj_sighandler; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_SIGINFO; sigaction(SIGRTMAX, &sa, NULL); #endif return ERR_NONE; } REGISTER_POST_CHECK(init_debug); REGISTER_PER_THREAD_INIT(init_debug_per_thread); #endif /* USE_THREAD_DUMP */ static void feed_post_mortem_linux() { #if defined(__linux__) struct stat statbuf; FILE *file; /* DMI reports either HW or hypervisor, this allows to detect most VMs. * On ARM the device-tree is often more precise for the model. Since many * boards present "to be filled by OEM" or so in many fields, we dedup * them as much as possible. */ if (read_line_to_trash("/sys/class/dmi/id/sys_vendor") > 0) strlcpy2(post_mortem.platform.hw_vendor, trash.area, sizeof(post_mortem.platform.hw_vendor)); if (read_line_to_trash("/sys/class/dmi/id/product_family") > 0 && strcmp(trash.area, post_mortem.platform.hw_vendor) != 0) strlcpy2(post_mortem.platform.hw_family, trash.area, sizeof(post_mortem.platform.hw_family)); if ((read_line_to_trash("/sys/class/dmi/id/product_name") > 0 && strcmp(trash.area, post_mortem.platform.hw_vendor) != 0 && strcmp(trash.area, post_mortem.platform.hw_family) != 0)) strlcpy2(post_mortem.platform.hw_model, trash.area, sizeof(post_mortem.platform.hw_model)); if ((read_line_to_trash("/sys/class/dmi/id/board_vendor") > 0 && strcmp(trash.area, post_mortem.platform.hw_vendor) != 0)) strlcpy2(post_mortem.platform.brd_vendor, trash.area, sizeof(post_mortem.platform.brd_vendor)); if ((read_line_to_trash("/sys/firmware/devicetree/base/model") > 0 && strcmp(trash.area, post_mortem.platform.brd_vendor) != 0 && strcmp(trash.area, post_mortem.platform.hw_vendor) != 0 && strcmp(trash.area, post_mortem.platform.hw_family) != 0 && strcmp(trash.area, post_mortem.platform.hw_model) != 0) || (read_line_to_trash("/sys/class/dmi/id/board_name") > 0 && strcmp(trash.area, post_mortem.platform.brd_vendor) != 0 && strcmp(trash.area, post_mortem.platform.hw_vendor) != 0 && strcmp(trash.area, post_mortem.platform.hw_family) != 0 && strcmp(trash.area, post_mortem.platform.hw_model) != 0)) strlcpy2(post_mortem.platform.brd_model, trash.area, sizeof(post_mortem.platform.brd_model)); /* Check for containers. In a container on linux we don't see keventd (2.4) kthreadd (2.6+) on pid 2 */ if (read_line_to_trash("/proc/2/status") <= 0 || (strcmp(trash.area, "Name:\tkthreadd") != 0 && strcmp(trash.area, "Name:\tkeventd") != 0)) { /* OK we're in a container. Docker often has /.dockerenv */ const char *tech = "yes"; if (stat("/.dockerenv", &statbuf) == 0) tech = "docker"; strlcpy2(post_mortem.platform.cont_techno, tech, sizeof(post_mortem.platform.cont_techno)); } else { strlcpy2(post_mortem.platform.cont_techno, "no", sizeof(post_mortem.platform.cont_techno)); } file = fopen("/proc/cpuinfo", "r"); if (file) { uint cpu_implem = 0, cpu_arch = 0, cpu_variant = 0, cpu_part = 0, cpu_rev = 0; // arm uint cpu_family = 0, model = 0, stepping = 0; // x86 char vendor_id[64] = "", model_name[64] = ""; // x86 char machine[64] = "", system_type[64] = "", cpu_model[64] = ""; // mips const char *virt = "no"; char *p, *e, *v, *lf; /* let's figure what CPU we're working with */ while ((p = fgets(trash.area, trash.size, file)) != NULL) { lf = strchr(p, '\n'); if (lf) *lf = 0; /* stop at first line break */ if (!*p) break; /* skip colon and spaces and trim spaces after name */ v = e = strchr(p, ':'); if (!e) continue; do { *e-- = 0; } while (e >= p && (*e == ' ' || *e == '\t')); /* locate value after colon */ do { v++; } while (*v == ' ' || *v == '\t'); /* ARM */ if (strcmp(p, "CPU implementer") == 0) cpu_implem = strtoul(v, NULL, 0); else if (strcmp(p, "CPU architecture") == 0) cpu_arch = strtoul(v, NULL, 0); else if (strcmp(p, "CPU variant") == 0) cpu_variant = strtoul(v, NULL, 0); else if (strcmp(p, "CPU part") == 0) cpu_part = strtoul(v, NULL, 0); else if (strcmp(p, "CPU revision") == 0) cpu_rev = strtoul(v, NULL, 0); /* x86 */ else if (strcmp(p, "cpu family") == 0) cpu_family = strtoul(v, NULL, 0); else if (strcmp(p, "model") == 0) model = strtoul(v, NULL, 0); else if (strcmp(p, "stepping") == 0) stepping = strtoul(v, NULL, 0); else if (strcmp(p, "vendor_id") == 0) strlcpy2(vendor_id, v, sizeof(vendor_id)); else if (strcmp(p, "model name") == 0) strlcpy2(model_name, v, sizeof(model_name)); else if (strcmp(p, "flags") == 0) { if (strstr(v, "hypervisor")) { if (strncmp(post_mortem.platform.hw_vendor, "QEMU", 4) == 0) virt = "qemu"; else if (strncmp(post_mortem.platform.hw_vendor, "VMware", 6) == 0) virt = "vmware"; else virt = "yes"; } } /* MIPS */ else if (strcmp(p, "system type") == 0) strlcpy2(system_type, v, sizeof(system_type)); else if (strcmp(p, "machine") == 0) strlcpy2(machine, v, sizeof(machine)); else if (strcmp(p, "cpu model") == 0) strlcpy2(cpu_model, v, sizeof(cpu_model)); } fclose(file); /* Machine may replace hw_product on MIPS */ if (!*post_mortem.platform.hw_model) strlcpy2(post_mortem.platform.hw_model, machine, sizeof(post_mortem.platform.hw_model)); /* SoC vendor */ strlcpy2(post_mortem.platform.soc_vendor, vendor_id, sizeof(post_mortem.platform.soc_vendor)); /* SoC model */ if (*system_type) { /* MIPS */ strlcpy2(post_mortem.platform.soc_model, system_type, sizeof(post_mortem.platform.soc_model)); *system_type = 0; } else if (*model_name) { /* x86 */ strlcpy2(post_mortem.platform.soc_model, model_name, sizeof(post_mortem.platform.soc_model)); *model_name = 0; } /* Create a CPU model name based on available IDs */ if (cpu_implem) // arm snprintf(cpu_model + strlen(cpu_model), sizeof(cpu_model) - strlen(cpu_model), "%sImpl %#02x", *cpu_model ? " " : "", cpu_implem); if (cpu_family) // x86 snprintf(cpu_model + strlen(cpu_model), sizeof(cpu_model) - strlen(cpu_model), "%sFam %u", *cpu_model ? " " : "", cpu_family); if (model) // x86 snprintf(cpu_model + strlen(cpu_model), sizeof(cpu_model) - strlen(cpu_model), "%sModel %u", *cpu_model ? " " : "", model); if (stepping) // x86 snprintf(cpu_model + strlen(cpu_model), sizeof(cpu_model) - strlen(cpu_model), "%sStep %u", *cpu_model ? " " : "", stepping); if (cpu_arch) // arm snprintf(cpu_model + strlen(cpu_model), sizeof(cpu_model) - strlen(cpu_model), "%sArch %u", *cpu_model ? " " : "", cpu_arch); if (cpu_part) // arm snprintf(cpu_model + strlen(cpu_model), sizeof(cpu_model) - strlen(cpu_model), "%sPart %#03x", *cpu_model ? " " : "", cpu_part); if (cpu_variant || cpu_rev) // arm snprintf(cpu_model + strlen(cpu_model), sizeof(cpu_model) - strlen(cpu_model), "%sr%up%u", *cpu_model ? " " : "", cpu_variant, cpu_rev); strlcpy2(post_mortem.platform.cpu_model, cpu_model, sizeof(post_mortem.platform.cpu_model)); if (*virt) strlcpy2(post_mortem.platform.virt_techno, virt, sizeof(post_mortem.platform.virt_techno)); } #endif // __linux__ } static int feed_post_mortem() { /* kernel type, version and arch */ uname(&post_mortem.platform.utsname); /* some boot-time info related to the process */ post_mortem.process.pid = getpid(); post_mortem.process.boot_uid = geteuid(); post_mortem.process.boot_gid = getegid(); getrlimit(RLIMIT_NOFILE, &post_mortem.process.limit_fd); #if defined(RLIMIT_AS) getrlimit(RLIMIT_AS, &post_mortem.process.limit_ram); #elif defined(RLIMIT_DATA) getrlimit(RLIMIT_DATA, &post_mortem.process.limit_ram); #endif if (strcmp(post_mortem.platform.utsname.sysname, "Linux") == 0) feed_post_mortem_linux(); #if defined(HA_HAVE_DUMP_LIBS) chunk_reset(&trash); if (dump_libs(&trash, 1)) post_mortem.libs = strdup(trash.area); #endif return ERR_NONE; } REGISTER_POST_CHECK(feed_post_mortem); static void deinit_post_mortem(void) { int comp; #if defined(HA_HAVE_DUMP_LIBS) ha_free(&post_mortem.libs); #endif for (comp = 0; comp < post_mortem.nb_components; comp++) { free(post_mortem.components[comp].toolchain); free(post_mortem.components[comp].toolchain_opts); free(post_mortem.components[comp].build_settings); free(post_mortem.components[comp].path); } ha_free(&post_mortem.components); } REGISTER_POST_DEINIT(deinit_post_mortem); /* Appends a component to the list of post_portem info. May silently fail * on allocation errors but we don't care since the goal is to provide info * we have in case it helps. */ void post_mortem_add_component(const char *name, const char *version, const char *toolchain, const char *toolchain_opts, const char *build_settings, const char *path) { struct post_mortem_component *comp; int nbcomp = post_mortem.nb_components; comp = realloc(post_mortem.components, (nbcomp + 1) * sizeof(*comp)); if (!comp) return; memset(&comp[nbcomp], 0, sizeof(*comp)); strlcpy2(comp[nbcomp].name, name, sizeof(comp[nbcomp].name)); strlcpy2(comp[nbcomp].version, version, sizeof(comp[nbcomp].version)); comp[nbcomp].toolchain = strdup(toolchain); comp[nbcomp].toolchain_opts = strdup(toolchain_opts); comp[nbcomp].build_settings = strdup(build_settings); comp[nbcomp].path = strdup(path); post_mortem.nb_components++; post_mortem.components = comp; } #ifdef USE_THREAD /* init code is called one at a time so let's collect all per-thread info on * the last starting thread. These info are not critical anyway and there's no * problem if we get them slightly late. */ static int feed_post_mortem_late() { static int per_thread_info_collected; if (HA_ATOMIC_ADD_FETCH(&per_thread_info_collected, 1) == global.nbthread) { int i; for (i = 0; i < global.nbthread; i++) { post_mortem.process.thread_info[i].pth_id = ha_thread_info[i].pth_id; post_mortem.process.thread_info[i].stack_top = ha_thread_info[i].stack_top; } } return 1; } REGISTER_PER_THREAD_INIT(feed_post_mortem_late); #endif /* register cli keywords */ static struct cli_kw_list cli_kws = {{ },{ {{ "debug", "dev", "bug", NULL }, "debug dev bug : call BUG_ON() and crash", debug_parse_cli_bug, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "check", NULL }, "debug dev check : call CHECK_IF() and possibly crash", debug_parse_cli_check, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "close", NULL }, "debug dev close : close this file descriptor", debug_parse_cli_close, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "deadlock", NULL }, "debug dev deadlock [nbtask] : deadlock between this number of tasks", debug_parse_cli_deadlock, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "delay", NULL }, "debug dev delay [ms] : sleep this long", debug_parse_cli_delay, NULL, NULL, NULL, ACCESS_EXPERT }, #if defined(DEBUG_DEV) {{ "debug", "dev", "delay-inj", NULL },"debug dev delay-inj : inject random delays into threads", debug_parse_delay_inj, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "exec", NULL }, "debug dev exec [cmd] ... : show this command's output", debug_parse_cli_exec, NULL, NULL, NULL, ACCESS_EXPERT }, #endif {{ "debug", "dev", "fd", NULL }, "debug dev fd : scan for rogue/unhandled FDs", debug_parse_cli_fd, debug_iohandler_fd, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "exit", NULL }, "debug dev exit [code] : immediately exit the process", debug_parse_cli_exit, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "hash", NULL }, "debug dev hash [msg] : return msg hashed if anon is set", debug_parse_cli_hash, NULL, NULL, NULL, 0 }, {{ "debug", "dev", "hex", NULL }, "debug dev hex [len] : dump a memory area", debug_parse_cli_hex, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "log", NULL }, "debug dev log [msg] ... : send this msg to global logs", debug_parse_cli_log, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "loop", NULL }, "debug dev loop [isolated] : loop this long, possibly isolated", debug_parse_cli_loop, NULL, NULL, NULL, ACCESS_EXPERT }, #if defined(DEBUG_MEM_STATS) {{ "debug", "dev", "memstats", NULL }, "debug dev memstats [reset|all|match ...]: dump/reset memory statistics", debug_parse_cli_memstats, debug_iohandler_memstats, debug_release_memstats, NULL, 0 }, #endif {{ "debug", "dev", "panic", NULL }, "debug dev panic : immediately trigger a panic", debug_parse_cli_panic, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "sched", NULL }, "debug dev sched {task|tasklet} [k=v]* : stress the scheduler", debug_parse_cli_sched, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "stream",NULL }, "debug dev stream [k=v]* : show/manipulate stream flags", debug_parse_cli_stream,NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "sym", NULL }, "debug dev sym : resolve symbol address", debug_parse_cli_sym, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "task", NULL }, "debug dev task [wake|expire|kill] : show/wake/expire/kill task/tasklet", debug_parse_cli_task, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "tkill", NULL }, "debug dev tkill [thr] [sig] : send signal to thread", debug_parse_cli_tkill, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "warn", NULL }, "debug dev warn : call WARN_ON() and possibly crash", debug_parse_cli_warn, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "debug", "dev", "write", NULL }, "debug dev write [size] : write that many bytes in return", debug_parse_cli_write, NULL, NULL, NULL, ACCESS_EXPERT }, {{ "show", "dev", NULL, NULL }, "show dev : show debug info for developers", debug_parse_cli_show_dev, NULL, NULL }, #if defined(HA_HAVE_DUMP_LIBS) {{ "show", "libs", NULL, NULL }, "show libs : show loaded object files and libraries", debug_parse_cli_show_libs, NULL, NULL }, #endif {{ "show", "threads", NULL, NULL }, "show threads : show some threads debugging information", NULL, cli_io_handler_show_threads, NULL }, {{},} }}; INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);