/* * Stream filters related variables and functions. * * Copyright (C) 2015 Qualys Inc., Christopher Faulet * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TRACE_SOURCE &trace_strm /* Pool used to allocate filters */ DECLARE_STATIC_POOL(pool_head_filter, "filter", sizeof(struct filter)); static int handle_analyzer_result(struct stream *s, struct channel *chn, unsigned int an_bit, int ret); /* - RESUME_FILTER_LOOP and RESUME_FILTER_END must always be used together. * The first one begins a loop and the seconds one ends it. * * - BREAK_EXECUTION must be used to break the loop and set the filter from * which to resume the next time. * * Here is an example: * * RESUME_FILTER_LOOP(stream, channel) { * ... * if (cond) * BREAK_EXECUTION(stream, channel, label); * ... * } RESUME_FILTER_END; * ... * label: * ... * */ #define RESUME_FILTER_LOOP(strm, chn) \ do { \ struct filter *filter; \ \ if (strm_flt(strm)->current[CHN_IDX(chn)]) { \ filter = strm_flt(strm)->current[CHN_IDX(chn)]; \ strm_flt(strm)->current[CHN_IDX(chn)] = NULL; \ goto resume_execution; \ } \ \ list_for_each_entry(filter, &strm_flt(s)->filters, list) { \ resume_execution: #define RESUME_FILTER_END \ } \ } while(0) #define BREAK_EXECUTION(strm, chn, label) \ do { \ strm_flt(strm)->current[CHN_IDX(chn)] = filter; \ goto label; \ } while (0) /* List head of all known filter keywords */ static struct flt_kw_list flt_keywords = { .list = LIST_HEAD_INIT(flt_keywords.list) }; /* * Registers the filter keyword list as a list of valid keywords for next * parsing sessions. */ void flt_register_keywords(struct flt_kw_list *kwl) { LIST_APPEND(&flt_keywords.list, &kwl->list); } /* * Returns a pointer to the filter keyword , or NULL if not found. If the * keyword is found with a NULL ->parse() function, then an attempt is made to * find one with a valid ->parse() function. This way it is possible to declare * platform-dependant, known keywords as NULL, then only declare them as valid * if some options are met. Note that if the requested keyword contains an * opening parenthesis, everything from this point is ignored. */ struct flt_kw * flt_find_kw(const char *kw) { int index; const char *kwend; struct flt_kw_list *kwl; struct flt_kw *ret = NULL; kwend = strchr(kw, '('); if (!kwend) kwend = kw + strlen(kw); list_for_each_entry(kwl, &flt_keywords.list, list) { for (index = 0; kwl->kw[index].kw != NULL; index++) { if ((strncmp(kwl->kw[index].kw, kw, kwend - kw) == 0) && kwl->kw[index].kw[kwend-kw] == 0) { if (kwl->kw[index].parse) return &kwl->kw[index]; /* found it !*/ else ret = &kwl->kw[index]; /* may be OK */ } } } return ret; } /* * Dumps all registered "filter" keywords to the string pointer. The * unsupported keywords are only dumped if their supported form was not found. * If is NULL, the output is emitted using a more compact format on stdout. */ void flt_dump_kws(char **out) { struct flt_kw_list *kwl; const struct flt_kw *kwp, *kw; const char *scope = NULL; int index; if (out) *out = NULL; for (kw = kwp = NULL;; kwp = kw) { list_for_each_entry(kwl, &flt_keywords.list, list) { for (index = 0; kwl->kw[index].kw != NULL; index++) { if ((kwl->kw[index].parse || flt_find_kw(kwl->kw[index].kw) == &kwl->kw[index]) && strordered(kwp ? kwp->kw : NULL, kwl->kw[index].kw, kw != kwp ? kw->kw : NULL)) { kw = &kwl->kw[index]; scope = kwl->scope; } } } if (kw == kwp) break; if (out) memprintf(out, "%s[%4s] %s%s\n", *out ? *out : "", scope, kw->kw, kw->parse ? "" : " (not supported)"); else printf("%s [%s]\n", kw->kw, scope); } } /* * Lists the known filters on */ void list_filters(FILE *out) { char *filters, *p, *f; fprintf(out, "Available filters :\n"); flt_dump_kws(&filters); for (p = filters; (f = strtok_r(p,"\n",&p));) fprintf(out, "\t%s\n", f); free(filters); } /* * Parses the "filter" keyword. All keywords must be handled by filters * themselves */ static int parse_filter(char **args, int section_type, struct proxy *curpx, const struct proxy *defpx, const char *file, int line, char **err) { struct flt_conf *fconf = NULL; /* Filter cannot be defined on a default proxy */ if (curpx == defpx) { memprintf(err, "parsing [%s:%d] : %s is not allowed in a 'default' section.", file, line, args[0]); return -1; } if (strcmp(args[0], "filter") == 0) { struct flt_kw *kw; int cur_arg; if (!*args[1]) { memprintf(err, "parsing [%s:%d] : missing argument for '%s' in %s '%s'.", file, line, args[0], proxy_type_str(curpx), curpx->id); goto error; } fconf = calloc(1, sizeof(*fconf)); if (!fconf) { memprintf(err, "'%s' : out of memory", args[0]); goto error; } cur_arg = 1; kw = flt_find_kw(args[cur_arg]); if (kw) { if (!kw->parse) { memprintf(err, "parsing [%s:%d] : '%s' : " "'%s' option is not implemented in this version (check build options).", file, line, args[0], args[cur_arg]); goto error; } if (kw->parse(args, &cur_arg, curpx, fconf, err, kw->private) != 0) { if (err && *err) memprintf(err, "'%s' : '%s'", args[0], *err); else memprintf(err, "'%s' : error encountered while processing '%s'", args[0], args[cur_arg]); goto error; } } else { flt_dump_kws(err); indent_msg(err, 4); memprintf(err, "'%s' : unknown keyword '%s'.%s%s", args[0], args[cur_arg], err && *err ? " Registered keywords :" : "", err && *err ? *err : ""); goto error; } if (*args[cur_arg]) { memprintf(err, "'%s %s' : unknown keyword '%s'.", args[0], args[1], args[cur_arg]); goto error; } if (fconf->ops == NULL) { memprintf(err, "'%s %s' : no callbacks defined.", args[0], args[1]); goto error; } LIST_APPEND(&curpx->filter_configs, &fconf->list); } return 0; error: free(fconf); return -1; } /* * Calls 'init' callback for all filters attached to a proxy. This happens after * the configuration parsing. Filters can finish to fill their config. Returns * (ERR_ALERT|ERR_FATAL) if an error occurs, 0 otherwise. */ static int flt_init(struct proxy *proxy) { struct flt_conf *fconf; list_for_each_entry(fconf, &proxy->filter_configs, list) { if (fconf->ops->init && fconf->ops->init(proxy, fconf) < 0) return ERR_ALERT|ERR_FATAL; } return 0; } /* * Calls 'init_per_thread' callback for all filters attached to a proxy for each * threads. This happens after the thread creation. Filters can finish to fill * their config. Returns (ERR_ALERT|ERR_FATAL) if an error occurs, 0 otherwise. */ static int flt_init_per_thread(struct proxy *proxy) { struct flt_conf *fconf; list_for_each_entry(fconf, &proxy->filter_configs, list) { if (fconf->ops->init_per_thread && fconf->ops->init_per_thread(proxy, fconf) < 0) return ERR_ALERT|ERR_FATAL; } return 0; } /* Calls flt_init() for all proxies, see above */ static int flt_init_all() { struct proxy *px; int err_code = ERR_NONE; for (px = proxies_list; px; px = px->next) { if (px->flags & (PR_FL_DISABLED|PR_FL_STOPPED)) continue; err_code |= flt_init(px); if (err_code & (ERR_ABORT|ERR_FATAL)) { ha_alert("Failed to initialize filters for proxy '%s'.\n", px->id); return err_code; } } return 0; } /* Calls flt_init_per_thread() for all proxies, see above. Be careful here, it * returns 0 if an error occurred. This is the opposite of flt_init_all. */ static int flt_init_all_per_thread() { struct proxy *px; int err_code = 0; for (px = proxies_list; px; px = px->next) { if (px->flags & (PR_FL_DISABLED|PR_FL_STOPPED)) continue; err_code = flt_init_per_thread(px); if (err_code & (ERR_ABORT|ERR_FATAL)) { ha_alert("Failed to initialize filters for proxy '%s' for thread %u.\n", px->id, tid); return 0; } } return 1; } /* * Calls 'check' callback for all filters attached to a proxy. This happens * after the configuration parsing but before filters initialization. Returns * the number of encountered errors. */ int flt_check(struct proxy *proxy) { struct flt_conf *fconf; int err = 0; err += check_implicit_http_comp_flt(proxy); list_for_each_entry(fconf, &proxy->filter_configs, list) { if (fconf->ops->check) err += fconf->ops->check(proxy, fconf); } return err; } /* * Calls 'denit' callback for all filters attached to a proxy. This happens when * HAProxy is stopped. */ void flt_deinit(struct proxy *proxy) { struct flt_conf *fconf, *back; list_for_each_entry_safe(fconf, back, &proxy->filter_configs, list) { if (fconf->ops->deinit) fconf->ops->deinit(proxy, fconf); LIST_DELETE(&fconf->list); free(fconf); } } /* * Calls 'denit_per_thread' callback for all filters attached to a proxy for * each threads. This happens before exiting a thread. */ void flt_deinit_per_thread(struct proxy *proxy) { struct flt_conf *fconf, *back; list_for_each_entry_safe(fconf, back, &proxy->filter_configs, list) { if (fconf->ops->deinit_per_thread) fconf->ops->deinit_per_thread(proxy, fconf); } } /* Calls flt_deinit_per_thread() for all proxies, see above */ static void flt_deinit_all_per_thread() { struct proxy *px; for (px = proxies_list; px; px = px->next) flt_deinit_per_thread(px); } /* Attaches a filter to a stream. Returns -1 if an error occurs, 0 otherwise. */ static int flt_stream_add_filter(struct stream *s, struct flt_conf *fconf, unsigned int flags) { struct filter *f; if (IS_HTX_STRM(s) && !(fconf->flags & FLT_CFG_FL_HTX)) return 0; f = pool_zalloc(pool_head_filter); if (!f) /* not enough memory */ return -1; f->config = fconf; f->flags |= flags; if (FLT_OPS(f)->attach) { int ret = FLT_OPS(f)->attach(s, f); if (ret <= 0) { pool_free(pool_head_filter, f); return ret; } } LIST_APPEND(&strm_flt(s)->filters, &f->list); strm_flt(s)->flags |= STRM_FLT_FL_HAS_FILTERS; return 0; } /* * Called when a stream is created. It attaches all frontend filters to the * stream. Returns -1 if an error occurs, 0 otherwise. */ int flt_stream_init(struct stream *s) { struct flt_conf *fconf; memset(strm_flt(s), 0, sizeof(*strm_flt(s))); LIST_INIT(&strm_flt(s)->filters); list_for_each_entry(fconf, &strm_fe(s)->filter_configs, list) { if (flt_stream_add_filter(s, fconf, 0) < 0) return -1; } return 0; } /* * Called when a stream is closed or when analyze ends (For an HTTP stream, this * happens after each request/response exchange). When analyze ends, backend * filters are removed. When the stream is closed, all filters attached to the * stream are removed. */ void flt_stream_release(struct stream *s, int only_backend) { struct filter *filter, *back; list_for_each_entry_safe(filter, back, &strm_flt(s)->filters, list) { if (!only_backend || (filter->flags & FLT_FL_IS_BACKEND_FILTER)) { if (FLT_OPS(filter)->detach) FLT_OPS(filter)->detach(s, filter); LIST_DELETE(&filter->list); pool_free(pool_head_filter, filter); } } if (LIST_ISEMPTY(&strm_flt(s)->filters)) strm_flt(s)->flags &= ~STRM_FLT_FL_HAS_FILTERS; } /* * Calls 'stream_start' for all filters attached to a stream. This happens when * the stream is created, just after calling flt_stream_init * function. Returns -1 if an error occurs, 0 otherwise. */ int flt_stream_start(struct stream *s) { struct filter *filter; list_for_each_entry(filter, &strm_flt(s)->filters, list) { if (FLT_OPS(filter)->stream_start && FLT_OPS(filter)->stream_start(s, filter) < 0) return -1; } if (strm_li(s) && (strm_li(s)->bind_conf->analysers & AN_REQ_FLT_START_FE)) { s->req.flags |= CF_FLT_ANALYZE; s->req.analysers |= AN_REQ_FLT_END; } return 0; } /* * Calls 'stream_stop' for all filters attached to a stream. This happens when * the stream is stopped, just before calling flt_stream_release function. */ void flt_stream_stop(struct stream *s) { struct filter *filter; list_for_each_entry(filter, &strm_flt(s)->filters, list) { if (FLT_OPS(filter)->stream_stop) FLT_OPS(filter)->stream_stop(s, filter); } } /* * Calls 'check_timeouts' for all filters attached to a stream. This happens when * the stream is woken up because of expired timer. */ void flt_stream_check_timeouts(struct stream *s) { struct filter *filter; list_for_each_entry(filter, &strm_flt(s)->filters, list) { if (FLT_OPS(filter)->check_timeouts) FLT_OPS(filter)->check_timeouts(s, filter); } } /* * Called when a backend is set for a stream. If the frontend and the backend * are not the same, this function attaches all backend filters to the * stream. Returns -1 if an error occurs, 0 otherwise. */ int flt_set_stream_backend(struct stream *s, struct proxy *be) { struct flt_conf *fconf; struct filter *filter; if (strm_fe(s) == be) goto end; list_for_each_entry(fconf, &be->filter_configs, list) { if (flt_stream_add_filter(s, fconf, FLT_FL_IS_BACKEND_FILTER) < 0) return -1; } end: list_for_each_entry(filter, &strm_flt(s)->filters, list) { if (FLT_OPS(filter)->stream_set_backend && FLT_OPS(filter)->stream_set_backend(s, filter, be) < 0) return -1; } if (be->be_req_ana & AN_REQ_FLT_START_BE) { s->req.flags |= CF_FLT_ANALYZE; s->req.analysers |= AN_REQ_FLT_END; } if ((strm_fe(s)->fe_rsp_ana | be->be_rsp_ana) & (AN_RES_FLT_START_FE|AN_RES_FLT_START_BE)) { s->res.flags |= CF_FLT_ANALYZE; s->res.analysers |= AN_RES_FLT_END; } return 0; } /* * Calls 'http_end' callback for all filters attached to a stream. All filters * are called here, but only if there is at least one "data" filter. This * functions is called when all data were parsed and forwarded. 'http_end' * callback is resumable, so this function returns a negative value if an error * occurs, 0 if it needs to wait for some reason, any other value otherwise. */ int flt_http_end(struct stream *s, struct http_msg *msg) { unsigned long long *strm_off = &FLT_STRM_OFF(s, msg->chn); unsigned int offset = 0; int ret = 1; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s, s->txn, msg); RESUME_FILTER_LOOP(s, msg->chn) { unsigned long long flt_off = FLT_OFF(filter, msg->chn); offset = flt_off - *strm_off; /* Call http_end for data filters only. But the filter offset is * still valid for all filters . */ if (!IS_DATA_FILTER(filter, msg->chn)) continue; if (FLT_OPS(filter)->http_end) { DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); ret = FLT_OPS(filter)->http_end(s, filter, msg); if (ret <= 0) BREAK_EXECUTION(s, msg->chn, end); } } RESUME_FILTER_END; c_adv(msg->chn, offset); *strm_off += offset; end: DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); return ret; } /* * Calls 'http_reset' callback for all filters attached to a stream. This * happens when a 100-continue response is received. */ void flt_http_reset(struct stream *s, struct http_msg *msg) { struct filter *filter; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s, s->txn, msg); list_for_each_entry(filter, &strm_flt(s)->filters, list) { if (FLT_OPS(filter)->http_reset) { DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); FLT_OPS(filter)->http_reset(s, filter, msg); } } DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); } /* * Calls 'http_reply' callback for all filters attached to a stream when HA * decides to stop the HTTP message processing. */ void flt_http_reply(struct stream *s, short status, const struct buffer *msg) { struct filter *filter; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s, s->txn, msg); list_for_each_entry(filter, &strm_flt(s)->filters, list) { if (FLT_OPS(filter)->http_reply) { DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); FLT_OPS(filter)->http_reply(s, filter, status, msg); } } DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); } /* * Calls 'http_payload' callback for all "data" filters attached to a * stream. This function is called when some data can be forwarded in the * AN_REQ_HTTP_XFER_BODY and AN_RES_HTTP_XFER_BODY analyzers. It takes care to * update the filters and the stream offset to be sure that a filter cannot * forward more data than its predecessors. A filter can choose to not forward * all data. Returns a negative value if an error occurs, else the number of * forwarded bytes. */ int flt_http_payload(struct stream *s, struct http_msg *msg, unsigned int len) { struct filter *filter; struct htx *htx; unsigned long long *strm_off = &FLT_STRM_OFF(s, msg->chn); unsigned int out = co_data(msg->chn); int ret, data; strm_flt(s)->flags &= ~STRM_FLT_FL_HOLD_HTTP_HDRS; ret = data = len - out; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s, s->txn, msg); list_for_each_entry(filter, &strm_flt(s)->filters, list) { unsigned long long *flt_off = &FLT_OFF(filter, msg->chn); unsigned int offset = *flt_off - *strm_off; /* Call http_payload for filters only. Forward all data for * others and update the filter offset */ if (!IS_DATA_FILTER(filter, msg->chn)) { *flt_off += data - offset; continue; } if (FLT_OPS(filter)->http_payload) { DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); ret = FLT_OPS(filter)->http_payload(s, filter, msg, out + offset, data - offset); if (ret < 0) goto end; data = ret + *flt_off - *strm_off; *flt_off += ret; } } /* If nothing was forwarded yet, we take care to hold the headers if * following conditions are met : * * - *strm_off == 0 (nothing forwarded yet) * - ret == 0 (no data forwarded at all on this turn) * - STRM_FLT_FL_HOLD_HTTP_HDRS flag set (at least one filter want to hold the headers) * * Be careful, STRM_FLT_FL_HOLD_HTTP_HDRS is removed before each http_payload loop. * Thus, it must explicitly be set when necessary. We must do that to hold the headers * when there is no payload. */ if (!ret && !*strm_off && (strm_flt(s)->flags & STRM_FLT_FL_HOLD_HTTP_HDRS)) goto end; ret = data; *strm_off += ret; end: htx = htxbuf(&msg->chn->buf); if (msg->flags & HTTP_MSGF_XFER_LEN) htx->extra = 0; DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); return ret; } /* * Calls 'channel_start_analyze' callback for all filters attached to a * stream. This function is called when we start to analyze a request or a * response. For frontend filters, it is called before all other analyzers. For * backend ones, it is called before all backend * analyzers. 'channel_start_analyze' callback is resumable, so this function * returns 0 if an error occurs or if it needs to wait, any other value * otherwise. */ int flt_start_analyze(struct stream *s, struct channel *chn, unsigned int an_bit) { int ret = 1; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); /* If this function is called, this means there is at least one filter, * so we do not need to check the filter list's emptiness. */ /* Set flag on channel to tell that the channel is filtered */ chn->flags |= CF_FLT_ANALYZE; chn->analysers |= ((chn->flags & CF_ISRESP) ? AN_RES_FLT_END : AN_REQ_FLT_END); RESUME_FILTER_LOOP(s, chn) { if (!(chn->flags & CF_ISRESP)) { if (an_bit == AN_REQ_FLT_START_BE && !(filter->flags & FLT_FL_IS_BACKEND_FILTER)) continue; } else { if (an_bit == AN_RES_FLT_START_BE && !(filter->flags & FLT_FL_IS_BACKEND_FILTER)) continue; } FLT_OFF(filter, chn) = 0; if (FLT_OPS(filter)->channel_start_analyze) { DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_FLT_ANA, s); ret = FLT_OPS(filter)->channel_start_analyze(s, filter, chn); if (ret <= 0) BREAK_EXECUTION(s, chn, end); } } RESUME_FILTER_END; end: ret = handle_analyzer_result(s, chn, an_bit, ret); DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); return ret; } /* * Calls 'channel_pre_analyze' callback for all filters attached to a * stream. This function is called BEFORE each analyzer attached to a channel, * expects analyzers responsible for data sending. 'channel_pre_analyze' * callback is resumable, so this function returns 0 if an error occurs or if it * needs to wait, any other value otherwise. * * Note this function can be called many times for the same analyzer. In fact, * it is called until the analyzer finishes its processing. */ int flt_pre_analyze(struct stream *s, struct channel *chn, unsigned int an_bit) { int ret = 1; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); RESUME_FILTER_LOOP(s, chn) { if (FLT_OPS(filter)->channel_pre_analyze && (filter->pre_analyzers & an_bit)) { DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_FLT_ANA, s); ret = FLT_OPS(filter)->channel_pre_analyze(s, filter, chn, an_bit); if (ret <= 0) BREAK_EXECUTION(s, chn, check_result); filter->pre_analyzers &= ~an_bit; } } RESUME_FILTER_END; check_result: ret = handle_analyzer_result(s, chn, 0, ret); DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); return ret; } /* * Calls 'channel_post_analyze' callback for all filters attached to a * stream. This function is called AFTER each analyzer attached to a channel, * expects analyzers responsible for data sending. 'channel_post_analyze' * callback is NOT resumable, so this function returns a 0 if an error occurs, * any other value otherwise. * * Here, AFTER means when the analyzer finishes its processing. */ int flt_post_analyze(struct stream *s, struct channel *chn, unsigned int an_bit) { struct filter *filter; int ret = 1; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); list_for_each_entry(filter, &strm_flt(s)->filters, list) { if (FLT_OPS(filter)->channel_post_analyze && (filter->post_analyzers & an_bit)) { DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_FLT_ANA, s); ret = FLT_OPS(filter)->channel_post_analyze(s, filter, chn, an_bit); if (ret < 0) break; filter->post_analyzers &= ~an_bit; } } ret = handle_analyzer_result(s, chn, 0, ret); DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); return ret; } /* * This function is the AN_REQ/RES_FLT_HTTP_HDRS analyzer, used to filter HTTP * headers or a request or a response. Returns 0 if an error occurs or if it * needs to wait, any other value otherwise. */ int flt_analyze_http_headers(struct stream *s, struct channel *chn, unsigned int an_bit) { struct http_msg *msg; int ret = 1; msg = ((chn->flags & CF_ISRESP) ? &s->txn->rsp : &s->txn->req); DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s, s->txn, msg); RESUME_FILTER_LOOP(s, chn) { if (FLT_OPS(filter)->http_headers) { DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); ret = FLT_OPS(filter)->http_headers(s, filter, msg); if (ret <= 0) BREAK_EXECUTION(s, chn, check_result); } } RESUME_FILTER_END; if (HAS_DATA_FILTERS(s, chn)) { size_t data = http_get_hdrs_size(htxbuf(&chn->buf)); struct filter *f; list_for_each_entry(f, &strm_flt(s)->filters, list) FLT_OFF(f, chn) = data; } check_result: ret = handle_analyzer_result(s, chn, an_bit, ret); DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); return ret; } /* * Calls 'channel_end_analyze' callback for all filters attached to a * stream. This function is called when we stop to analyze a request or a * response. It is called after all other analyzers. 'channel_end_analyze' * callback is resumable, so this function returns 0 if an error occurs or if it * needs to wait, any other value otherwise. */ int flt_end_analyze(struct stream *s, struct channel *chn, unsigned int an_bit) { int ret = 1; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); /* Check if all filters attached on the stream have finished their * processing on this channel. */ if (!(chn->flags & CF_FLT_ANALYZE)) goto sync; RESUME_FILTER_LOOP(s, chn) { FLT_OFF(filter, chn) = 0; unregister_data_filter(s, chn, filter); if (FLT_OPS(filter)->channel_end_analyze) { DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_FLT_ANA, s); ret = FLT_OPS(filter)->channel_end_analyze(s, filter, chn); if (ret <= 0) BREAK_EXECUTION(s, chn, end); } } RESUME_FILTER_END; end: /* We don't remove yet this analyzer because we need to synchronize the * both channels. So here, we just remove the flag CF_FLT_ANALYZE. */ ret = handle_analyzer_result(s, chn, 0, ret); if (ret) { chn->flags &= ~CF_FLT_ANALYZE; /* Pretend there is an activity on both channels. Flag on the * current one will be automatically removed, so only the other * one will remain. This is a way to be sure that * 'channel_end_analyze' callback will have a chance to be * called at least once for the other side to finish the current * processing. Of course, this is the filter responsibility to * wakeup the stream if it choose to loop on this callback. */ s->req.flags |= CF_WAKE_ONCE; s->res.flags |= CF_WAKE_ONCE; } sync: /* Now we can check if filters have finished their work on the both * channels */ if (!(s->req.flags & CF_FLT_ANALYZE) && !(s->res.flags & CF_FLT_ANALYZE)) { /* Sync channels by removing this analyzer for the both channels */ s->req.analysers &= ~AN_REQ_FLT_END; s->res.analysers &= ~AN_RES_FLT_END; /* Remove backend filters from the list */ flt_stream_release(s, 1); DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); } else { DBG_TRACE_DEVEL("waiting for sync", STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); } return ret; } /* * Calls 'tcp_payload' callback for all "data" filters attached to a * stream. This function is called when some data can be forwarded in the * AN_REQ_FLT_XFER_BODY and AN_RES_FLT_XFER_BODY analyzers. It takes care to * update the filters and the stream offset to be sure that a filter cannot * forward more data than its predecessors. A filter can choose to not forward * all data. Returns a negative value if an error occurs, else the number of * forwarded bytes. */ int flt_tcp_payload(struct stream *s, struct channel *chn, unsigned int len) { struct filter *filter; unsigned long long *strm_off = &FLT_STRM_OFF(s, chn); unsigned int out = co_data(chn); int ret, data; ret = data = len - out; DBG_TRACE_ENTER(STRM_EV_TCP_ANA|STRM_EV_FLT_ANA, s); list_for_each_entry(filter, &strm_flt(s)->filters, list) { unsigned long long *flt_off = &FLT_OFF(filter, chn); unsigned int offset = *flt_off - *strm_off; /* Call tcp_payload for filters only. Forward all data for * others and update the filter offset */ if (!IS_DATA_FILTER(filter, chn)) { *flt_off += data - offset; continue; } if (FLT_OPS(filter)->tcp_payload) { DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_TCP_ANA|STRM_EV_FLT_ANA, s); ret = FLT_OPS(filter)->tcp_payload(s, filter, chn, out + offset, data - offset); if (ret < 0) goto end; data = ret + *flt_off - *strm_off; *flt_off += ret; } } /* Only forward data if the last filter decides to forward something */ if (ret > 0) { ret = data; *strm_off += ret; } end: DBG_TRACE_LEAVE(STRM_EV_TCP_ANA|STRM_EV_FLT_ANA, s); return ret; } /* * Called when TCP data must be filtered on a channel. This function is the * AN_REQ/RES_FLT_XFER_DATA analyzer. When called, it is responsible to forward * data when the proxy is not in http mode. Behind the scene, it calls * consecutively 'tcp_data' and 'tcp_forward_data' callbacks for all "data" * filters attached to a stream. Returns 0 if an error occurs or if it needs to * wait, any other value otherwise. */ int flt_xfer_data(struct stream *s, struct channel *chn, unsigned int an_bit) { unsigned int len; int ret = 1; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_TCP_ANA|STRM_EV_FLT_ANA, s); /* If there is no "data" filters, we do nothing */ if (!HAS_DATA_FILTERS(s, chn)) goto end; if (s->flags & SF_HTX) { struct htx *htx = htxbuf(&chn->buf); len = htx->data; } else len = c_data(chn); ret = flt_tcp_payload(s, chn, len); if (ret < 0) goto end; c_adv(chn, ret); /* Stop waiting data if: * - it the output is closed * - the input in closed and no data is pending * - There is a READ/WRITE timeout */ if (chn_cons(chn)->flags & SC_FL_SHUT_DONE) { ret = 1; goto end; } if (chn_prod(chn)->flags & (SC_FL_ABRT_DONE|SC_FL_EOS)) { if (((s->flags & SF_HTX) && htx_is_empty(htxbuf(&chn->buf))) || c_empty(chn)) { ret = 1; goto end; } } if (chn->flags & (CF_READ_TIMEOUT|CF_WRITE_TIMEOUT)) { ret = 1; goto end; } /* Wait for data */ DBG_TRACE_DEVEL("waiting for more data", STRM_EV_STRM_ANA|STRM_EV_TCP_ANA|STRM_EV_FLT_ANA, s); return 0; end: /* Terminate the data filtering. If is negative, an error was * encountered during the filtering. */ ret = handle_analyzer_result(s, chn, an_bit, ret); DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_TCP_ANA|STRM_EV_FLT_ANA, s); return ret; } /* * Handles result of filter's analyzers. It returns 0 if an error occurs or if * it needs to wait, any other value otherwise. */ static int handle_analyzer_result(struct stream *s, struct channel *chn, unsigned int an_bit, int ret) { if (ret < 0) goto return_bad_req; else if (!ret) goto wait; /* End of job, return OK */ if (an_bit) { chn->analysers &= ~an_bit; chn->analyse_exp = TICK_ETERNITY; } return 1; return_bad_req: /* An error occurs */ if (IS_HTX_STRM(s)) { http_set_term_flags(s); if (s->txn->status > 0) http_reply_and_close(s, s->txn->status, NULL); else { s->txn->status = (!(chn->flags & CF_ISRESP)) ? 400 : 502; http_reply_and_close(s, s->txn->status, http_error_message(s)); } } else { sess_set_term_flags(s); stream_retnclose(s, NULL); } if (!(chn->flags & CF_ISRESP)) s->req.analysers &= AN_REQ_FLT_END; else s->res.analysers &= AN_RES_FLT_END; DBG_TRACE_DEVEL("leaving on error", STRM_EV_FLT_ANA|STRM_EV_FLT_ERR, s); return 0; wait: if (!(chn->flags & CF_ISRESP)) channel_dont_connect(chn); DBG_TRACE_DEVEL("wairing for more data", STRM_EV_FLT_ANA, s); return 0; } /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted, doing so helps * all code contributors. * Optional keywords are also declared with a NULL ->parse() function so that * the config parser can report an appropriate error when a known keyword was * not enabled. */ static struct cfg_kw_list cfg_kws = {ILH, { { CFG_LISTEN, "filter", parse_filter }, { 0, NULL, NULL }, } }; INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws); REGISTER_POST_CHECK(flt_init_all); REGISTER_PER_THREAD_INIT(flt_init_all_per_thread); REGISTER_PER_THREAD_DEINIT(flt_deinit_all_per_thread); /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */