/* * HTTP protocol analyzer * * Copyright (C) 2018 HAProxy Technologies, Christopher Faulet * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TRACE_SOURCE &trace_strm extern const char *stat_status_codes[]; struct pool_head *pool_head_requri __read_mostly = NULL; struct pool_head *pool_head_capture __read_mostly = NULL; static void http_end_request(struct stream *s); static void http_end_response(struct stream *s); static void http_capture_headers(struct htx *htx, char **cap, struct cap_hdr *cap_hdr); static int http_del_hdr_value(char *start, char *end, char **from, char *next); static size_t http_fmt_req_line(const struct htx_sl *sl, char *str, size_t len); static void http_debug_stline(const char *dir, struct stream *s, const struct htx_sl *sl); static void http_debug_hdr(const char *dir, struct stream *s, const struct ist n, const struct ist v); static enum rule_result http_req_get_intercept_rule(struct proxy *px, struct list *def_rules, struct list *rules, struct stream *s); static enum rule_result http_res_get_intercept_rule(struct proxy *px, struct list *def_rules, struct list *rules, struct stream *s, uint8_t final); static enum rule_result http_req_restrict_header_names(struct stream *s, struct htx *htx, struct proxy *px); static void http_manage_client_side_cookies(struct stream *s, struct channel *req); static void http_manage_server_side_cookies(struct stream *s, struct channel *res); static int http_stats_check_uri(struct stream *s, struct http_txn *txn, struct proxy *px); static int http_handle_stats(struct stream *s, struct channel *req, struct proxy *px); static int http_handle_expect_hdr(struct stream *s, struct htx *htx, struct http_msg *msg); static int http_reply_100_continue(struct stream *s); /* This stream analyser waits for a complete HTTP request. It returns 1 if the * processing can continue on next analysers, or zero if it either needs more * data or wants to immediately abort the request (eg: timeout, error, ...). It * is tied to AN_REQ_WAIT_HTTP and may may remove itself from s->req.analysers * when it has nothing left to do, and may remove any analyser when it wants to * abort. */ int http_wait_for_request(struct stream *s, struct channel *req, int an_bit) { /* * We will analyze a complete HTTP request to check the its syntax. * * Once the start line and all headers are received, we may perform a * capture of the error (if any), and we will set a few fields. We also * check for monitor-uri, logging and finally headers capture. */ struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct htx *htx; struct htx_sl *sl; char http_ver; int len; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn, msg); if (unlikely(!IS_HTX_STRM(s))) { /* It is only possible when a TCP stream is upgrade to HTTP. * There is a transition period during which there is no * data. The stream is still in raw mode and SF_IGNORE flag is * still set. When this happens, the new mux is responsible to * handle all errors. Thus we may leave immediately. */ BUG_ON(!(s->flags & SF_IGNORE) || !c_empty(&s->req)); /* Don't connect for now */ channel_dont_connect(req); /* An abort at this stage means we are performing a "destructive" * HTTP upgrade (TCP>H2). In this case, we can leave. */ if (s->scf->flags & (SC_FL_ABRT_DONE|SC_FL_EOS)) { s->logs.logwait = 0; s->logs.level = 0; stream_abort(s); req->analysers &= AN_REQ_FLT_END; req->analyse_exp = TICK_ETERNITY; DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s); return 1; } DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s); return 0; } htx = htxbuf(&req->buf); sl = http_get_stline(htx); len = HTX_SL_REQ_VLEN(sl); if (len < 6) { http_ver = 0; } else { char *ptr; ptr = HTX_SL_REQ_VPTR(sl); http_ver = ptr[5] - '0'; } /* Parsing errors are caught here */ if (htx->flags & (HTX_FL_PARSING_ERROR|HTX_FL_PROCESSING_ERROR)) { stream_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(sess->listener, sess->fe, http_ver); if (htx->flags & HTX_FL_PARSING_ERROR) { stream_inc_http_err_ctr(s); goto return_bad_req; } else goto return_int_err; } /* we're speaking HTTP here, so let's speak HTTP to the client */ s->srv_error = http_return_srv_error; msg->msg_state = HTTP_MSG_BODY; stream_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(sess->listener, sess->fe, http_ver); /* one more valid request for this FE */ /* kill the pending keep-alive timeout */ req->analyse_exp = TICK_ETERNITY; BUG_ON(htx_get_first_type(htx) != HTX_BLK_REQ_SL); /* 0: we might have to print this header in debug mode */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { int32_t pos; http_debug_stline("clireq", s, sl); for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type = htx_get_blk_type(blk); if (type == HTX_BLK_EOH) break; if (type != HTX_BLK_HDR) continue; http_debug_hdr("clihdr", s, htx_get_blk_name(htx, blk), htx_get_blk_value(htx, blk)); } } /* * 1: identify the method and the version. Also set HTTP flags */ txn->meth = sl->info.req.meth; if (sl->flags & HTX_SL_F_VER_11) msg->flags |= HTTP_MSGF_VER_11; msg->flags |= HTTP_MSGF_XFER_LEN; if (sl->flags & HTX_SL_F_CLEN) msg->flags |= HTTP_MSGF_CNT_LEN; else if (sl->flags & HTX_SL_F_CHNK) msg->flags |= HTTP_MSGF_TE_CHNK; if (sl->flags & HTX_SL_F_BODYLESS) msg->flags |= HTTP_MSGF_BODYLESS; if (sl->flags & HTX_SL_F_CONN_UPG) msg->flags |= HTTP_MSGF_CONN_UPG; /* we can make use of server redirect on GET and HEAD */ if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD) s->flags |= SF_REDIRECTABLE; else if (txn->meth == HTTP_METH_OTHER && isteqi(htx_sl_req_meth(sl), ist("PRI"))) { /* PRI is reserved for the HTTP/2 preface */ goto return_bad_req; } /* * 2: check if the URI matches the monitor_uri. We have to do this for * every request which gets in, because the monitor-uri is defined by * the frontend. If the monitor-uri starts with a '/', the matching is * done against the request's path. Otherwise, the request's uri is * used. It is a workaround to let HTTP/2 health-checks work as * expected. */ if (unlikely(isttest(sess->fe->monitor_uri))) { const struct ist monitor_uri = sess->fe->monitor_uri; struct http_uri_parser parser = http_uri_parser_init(htx_sl_req_uri(sl)); if ((istptr(monitor_uri)[0] == '/' && isteq(http_parse_path(&parser), monitor_uri)) || isteq(htx_sl_req_uri(sl), monitor_uri)) { /* * We have found the monitor URI */ struct acl_cond *cond; s->flags |= SF_MONITOR; _HA_ATOMIC_INC(&sess->fe->fe_counters.intercepted_req); /* Check if we want to fail this monitor request or not */ list_for_each_entry(cond, &sess->fe->mon_fail_cond, list) { int ret = acl_exec_cond(cond, sess->fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { /* we fail this request, let's return 503 service unavail */ txn->status = 503; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */ goto return_prx_cond; } } /* nothing to fail, let's reply normally */ txn->status = 200; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */ goto return_prx_cond; } } /* * 3: Maybe we have to copy the original REQURI for the logs ? * Note: we cannot log anymore if the request has been * classified as invalid. */ if (unlikely(s->logs.logwait & LW_REQ)) { /* we have a complete HTTP request that we must log */ if ((txn->uri = pool_alloc(pool_head_requri)) != NULL) { size_t len; len = http_fmt_req_line(sl, txn->uri, global.tune.requri_len - 1); txn->uri[len] = 0; if (!(s->logs.logwait &= ~(LW_REQ|LW_INIT))) s->do_log(s); } else { ha_alert("HTTP logging : out of memory.\n"); } } /* if the frontend has "option http-use-proxy-header", we'll check if * we have what looks like a proxied connection instead of a connection, * and in this case set the TX_USE_PX_CONN flag to use Proxy-connection. * Note that this is *not* RFC-compliant, however browsers and proxies * happen to do that despite being non-standard :-( * We consider that a request not beginning with either '/' or '*' is * a proxied connection, which covers both "scheme://location" and * CONNECT ip:port. */ if ((sess->fe->options2 & PR_O2_USE_PXHDR) && *HTX_SL_REQ_UPTR(sl) != '/' && *HTX_SL_REQ_UPTR(sl) != '*') txn->flags |= TX_USE_PX_CONN; /* 5: we may need to capture headers */ if (unlikely((s->logs.logwait & LW_REQHDR) && s->req_cap)) http_capture_headers(htx, s->req_cap, sess->fe->req_cap); /* we may have to wait for the request's body */ if (s->be->options & PR_O_WREQ_BODY) req->analysers |= AN_REQ_HTTP_BODY; /* * RFC7234#4: * A cache MUST write through requests with methods * that are unsafe (Section 4.2.1 of [RFC7231]) to * the origin server; i.e., a cache is not allowed * to generate a reply to such a request before * having forwarded the request and having received * a corresponding response. * * RFC7231#4.2.1: * Of the request methods defined by this * specification, the GET, HEAD, OPTIONS, and TRACE * methods are defined to be safe. */ if (likely(txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD || txn->meth == HTTP_METH_OPTIONS || txn->meth == HTTP_METH_TRACE)) txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; /* end of job, return OK */ req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 1; return_int_err: txn->status = 500; s->flags |= SF_ERR_INTERNAL; _HA_ATOMIC_INC(&sess->fe->fe_counters.internal_errors); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->internal_errors); goto return_prx_cond; return_bad_req: txn->status = 400; _HA_ATOMIC_INC(&sess->fe->fe_counters.failed_req); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->failed_req); /* fall through */ return_prx_cond: http_set_term_flags(s); http_reply_and_close(s, txn->status, http_error_message(s)); DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_HTTP_ERR, s, txn); return 0; } /* This stream analyser runs all HTTP request processing which is common to * frontends and backends, which means blocking ACLs, filters, connection-close, * reqadd, stats and redirects. This is performed for the designated proxy. * It returns 1 if the processing can continue on next analysers, or zero if it * either needs more data or wants to immediately abort the request (eg: deny, * error, ...). */ int http_process_req_common(struct stream *s, struct channel *req, int an_bit, struct proxy *px) { struct list *def_rules, *rules; struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct htx *htx; struct redirect_rule *rule; enum rule_result verdict; struct connection *conn = objt_conn(sess->origin); DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn, msg); htx = htxbuf(&req->buf); /* just in case we have some per-backend tracking. Only called the first * execution of the analyser. */ if (!s->current_rule && !s->current_rule_list) stream_inc_be_http_req_ctr(s); def_rules = ((px->defpx && (an_bit == AN_REQ_HTTP_PROCESS_FE || px != sess->fe)) ? &px->defpx->http_req_rules : NULL); rules = &px->http_req_rules; /* evaluate http-request rules */ if ((def_rules && !LIST_ISEMPTY(def_rules)) || !LIST_ISEMPTY(rules)) { verdict = http_req_get_intercept_rule(px, def_rules, rules, s); switch (verdict) { case HTTP_RULE_RES_YIELD: /* some data miss, call the function later. */ goto return_prx_yield; case HTTP_RULE_RES_CONT: case HTTP_RULE_RES_STOP: /* nothing to do */ break; case HTTP_RULE_RES_DENY: /* deny or tarpit */ if (txn->flags & TX_CLTARPIT) goto tarpit; goto deny; case HTTP_RULE_RES_ABRT: /* abort request, response already sent. Eg: auth */ goto return_prx_cond; case HTTP_RULE_RES_DONE: /* OK, but terminate request processing (eg: redirect) */ goto done; case HTTP_RULE_RES_BADREQ: /* failed with a bad request */ goto return_bad_req; case HTTP_RULE_RES_ERROR: /* failed with a bad request */ goto return_int_err; } } if (px->options2 & (PR_O2_RSTRICT_REQ_HDR_NAMES_BLK|PR_O2_RSTRICT_REQ_HDR_NAMES_DEL)) { verdict = http_req_restrict_header_names(s, htx, px); if (verdict == HTTP_RULE_RES_DENY) goto deny; } if (conn && (conn->flags & CO_FL_EARLY_DATA) && (conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_SSL_WAIT_HS))) { struct http_hdr_ctx ctx; ctx.blk = NULL; if (!http_find_header(htx, ist("Early-Data"), &ctx, 0)) { if (unlikely(!http_add_header(htx, ist("Early-Data"), ist("1")))) goto return_fail_rewrite; } } /* OK at this stage, we know that the request was accepted according to * the http-request rules, we can check for the stats. Note that the * URI is detected *before* the req* rules in order not to be affected * by a possible reqrep, while they are processed *after* so that a * reqdeny can still block them. This clearly needs to change in 1.6! */ if (!s->target && http_stats_check_uri(s, txn, px)) { s->target = &http_stats_applet.obj_type; if (unlikely(!sc_applet_create(s->scb, objt_applet(s->target)))) { s->logs.request_ts = now_ns; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_RESOURCE; goto return_int_err; } /* parse the whole stats request and extract the relevant information */ http_handle_stats(s, req, px); verdict = http_req_get_intercept_rule(px, NULL, &px->uri_auth->http_req_rules, s); /* not all actions implemented: deny, allow, auth */ if (verdict == HTTP_RULE_RES_DENY) /* stats http-request deny */ goto deny; if (verdict == HTTP_RULE_RES_ABRT) /* stats auth / stats http-request auth */ goto return_prx_cond; if (verdict == HTTP_RULE_RES_BADREQ) /* failed with a bad request */ goto return_bad_req; if (verdict == HTTP_RULE_RES_ERROR) /* failed with a bad request */ goto return_int_err; } /* Proceed with the applets now. */ if (unlikely(objt_applet(s->target))) { if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */ _HA_ATOMIC_INC(&sess->fe->fe_counters.intercepted_req); if (http_handle_expect_hdr(s, htx, msg) == -1) goto return_int_err; if (!(s->flags & SF_ERR_MASK)) // this is not really an error but it is s->flags |= SF_ERR_LOCAL; // to mark that it comes from the proxy http_set_term_flags(s); if (HAS_FILTERS(s)) req->analysers |= AN_REQ_FLT_HTTP_HDRS; /* enable the minimally required analyzers to handle keep-alive and compression on the HTTP response */ req->analysers &= (AN_REQ_HTTP_BODY | AN_REQ_FLT_HTTP_HDRS | AN_REQ_FLT_END); req->analysers &= ~AN_REQ_FLT_XFER_DATA; req->analysers |= AN_REQ_HTTP_XFER_BODY; s->scb->flags |= SC_FL_SND_ASAP; s->flags |= SF_ASSIGNED; goto done; } /* check whether we have some ACLs set to redirect this request */ list_for_each_entry(rule, &px->redirect_rules, list) { if (rule->cond) { int ret; ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } if (!http_apply_redirect_rule(rule, s, txn)) goto return_int_err; goto done; } /* POST requests may be accompanied with an "Expect: 100-Continue" header. * If this happens, then the data will not come immediately, so we must * send all what we have without waiting. Note that due to the small gain * in waiting for the body of the request, it's easier to simply put the * SC_FL_SND_ASAP flag on the back SC any time. It's a one-shot flag so it * will remove itself once used. */ s->scb->flags |= SC_FL_SND_ASAP; done: /* done with this analyser, continue with next ones that the calling * points will have set, if any. */ req->analyse_exp = TICK_ETERNITY; done_without_exp: /* done with this analyser, but don't reset the analyse_exp. */ req->analysers &= ~an_bit; s->current_rule = s->current_rule_list = NULL; DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 1; tarpit: /* Allow cookie logging */ if (s->be->cookie_name || sess->fe->capture_name) http_manage_client_side_cookies(s, req); /* When a connection is tarpitted, we use the tarpit timeout, * which may be the same as the connect timeout if unspecified. * If unset, then set it to zero because we really want it to * eventually expire. We build the tarpit as an analyser. */ channel_htx_erase(&s->req, htx); /* wipe the request out so that we can drop the connection early * if the client closes first. */ channel_dont_connect(req); req->analysers &= AN_REQ_FLT_END; /* remove switching rules etc... */ req->analysers |= AN_REQ_HTTP_TARPIT; req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.tarpit); if (!req->analyse_exp) req->analyse_exp = tick_add(now_ms, 0); stream_inc_http_err_ctr(s); _HA_ATOMIC_INC(&sess->fe->fe_counters.denied_req); if (s->flags & SF_BE_ASSIGNED) _HA_ATOMIC_INC(&s->be->be_counters.denied_req); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->denied_req); goto done_without_exp; deny: /* this request was blocked (denied) */ /* Allow cookie logging */ if (s->be->cookie_name || sess->fe->capture_name) http_manage_client_side_cookies(s, req); s->logs.request_ts = now_ns; stream_inc_http_err_ctr(s); _HA_ATOMIC_INC(&sess->fe->fe_counters.denied_req); if (s->flags & SF_BE_ASSIGNED) _HA_ATOMIC_INC(&s->be->be_counters.denied_req); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->denied_req); goto return_prx_err; return_fail_rewrite: if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; _HA_ATOMIC_INC(&sess->fe->fe_counters.failed_rewrites); if (s->flags & SF_BE_ASSIGNED) _HA_ATOMIC_INC(&s->be->be_counters.failed_rewrites); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->failed_rewrites); if (objt_server(s->target)) _HA_ATOMIC_INC(&__objt_server(s->target)->counters.failed_rewrites); /* fall through */ return_int_err: txn->status = 500; s->flags |= SF_ERR_INTERNAL; _HA_ATOMIC_INC(&sess->fe->fe_counters.internal_errors); if (s->flags & SF_BE_ASSIGNED) _HA_ATOMIC_INC(&s->be->be_counters.internal_errors); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->internal_errors); goto return_prx_err; return_bad_req: txn->status = 400; _HA_ATOMIC_INC(&sess->fe->fe_counters.failed_req); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->failed_req); /* fall through */ return_prx_err: http_set_term_flags(s); http_reply_and_close(s, txn->status, http_error_message(s)); /* fall through */ return_prx_cond: http_set_term_flags(s); req->analysers &= AN_REQ_FLT_END; req->analyse_exp = TICK_ETERNITY; s->current_rule = s->current_rule_list = NULL; DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_HTTP_ERR, s, txn); return 0; return_prx_yield: channel_dont_connect(req); DBG_TRACE_DEVEL("waiting for more data", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; } /* This function performs all the processing enabled for the current request. * It returns 1 if the processing can continue on next analysers, or zero if it * needs more data, encounters an error, or wants to immediately abort the * request. It relies on buffers flags, and updates s->req.analysers. */ int http_process_request(struct stream *s, struct channel *req, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct htx *htx; struct connection *cli_conn = objt_conn(strm_sess(s)->origin); DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); /* * Right now, we know that we have processed the entire headers * and that unwanted requests have been filtered out. We can do * whatever we want with the remaining request. Also, now we * may have separate values for ->fe, ->be. */ htx = htxbuf(&req->buf); /* * 7: Now we can work with the cookies. * Note that doing so might move headers in the request, but * the fields will stay coherent and the URI will not move. * This should only be performed in the backend. */ if (s->be->cookie_name || sess->fe->capture_name) http_manage_client_side_cookies(s, req); /* 8: Generate unique ID if a "unique-id-format" is defined. * * A unique ID is generated even when it is not sent to ensure that the ID can make use of * fetches only available in the HTTP request processing stage. */ if (!LIST_ISEMPTY(&sess->fe->format_unique_id)) { struct ist unique_id = stream_generate_unique_id(s, &sess->fe->format_unique_id); if (!isttest(unique_id)) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_RESOURCE; goto return_int_err; } /* send unique ID if a "unique-id-header" is defined */ if (isttest(sess->fe->header_unique_id) && unlikely(!http_add_header(htx, sess->fe->header_unique_id, unique_id))) goto return_fail_rewrite; } /* handle http extensions (if configured) */ if (unlikely(!http_handle_7239_header(s, req))) goto return_fail_rewrite; if (unlikely(!http_handle_xff_header(s, req))) goto return_fail_rewrite; if (unlikely(!http_handle_xot_header(s, req))) goto return_fail_rewrite; /* Filter the request headers if there are filters attached to the * stream. */ if (HAS_FILTERS(s)) req->analysers |= AN_REQ_FLT_HTTP_HDRS; /* If we have no server assigned yet and we're balancing on url_param * with a POST request, we may be interested in checking the body for * that parameter. This will be done in another analyser. */ if (!(s->flags & (SF_ASSIGNED|SF_DIRECT)) && s->txn->meth == HTTP_METH_POST && (s->be->lbprm.algo & BE_LB_ALGO) == BE_LB_ALGO_PH) { channel_dont_connect(req); req->analysers |= AN_REQ_HTTP_BODY; } req->analysers &= ~AN_REQ_FLT_XFER_DATA; req->analysers |= AN_REQ_HTTP_XFER_BODY; /* We expect some data from the client. Unless we know for sure * we already have a full request, we have to re-enable quick-ack * in case we previously disabled it, otherwise we might cause * the client to delay further data. */ if ((sess->listener && (sess->listener->bind_conf->options & BC_O_NOQUICKACK)) && !(htx->flags & HTX_FL_EOM)) conn_set_quickack(cli_conn, 1); /************************************************************* * OK, that's finished for the headers. We have done what we * * could. Let's switch to the DATA state. * ************************************************************/ req->analyse_exp = TICK_ETERNITY; req->analysers &= ~an_bit; s->logs.request_ts = now_ns; /* OK let's go on with the BODY now */ DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 1; return_fail_rewrite: if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; _HA_ATOMIC_INC(&sess->fe->fe_counters.failed_rewrites); if (s->flags & SF_BE_ASSIGNED) _HA_ATOMIC_INC(&s->be->be_counters.failed_rewrites); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->failed_rewrites); if (objt_server(s->target)) _HA_ATOMIC_INC(&__objt_server(s->target)->counters.failed_rewrites); /* fall through */ return_int_err: txn->status = 500; s->flags |= SF_ERR_INTERNAL; _HA_ATOMIC_INC(&sess->fe->fe_counters.internal_errors); if (s->flags & SF_BE_ASSIGNED) _HA_ATOMIC_INC(&s->be->be_counters.internal_errors); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->internal_errors); http_set_term_flags(s); http_reply_and_close(s, txn->status, http_error_message(s)); DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_HTTP_ERR, s, txn); return 0; } /* This function is an analyser which processes the HTTP tarpit. It always * returns zero, at the beginning because it prevents any other processing * from occurring, and at the end because it terminates the request. */ int http_process_tarpit(struct stream *s, struct channel *req, int an_bit) { struct http_txn *txn = s->txn; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn, &txn->req); /* This connection is being tarpitted. The CLIENT side has * already set the connect expiration date to the right * timeout. We just have to check that the client is still * there and that the timeout has not expired. */ channel_dont_connect(req); if (!(s->scf->flags & (SC_FL_ABRT_DONE|SC_FL_EOS)) && !tick_is_expired(req->analyse_exp, now_ms)) { /* Be sure to drain all data from the request channel */ channel_htx_erase(req, htxbuf(&req->buf)); DBG_TRACE_DEVEL("waiting for tarpit timeout expiry", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; } /* We will set the queue timer to the time spent, just for * logging purposes. We fake a 500 server error, so that the * attacker will not suspect his connection has been tarpitted. * It will not cause trouble to the logs because we can exclude * the tarpitted connections by filtering on the 'PT' status flags. */ s->logs.t_queue = ns_to_ms(now_ns - s->logs.accept_ts); http_set_term_flags(s); http_reply_and_close(s, txn->status, (!(s->scf->flags & SC_FL_ERROR) ? http_error_message(s) : NULL)); DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; } /* This function is an analyser which waits for the HTTP request body. It waits * for either the buffer to be full, or the full advertised contents to have * reached the buffer. It must only be called after the standard HTTP request * processing has occurred, because it expects the request to be parsed and will * look for the Expect header. It may send a 100-Continue interim response. It * returns zero if it needs to read more data, or 1 once it has completed its * analysis. */ int http_wait_for_request_body(struct stream *s, struct channel *req, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn, &s->txn->req); switch (http_wait_for_msg_body(s, req, s->be->timeout.httpreq, 0)) { case HTTP_RULE_RES_CONT: goto http_end; case HTTP_RULE_RES_YIELD: goto missing_data_or_waiting; case HTTP_RULE_RES_BADREQ: goto return_bad_req; case HTTP_RULE_RES_ERROR: goto return_int_err; case HTTP_RULE_RES_ABRT: goto return_prx_cond; default: goto return_int_err; } http_end: /* The situation will not evolve, so let's give up on the analysis. */ s->logs.request_ts = now_ns; /* update the request timer to reflect full request */ req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 1; missing_data_or_waiting: channel_dont_connect(req); DBG_TRACE_DEVEL("waiting for more data", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; return_int_err: txn->status = 500; s->flags |= SF_ERR_INTERNAL; _HA_ATOMIC_INC(&sess->fe->fe_counters.internal_errors); if (s->flags & SF_BE_ASSIGNED) _HA_ATOMIC_INC(&s->be->be_counters.internal_errors); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->internal_errors); goto return_prx_err; return_bad_req: /* let's centralize all bad requests */ txn->status = 400; _HA_ATOMIC_INC(&sess->fe->fe_counters.failed_req); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->failed_req); /* fall through */ return_prx_err: http_set_term_flags(s); http_reply_and_close(s, txn->status, http_error_message(s)); /* fall through */ return_prx_cond: http_set_term_flags(s); req->analysers &= AN_REQ_FLT_END; req->analyse_exp = TICK_ETERNITY; DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_HTTP_ERR, s, txn); return 0; } /* This function is an analyser which forwards request body (including chunk * sizes if any). It is called as soon as we must forward, even if we forward * zero byte. The only situation where it must not be called is when we're in * tunnel mode and we want to forward till the close. It's used both to forward * remaining data and to resync after end of body. It expects the msg_state to * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to * read more data, or 1 once we can go on with next request or end the stream. * When in MSG_DATA or MSG_TRAILERS, it will automatically forward chunk_len * bytes of pending data + the headers if not already done. */ int http_request_forward_body(struct stream *s, struct channel *req, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct htx *htx; short status = 0; int ret; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn, msg); htx = htxbuf(&req->buf); if (htx->flags & HTX_FL_PARSING_ERROR) goto return_bad_req; if (htx->flags & HTX_FL_PROCESSING_ERROR) goto return_int_err; /* Note that we don't have to send 100-continue back because we don't * need the data to complete our job, and it's up to the server to * decide whether to return 100, 417 or anything else in return of * an "Expect: 100-continue" header. */ if (msg->msg_state == HTTP_MSG_BODY) msg->msg_state = HTTP_MSG_DATA; /* in most states, we should abort in case of early close */ channel_auto_close(req); if (req->to_forward) { if (req->to_forward == CHN_INFINITE_FORWARD) { if (s->scf->flags & SC_FL_EOI) msg->msg_state = HTTP_MSG_ENDING; } else { /* We can't process the buffer's contents yet */ req->flags |= CF_WAKE_WRITE; goto missing_data_or_waiting; } } if (msg->msg_state >= HTTP_MSG_ENDING) goto ending; if (txn->meth == HTTP_METH_CONNECT) { msg->msg_state = HTTP_MSG_ENDING; goto ending; } /* Forward input data. We get it by removing all outgoing data not * forwarded yet from HTX data size. If there are some data filters, we * let them decide the amount of data to forward. */ if (HAS_REQ_DATA_FILTERS(s)) { ret = flt_http_payload(s, msg, htx->data); if (ret < 0) goto return_bad_req; c_adv(req, ret); } else { c_adv(req, htx->data - co_data(req)); if ((global.tune.options & GTUNE_USE_FAST_FWD) && (msg->flags & HTTP_MSGF_XFER_LEN)) channel_htx_forward_forever(req, htx); } if (htx->data != co_data(req)) goto missing_data_or_waiting; /* Check if the end-of-message is reached and if so, switch the message * in HTTP_MSG_ENDING state. Then if all data was marked to be * forwarded, set the state to HTTP_MSG_DONE. */ if (!(htx->flags & HTX_FL_EOM)) goto missing_data_or_waiting; msg->msg_state = HTTP_MSG_ENDING; ending: s->scb->flags &= ~SC_FL_SND_EXP_MORE; /* no more data are expected to be send */ /* other states, ENDING...TUNNEL */ if (msg->msg_state >= HTTP_MSG_DONE) goto done; if (HAS_REQ_DATA_FILTERS(s)) { ret = flt_http_end(s, msg); if (ret <= 0) { if (!ret) goto missing_data_or_waiting; goto return_bad_req; } } if (txn->meth == HTTP_METH_CONNECT) msg->msg_state = HTTP_MSG_TUNNEL; else { msg->msg_state = HTTP_MSG_DONE; req->to_forward = 0; } done: /* we don't want to forward closes on DONE except in tunnel mode. */ if (!(txn->flags & TX_CON_WANT_TUN)) channel_dont_close(req); if ((s->scb->flags & SC_FL_SHUT_DONE) && co_data(req)) { /* request errors are most likely due to the server aborting the * transfer.Bit handle server aborts only if there is no * response. Otherwise, let a change to forward the response * first. */ if (htx_is_empty(htxbuf(&s->res.buf))) goto return_srv_abort; } http_end_request(s); if (!(req->analysers & an_bit)) { DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 1; } /* If "option abortonclose" is set on the backend, we want to monitor * the client's connection and forward any shutdown notification to the * server, which will decide whether to close or to go on processing the * request. We only do that in tunnel mode, and not in other modes since * it can be abused to exhaust source ports. */ if (s->be->options & PR_O_ABRT_CLOSE) { channel_auto_read(req); if ((s->scf->flags & (SC_FL_ABRT_DONE|SC_FL_EOS)) && !(txn->flags & TX_CON_WANT_TUN)) s->scb->flags |= SC_FL_NOLINGER; channel_auto_close(req); } else if (s->txn->meth == HTTP_METH_POST) { /* POST requests may require to read extra CRLF sent by broken * browsers and which could cause an RST to be sent upon close * on some systems (eg: Linux). */ channel_auto_read(req); } DBG_TRACE_DEVEL("waiting for the end of the HTTP txn", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; missing_data_or_waiting: /* stop waiting for data if the input is closed before the end */ if (msg->msg_state < HTTP_MSG_ENDING && (s->scf->flags & (SC_FL_ABRT_DONE|SC_FL_EOS))) goto return_cli_abort; waiting: /* waiting for the last bits to leave the buffer */ if (s->scb->flags & SC_FL_SHUT_DONE) { /* Handle server aborts only if there is no response. Otherwise, * let a change to forward the response first. */ if (htx_is_empty(htxbuf(&s->res.buf))) goto return_srv_abort; } /* When TE: chunked is used, we need to get there again to parse remaining * chunks even if the client has closed, so we don't want to set CF_DONTCLOSE. * And when content-length is used, we never want to let the possible * shutdown be forwarded to the other side, as the state machine will * take care of it once the client responds. It's also important to * prevent TIME_WAITs from accumulating on the backend side, and for * HTTP/2 where the last frame comes with a shutdown. */ if (msg->flags & HTTP_MSGF_XFER_LEN) channel_dont_close(req); /* We know that more data are expected, but we couldn't send more that * what we did. So we always set the SC_FL_SND_EXP_MORE flag so that the * system knows it must not set a PUSH on this first part. Interactive * modes are already handled by the stream sock layer. We must not do * this in content-length mode because it could present the MSG_MORE * flag with the last block of forwarded data, which would cause an * additional delay to be observed by the receiver. */ if (HAS_REQ_DATA_FILTERS(s)) s->scb->flags |= SC_FL_SND_EXP_MORE; DBG_TRACE_DEVEL("waiting for more data to forward", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; return_cli_abort: _HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts); _HA_ATOMIC_INC(&s->be->be_counters.cli_aborts); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->cli_aborts); if (objt_server(s->target)) _HA_ATOMIC_INC(&__objt_server(s->target)->counters.cli_aborts); if (!(s->flags & SF_ERR_MASK)) s->flags |= ((req->flags & CF_READ_TIMEOUT) ? SF_ERR_CLITO : SF_ERR_CLICL); status = 400; goto return_prx_cond; return_srv_abort: _HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts); _HA_ATOMIC_INC(&s->be->be_counters.srv_aborts); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->srv_aborts); if (objt_server(s->target)) _HA_ATOMIC_INC(&__objt_server(s->target)->counters.srv_aborts); if (!(s->flags & SF_ERR_MASK)) s->flags |= ((req->flags & CF_WRITE_TIMEOUT) ? SF_ERR_SRVTO : SF_ERR_SRVCL); status = 502; goto return_prx_cond; return_int_err: s->flags |= SF_ERR_INTERNAL; _HA_ATOMIC_INC(&sess->fe->fe_counters.internal_errors); _HA_ATOMIC_INC(&s->be->be_counters.internal_errors); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->internal_errors); if (objt_server(s->target)) _HA_ATOMIC_INC(&__objt_server(s->target)->counters.internal_errors); status = 500; goto return_prx_cond; return_bad_req: _HA_ATOMIC_INC(&sess->fe->fe_counters.failed_req); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->failed_req); status = 400; /* fall through */ return_prx_cond: http_set_term_flags(s); if (txn->status > 0) { /* Note: we don't send any error if some data were already sent */ http_reply_and_close(s, txn->status, NULL); } else { txn->status = status; http_reply_and_close(s, txn->status, http_error_message(s)); } DBG_TRACE_DEVEL("leaving on error ", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_HTTP_ERR, s, txn); return 0; } /* Reset the stream and the backend stream connector to a situation suitable for attemption connection */ /* Returns 0 if we can attempt to retry, -1 otherwise */ static __inline int do_l7_retry(struct stream *s, struct stconn *sc) { struct channel *req, *res; int co_data; if (s->conn_retries >= s->be->conn_retries) return -1; s->conn_retries++; if (objt_server(s->target)) { if (s->flags & SF_CURR_SESS) { s->flags &= ~SF_CURR_SESS; _HA_ATOMIC_DEC(&__objt_server(s->target)->cur_sess); } _HA_ATOMIC_INC(&__objt_server(s->target)->counters.retries); } _HA_ATOMIC_INC(&s->be->be_counters.retries); req = &s->req; res = &s->res; /* Remove any write error from the request, and read error from the response */ s->scf->flags &= ~(SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED); req->flags &= ~CF_WRITE_TIMEOUT; res->flags &= ~(CF_READ_TIMEOUT | CF_READ_EVENT); res->analysers &= AN_RES_FLT_END; s->conn_err_type = STRM_ET_NONE; s->flags &= ~(SF_CONN_EXP | SF_ERR_MASK | SF_FINST_MASK); s->conn_exp = TICK_ETERNITY; stream_choose_redispatch(s); res->to_forward = 0; res->analyse_exp = TICK_ETERNITY; res->total = 0; s->scb->flags &= ~(SC_FL_ERROR|SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED); if (sc_reset_endp(s->scb) < 0) { s->flags |= SF_ERR_INTERNAL; return -1; } b_free(&req->buf); /* Swap the L7 buffer with the channel buffer */ /* We know we stored the co_data as b_data, so get it there */ co_data = b_data(&s->txn->l7_buffer); b_set_data(&s->txn->l7_buffer, b_size(&s->txn->l7_buffer)); b_xfer(&req->buf, &s->txn->l7_buffer, b_data(&s->txn->l7_buffer)); co_set_data(req, co_data); DBG_TRACE_DEVEL("perform a L7 retry", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, s->txn); b_reset(&res->buf); co_set_data(res, 0); return 0; } /* This stream analyser waits for a complete HTTP response. It returns 1 if the * processing can continue on next analysers, or zero if it either needs more * data or wants to immediately abort the response (eg: timeout, error, ...). It * is tied to AN_RES_WAIT_HTTP and may may remove itself from s->res.analysers * when it has nothing left to do, and may remove any analyser when it wants to * abort. */ int http_wait_for_response(struct stream *s, struct channel *rep, int an_bit) { /* * We will analyze a complete HTTP response to check the its syntax. * * Once the start line and all headers are received, we may perform a * capture of the error (if any), and we will set a few fields. We also * logging and finally headers capture. */ struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->rsp; struct htx *htx; struct connection *srv_conn; struct htx_sl *sl; int n; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn, msg); htx = htxbuf(&rep->buf); /* Parsing errors are caught here */ if (htx->flags & HTX_FL_PARSING_ERROR) goto return_bad_res; if (htx->flags & HTX_FL_PROCESSING_ERROR) goto return_int_err; /* * Now we quickly check if we have found a full valid response. * If not so, we check the FD and buffer states before leaving. * A full response is indicated by the fact that we have seen * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid * responses are checked first. * * Depending on whether the client is still there or not, we * may send an error response back or not. Note that normally * we should only check for HTTP status there, and check I/O * errors somewhere else. */ next_one: if (unlikely(htx_is_empty(htx) || htx->first == -1)) { /* 1: have we encountered a read error ? */ if (s->scb->flags & SC_FL_ERROR) { struct connection *conn = sc_conn(s->scb); if ((txn->flags & TX_L7_RETRY) && (s->be->retry_type & PR_RE_DISCONNECTED) && (!conn || conn->err_code != CO_ER_SSL_EARLY_FAILED)) { if (co_data(rep) || do_l7_retry(s, s->scb) == 0) return 0; } /* Perform a L7 retry on empty response or because server refuses the early data. */ if ((txn->flags & TX_L7_RETRY) && (s->be->retry_type & PR_RE_EARLY_ERROR) && conn && conn->err_code == CO_ER_SSL_EARLY_FAILED && do_l7_retry(s, s->scb) == 0) { DBG_TRACE_DEVEL("leaving on L7 retry", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; } if (txn->flags & TX_NOT_FIRST) goto abort_keep_alive; _HA_ATOMIC_INC(&s->be->be_counters.failed_resp); if (objt_server(s->target)) { _HA_ATOMIC_INC(&__objt_server(s->target)->counters.failed_resp); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_READ_ERROR); } /* if the server refused the early data, just send a 425 */ if (conn && conn->err_code == CO_ER_SSL_EARLY_FAILED) txn->status = 425; else { txn->status = 502; stream_inc_http_fail_ctr(s); } s->scb->flags |= SC_FL_NOLINGER; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; http_set_term_flags(s); http_reply_and_close(s, txn->status, http_error_message(s)); DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_HTTP_ERR, s, txn); return 0; } /* 2: read timeout : return a 504 to the client. */ else if (rep->flags & CF_READ_TIMEOUT) { if ((txn->flags & TX_L7_RETRY) && (s->be->retry_type & PR_RE_TIMEOUT)) { if (co_data(rep) || do_l7_retry(s, s->scb) == 0) { DBG_TRACE_DEVEL("leaving on L7 retry", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; } } _HA_ATOMIC_INC(&s->be->be_counters.failed_resp); if (objt_server(s->target)) { _HA_ATOMIC_INC(&__objt_server(s->target)->counters.failed_resp); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_READ_TIMEOUT); } txn->status = 504; stream_inc_http_fail_ctr(s); s->scb->flags |= SC_FL_NOLINGER; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVTO; http_set_term_flags(s); http_reply_and_close(s, txn->status, http_error_message(s)); DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_HTTP_ERR, s, txn); return 0; } /* 3: client abort with an abortonclose */ else if ((s->scb->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) && (s->scb->flags & SC_FL_SHUT_DONE) && (s->scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))) { _HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts); _HA_ATOMIC_INC(&s->be->be_counters.cli_aborts); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->cli_aborts); if (objt_server(s->target)) _HA_ATOMIC_INC(&__objt_server(s->target)->counters.cli_aborts); txn->status = 400; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; http_set_term_flags(s); http_reply_and_close(s, txn->status, http_error_message(s)); /* process_stream() will take care of the error */ DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_HTTP_ERR, s, txn); return 0; } /* 4: close from server, capture the response if the server has started to respond */ else if (s->scb->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) { if ((txn->flags & TX_L7_RETRY) && (s->be->retry_type & PR_RE_DISCONNECTED)) { if (co_data(rep) || do_l7_retry(s, s->scb) == 0) { DBG_TRACE_DEVEL("leaving on L7 retry", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; } } if (txn->flags & TX_NOT_FIRST) goto abort_keep_alive; _HA_ATOMIC_INC(&s->be->be_counters.failed_resp); if (objt_server(s->target)) { _HA_ATOMIC_INC(&__objt_server(s->target)->counters.failed_resp); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_BROKEN_PIPE); } txn->status = 502; stream_inc_http_fail_ctr(s); s->scb->flags |= SC_FL_NOLINGER; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; http_set_term_flags(s); http_reply_and_close(s, txn->status, http_error_message(s)); DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_HTTP_ERR, s, txn); return 0; } /* 5: write error to client (we don't send any message then) */ else if (sc_ep_test(s->scf, SE_FL_ERR_PENDING)) { if (txn->flags & TX_NOT_FIRST) goto abort_keep_alive; _HA_ATOMIC_INC(&s->be->be_counters.failed_resp); if (objt_server(s->target)) _HA_ATOMIC_INC(&__objt_server(s->target)->counters.failed_resp); rep->analysers &= AN_RES_FLT_END; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; http_set_term_flags(s); /* process_stream() will take care of the error */ DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_HTTP_ERR, s, txn); return 0; } channel_dont_close(rep); s->scb->flags |= SC_FL_RCV_ONCE; /* try to get back here ASAP */ DBG_TRACE_DEVEL("waiting for more data", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; } /* More interesting part now : we know that we have a complete * response which at least looks like HTTP. We have an indicator * of each header's length, so we can parse them quickly. */ BUG_ON(htx_get_first_type(htx) != HTX_BLK_RES_SL); sl = http_get_stline(htx); /* Perform a L7 retry because of the status code */ if ((txn->flags & TX_L7_RETRY) && l7_status_match(s->be, sl->info.res.status) && do_l7_retry(s, s->scb) == 0) { DBG_TRACE_DEVEL("leaving on L7 retry", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; } /* Now, L7 buffer is useless, it can be released */ b_free(&txn->l7_buffer); msg->msg_state = HTTP_MSG_BODY; /* 0: we might have to print this header in debug mode */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { int32_t pos; http_debug_stline("srvrep", s, sl); for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type = htx_get_blk_type(blk); if (type == HTX_BLK_EOH) break; if (type != HTX_BLK_HDR) continue; http_debug_hdr("srvhdr", s, htx_get_blk_name(htx, blk), htx_get_blk_value(htx, blk)); } } /* 1: get the status code and the version. Also set HTTP flags */ txn->server_status = txn->status = sl->info.res.status; if (sl->flags & HTX_SL_F_VER_11) msg->flags |= HTTP_MSGF_VER_11; if (sl->flags & HTX_SL_F_XFER_LEN) { msg->flags |= HTTP_MSGF_XFER_LEN; if (sl->flags & HTX_SL_F_CLEN) msg->flags |= HTTP_MSGF_CNT_LEN; else if (sl->flags & HTX_SL_F_CHNK) msg->flags |= HTTP_MSGF_TE_CHNK; } if (sl->flags & HTX_SL_F_BODYLESS) msg->flags |= HTTP_MSGF_BODYLESS; if (sl->flags & HTX_SL_F_CONN_UPG) msg->flags |= HTTP_MSGF_CONN_UPG; n = txn->status / 100; if (n < 1 || n > 5) n = 0; /* when the client triggers a 4xx from the server, it's most often due * to a missing object or permission. These events should be tracked * because if they happen often, it may indicate a brute force or a * vulnerability scan. */ if (n == 4) stream_inc_http_err_ctr(s); if (n == 5 && txn->status != 501 && txn->status != 505) stream_inc_http_fail_ctr(s); if (objt_server(s->target)) { _HA_ATOMIC_INC(&__objt_server(s->target)->counters.p.http.rsp[n]); _HA_ATOMIC_INC(&__objt_server(s->target)->counters.p.http.cum_req); } /* Adjust server's health based on status code. Note: status codes 501 * and 505 are triggered on demand by client request, so we must not * count them as server failures. */ if (objt_server(s->target)) { if (txn->status >= 100 && (txn->status < 500 || txn->status == 501 || txn->status == 505)) health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_OK); else health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_STS); } /* * We may be facing a 100-continue response, or any other informational * 1xx response which is non-final, in which case this is not the right * response, and we're waiting for the next one. Let's allow this response * to go to the client and wait for the next one. There's an exception for * 101 which is used later in the code to switch protocols. */ if (txn->status < 200 && (txn->status == 100 || txn->status >= 102)) { FLT_STRM_CB(s, flt_http_reset(s, msg)); htx->first = channel_htx_fwd_headers(rep, htx); msg->msg_state = HTTP_MSG_RPBEFORE; msg->flags = 0; txn->server_status = txn->status = 0; s->logs.t_data = -1; /* was not a response yet */ s->scf->flags |= SC_FL_SND_ASAP; /* Send ASAP informational messages */ goto next_one; } /* A 101-switching-protocols must contains a Connection header with the * "upgrade" option and the request too. It means both are agree to * upgrade. It is not so strict because there is no test on the Upgrade * header content. But it is probably stronger enough for now. */ if (txn->status == 101 && (!(txn->req.flags & HTTP_MSGF_CONN_UPG) || !(txn->rsp.flags & HTTP_MSGF_CONN_UPG))) goto return_bad_res; /* * 2: check for cacheability. */ switch (txn->status) { case 200: case 203: case 204: case 206: case 300: case 301: case 404: case 405: case 410: case 414: case 501: break; default: /* RFC7231#6.1: * Responses with status codes that are defined as * cacheable by default (e.g., 200, 203, 204, 206, * 300, 301, 404, 405, 410, 414, and 501 in this * specification) can be reused by a cache with * heuristic expiration unless otherwise indicated * by the method definition or explicit cache * controls [RFC7234]; all other status codes are * not cacheable by default. */ txn->flags &= ~(TX_CACHEABLE | TX_CACHE_COOK); break; } /* * 3: we may need to capture headers */ s->logs.logwait &= ~LW_RESP; if (unlikely((s->logs.logwait & LW_RSPHDR) && s->res_cap)) http_capture_headers(htx, s->res_cap, sess->fe->rsp_cap); /* Skip parsing if no content length is possible. */ if (unlikely((txn->meth == HTTP_METH_CONNECT && txn->status >= 200 && txn->status < 300) || txn->status == 101)) { /* Either we've established an explicit tunnel, or we're * switching the protocol. In both cases, we're very unlikely * to understand the next protocols. We have to switch to tunnel * mode, so that we transfer the request and responses then let * this protocol pass unmodified. When we later implement specific * parsers for such protocols, we'll want to check the Upgrade * header which contains information about that protocol for * responses with status 101 (eg: see RFC2817 about TLS). */ txn->flags |= TX_CON_WANT_TUN; } /* check for NTML authentication headers in 401 (WWW-Authenticate) and * 407 (Proxy-Authenticate) responses and set the connection to private */ srv_conn = sc_conn(s->scb); if (srv_conn) { struct ist hdr; struct http_hdr_ctx ctx; if (txn->status == 401) hdr = ist("WWW-Authenticate"); else if (txn->status == 407) hdr = ist("Proxy-Authenticate"); else goto end; ctx.blk = NULL; while (http_find_header(htx, hdr, &ctx, 0)) { /* If www-authenticate contains "Negotiate", "Nego2", or "NTLM", * possibly followed by blanks and a base64 string, the connection * is private. Since it's a mess to deal with, we only check for * values starting with "NTLM" or "Nego". Note that often multiple * headers are sent by the server there. */ if ((ctx.value.len >= 4 && strncasecmp(ctx.value.ptr, "Nego", 4) == 0) || (ctx.value.len >= 4 && strncasecmp(ctx.value.ptr, "NTLM", 4) == 0)) { sess->flags |= SESS_FL_PREFER_LAST; conn_set_owner(srv_conn, sess, NULL); conn_set_private(srv_conn); /* If it fail now, the same will be done in mux->detach() callback */ session_add_conn(srv_conn->owner, srv_conn, srv_conn->target); break; } } } end: /* we want to have the response time before we start processing it */ s->logs.t_data = ns_to_ms(now_ns - s->logs.accept_ts); /* end of job, return OK */ rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; channel_auto_close(rep); DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 1; return_int_err: _HA_ATOMIC_INC(&sess->fe->fe_counters.internal_errors); _HA_ATOMIC_INC(&s->be->be_counters.internal_errors); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->internal_errors); if (objt_server(s->target)) _HA_ATOMIC_INC(&__objt_server(s->target)->counters.internal_errors); txn->status = 500; s->flags |= SF_ERR_INTERNAL; goto return_prx_cond; return_bad_res: _HA_ATOMIC_INC(&s->be->be_counters.failed_resp); if (objt_server(s->target)) { _HA_ATOMIC_INC(&__objt_server(s->target)->counters.failed_resp); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_HDRRSP); } if ((s->be->retry_type & PR_RE_JUNK_REQUEST) && (txn->flags & TX_L7_RETRY) && do_l7_retry(s, s->scb) == 0) { DBG_TRACE_DEVEL("leaving on L7 retry", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; } txn->status = 502; stream_inc_http_fail_ctr(s); /* fall through */ return_prx_cond: http_set_term_flags(s); http_reply_and_close(s, txn->status, http_error_message(s)); s->scb->flags |= SC_FL_NOLINGER; DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_HTTP_ERR, s, txn); return 0; abort_keep_alive: /* A keep-alive request to the server failed on a network error. * The client is required to retry. We need to close without returning * any other information so that the client retries. */ txn->status = 0; s->logs.logwait = 0; s->logs.level = 0; s->scf->flags &= ~SC_FL_SND_EXP_MORE; /* speed up sending a previous response */ http_reply_and_close(s, txn->status, NULL); DBG_TRACE_DEVEL("leaving by closing K/A connection", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; } /* This function performs all the processing enabled for the current response. * It normally returns 1 unless it wants to break. It relies on buffers flags, * and updates s->res.analysers. It might make sense to explode it into several * other functions. It works like process_request (see indications above). */ int http_process_res_common(struct stream *s, struct channel *rep, int an_bit, struct proxy *px) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->rsp; struct htx *htx; struct proxy *cur_proxy; enum rule_result ret = HTTP_RULE_RES_CONT; if (unlikely(msg->msg_state < HTTP_MSG_BODY)) /* we need more data */ return 0; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn, msg); htx = htxbuf(&rep->buf); /* The stats applet needs to adjust the Connection header but we don't * apply any filter there. */ if (unlikely(objt_applet(s->target) == &http_stats_applet)) { rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; goto end; } /* * We will have to evaluate the filters. * As opposed to version 1.2, now they will be evaluated in the * filters order and not in the header order. This means that * each filter has to be validated among all headers. * * Filters are tried with ->be first, then with ->fe if it is * different from ->be. * * Maybe we are in resume condiion. In this case I choose the * "struct proxy" which contains the rule list matching the resume * pointer. If none of these "struct proxy" match, I initialise * the process with the first one. * * In fact, I check only correspondence between the current list * pointer and the ->fe rule list. If it doesn't match, I initialize * the loop with the ->be. */ if (s->current_rule_list == &sess->fe->http_res_rules || (sess->fe->defpx && s->current_rule_list == &sess->fe->defpx->http_res_rules)) cur_proxy = sess->fe; else cur_proxy = s->be; while (1) { /* evaluate http-response rules */ if (ret == HTTP_RULE_RES_CONT || ret == HTTP_RULE_RES_STOP) { struct list *def_rules, *rules; def_rules = ((cur_proxy->defpx && (cur_proxy == s->be || cur_proxy->defpx != s->be->defpx)) ? &cur_proxy->defpx->http_res_rules : NULL); rules = &cur_proxy->http_res_rules; ret = http_res_get_intercept_rule(cur_proxy, def_rules, rules, s, 0); switch (ret) { case HTTP_RULE_RES_YIELD: /* some data miss, call the function later. */ goto return_prx_yield; case HTTP_RULE_RES_CONT: case HTTP_RULE_RES_STOP: /* nothing to do */ break; case HTTP_RULE_RES_DENY: /* deny or tarpit */ goto deny; case HTTP_RULE_RES_ABRT: /* abort request, response already sent */ goto return_prx_cond; case HTTP_RULE_RES_DONE: /* OK, but terminate request processing (eg: redirect) */ goto done; case HTTP_RULE_RES_BADREQ: /* failed with a bad request */ goto return_bad_res; case HTTP_RULE_RES_ERROR: /* failed with a bad request */ goto return_int_err; } } /* check whether we're already working on the frontend */ if (cur_proxy == sess->fe) break; cur_proxy = sess->fe; } /* OK that's all we can do for 1xx responses */ if (unlikely(txn->status < 200 && txn->status != 101)) goto end; /* * Now check for a server cookie. */ if (s->be->cookie_name || sess->fe->capture_name || (s->be->options & PR_O_CHK_CACHE)) http_manage_server_side_cookies(s, rep); /* * Check for cache-control or pragma headers if required. */ if ((s->be->options & PR_O_CHK_CACHE) || (s->be->ck_opts & PR_CK_NOC)) http_check_response_for_cacheability(s, rep); /* * Add server cookie in the response if needed */ if (objt_server(s->target) && (s->be->ck_opts & PR_CK_INS) && !((txn->flags & TX_SCK_FOUND) && (s->be->ck_opts & PR_CK_PSV)) && (!(s->flags & SF_DIRECT) || ((s->be->cookie_maxidle || txn->cookie_last_date) && (!txn->cookie_last_date || (txn->cookie_last_date - date.tv_sec) < 0)) || (s->be->cookie_maxlife && !txn->cookie_first_date) || // set the first_date (!s->be->cookie_maxlife && txn->cookie_first_date)) && // remove the first_date (!(s->be->ck_opts & PR_CK_POST) || (txn->meth == HTTP_METH_POST)) && !(s->flags & SF_IGNORE_PRST)) { /* the server is known, it's not the one the client requested, or the * cookie's last seen date needs to be refreshed. We have to * insert a set-cookie here, except if we want to insert only on POST * requests and this one isn't. Note that servers which don't have cookies * (eg: some backup servers) will return a full cookie removal request. */ if (!__objt_server(s->target)->cookie) { chunk_printf(&trash, "%s=; Expires=Thu, 01-Jan-1970 00:00:01 GMT; path=/", s->be->cookie_name); } else { chunk_printf(&trash, "%s=%s", s->be->cookie_name, __objt_server(s->target)->cookie); if (s->be->cookie_maxidle || s->be->cookie_maxlife) { /* emit last_date, which is mandatory */ trash.area[trash.data++] = COOKIE_DELIM_DATE; s30tob64((date.tv_sec+3) >> 2, trash.area + trash.data); trash.data += 5; if (s->be->cookie_maxlife) { /* emit first_date, which is either the original one or * the current date. */ trash.area[trash.data++] = COOKIE_DELIM_DATE; s30tob64(txn->cookie_first_date ? txn->cookie_first_date >> 2 : (date.tv_sec+3) >> 2, trash.area + trash.data); trash.data += 5; } } chunk_appendf(&trash, "; path=/"); } if (s->be->cookie_domain) chunk_appendf(&trash, "; domain=%s", s->be->cookie_domain); if (s->be->ck_opts & PR_CK_HTTPONLY) chunk_appendf(&trash, "; HttpOnly"); if (s->be->ck_opts & PR_CK_SECURE) chunk_appendf(&trash, "; Secure"); if (s->be->cookie_attrs) chunk_appendf(&trash, "; %s", s->be->cookie_attrs); if (unlikely(!http_add_header(htx, ist("Set-Cookie"), ist2(trash.area, trash.data)))) goto return_fail_rewrite; txn->flags &= ~TX_SCK_MASK; if (__objt_server(s->target)->cookie && (s->flags & SF_DIRECT)) /* the server did not change, only the date was updated */ txn->flags |= TX_SCK_UPDATED; else txn->flags |= TX_SCK_INSERTED; /* Here, we will tell an eventual cache on the client side that we don't * want it to cache this reply because HTTP/1.0 caches also cache cookies ! * Some caches understand the correct form: 'no-cache="set-cookie"', but * others don't (eg: apache <= 1.3.26). So we use 'private' instead. */ if ((s->be->ck_opts & PR_CK_NOC) && (txn->flags & TX_CACHEABLE)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; if (unlikely(!http_add_header(htx, ist("Cache-control"), ist("private")))) goto return_fail_rewrite; } } /* * Check if result will be cacheable with a cookie. * We'll block the response if security checks have caught * nasty things such as a cacheable cookie. */ if (((txn->flags & (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) == (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) && (s->be->options & PR_O_CHK_CACHE)) { /* we're in presence of a cacheable response containing * a set-cookie header. We'll block it as requested by * the 'checkcache' option, and send an alert. */ ha_alert("Blocking cacheable cookie in response from instance %s, server %s.\n", s->be->id, objt_server(s->target) ? __objt_server(s->target)->id : ""); send_log(s->be, LOG_ALERT, "Blocking cacheable cookie in response from instance %s, server %s.\n", s->be->id, objt_server(s->target) ? __objt_server(s->target)->id : ""); goto deny; } end: /* * Evaluate after-response rules before forwarding the response. rules * from the backend are evaluated first, then one from the frontend if * it differs. */ if (!http_eval_after_res_rules(s)) goto return_int_err; /* Filter the response headers if there are filters attached to the * stream. */ if (HAS_FILTERS(s)) rep->analysers |= AN_RES_FLT_HTTP_HDRS; /* Always enter in the body analyzer */ rep->analysers &= ~AN_RES_FLT_XFER_DATA; rep->analysers |= AN_RES_HTTP_XFER_BODY; /* if the user wants to log as soon as possible, without counting * bytes from the server, then this is the right moment. We have * to temporarily assign bytes_out to log what we currently have. */ if (!LIST_ISEMPTY(&sess->fe->logformat) && !(s->logs.logwait & LW_BYTES)) { s->logs.t_close = s->logs.t_data; /* to get a valid end date */ s->logs.bytes_out = htx->data; s->do_log(s); s->logs.bytes_out = 0; } done: DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; s->current_rule = s->current_rule_list = NULL; return 1; deny: _HA_ATOMIC_INC(&sess->fe->fe_counters.denied_resp); _HA_ATOMIC_INC(&s->be->be_counters.denied_resp); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->denied_resp); if (objt_server(s->target)) _HA_ATOMIC_INC(&__objt_server(s->target)->counters.denied_resp); goto return_prx_err; return_fail_rewrite: if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; _HA_ATOMIC_INC(&sess->fe->fe_counters.failed_rewrites); _HA_ATOMIC_INC(&s->be->be_counters.failed_rewrites); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->failed_rewrites); if (objt_server(s->target)) _HA_ATOMIC_INC(&__objt_server(s->target)->counters.failed_rewrites); /* fall through */ return_int_err: txn->status = 500; s->flags |= SF_ERR_INTERNAL; _HA_ATOMIC_INC(&sess->fe->fe_counters.internal_errors); _HA_ATOMIC_INC(&s->be->be_counters.internal_errors); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->internal_errors); if (objt_server(s->target)) _HA_ATOMIC_INC(&__objt_server(s->target)->counters.internal_errors); goto return_prx_err; return_bad_res: txn->status = 502; stream_inc_http_fail_ctr(s); _HA_ATOMIC_INC(&s->be->be_counters.failed_resp); if (objt_server(s->target)) { _HA_ATOMIC_INC(&__objt_server(s->target)->counters.failed_resp); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_RSP); } /* fall through */ return_prx_err: http_set_term_flags(s); http_reply_and_close(s, txn->status, http_error_message(s)); /* fall through */ return_prx_cond: s->logs.t_data = -1; /* was not a valid response */ s->scb->flags |= SC_FL_NOLINGER; http_set_term_flags(s); rep->analysers &= AN_RES_FLT_END; s->req.analysers &= AN_REQ_FLT_END; rep->analyse_exp = TICK_ETERNITY; s->current_rule = s->current_rule_list = NULL; DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_HTTP_ERR, s, txn); return 0; return_prx_yield: channel_dont_close(rep); DBG_TRACE_DEVEL("waiting for more data", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; } /* This function is an analyser which forwards response body (including chunk * sizes if any). It is called as soon as we must forward, even if we forward * zero byte. The only situation where it must not be called is when we're in * tunnel mode and we want to forward till the close. It's used both to forward * remaining data and to resync after end of body. It expects the msg_state to * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to * read more data, or 1 once we can go on with next request or end the stream. * * It is capable of compressing response data both in content-length mode and * in chunked mode. The state machines follows different flows depending on * whether content-length and chunked modes are used, since there are no * trailers in content-length : * * chk-mode cl-mode * ,----- BODY -----. * / \ * V size > 0 V chk-mode * .--> SIZE -------------> DATA -------------> CRLF * | | size == 0 | last byte | * | v final crlf v inspected | * | TRAILERS -----------> DONE | * | | * `----------------------------------------------' * * Compression only happens in the DATA state, and must be flushed in final * states (TRAILERS/DONE) or when leaving on missing data. Normal forwarding * is performed at once on final states for all bytes parsed, or when leaving * on missing data. */ int http_response_forward_body(struct stream *s, struct channel *res, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &s->txn->rsp; struct htx *htx; int ret; DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn, msg); htx = htxbuf(&res->buf); if (htx->flags & HTX_FL_PARSING_ERROR) goto return_bad_res; if (htx->flags & HTX_FL_PROCESSING_ERROR) goto return_int_err; if (msg->msg_state == HTTP_MSG_BODY) msg->msg_state = HTTP_MSG_DATA; /* in most states, we should abort in case of early close */ channel_auto_close(res); if (res->to_forward) { if (res->to_forward == CHN_INFINITE_FORWARD) { if (s->scb->flags & SC_FL_EOI) msg->msg_state = HTTP_MSG_ENDING; } else { /* We can't process the buffer's contents yet */ res->flags |= CF_WAKE_WRITE; goto missing_data_or_waiting; } } if (msg->msg_state >= HTTP_MSG_ENDING) goto ending; if ((txn->meth == HTTP_METH_CONNECT && txn->status >= 200 && txn->status < 300) || txn->status == 101 || (!(msg->flags & HTTP_MSGF_XFER_LEN) && !HAS_RSP_DATA_FILTERS(s))) { msg->msg_state = HTTP_MSG_ENDING; goto ending; } /* Forward input data. We get it by removing all outgoing data not * forwarded yet from HTX data size. If there are some data filters, we * let them decide the amount of data to forward. */ if (HAS_RSP_DATA_FILTERS(s)) { ret = flt_http_payload(s, msg, htx->data); if (ret < 0) goto return_bad_res; c_adv(res, ret); } else { c_adv(res, htx->data - co_data(res)); if ((global.tune.options & GTUNE_USE_FAST_FWD) && (msg->flags & HTTP_MSGF_XFER_LEN)) channel_htx_forward_forever(res, htx); } if (htx->data != co_data(res)) goto missing_data_or_waiting; if (!(msg->flags & HTTP_MSGF_XFER_LEN) && (s->scb->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))) { msg->msg_state = HTTP_MSG_ENDING; goto ending; } /* Check if the end-of-message is reached and if so, switch the message * in HTTP_MSG_ENDING state. Then if all data was marked to be * forwarded, set the state to HTTP_MSG_DONE. */ if (!(htx->flags & HTX_FL_EOM)) goto missing_data_or_waiting; msg->msg_state = HTTP_MSG_ENDING; ending: s->scf->flags &= ~SC_FL_SND_EXP_MORE; /* no more data are expected to be sent */ /* other states, ENDING...TUNNEL */ if (msg->msg_state >= HTTP_MSG_DONE) goto done; if (HAS_RSP_DATA_FILTERS(s)) { ret = flt_http_end(s, msg); if (ret <= 0) { if (!ret) goto missing_data_or_waiting; goto return_bad_res; } } if (!(txn->flags & TX_CON_WANT_TUN) && !(msg->flags & HTTP_MSGF_XFER_LEN)) { /* One-side tunnel */ msg->msg_state = HTTP_MSG_TUNNEL; } else { msg->msg_state = HTTP_MSG_DONE; res->to_forward = 0; } done: channel_dont_close(res); if ((s->scf->flags & SC_FL_SHUT_DONE) && co_data(res)) { /* response errors are most likely due to the client aborting * the transfer. */ goto return_cli_abort; } http_end_response(s); if (!(res->analysers & an_bit)) { DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 1; } DBG_TRACE_DEVEL("waiting for the end of the HTTP txn", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; missing_data_or_waiting: if (s->scf->flags & SC_FL_SHUT_DONE) goto return_cli_abort; /* stop waiting for data if the input is closed before the end. If the * client side was already closed, it means that the client has aborted, * so we don't want to count this as a server abort. Otherwise it's a * server abort. */ if (msg->msg_state < HTTP_MSG_ENDING && (s->scb->flags & (SC_FL_EOS|SC_FL_ABRT_DONE))) { if ((s->scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) && (s->scb->flags & SC_FL_SHUT_DONE)) goto return_cli_abort; /* If we have some pending data, we continue the processing */ if (htx_is_empty(htx)) goto return_srv_abort; } /* When TE: chunked is used, we need to get there again to parse * remaining chunks even if the server has closed, so we don't want to * set CF_DONTCLOSE. Similarly when there is a content-leng or if there * are filters registered on the stream, we don't want to forward a * close */ if ((msg->flags & HTTP_MSGF_XFER_LEN) || HAS_RSP_DATA_FILTERS(s)) channel_dont_close(res); /* We know that more data are expected, but we couldn't send more that * what we did. So we always set the SC_FL_SND_EXP_MORE flag so that the * system knows it must not set a PUSH on this first part. Interactive * modes are already handled by the stream sock layer. We must not do * this in content-length mode because it could present the MSG_MORE * flag with the last block of forwarded data, which would cause an * additional delay to be observed by the receiver. */ if (HAS_RSP_DATA_FILTERS(s)) s->scf->flags |= SC_FL_SND_EXP_MORE; /* the stream handler will take care of timeouts and errors */ DBG_TRACE_DEVEL("waiting for more data to forward", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA, s, txn); return 0; return_srv_abort: _HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts); _HA_ATOMIC_INC(&s->be->be_counters.srv_aborts); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->srv_aborts); if (objt_server(s->target)) _HA_ATOMIC_INC(&__objt_server(s->target)->counters.srv_aborts); stream_inc_http_fail_ctr(s); if (!(s->flags & SF_ERR_MASK)) s->flags |= ((res->flags & CF_READ_TIMEOUT) ? SF_ERR_SRVTO : SF_ERR_SRVCL); goto return_error; return_cli_abort: _HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts); _HA_ATOMIC_INC(&s->be->be_counters.cli_aborts); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->cli_aborts); if (objt_server(s->target)) _HA_ATOMIC_INC(&__objt_server(s->target)->counters.cli_aborts); if (!(s->flags & SF_ERR_MASK)) s->flags |= ((res->flags & CF_WRITE_TIMEOUT) ? SF_ERR_CLITO : SF_ERR_CLICL); goto return_error; return_int_err: _HA_ATOMIC_INC(&sess->fe->fe_counters.internal_errors); _HA_ATOMIC_INC(&s->be->be_counters.internal_errors); if (sess->listener && sess->listener->counters) _HA_ATOMIC_INC(&sess->listener->counters->internal_errors); if (objt_server(s->target)) _HA_ATOMIC_INC(&__objt_server(s->target)->counters.internal_errors); s->flags |= SF_ERR_INTERNAL; goto return_error; return_bad_res: _HA_ATOMIC_INC(&s->be->be_counters.failed_resp); if (objt_server(s->target)) { _HA_ATOMIC_INC(&__objt_server(s->target)->counters.failed_resp); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_RSP); } stream_inc_http_fail_ctr(s); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; /* fall through */ return_error: /* don't send any error message as we're in the body */ http_set_term_flags(s); http_reply_and_close(s, txn->status, NULL); stream_inc_http_fail_ctr(s); DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_HTTP_ERR, s, txn); return 0; } /* Perform an HTTP redirect based on the information in . The function * returns zero in case of an irrecoverable error such as too large a request * to build a valid response, 1 in case of successful redirect (hence the rule * is final), or 2 if the rule has to be silently skipped. */ int http_apply_redirect_rule(struct redirect_rule *rule, struct stream *s, struct http_txn *txn) { struct channel *req = &s->req; struct channel *res = &s->res; struct htx *htx; struct htx_sl *sl; struct buffer *chunk; struct ist status, reason, location; unsigned int flags; int ret = 1, close = 0; /* Try to keep the connection alive byt default */ chunk = alloc_trash_chunk(); if (!chunk) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_RESOURCE; goto fail; } /* * Create the location */ htx = htxbuf(&req->buf); switch(rule->type) { case REDIRECT_TYPE_SCHEME: { struct http_hdr_ctx ctx; struct ist path, host; struct http_uri_parser parser; host = ist(""); ctx.blk = NULL; if (http_find_header(htx, ist("Host"), &ctx, 0)) host = ctx.value; sl = http_get_stline(htx); parser = http_uri_parser_init(htx_sl_req_uri(sl)); path = http_parse_path(&parser); /* build message using path */ if (isttest(path)) { if (rule->flags & REDIRECT_FLAG_DROP_QS) { int qs = 0; while (qs < path.len) { if (*(path.ptr + qs) == '?') { path.len = qs; break; } qs++; } } } else path = ist("/"); if (rule->rdr_str) { /* this is an old "redirect" rule */ /* add scheme */ if (!chunk_memcat(chunk, rule->rdr_str, rule->rdr_len)) goto fail; } else { /* add scheme with executing log format */ chunk->data += build_logline(s, chunk->area + chunk->data, chunk->size - chunk->data, &rule->rdr_fmt); } /* add "://" + host + path */ if (!chunk_memcat(chunk, "://", 3) || !chunk_memcat(chunk, host.ptr, host.len) || !chunk_memcat(chunk, path.ptr, path.len)) goto fail; /* append a slash at the end of the location if needed and missing */ if (chunk->data && chunk->area[chunk->data - 1] != '/' && (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) { if (chunk->data + 1 >= chunk->size) goto fail; chunk->area[chunk->data++] = '/'; } break; } case REDIRECT_TYPE_PREFIX: { struct ist path; struct http_uri_parser parser; sl = http_get_stline(htx); parser = http_uri_parser_init(htx_sl_req_uri(sl)); path = http_parse_path(&parser); /* build message using path */ if (isttest(path)) { if (rule->flags & REDIRECT_FLAG_DROP_QS) { int qs = 0; while (qs < path.len) { if (*(path.ptr + qs) == '?') { path.len = qs; break; } qs++; } } } else path = ist("/"); if (rule->rdr_str) { /* this is an old "redirect" rule */ /* add prefix. Note that if prefix == "/", we don't want to * add anything, otherwise it makes it hard for the user to * configure a self-redirection. */ if (rule->rdr_len != 1 || *rule->rdr_str != '/') { if (!chunk_memcat(chunk, rule->rdr_str, rule->rdr_len)) goto fail; } } else { /* add prefix with executing log format */ chunk->data += build_logline(s, chunk->area + chunk->data, chunk->size - chunk->data, &rule->rdr_fmt); } /* add path */ if (!chunk_memcat(chunk, path.ptr, path.len)) goto fail; /* append a slash at the end of the location if needed and missing */ if (chunk->data && chunk->area[chunk->data - 1] != '/' && (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) { if (chunk->data + 1 >= chunk->size) goto fail; chunk->area[chunk->data++] = '/'; } break; } case REDIRECT_TYPE_LOCATION: default: if (rule->rdr_str) { /* this is an old "redirect" rule */ /* add location */ if (!chunk_memcat(chunk, rule->rdr_str, rule->rdr_len)) goto fail; } else { /* add location with executing log format */ int len = build_logline(s, chunk->area + chunk->data, chunk->size - chunk->data, &rule->rdr_fmt); if (!len && rule->flags & REDIRECT_FLAG_IGNORE_EMPTY) { ret = 2; goto out; } chunk->data += len; } break; } location = ist2(chunk->area, chunk->data); /* * Create the 30x response */ switch (rule->code) { case 308: status = ist("308"); reason = ist("Permanent Redirect"); break; case 307: status = ist("307"); reason = ist("Temporary Redirect"); break; case 303: status = ist("303"); reason = ist("See Other"); break; case 301: status = ist("301"); reason = ist("Moved Permanently"); break; case 302: default: status = ist("302"); reason = ist("Found"); break; } if (!(txn->req.flags & HTTP_MSGF_BODYLESS) && txn->req.msg_state != HTTP_MSG_DONE) close = 1; htx = htx_from_buf(&res->buf); /* Trim any possible response */ channel_htx_truncate(&s->res, htx); flags = (HTX_SL_F_IS_RESP|HTX_SL_F_VER_11|HTX_SL_F_XFER_LEN|HTX_SL_F_CLEN|HTX_SL_F_BODYLESS); sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags, ist("HTTP/1.1"), status, reason); if (!sl) goto fail; sl->info.res.status = rule->code; s->txn->status = rule->code; if (close && !htx_add_header(htx, ist("Connection"), ist("close"))) goto fail; if (!htx_add_header(htx, ist("Content-length"), ist("0")) || !htx_add_header(htx, ist("Location"), location)) goto fail; if (rule->code == 302 || rule->code == 303 || rule->code == 307) { if (!htx_add_header(htx, ist("Cache-Control"), ist("no-cache"))) goto fail; } if (rule->cookie_len) { if (!htx_add_header(htx, ist("Set-Cookie"), ist2(rule->cookie_str, rule->cookie_len))) goto fail; } if (!htx_add_endof(htx, HTX_BLK_EOH)) goto fail; htx->flags |= HTX_FL_EOM; htx_to_buf(htx, &res->buf); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_LOCAL; http_set_term_flags(s); if (!http_forward_proxy_resp(s, 1)) goto fail; if (rule->flags & REDIRECT_FLAG_FROM_REQ) { /* let's log the request time */ s->logs.request_ts = now_ns; req->analysers &= AN_REQ_FLT_END; if (s->sess->fe == s->be) /* report it if the request was intercepted by the frontend */ _HA_ATOMIC_INC(&s->sess->fe->fe_counters.intercepted_req); } out: free_trash_chunk(chunk); return ret; fail: /* If an error occurred, remove the incomplete HTTP response from the * buffer */ channel_htx_truncate(res, htxbuf(&res->buf)); ret = 0; goto out; } /* This function filters the request header names to only allow [0-9a-zA-Z-] * characters. Depending on the proxy configuration, headers with a name not * matching this charset are removed or the request is rejected with a * 403-Forbidden response if such name are found. It returns HTTP_RULE_RES_CONT * to continue the request processing or HTTP_RULE_RES_DENY if the request is * rejected. */ static enum rule_result http_req_restrict_header_names(struct stream *s, struct htx *htx, struct proxy *px) { struct htx_blk *blk; enum rule_result rule_ret = HTTP_RULE_RES_CONT; blk = htx_get_first_blk(htx); while (blk) { enum htx_blk_type type = htx_get_blk_type(blk); if (type == HTX_BLK_HDR) { struct ist n = htx_get_blk_name(htx, blk); int i, end = istlen(n); for (i = 0; i < end; i++) { if (!isalnum((unsigned char)n.ptr[i]) && n.ptr[i] != '-') { break; } } if (i < end) { /* Disallowed character found - block the request or remove the header */ if (px->options2 & PR_O2_RSTRICT_REQ_HDR_NAMES_BLK) goto block; blk = htx_remove_blk(htx, blk); continue; } } if (type == HTX_BLK_EOH) break; blk = htx_get_next_blk(htx, blk); } out: return rule_ret; block: /* Block the request returning a 403-Forbidden response */ s->txn->status = 403; rule_ret = HTTP_RULE_RES_DENY; goto out; } /* Replace all headers matching the name . The header value is replaced if * it matches the regex . is used for the replacement. If is * set to 1, the full-line is matched and replaced. Otherwise, comma-separated * values are evaluated one by one. It returns 0 on success and -1 on error. */ int http_replace_hdrs(struct stream* s, struct htx *htx, struct ist name, const char *str, struct my_regex *re, int full) { struct http_hdr_ctx ctx; ctx.blk = NULL; while (http_find_header(htx, name, &ctx, full)) { struct buffer *output = get_trash_chunk(); if (!regex_exec_match2(re, ctx.value.ptr, ctx.value.len, MAX_MATCH, pmatch, 0)) continue; output->data = exp_replace(output->area, output->size, ctx.value.ptr, str, pmatch); if (output->data == -1) return -1; if (!http_replace_header_value(htx, &ctx, ist2(output->area, output->data))) return -1; } return 0; } /* This function executes one of the set-{method,path,query,uri} actions. It * takes the string from the variable 'replace' with length 'len', then modifies * the relevant part of the request line accordingly. Then it updates various * pointers to the next elements which were moved, and the total buffer length. * It finds the action to be performed in p[2], previously filled by function * parse_set_req_line(). It returns 0 in case of success, -1 in case of internal * error, though this can be revisited when this code is finally exploited. * * 'action' can be '0' to replace method, '1' to replace path, '2' to replace * query string, 3 to replace uri or 4 to replace the path+query. * * In query string case, the mark question '?' must be set at the start of the * string by the caller, event if the replacement query string is empty. */ int http_req_replace_stline(int action, const char *replace, int len, struct proxy *px, struct stream *s) { struct htx *htx = htxbuf(&s->req.buf); switch (action) { case 0: // method if (!http_replace_req_meth(htx, ist2(replace, len))) return -1; break; case 1: // path if (!http_replace_req_path(htx, ist2(replace, len), 0)) return -1; break; case 2: // query if (!http_replace_req_query(htx, ist2(replace, len))) return -1; break; case 3: // uri if (!http_replace_req_uri(htx, ist2(replace, len))) return -1; break; case 4: // path + query if (!http_replace_req_path(htx, ist2(replace, len), 1)) return -1; break; default: return -1; } return 0; } /* This function replace the HTTP status code and the associated message. The * variable contains the new status code. This function never fails. It * returns 0 in case of success, -1 in case of internal error. */ int http_res_set_status(unsigned int status, struct ist reason, struct stream *s) { struct htx *htx = htxbuf(&s->res.buf); char *res; chunk_reset(&trash); res = ultoa_o(status, trash.area, trash.size); trash.data = res - trash.area; /* Do we have a custom reason format string? */ if (!isttest(reason)) { const char *str = http_get_reason(status); reason = ist(str); } if (!http_replace_res_status(htx, ist2(trash.area, trash.data), reason)) return -1; s->txn->status = status; return 0; } /* Executes the http-request rules for stream , proxy and * transaction . Returns the verdict of the first rule that prevents * further processing of the request (auth, deny, ...), and defaults to * HTTP_RULE_RES_STOP if it executed all rules or stopped on an allow, or * HTTP_RULE_RES_CONT if the last rule was reached. It may set the TX_CLTARPIT * on txn->flags if it encounters a tarpit rule. If is not NULL * and a deny/tarpit rule is matched, it will be filled with this rule's deny * status. */ static enum rule_result http_req_get_intercept_rule(struct proxy *px, struct list *def_rules, struct list *rules, struct stream *s) { struct session *sess = strm_sess(s); struct http_txn *txn = s->txn; struct act_rule *rule; enum rule_result rule_ret = HTTP_RULE_RES_CONT; int act_opts = 0; /* If "the current_rule_list" match the executed rule list, we are in * resume condition. If a resume is needed it is always in the action * and never in the ACL or converters. In this case, we initialise the * current rule, and go to the action execution point. */ if (s->current_rule) { rule = s->current_rule; s->current_rule = NULL; if (s->current_rule_list == rules || (def_rules && s->current_rule_list == def_rules)) goto resume_execution; } s->current_rule_list = ((!def_rules || s->current_rule_list == def_rules) ? rules : def_rules); restart: /* start the ruleset evaluation in strict mode */ txn->req.flags &= ~HTTP_MSGF_SOFT_RW; list_for_each_entry(rule, s->current_rule_list, list) { /* check optional condition */ if (rule->cond) { int ret; ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) /* condition not matched */ continue; } act_opts |= ACT_OPT_FIRST; resume_execution: if (rule->kw->flags & KWF_EXPERIMENTAL) mark_tainted(TAINTED_ACTION_EXP_EXECUTED); /* Always call the action function if defined */ if (rule->action_ptr) { if ((s->scf->flags & SC_FL_ERROR) || ((s->scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) && (px->options & PR_O_ABRT_CLOSE))) act_opts |= ACT_OPT_FINAL; switch (rule->action_ptr(rule, px, sess, s, act_opts)) { case ACT_RET_CONT: break; case ACT_RET_STOP: rule_ret = HTTP_RULE_RES_STOP; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_RET_YIELD: s->current_rule = rule; rule_ret = HTTP_RULE_RES_YIELD; goto end; case ACT_RET_ERR: rule_ret = HTTP_RULE_RES_ERROR; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_RET_DONE: rule_ret = HTTP_RULE_RES_DONE; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_RET_DENY: if (txn->status == -1) txn->status = 403; rule_ret = HTTP_RULE_RES_DENY; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_RET_ABRT: rule_ret = HTTP_RULE_RES_ABRT; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_RET_INV: rule_ret = HTTP_RULE_RES_BADREQ; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; } continue; /* eval the next rule */ } /* If not action function defined, check for known actions */ switch (rule->action) { case ACT_ACTION_ALLOW: rule_ret = HTTP_RULE_RES_STOP; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_ACTION_DENY: txn->status = rule->arg.http_reply->status; txn->http_reply = rule->arg.http_reply; rule_ret = HTTP_RULE_RES_DENY; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_HTTP_REQ_TARPIT: txn->flags |= TX_CLTARPIT; txn->status = rule->arg.http_reply->status; txn->http_reply = rule->arg.http_reply; rule_ret = HTTP_RULE_RES_DENY; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_HTTP_REDIR: { int ret = http_apply_redirect_rule(rule->arg.redir, s, txn); if (ret == 2) // 2 == skip break; rule_ret = ret ? HTTP_RULE_RES_ABRT : HTTP_RULE_RES_ERROR; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; } /* other flags exists, but normally, they never be matched. */ default: break; } } if (def_rules && s->current_rule_list == def_rules) { s->current_rule_list = rules; goto restart; } end: /* if the ruleset evaluation is finished reset the strict mode */ if (rule_ret != HTTP_RULE_RES_YIELD) txn->req.flags &= ~HTTP_MSGF_SOFT_RW; /* we reached the end of the rules, nothing to report */ return rule_ret; } /* Executes the http-response rules for stream and proxy . It * returns one of 5 possible statuses: HTTP_RULE_RES_CONT, HTTP_RULE_RES_STOP, * HTTP_RULE_RES_DONE, HTTP_RULE_RES_YIELD, or HTTP_RULE_RES_BADREQ. If *CONT * is returned, the process can continue the evaluation of next rule list. If * *STOP or *DONE is returned, the process must stop the evaluation. If *BADREQ * is returned, it means the operation could not be processed and a server error * must be returned. If *YIELD is returned, the caller must call again the * function with the same context. */ static enum rule_result http_res_get_intercept_rule(struct proxy *px, struct list *def_rules, struct list *rules, struct stream *s, uint8_t final) { struct session *sess = strm_sess(s); struct http_txn *txn = s->txn; struct act_rule *rule; enum rule_result rule_ret = HTTP_RULE_RES_CONT; int act_opts = 0; if (final) act_opts |= ACT_OPT_FINAL; /* If "the current_rule_list" match the executed rule list, we are in * resume condition. If a resume is needed it is always in the action * and never in the ACL or converters. In this case, we initialise the * current rule, and go to the action execution point. */ if (s->current_rule) { rule = s->current_rule; s->current_rule = NULL; if (s->current_rule_list == rules || (def_rules && s->current_rule_list == def_rules)) goto resume_execution; } s->current_rule_list = ((!def_rules || s->current_rule_list == def_rules) ? rules : def_rules); restart: /* start the ruleset evaluation in strict mode */ txn->rsp.flags &= ~HTTP_MSGF_SOFT_RW; list_for_each_entry(rule, s->current_rule_list, list) { /* check optional condition */ if (rule->cond) { int ret; ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) /* condition not matched */ continue; } act_opts |= ACT_OPT_FIRST; resume_execution: if (rule->kw->flags & KWF_EXPERIMENTAL) mark_tainted(TAINTED_ACTION_EXP_EXECUTED); /* Always call the action function if defined */ if (rule->action_ptr) { if ((s->scf->flags & SC_FL_ERROR) || ((s->scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) && (px->options & PR_O_ABRT_CLOSE))) act_opts |= ACT_OPT_FINAL; switch (rule->action_ptr(rule, px, sess, s, act_opts)) { case ACT_RET_CONT: break; case ACT_RET_STOP: rule_ret = HTTP_RULE_RES_STOP; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_RET_YIELD: s->current_rule = rule; rule_ret = HTTP_RULE_RES_YIELD; goto end; case ACT_RET_ERR: rule_ret = HTTP_RULE_RES_ERROR; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_RET_DONE: rule_ret = HTTP_RULE_RES_DONE; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_RET_DENY: if (txn->status == -1) txn->status = 502; rule_ret = HTTP_RULE_RES_DENY; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_RET_ABRT: rule_ret = HTTP_RULE_RES_ABRT; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_RET_INV: rule_ret = HTTP_RULE_RES_BADREQ; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; } continue; /* eval the next rule */ } /* If not action function defined, check for known actions */ switch (rule->action) { case ACT_ACTION_ALLOW: rule_ret = HTTP_RULE_RES_STOP; /* "allow" rules are OK */ s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_ACTION_DENY: txn->status = rule->arg.http_reply->status; txn->http_reply = rule->arg.http_reply; rule_ret = HTTP_RULE_RES_DENY; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; case ACT_HTTP_REDIR: { int ret = http_apply_redirect_rule(rule->arg.redir, s, txn); if (ret == 2) // 2 == skip break; rule_ret = ret ? HTTP_RULE_RES_ABRT : HTTP_RULE_RES_ERROR; s->last_rule_file = rule->conf.file; s->last_rule_line = rule->conf.line; goto end; } /* other flags exists, but normally, they never be matched. */ default: break; } } if (def_rules && s->current_rule_list == def_rules) { s->current_rule_list = rules; goto restart; } end: /* if the ruleset evaluation is finished reset the strict mode */ if (rule_ret != HTTP_RULE_RES_YIELD) txn->rsp.flags &= ~HTTP_MSGF_SOFT_RW; /* we reached the end of the rules, nothing to report */ return rule_ret; } /* Executes backend and frontend http-after-response rules for the stream , * in that order. it return 1 on success and 0 on error. It is the caller * responsibility to catch error or ignore it. If it catches it, this function * may be called a second time, for the internal error. */ int http_eval_after_res_rules(struct stream *s) { struct list *def_rules, *rules; struct session *sess = s->sess; enum rule_result ret = HTTP_RULE_RES_CONT; /* Eval after-response ruleset only if the reply is not const */ if (s->txn->flags & TX_CONST_REPLY) goto end; /* prune the request variables if not already done and swap to the response variables. */ if (s->vars_reqres.scope != SCOPE_RES) { if (!LIST_ISEMPTY(&s->vars_reqres.head)) vars_prune(&s->vars_reqres, s->sess, s); vars_init_head(&s->vars_reqres, SCOPE_RES); } def_rules = (s->be->defpx ? &s->be->defpx->http_after_res_rules : NULL); rules = &s->be->http_after_res_rules; ret = http_res_get_intercept_rule(s->be, def_rules, rules, s, 1); if ((ret == HTTP_RULE_RES_CONT || ret == HTTP_RULE_RES_STOP) && sess->fe != s->be) { def_rules = ((sess->fe->defpx && sess->fe->defpx != s->be->defpx) ? &sess->fe->defpx->http_after_res_rules : NULL); rules = &sess->fe->http_after_res_rules; ret = http_res_get_intercept_rule(sess->fe, def_rules, rules, s, 1); } end: /* All other codes than CONTINUE, STOP or DONE are forbidden */ return (ret == HTTP_RULE_RES_CONT || ret == HTTP_RULE_RES_STOP || ret == HTTP_RULE_RES_DONE); } /* * Manage client-side cookie. It can impact performance by about 2% so it is * desirable to call it only when needed. This code is quite complex because * of the multiple very crappy and ambiguous syntaxes we have to support. it * highly recommended not to touch this part without a good reason ! */ static void http_manage_client_side_cookies(struct stream *s, struct channel *req) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct htx *htx; struct http_hdr_ctx ctx; char *hdr_beg, *hdr_end, *del_from; char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next; int preserve_hdr; htx = htxbuf(&req->buf); ctx.blk = NULL; while (http_find_header(htx, ist("Cookie"), &ctx, 1)) { int is_first = 1; del_from = NULL; /* nothing to be deleted */ preserve_hdr = 0; /* assume we may kill the whole header */ /* Now look for cookies. Conforming to RFC2109, we have to support * attributes whose name begin with a '$', and associate them with * the right cookie, if we want to delete this cookie. * So there are 3 cases for each cookie read : * 1) it's a special attribute, beginning with a '$' : ignore it. * 2) it's a server id cookie that we *MAY* want to delete : save * some pointers on it (last semi-colon, beginning of cookie...) * 3) it's an application cookie : we *MAY* have to delete a previous * "special" cookie. * At the end of loop, if a "special" cookie remains, we may have to * remove it. If no application cookie persists in the header, we * *MUST* delete it. * * Note: RFC2965 is unclear about the processing of spaces around * the equal sign in the ATTR=VALUE form. A careful inspection of * the RFC explicitly allows spaces before it, and not within the * tokens (attrs or values). An inspection of RFC2109 allows that * too but section 10.1.3 lets one think that spaces may be allowed * after the equal sign too, resulting in some (rare) buggy * implementations trying to do that. So let's do what servers do. * Latest ietf draft forbids spaces all around. Also, earlier RFCs * allowed quoted strings in values, with any possible character * after a backslash, including control chars and delimiters, which * causes parsing to become ambiguous. Browsers also allow spaces * within values even without quotes. * * We have to keep multiple pointers in order to support cookie * removal at the beginning, middle or end of header without * corrupting the header. All of these headers are valid : * * hdr_beg hdr_end * | | * v | * NAME1=VALUE1;NAME2=VALUE2;NAME3=VALUE3 | * NAME1=VALUE1;NAME2_ONLY ;NAME3=VALUE3 v * NAME1 = VALUE 1 ; NAME2 = VALUE2 ; NAME3 = VALUE3 * | | | | | | | * | | | | | | | * | | | | | | +--> next * | | | | | +----> val_end * | | | | +-----------> val_beg * | | | +--------------> equal * | | +----------------> att_end * | +---------------------> att_beg * +--------------------------> prev * */ hdr_beg = ctx.value.ptr; hdr_end = hdr_beg + ctx.value.len; for (prev = hdr_beg; prev < hdr_end; prev = next) { /* Iterate through all cookies on this line */ /* find att_beg */ att_beg = prev; if (!is_first) att_beg++; is_first = 0; while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg)) att_beg++; /* find att_end : this is the first character after the last non * space before the equal. It may be equal to hdr_end. */ equal = att_end = att_beg; while (equal < hdr_end) { if (*equal == '=' || *equal == ',' || *equal == ';') break; if (HTTP_IS_SPHT(*equal++)) continue; att_end = equal; } /* here, points to '=', a delimiter or the end. * is between and , both may be identical. */ /* look for end of cookie if there is an equal sign */ if (equal < hdr_end && *equal == '=') { /* look for the beginning of the value */ val_beg = equal + 1; while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg)) val_beg++; /* find the end of the value, respecting quotes */ next = http_find_cookie_value_end(val_beg, hdr_end); /* make val_end point to the first white space or delimiter after the value */ val_end = next; while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1))) val_end--; } else val_beg = val_end = next = equal; /* We have nothing to do with attributes beginning with * '$'. However, they will automatically be removed if a * header before them is removed, since they're supposed * to be linked together. */ if (*att_beg == '$') continue; /* Ignore cookies with no equal sign */ if (equal == next) { /* This is not our cookie, so we must preserve it. But if we already * scheduled another cookie for removal, we cannot remove the * complete header, but we can remove the previous block itself. */ preserve_hdr = 1; if (del_from != NULL) { int delta = http_del_hdr_value(hdr_beg, hdr_end, &del_from, prev); val_end += delta; next += delta; hdr_end += delta; prev = del_from; del_from = NULL; } continue; } /* if there are spaces around the equal sign, we need to * strip them otherwise we'll get trouble for cookie captures, * or even for rewrites. Since this happens extremely rarely, * it does not hurt performance. */ if (unlikely(att_end != equal || val_beg > equal + 1)) { int stripped_before = 0; int stripped_after = 0; if (att_end != equal) { memmove(att_end, equal, hdr_end - equal); stripped_before = (att_end - equal); equal += stripped_before; val_beg += stripped_before; } if (val_beg > equal + 1) { memmove(equal + 1, val_beg, hdr_end + stripped_before - val_beg); stripped_after = (equal + 1) - val_beg; val_beg += stripped_after; stripped_before += stripped_after; } val_end += stripped_before; next += stripped_before; hdr_end += stripped_before; } /* now everything is as on the diagram above */ /* First, let's see if we want to capture this cookie. We check * that we don't already have a client side cookie, because we * can only capture one. Also as an optimisation, we ignore * cookies shorter than the declared name. */ if (sess->fe->capture_name != NULL && txn->cli_cookie == NULL && (val_end - att_beg >= sess->fe->capture_namelen) && memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) { int log_len = val_end - att_beg; if ((txn->cli_cookie = pool_alloc(pool_head_capture)) == NULL) { ha_alert("HTTP logging : out of memory.\n"); } else { if (log_len > sess->fe->capture_len) log_len = sess->fe->capture_len; memcpy(txn->cli_cookie, att_beg, log_len); txn->cli_cookie[log_len] = 0; } } /* Persistence cookies in passive, rewrite or insert mode have the * following form : * * Cookie: NAME=SRV[|[|]] * * For cookies in prefix mode, the form is : * * Cookie: NAME=SRV~VALUE */ if ((att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) && (memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) { struct server *srv = s->be->srv; char *delim; /* if we're in cookie prefix mode, we'll search the delimiter so that we * have the server ID between val_beg and delim, and the original cookie between * delim+1 and val_end. Otherwise, delim==val_end : * * hdr_beg * | * v * NAME=SRV; # in all but prefix modes * NAME=SRV~OPAQUE ; # in prefix mode * || || | |+-> next * || || | +--> val_end * || || +---------> delim * || |+------------> val_beg * || +-------------> att_end = equal * |+-----------------> att_beg * +------------------> prev * */ if (s->be->ck_opts & PR_CK_PFX) { for (delim = val_beg; delim < val_end; delim++) if (*delim == COOKIE_DELIM) break; } else { char *vbar1; delim = val_end; /* Now check if the cookie contains a date field, which would * appear after a vertical bar ('|') just after the server name * and before the delimiter. */ vbar1 = memchr(val_beg, COOKIE_DELIM_DATE, val_end - val_beg); if (vbar1) { /* OK, so left of the bar is the server's cookie and * right is the last seen date. It is a base64 encoded * 30-bit value representing the UNIX date since the * epoch in 4-second quantities. */ int val; delim = vbar1++; if (val_end - vbar1 >= 5) { val = b64tos30(vbar1); if (val > 0) txn->cookie_last_date = val << 2; } /* look for a second vertical bar */ vbar1 = memchr(vbar1, COOKIE_DELIM_DATE, val_end - vbar1); if (vbar1 && (val_end - vbar1 > 5)) { val = b64tos30(vbar1 + 1); if (val > 0) txn->cookie_first_date = val << 2; } } } /* if the cookie has an expiration date and the proxy wants to check * it, then we do that now. We first check if the cookie is too old, * then only if it has expired. We detect strict overflow because the * time resolution here is not great (4 seconds). Cookies with dates * in the future are ignored if their offset is beyond one day. This * allows an admin to fix timezone issues without expiring everyone * and at the same time avoids keeping unwanted side effects for too * long. */ if (txn->cookie_first_date && s->be->cookie_maxlife && (((signed)(date.tv_sec - txn->cookie_first_date) > (signed)s->be->cookie_maxlife) || ((signed)(txn->cookie_first_date - date.tv_sec) > 86400))) { txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_OLD; delim = val_beg; // let's pretend we have not found the cookie txn->cookie_first_date = 0; txn->cookie_last_date = 0; } else if (txn->cookie_last_date && s->be->cookie_maxidle && (((signed)(date.tv_sec - txn->cookie_last_date) > (signed)s->be->cookie_maxidle) || ((signed)(txn->cookie_last_date - date.tv_sec) > 86400))) { txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_EXPIRED; delim = val_beg; // let's pretend we have not found the cookie txn->cookie_first_date = 0; txn->cookie_last_date = 0; } /* Here, we'll look for the first running server which supports the cookie. * This allows to share a same cookie between several servers, for example * to dedicate backup servers to specific servers only. * However, to prevent clients from sticking to cookie-less backup server * when they have incidentely learned an empty cookie, we simply ignore * empty cookies and mark them as invalid. * The same behaviour is applied when persistence must be ignored. */ if ((delim == val_beg) || (s->flags & (SF_IGNORE_PRST | SF_ASSIGNED))) srv = NULL; while (srv) { if (srv->cookie && (srv->cklen == delim - val_beg) && !memcmp(val_beg, srv->cookie, delim - val_beg)) { if ((srv->cur_state != SRV_ST_STOPPED) || (s->be->options & PR_O_PERSIST) || (s->flags & SF_FORCE_PRST)) { /* we found the server and we can use it */ txn->flags &= ~TX_CK_MASK; txn->flags |= (srv->cur_state != SRV_ST_STOPPED) ? TX_CK_VALID : TX_CK_DOWN; s->flags |= SF_DIRECT | SF_ASSIGNED; s->target = &srv->obj_type; break; } else { /* we found a server, but it's down, * mark it as such and go on in case * another one is available. */ txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_DOWN; } } srv = srv->next; } if (!srv && !(txn->flags & (TX_CK_DOWN|TX_CK_EXPIRED|TX_CK_OLD))) { /* no server matched this cookie or we deliberately skipped it */ txn->flags &= ~TX_CK_MASK; if ((s->flags & (SF_IGNORE_PRST | SF_ASSIGNED))) txn->flags |= TX_CK_UNUSED; else txn->flags |= TX_CK_INVALID; } /* depending on the cookie mode, we may have to either : * - delete the complete cookie if we're in insert+indirect mode, so that * the server never sees it ; * - remove the server id from the cookie value, and tag the cookie as an * application cookie so that it does not get accidentally removed later, * if we're in cookie prefix mode */ if ((s->be->ck_opts & PR_CK_PFX) && (delim != val_end)) { int delta; /* negative */ memmove(val_beg, delim + 1, hdr_end - (delim + 1)); delta = val_beg - (delim + 1); val_end += delta; next += delta; hdr_end += delta; del_from = NULL; preserve_hdr = 1; /* we want to keep this cookie */ } else if (del_from == NULL && (s->be->ck_opts & (PR_CK_INS | PR_CK_IND)) == (PR_CK_INS | PR_CK_IND)) { del_from = prev; } } else { /* This is not our cookie, so we must preserve it. But if we already * scheduled another cookie for removal, we cannot remove the * complete header, but we can remove the previous block itself. */ preserve_hdr = 1; if (del_from != NULL) { int delta = http_del_hdr_value(hdr_beg, hdr_end, &del_from, prev); if (att_beg >= del_from) att_beg += delta; if (att_end >= del_from) att_end += delta; val_beg += delta; val_end += delta; next += delta; hdr_end += delta; prev = del_from; del_from = NULL; } } } /* for each cookie */ /* There are no more cookies on this line. * We may still have one (or several) marked for deletion at the * end of the line. We must do this now in two ways : * - if some cookies must be preserved, we only delete from the * mark to the end of line ; * - if nothing needs to be preserved, simply delete the whole header */ if (del_from) { hdr_end = (preserve_hdr ? del_from : hdr_beg); } if ((hdr_end - hdr_beg) != ctx.value.len) { if (hdr_beg != hdr_end) htx_change_blk_value_len(htx, ctx.blk, hdr_end - hdr_beg); else http_remove_header(htx, &ctx); } } /* for each "Cookie header */ } /* * Manage server-side cookies. It can impact performance by about 2% so it is * desirable to call it only when needed. This function is also used when we * just need to know if there is a cookie (eg: for check-cache). */ static void http_manage_server_side_cookies(struct stream *s, struct channel *res) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct htx *htx; struct http_hdr_ctx ctx; struct server *srv; char *hdr_beg, *hdr_end; char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next; htx = htxbuf(&res->buf); ctx.blk = NULL; while (http_find_header(htx, ist("Set-Cookie"), &ctx, 1)) { int is_first = 1; /* OK, right now we know we have a Set-Cookie* at hdr_beg, and * points to the colon. */ txn->flags |= TX_SCK_PRESENT; /* Maybe we only wanted to see if there was a Set-Cookie (eg: * check-cache is enabled) and we are not interested in checking * them. Warning, the cookie capture is declared in the frontend. */ if (s->be->cookie_name == NULL && sess->fe->capture_name == NULL) break; /* OK so now we know we have to process this response cookie. * The format of the Set-Cookie header is slightly different * from the format of the Cookie header in that it does not * support the comma as a cookie delimiter (thus the header * cannot be folded) because the Expires attribute described in * the original Netscape's spec may contain an unquoted date * with a comma inside. We have to live with this because * many browsers don't support Max-Age and some browsers don't * support quoted strings. However the Set-Cookie2 header is * clean but basically nobody supports it. * * We have to keep multiple pointers in order to support cookie * removal at the beginning, middle or end of header without * corrupting the header (in case of set-cookie2). A special * pointer, points to the beginning of the set-cookie-av * fields after the first semi-colon. The pointer points * either to the end of line (set-cookie) or next unquoted comma * (set-cookie2). All of these headers are valid : * * hdr_beg hdr_end * | | * v | * NAME1 = VALUE 1 ; Secure; Path="/" | * NAME=VALUE; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT v * NAME = VALUE ; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT * NAME1 = VALUE 1 ; Max-Age=0, NAME2=VALUE2; Discard * | | | | | | | | * | | | | | | | +-> next * | | | | | | +------------> scav * | | | | | +--------------> val_end * | | | | +--------------------> val_beg * | | | +----------------------> equal * | | +------------------------> att_end * | +----------------------------> att_beg * +------------------------------> prev * -------------------------------> hdr_beg */ hdr_beg = ctx.value.ptr; hdr_end = hdr_beg + ctx.value.len; for (prev = hdr_beg; prev < hdr_end; prev = next) { /* Iterate through all cookies on this line */ /* find att_beg */ att_beg = prev; if (!is_first) att_beg++; is_first = 0; while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg)) att_beg++; /* find att_end : this is the first character after the last non * space before the equal. It may be equal to hdr_end. */ equal = att_end = att_beg; while (equal < hdr_end) { if (*equal == '=' || *equal == ';') break; if (HTTP_IS_SPHT(*equal++)) continue; att_end = equal; } /* here, points to '=', a delimiter or the end. * is between and , both may be identical. */ /* look for end of cookie if there is an equal sign */ if (equal < hdr_end && *equal == '=') { /* look for the beginning of the value */ val_beg = equal + 1; while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg)) val_beg++; /* find the end of the value, respecting quotes */ next = http_find_cookie_value_end(val_beg, hdr_end); /* make val_end point to the first white space or delimiter after the value */ val_end = next; while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1))) val_end--; } else { /* points to next comma, semi-colon or EOL */ val_beg = val_end = next = equal; } if (next < hdr_end) { /* For Set-Cookie, since commas are permitted * in values, skip to the end. */ next = hdr_end; } /* Now everything is as on the diagram above */ /* Ignore cookies with no equal sign */ if (equal == val_end) continue; /* If there are spaces around the equal sign, we need to * strip them otherwise we'll get trouble for cookie captures, * or even for rewrites. Since this happens extremely rarely, * it does not hurt performance. */ if (unlikely(att_end != equal || val_beg > equal + 1)) { int stripped_before = 0; int stripped_after = 0; if (att_end != equal) { memmove(att_end, equal, hdr_end - equal); stripped_before = (att_end - equal); equal += stripped_before; val_beg += stripped_before; } if (val_beg > equal + 1) { memmove(equal + 1, val_beg, hdr_end + stripped_before - val_beg); stripped_after = (equal + 1) - val_beg; val_beg += stripped_after; stripped_before += stripped_after; } val_end += stripped_before; next += stripped_before; hdr_end += stripped_before; htx_change_blk_value_len(htx, ctx.blk, hdr_end - hdr_beg); ctx.value.len = hdr_end - hdr_beg; } /* First, let's see if we want to capture this cookie. We check * that we don't already have a server side cookie, because we * can only capture one. Also as an optimisation, we ignore * cookies shorter than the declared name. */ if (sess->fe->capture_name != NULL && txn->srv_cookie == NULL && (val_end - att_beg >= sess->fe->capture_namelen) && memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) { int log_len = val_end - att_beg; if ((txn->srv_cookie = pool_alloc(pool_head_capture)) == NULL) { ha_alert("HTTP logging : out of memory.\n"); } else { if (log_len > sess->fe->capture_len) log_len = sess->fe->capture_len; memcpy(txn->srv_cookie, att_beg, log_len); txn->srv_cookie[log_len] = 0; } } srv = objt_server(s->target); /* now check if we need to process it for persistence */ if (!(s->flags & SF_IGNORE_PRST) && (att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) && (memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) { /* assume passive cookie by default */ txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_FOUND; /* If the cookie is in insert mode on a known server, we'll delete * this occurrence because we'll insert another one later. * We'll delete it too if the "indirect" option is set and we're in * a direct access. */ if (s->be->ck_opts & PR_CK_PSV) { /* The "preserve" flag was set, we don't want to touch the * server's cookie. */ } else if ((srv && (s->be->ck_opts & PR_CK_INS)) || ((s->flags & SF_DIRECT) && (s->be->ck_opts & PR_CK_IND))) { /* this cookie must be deleted */ if (prev == hdr_beg && next == hdr_end) { /* whole header */ http_remove_header(htx, &ctx); /* note: while both invalid now, and * are still equal, so the for() will stop as expected. */ } else { /* just remove the value */ int delta = http_del_hdr_value(hdr_beg, hdr_end, &prev, next); next = prev; hdr_end += delta; } txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_DELETED; /* and go on with next cookie */ } else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_RW)) { /* replace bytes val_beg->val_end with the cookie name associated * with this server since we know it. */ int sliding, delta; ctx.value = ist2(val_beg, val_end - val_beg); ctx.lws_before = ctx.lws_after = 0; http_replace_header_value(htx, &ctx, ist2(srv->cookie, srv->cklen)); delta = srv->cklen - (val_end - val_beg); sliding = (ctx.value.ptr - val_beg); hdr_beg += sliding; val_beg += sliding; next += sliding + delta; hdr_end += sliding + delta; txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_REPLACED; } else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_PFX)) { /* insert the cookie name associated with this server * before existing cookie, and insert a delimiter between them.. */ int sliding, delta; ctx.value = ist2(val_beg, 0); ctx.lws_before = ctx.lws_after = 0; http_replace_header_value(htx, &ctx, ist2(srv->cookie, srv->cklen + 1)); delta = srv->cklen + 1; sliding = (ctx.value.ptr - val_beg); hdr_beg += sliding; val_beg += sliding; next += sliding + delta; hdr_end += sliding + delta; val_beg[srv->cklen] = COOKIE_DELIM; txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_REPLACED; } } /* that's done for this cookie, check the next one on the same * line when next != hdr_end (which should normally not happen * with set-cookie2 support removed). */ } } } /* * Parses the Cache-Control and Pragma request header fields to determine if * the request may be served from the cache and/or if it is cacheable. Updates * s->txn->flags. */ void http_check_request_for_cacheability(struct stream *s, struct channel *req) { struct http_txn *txn = s->txn; struct htx *htx; struct http_hdr_ctx ctx = { .blk = NULL }; int pragma_found, cc_found; if ((txn->flags & (TX_CACHEABLE|TX_CACHE_IGNORE)) == TX_CACHE_IGNORE) return; /* nothing more to do here */ htx = htxbuf(&req->buf); pragma_found = cc_found = 0; /* Check "pragma" header for HTTP/1.0 compatibility. */ if (http_find_header(htx, ist("pragma"), &ctx, 1)) { if (isteqi(ctx.value, ist("no-cache"))) { pragma_found = 1; } } ctx.blk = NULL; /* Don't use the cache and don't try to store if we found the * Authorization header */ if (http_find_header(htx, ist("authorization"), &ctx, 1)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; txn->flags |= TX_CACHE_IGNORE; } /* Look for "cache-control" header and iterate over all the values * until we find one that specifies that caching is possible or not. */ ctx.blk = NULL; while (http_find_header(htx, ist("cache-control"), &ctx, 0)) { cc_found = 1; /* We don't check the values after max-age, max-stale nor min-fresh, * we simply don't use the cache when they're specified. */ if (istmatchi(ctx.value, ist("max-age")) || istmatchi(ctx.value, ist("no-cache")) || istmatchi(ctx.value, ist("max-stale")) || istmatchi(ctx.value, ist("min-fresh"))) { txn->flags |= TX_CACHE_IGNORE; continue; } if (istmatchi(ctx.value, ist("no-store"))) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; continue; } } /* RFC7234#5.4: * When the Cache-Control header field is also present and * understood in a request, Pragma is ignored. * When the Cache-Control header field is not present in a * request, caches MUST consider the no-cache request * pragma-directive as having the same effect as if * "Cache-Control: no-cache" were present. */ if (!cc_found && pragma_found) txn->flags |= TX_CACHE_IGNORE; } /* * Check if response is cacheable or not. Updates s->txn->flags. */ void http_check_response_for_cacheability(struct stream *s, struct channel *res) { struct http_txn *txn = s->txn; struct http_hdr_ctx ctx = { .blk = NULL }; struct htx *htx; int has_freshness_info = 0; int has_validator = 0; int has_null_maxage = 0; if (txn->status < 200) { /* do not try to cache interim responses! */ txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } htx = htxbuf(&res->buf); /* Check "pragma" header for HTTP/1.0 compatibility. */ if (http_find_header(htx, ist("pragma"), &ctx, 1)) { if (isteqi(ctx.value, ist("no-cache"))) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } } /* Look for "cache-control" header and iterate over all the values * until we find one that specifies that caching is possible or not. */ ctx.blk = NULL; while (http_find_header(htx, ist("cache-control"), &ctx, 0)) { if (isteqi(ctx.value, ist("public"))) { txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; continue; } /* This max-age might be overridden by a s-maxage directive, do * not unset the TX_CACHEABLE yet. */ if (isteqi(ctx.value, ist("max-age=0"))) { has_null_maxage = 1; continue; } if (isteqi(ctx.value, ist("private")) || isteqi(ctx.value, ist("no-cache")) || isteqi(ctx.value, ist("no-store")) || isteqi(ctx.value, ist("s-maxage=0"))) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; continue; } /* We might have a no-cache="set-cookie" form. */ if (istmatchi(ctx.value, ist("no-cache=\"set-cookie"))) { txn->flags &= ~TX_CACHE_COOK; continue; } if (istmatchi(ctx.value, ist("s-maxage"))) { has_freshness_info = 1; has_null_maxage = 0; /* The null max-age is overridden, ignore it */ continue; } if (istmatchi(ctx.value, ist("max-age"))) { has_freshness_info = 1; continue; } } /* We had a 'max-age=0' directive but no extra s-maxage, do not cache * the response. */ if (has_null_maxage) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; } /* If no freshness information could be found in Cache-Control values, * look for an Expires header. */ if (!has_freshness_info) { ctx.blk = NULL; has_freshness_info = http_find_header(htx, ist("expires"), &ctx, 0); } /* If no freshness information could be found in Cache-Control or Expires * values, look for an explicit validator. */ if (!has_freshness_info) { ctx.blk = NULL; has_validator = 1; if (!http_find_header(htx, ist("etag"), &ctx, 0)) { ctx.blk = NULL; if (!http_find_header(htx, ist("last-modified"), &ctx, 0)) has_validator = 0; } } /* We won't store an entry that has neither a cache validator nor an * explicit expiration time, as suggested in RFC 7234#3. */ if (!has_freshness_info && !has_validator) txn->flags &= ~TX_CACHEABLE; } /* * In a GET, HEAD or POST request, check if the requested URI matches the stats uri * for the current proxy. * * It is assumed that the request is either a HEAD, GET, or POST and that the * uri_auth field is valid. * * Returns 1 if stats should be provided, otherwise 0. */ static int http_stats_check_uri(struct stream *s, struct http_txn *txn, struct proxy *px) { struct uri_auth *uri_auth = px->uri_auth; struct htx *htx; struct htx_sl *sl; struct ist uri; if (!uri_auth) return 0; if (txn->meth != HTTP_METH_GET && txn->meth != HTTP_METH_HEAD && txn->meth != HTTP_METH_POST) return 0; htx = htxbuf(&s->req.buf); sl = http_get_stline(htx); uri = htx_sl_req_uri(sl); if (*uri_auth->uri_prefix == '/') { struct http_uri_parser parser = http_uri_parser_init(uri); uri = http_parse_path(&parser); } /* check URI size */ if (uri_auth->uri_len > uri.len) return 0; if (memcmp(uri.ptr, uri_auth->uri_prefix, uri_auth->uri_len) != 0) return 0; return 1; } /* This function prepares an applet to handle the stats. It can deal with the * "100-continue" expectation, check that admin rules are met for POST requests, * and program a response message if something was unexpected. It cannot fail * and always relies on the stats applet to complete the job. It does not touch * analysers nor counters, which are left to the caller. It does not touch * s->target which is supposed to already point to the stats applet. The caller * is expected to have already assigned an appctx to the stream. */ static int http_handle_stats(struct stream *s, struct channel *req, struct proxy *px) { struct stats_admin_rule *stats_admin_rule; struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct uri_auth *uri_auth = px->uri_auth; const char *h, *lookup, *end; struct appctx *appctx = __sc_appctx(s->scb); struct show_stat_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx)); struct htx *htx; struct htx_sl *sl; appctx->st1 = 0; ctx->state = STAT_STATE_INIT; ctx->st_code = STAT_STATUS_INIT; ctx->http_px = px; ctx->flags |= uri_auth->flags; ctx->flags |= STAT_FMT_HTML; /* assume HTML mode by default */ if ((msg->flags & HTTP_MSGF_VER_11) && (txn->meth != HTTP_METH_HEAD)) ctx->flags |= STAT_CHUNKED; htx = htxbuf(&req->buf); sl = http_get_stline(htx); lookup = HTX_SL_REQ_UPTR(sl) + uri_auth->uri_len; end = HTX_SL_REQ_UPTR(sl) + HTX_SL_REQ_ULEN(sl); for (h = lookup; h <= end - 3; h++) { if (memcmp(h, ";up", 3) == 0) { ctx->flags |= STAT_HIDE_DOWN; break; } } for (h = lookup; h <= end - 9; h++) { if (memcmp(h, ";no-maint", 9) == 0) { ctx->flags |= STAT_HIDE_MAINT; break; } } if (uri_auth->refresh) { for (h = lookup; h <= end - 10; h++) { if (memcmp(h, ";norefresh", 10) == 0) { ctx->flags |= STAT_NO_REFRESH; break; } } } for (h = lookup; h <= end - 4; h++) { if (memcmp(h, ";csv", 4) == 0) { ctx->flags &= ~(STAT_FMT_MASK|STAT_JSON_SCHM); break; } } for (h = lookup; h <= end - 6; h++) { if (memcmp(h, ";typed", 6) == 0) { ctx->flags &= ~(STAT_FMT_MASK|STAT_JSON_SCHM); ctx->flags |= STAT_FMT_TYPED; break; } } for (h = lookup; h <= end - 5; h++) { if (memcmp(h, ";json", 5) == 0) { ctx->flags &= ~(STAT_FMT_MASK|STAT_JSON_SCHM); ctx->flags |= STAT_FMT_JSON; break; } } for (h = lookup; h <= end - 12; h++) { if (memcmp(h, ";json-schema", 12) == 0) { ctx->flags &= ~STAT_FMT_MASK; ctx->flags |= STAT_JSON_SCHM; break; } } for (h = lookup; h <= end - 8; h++) { if (memcmp(h, ";st=", 4) == 0) { int i; h += 4; ctx->st_code = STAT_STATUS_UNKN; for (i = STAT_STATUS_INIT + 1; i < STAT_STATUS_SIZE; i++) { if (strncmp(stat_status_codes[i], h, 4) == 0) { ctx->st_code = i; break; } } break; } } ctx->scope_str = 0; ctx->scope_len = 0; for (h = lookup; h <= end - 8; h++) { if (memcmp(h, STAT_SCOPE_INPUT_NAME "=", strlen(STAT_SCOPE_INPUT_NAME) + 1) == 0) { int itx = 0; const char *h2; char scope_txt[STAT_SCOPE_TXT_MAXLEN + 1]; const char *err; h += strlen(STAT_SCOPE_INPUT_NAME) + 1; h2 = h; ctx->scope_str = h2 - HTX_SL_REQ_UPTR(sl); while (h < end) { if (*h == ';' || *h == '&' || *h == ' ') break; itx++; h++; } if (itx > STAT_SCOPE_TXT_MAXLEN) itx = STAT_SCOPE_TXT_MAXLEN; ctx->scope_len = itx; /* scope_txt = search query, ctx->scope_len is always <= STAT_SCOPE_TXT_MAXLEN */ memcpy(scope_txt, h2, itx); scope_txt[itx] = '\0'; err = invalid_char(scope_txt); if (err) { /* bad char in search text => clear scope */ ctx->scope_str = 0; ctx->scope_len = 0; } break; } } /* now check whether we have some admin rules for this request */ list_for_each_entry(stats_admin_rule, &uri_auth->admin_rules, list) { int ret = 1; if (stats_admin_rule->cond) { ret = acl_exec_cond(stats_admin_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (stats_admin_rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { /* no rule, or the rule matches */ ctx->flags |= STAT_ADMIN; break; } } if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD) appctx->st0 = STAT_HTTP_HEAD; else if (txn->meth == HTTP_METH_POST) { if (ctx->flags & STAT_ADMIN) { appctx->st0 = STAT_HTTP_POST; if (msg->msg_state < HTTP_MSG_DATA) req->analysers |= AN_REQ_HTTP_BODY; } else { /* POST without admin level */ ctx->flags &= ~STAT_CHUNKED; ctx->st_code = STAT_STATUS_DENY; appctx->st0 = STAT_HTTP_LAST; } } else { /* Unsupported method */ ctx->flags &= ~STAT_CHUNKED; ctx->st_code = STAT_STATUS_IVAL; appctx->st0 = STAT_HTTP_LAST; } s->task->nice = -32; /* small boost for HTTP statistics */ return 1; } /* This function waits for the message payload at most