/* * HTTP samples fetching * * Copyright 2000-2018 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* this struct is used between calls to smp_fetch_hdr() or smp_fetch_cookie() */ static THREAD_LOCAL struct http_hdr_ctx static_http_hdr_ctx; /* this is used to convert raw connection buffers to htx */ static THREAD_LOCAL struct buffer static_raw_htx_chunk; static THREAD_LOCAL char *static_raw_htx_buf; #define SMP_REQ_CHN(smp) (smp->strm ? &smp->strm->req : NULL) #define SMP_RES_CHN(smp) (smp->strm ? &smp->strm->res : NULL) /* This function returns the static htx chunk, where raw connections get * converted to HTX as needed for samplxsing. */ struct buffer *get_raw_htx_chunk(void) { chunk_reset(&static_raw_htx_chunk); return &static_raw_htx_chunk; } static int alloc_raw_htx_chunk_per_thread() { static_raw_htx_buf = malloc(global.tune.bufsize); if (!static_raw_htx_buf) return 0; chunk_init(&static_raw_htx_chunk, static_raw_htx_buf, global.tune.bufsize); return 1; } static void free_raw_htx_chunk_per_thread() { ha_free(&static_raw_htx_buf); } REGISTER_PER_THREAD_ALLOC(alloc_raw_htx_chunk_per_thread); REGISTER_PER_THREAD_FREE(free_raw_htx_chunk_per_thread); /* * Returns the data from Authorization header. Function may be called more * than once so data is stored in txn->auth_data. When no header is found * or auth method is unknown auth_method is set to HTTP_AUTH_WRONG to avoid * searching again for something we are unable to find anyway. However, if * the result if valid, the cache is not reused because we would risk to * have the credentials overwritten by another stream in parallel. * The caller is responsible for passing a sample with a valid stream/txn, * and a valid htx. */ static int get_http_auth(struct sample *smp, struct htx *htx) { struct stream *s = smp->strm; struct http_txn *txn = s->txn; struct http_hdr_ctx ctx = { .blk = NULL }; struct ist hdr; struct buffer auth_method; char *p; int len; #ifdef DEBUG_AUTH printf("Auth for stream %p: %d\n", s, txn->auth.method); #endif if (txn->auth.method == HTTP_AUTH_WRONG) return 0; txn->auth.method = HTTP_AUTH_WRONG; if (txn->flags & TX_USE_PX_CONN) hdr = ist("Proxy-Authorization"); else hdr = ist("Authorization"); ctx.blk = NULL; if (!http_find_header(htx, hdr, &ctx, 0)) return 0; p = memchr(ctx.value.ptr, ' ', ctx.value.len); if (!p || p == ctx.value.ptr) /* if no space was found or if the space is the first character */ return 0; len = p - ctx.value.ptr; if (chunk_initlen(&auth_method, ctx.value.ptr, 0, len) != 1) return 0; /* According to RFC7235, there could be multiple spaces between the * scheme and its value, we must skip all of them. */ while (p < istend(ctx.value) && *p == ' ') ++p; chunk_initlen(&txn->auth.method_data, p, 0, istend(ctx.value) - p); if (!strncasecmp("Basic", auth_method.area, auth_method.data)) { struct buffer *http_auth = get_trash_chunk(); len = base64dec(txn->auth.method_data.area, txn->auth.method_data.data, http_auth->area, global.tune.bufsize - 1); if (len < 0) return 0; http_auth->area[len] = '\0'; p = strchr(http_auth->area, ':'); if (!p) return 0; txn->auth.user = http_auth->area; *p = '\0'; txn->auth.pass = p+1; txn->auth.method = HTTP_AUTH_BASIC; return 1; } else if (!strncasecmp("Bearer", auth_method.area, auth_method.data)) { txn->auth.method = HTTP_AUTH_BEARER; return 1; } return 0; } /* This function ensures that the prerequisites for an L7 fetch are ready, * which means that a request or response is ready. If some data is missing, * a parsing attempt is made. This is useful in TCP-based ACLs which are able * to extract data from L7. If is non-null during a prefetch, another * test is made to ensure the required information is not gone. * * The function returns : * NULL with SMP_F_MAY_CHANGE in the sample flags if some data is missing to * decide whether or not an HTTP message is present ; * NULL if the requested data cannot be fetched or if it is certain that * we'll never have any HTTP message there; this includes null strm or chn. * NULL if the sample's direction does not match the channel's (i.e. the * function was asked to work on the wrong channel) * The HTX message if ready */ struct htx *smp_prefetch_htx(struct sample *smp, struct channel *chn, struct check *check, int vol) { struct stream *s = smp->strm; struct http_txn *txn = NULL; struct htx *htx = NULL; struct http_msg *msg; struct htx_sl *sl; if (chn && (((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ && (chn->flags & CF_ISRESP)) || ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_RES && !(chn->flags & CF_ISRESP)))) return 0; /* Note: it is possible that is NULL when called before stream * initialization (eg: tcp-request connection), so this function is the * one responsible for guarding against this case for all HTTP users. * * In the health check context, the stream and the channel must be NULL * and must be set. In this case, only the input buffer, * corresponding to the response, is considered. It is the caller * responsibility to provide . */ BUG_ON(check && (s || chn)); if (!s || !chn) { if (check) { htx = htxbuf(&check->bi); /* Analyse not yet started */ if (htx_is_empty(htx) || htx->first == -1) return NULL; sl = http_get_stline(htx); if (vol && !sl) { /* The start-line was already forwarded, it is too late to fetch anything */ return NULL; } goto end; } return NULL; } if (!s->txn && !http_create_txn(s)) return NULL; txn = s->txn; msg = (!(chn->flags & CF_ISRESP) ? &txn->req : &txn->rsp); if (IS_HTX_STRM(s)) { htx = htxbuf(&chn->buf); if (htx->flags & HTX_FL_PARSING_ERROR) return NULL; if (msg->msg_state < HTTP_MSG_BODY) { /* Analyse not yet started */ if (htx_is_empty(htx) || htx->first == -1) { /* Parsing is done by the mux, just wait */ smp->flags |= SMP_F_MAY_CHANGE; return NULL; } } sl = http_get_stline(htx); if (vol && !sl) { /* The start-line was already forwarded, it is too late to fetch anything */ return NULL; } } else { /* RAW mode */ struct buffer *buf; struct h1m h1m; struct http_hdr hdrs[global.tune.max_http_hdr]; union h1_sl h1sl; unsigned int flags = HTX_FL_NONE; int ret; /* no HTTP fetch on the response in TCP mode */ if (chn->flags & CF_ISRESP) return NULL; /* Now we are working on the request only */ buf = &chn->buf; if (b_head(buf) + b_data(buf) > b_wrap(buf)) b_slow_realign(buf, trash.area, 0); h1m_init_req(&h1m); ret = h1_headers_to_hdr_list(b_head(buf), b_stop(buf), hdrs, sizeof(hdrs)/sizeof(hdrs[0]), &h1m, &h1sl); if (ret <= 0) { /* Invalid or too big*/ if (ret < 0 || channel_full(&s->req, global.tune.maxrewrite)) return NULL; /* wait for a full request */ smp->flags |= SMP_F_MAY_CHANGE; return NULL; } /* OK we just got a valid HTTP message. We have to convert it * into an HTX message. */ if (unlikely(h1sl.rq.v.len == 0)) { /* try to convert HTTP/0.9 requests to HTTP/1.0 */ if (h1sl.rq.meth != HTTP_METH_GET || !h1sl.rq.u.len) return NULL; h1sl.rq.v = ist("HTTP/1.0"); } /* Set HTX start-line flags */ if (h1m.flags & H1_MF_VER_11) flags |= HTX_SL_F_VER_11; if (h1m.flags & H1_MF_XFER_ENC) flags |= HTX_SL_F_XFER_ENC; flags |= HTX_SL_F_XFER_LEN; if (h1m.flags & H1_MF_CHNK) flags |= HTX_SL_F_CHNK; else if (h1m.flags & H1_MF_CLEN) flags |= HTX_SL_F_CLEN; htx = htx_from_buf(get_raw_htx_chunk()); sl = htx_add_stline(htx, HTX_BLK_REQ_SL, flags, h1sl.rq.m, h1sl.rq.u, h1sl.rq.v); if (!sl || !htx_add_all_headers(htx, hdrs)) return NULL; sl->info.req.meth = h1sl.rq.meth; } /* OK we just got a valid HTTP message. If not already done by * HTTP analyzers, we have some minor preparation to perform so * that further checks can rely on HTTP tests. */ if (sl && msg->msg_state < HTTP_MSG_BODY) { if (!(chn->flags & CF_ISRESP)) { txn->meth = sl->info.req.meth; if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD) s->flags |= SF_REDIRECTABLE; } else { if (txn->status == -1) txn->status = sl->info.res.status; if (!(htx->flags & HTX_FL_PROXY_RESP) && txn->server_status == -1) txn->server_status = sl->info.res.status; } if (sl->flags & HTX_SL_F_VER_11) msg->flags |= HTTP_MSGF_VER_11; } /* everything's OK */ end: return htx; } /* This function fetches the method of current HTTP request and stores * it in the global pattern struct as a chunk. There are two possibilities : * - if the method is known (not HTTP_METH_OTHER), its identifier is stored * in and is NULL ; * - if the method is unknown (HTTP_METH_OTHER), points to the text and * to its length. * This is intended to be used with pat_match_meth() only. */ static int smp_fetch_meth(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct http_txn *txn; struct htx *htx = NULL; int meth; txn = (smp->strm ? smp->strm->txn : NULL); if (!txn) return 0; meth = txn->meth; if (meth == HTTP_METH_OTHER) { htx = smp_prefetch_htx(smp, chn, NULL, 1); if (!htx) return 0; meth = txn->meth; } smp->data.type = SMP_T_METH; smp->data.u.meth.meth = meth; if (meth == HTTP_METH_OTHER) { struct htx_sl *sl; sl = http_get_stline(htx); smp->flags |= SMP_F_CONST; smp->data.u.meth.str.area = HTX_SL_REQ_MPTR(sl); smp->data.u.meth.str.data = HTX_SL_REQ_MLEN(sl); } smp->flags |= SMP_F_VOL_1ST; return 1; } static int smp_fetch_rqver(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct htx_sl *sl; char *ptr; int len; if (!htx) return 0; sl = http_get_stline(htx); len = HTX_SL_REQ_VLEN(sl); ptr = HTX_SL_REQ_VPTR(sl); while ((len-- > 0) && (*ptr++ != '/')); if (len <= 0) return 0; smp->data.type = SMP_T_STR; smp->data.u.str.area = ptr; smp->data.u.str.data = len; smp->flags = SMP_F_VOL_1ST | SMP_F_CONST; return 1; } static int smp_fetch_stver(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_RES_CHN(smp); struct check *check = objt_check(smp->sess->origin); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); struct htx_sl *sl; char *ptr; int len; if (!htx) return 0; sl = http_get_stline(htx); len = HTX_SL_RES_VLEN(sl); ptr = HTX_SL_RES_VPTR(sl); while ((len-- > 0) && (*ptr++ != '/')); if (len <= 0) return 0; smp->data.type = SMP_T_STR; smp->data.u.str.area = ptr; smp->data.u.str.data = len; smp->flags = SMP_F_VOL_1ST | SMP_F_CONST; return 1; } /* 3. Check on Status Code. We manipulate integers here. */ static int smp_fetch_stcode(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_RES_CHN(smp); struct check *check = objt_check(smp->sess->origin); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); struct htx_sl *sl; char *ptr; int len; if (!htx) return 0; sl = http_get_stline(htx); len = HTX_SL_RES_CLEN(sl); ptr = HTX_SL_RES_CPTR(sl); smp->data.type = SMP_T_SINT; smp->data.u.sint = __strl2ui(ptr, len); smp->flags = SMP_F_VOL_1ST; return 1; } /* It returns the server or the txn status code, depending on the keyword */ static int smp_fetch_srv_status(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; short status; txn = (smp->strm ? smp->strm->txn : NULL); if (!txn) return 0; status = (kw[0] == 't' ? txn->status : txn->server_status); if (status == -1) { struct channel *chn = SMP_RES_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); if (!htx) return 0; status = (kw[0] == 't' ? txn->status : txn->server_status); } if (kw[0] != 't') smp->flags = SMP_F_VOL_1ST; smp->data.type = SMP_T_SINT; smp->data.u.sint = status; return 1; } static int smp_fetch_uniqueid(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct ist unique_id; if (LIST_ISEMPTY(&smp->sess->fe->format_unique_id)) return 0; if (!smp->strm) return 0; unique_id = stream_generate_unique_id(smp->strm, &smp->sess->fe->format_unique_id); if (!isttest(unique_id)) return 0; smp->data.u.str.area = smp->strm->unique_id.ptr; smp->data.u.str.data = smp->strm->unique_id.len; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; return 1; } /* Returns a string block containing all headers including the * empty line which separates headers from the body. This is useful * for some headers analysis. */ static int smp_fetch_hdrs(const struct arg *args, struct sample *smp, const char *kw, void *private) { /* possible keywords: req.hdrs, res.hdrs */ struct channel *chn = ((kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp)); struct check *check = ((kw[2] == 's') ? objt_check(smp->sess->origin) : NULL); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); struct buffer *temp; int32_t pos; if (!htx) return 0; temp = get_trash_chunk(); for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type = htx_get_blk_type(blk); if (type == HTX_BLK_HDR) { struct ist n = htx_get_blk_name(htx, blk); struct ist v = htx_get_blk_value(htx, blk); if (!h1_format_htx_hdr(n, v, temp)) return 0; } else if (type == HTX_BLK_EOH) { if (!chunk_memcat(temp, "\r\n", 2)) return 0; break; } } smp->data.type = SMP_T_STR; smp->data.u.str = *temp; return 1; } /* Returns the header request in a length/value encoded format. * This is useful for exchanges with the SPOE. * * A "length value" is a multibyte code encoding numbers. It uses the * SPOE format. The encoding is the following: * * Each couple "header name" / "header value" is composed * like this: * "length value" "header name bytes" * "length value" "header value bytes" * When the last header is reached, the header name and the header * value are empty. Their length are 0 */ static int smp_fetch_hdrs_bin(const struct arg *args, struct sample *smp, const char *kw, void *private) { /* possible keywords: req.hdrs_bin, res.hdrs_bin */ struct channel *chn = ((kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp)); struct check *check = ((kw[2] == 's') ? objt_check(smp->sess->origin) : NULL); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); struct buffer *temp; char *p, *end; int32_t pos; int ret; if (!htx) return 0; temp = get_trash_chunk(); p = temp->area; end = temp->area + temp->size; for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type = htx_get_blk_type(blk); struct ist n, v; if (type == HTX_BLK_HDR) { n = htx_get_blk_name(htx,blk); v = htx_get_blk_value(htx, blk); /* encode the header name. */ ret = encode_varint(n.len, &p, end); if (ret == -1) return 0; if (p + n.len > end) return 0; memcpy(p, n.ptr, n.len); p += n.len; /* encode the header value. */ ret = encode_varint(v.len, &p, end); if (ret == -1) return 0; if (p + v.len > end) return 0; memcpy(p, v.ptr, v.len); p += v.len; } else if (type == HTX_BLK_EOH) { /* encode the end of the header list with empty * header name and header value. */ ret = encode_varint(0, &p, end); if (ret == -1) return 0; ret = encode_varint(0, &p, end); if (ret == -1) return 0; break; } } /* Initialise sample data which will be filled. */ smp->data.type = SMP_T_BIN; smp->data.u.str.area = temp->area; smp->data.u.str.data = p - temp->area; smp->data.u.str.size = temp->size; return 1; } /* returns the longest available part of the body. This requires that the body * has been waited for using http-buffer-request. */ static int smp_fetch_body(const struct arg *args, struct sample *smp, const char *kw, void *private) { /* possible keywords: req.body, res.body */ struct channel *chn = ((kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp)); struct check *check = ((kw[2] == 's') ? objt_check(smp->sess->origin) : NULL); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); struct buffer *temp; int32_t pos; int finished = 0; if (!htx) return 0; temp = get_trash_chunk(); for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type = htx_get_blk_type(blk); if (type == HTX_BLK_TLR || type == HTX_BLK_EOT) { finished = 1; break; } if (type == HTX_BLK_DATA) { if (!h1_format_htx_data(htx_get_blk_value(htx, blk), temp, 0)) return 0; } } smp->data.type = SMP_T_BIN; smp->data.u.str = *temp; smp->flags = SMP_F_VOL_TEST; if (!finished && (check || (chn && !channel_full(chn, global.tune.maxrewrite) && !(chn_prod(chn)->flags & (SC_FL_EOI|SC_FL_EOS|SC_FL_ABRT_DONE))))) smp->flags |= SMP_F_MAY_CHANGE; return 1; } /* returns the available length of the body. This requires that the body * has been waited for using http-buffer-request. */ static int smp_fetch_body_len(const struct arg *args, struct sample *smp, const char *kw, void *private) { /* possible keywords: req.body_len, res.body_len */ struct channel *chn = ((kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp)); struct check *check = ((kw[2] == 's') ? objt_check(smp->sess->origin) : NULL); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); int32_t pos; unsigned long long len = 0; if (!htx) return 0; for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type = htx_get_blk_type(blk); if (type == HTX_BLK_TLR || type == HTX_BLK_EOT) break; if (type == HTX_BLK_DATA) len += htx_get_blksz(blk); } smp->data.type = SMP_T_SINT; smp->data.u.sint = len; smp->flags = SMP_F_VOL_TEST; return 1; } /* returns the advertised length of the body, or the advertised size of the * chunks available in the buffer. This requires that the body has been waited * for using http-buffer-request. */ static int smp_fetch_body_size(const struct arg *args, struct sample *smp, const char *kw, void *private) { /* possible keywords: req.body_size, res.body_size */ struct channel *chn = ((kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp)); struct check *check = ((kw[2] == 's') ? objt_check(smp->sess->origin) : NULL); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); int32_t pos; unsigned long long len = 0; if (!htx) return 0; for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type = htx_get_blk_type(blk); if (type == HTX_BLK_TLR || type == HTX_BLK_EOT) break; if (type == HTX_BLK_DATA) len += htx_get_blksz(blk); } if (htx->extra != HTX_UNKOWN_PAYLOAD_LENGTH) len += htx->extra; smp->data.type = SMP_T_SINT; smp->data.u.sint = len; smp->flags = SMP_F_VOL_TEST; return 1; } /* 4. Check on URL/URI. A pointer to the URI is stored. */ static int smp_fetch_url(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct htx_sl *sl; if (!htx) return 0; sl = http_get_stline(htx); smp->data.type = SMP_T_STR; smp->data.u.str.area = HTX_SL_REQ_UPTR(sl); smp->data.u.str.data = HTX_SL_REQ_ULEN(sl); smp->flags = SMP_F_VOL_1ST | SMP_F_CONST; return 1; } static int smp_fetch_url_ip(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct htx_sl *sl; struct sockaddr_storage addr; memset(&addr, 0, sizeof(addr)); if (!htx) return 0; sl = http_get_stline(htx); if (url2sa(HTX_SL_REQ_UPTR(sl), HTX_SL_REQ_ULEN(sl), &addr, NULL) < 0) return 0; if (addr.ss_family != AF_INET) return 0; smp->data.type = SMP_T_IPV4; smp->data.u.ipv4 = ((struct sockaddr_in *)&addr)->sin_addr; smp->flags = 0; return 1; } static int smp_fetch_url_port(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct htx_sl *sl; struct sockaddr_storage addr; memset(&addr, 0, sizeof(addr)); if (!htx) return 0; sl = http_get_stline(htx); if (url2sa(HTX_SL_REQ_UPTR(sl), HTX_SL_REQ_ULEN(sl), &addr, NULL) < 0) return 0; if (addr.ss_family != AF_INET) return 0; smp->data.type = SMP_T_SINT; smp->data.u.sint = get_host_port(&addr); smp->flags = 0; return 1; } /* Fetch an HTTP header. A pointer to the beginning of the value is returned. * Accepts an optional argument of type string containing the header field name, * and an optional argument of type signed or unsigned integer to request an * explicit occurrence of the header. Note that in the event of a missing name, * headers are considered from the first one. It does not stop on commas and * returns full lines instead (useful for User-Agent or Date for example). */ static int smp_fetch_fhdr(const struct arg *args, struct sample *smp, const char *kw, void *private) { /* possible keywords: req.fhdr, res.fhdr */ struct channel *chn = ((kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp)); struct check *check = ((kw[2] == 's') ? objt_check(smp->sess->origin) : NULL); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); struct http_hdr_ctx *ctx = smp->ctx.a[0]; struct ist name; int occ = 0; if (!ctx) { /* first call */ ctx = &static_http_hdr_ctx; ctx->blk = NULL; smp->ctx.a[0] = ctx; } if (args[0].type != ARGT_STR) return 0; name = ist2(args[0].data.str.area, args[0].data.str.data); if (args[1].type == ARGT_SINT) occ = args[1].data.sint; if (!htx) return 0; if (ctx && !(smp->flags & SMP_F_NOT_LAST)) /* search for header from the beginning */ ctx->blk = NULL; if (!occ && !(smp->opt & SMP_OPT_ITERATE)) /* no explicit occurrence and single fetch => last header by default */ occ = -1; if (!occ) /* prepare to report multiple occurrences for ACL fetches */ smp->flags |= SMP_F_NOT_LAST; smp->data.type = SMP_T_STR; smp->flags |= SMP_F_VOL_HDR | SMP_F_CONST; if (http_get_htx_fhdr(htx, name, occ, ctx, &smp->data.u.str.area, &smp->data.u.str.data)) return 1; smp->flags &= ~SMP_F_NOT_LAST; return 0; } /* 6. Check on HTTP header count. The number of occurrences is returned. * Accepts exactly 1 argument of type string. It does not stop on commas and * returns full lines instead (useful for User-Agent or Date for example). */ static int smp_fetch_fhdr_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private) { /* possible keywords: req.fhdr_cnt, res.fhdr_cnt */ struct channel *chn = ((kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp)); struct check *check = ((kw[2] == 's') ? objt_check(smp->sess->origin) : NULL); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); struct http_hdr_ctx ctx; struct ist name; int cnt; if (!htx) return 0; if (args->type == ARGT_STR) { name = ist2(args->data.str.area, args->data.str.data); } else { name = IST_NULL; } ctx.blk = NULL; cnt = 0; while (http_find_header(htx, name, &ctx, 1)) cnt++; smp->data.type = SMP_T_SINT; smp->data.u.sint = cnt; smp->flags = SMP_F_VOL_HDR; return 1; } static int smp_fetch_hdr_names(const struct arg *args, struct sample *smp, const char *kw, void *private) { /* possible keywords: req.hdr_names, res.hdr_names */ struct channel *chn = ((kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp)); struct check *check = ((kw[2] == 's') ? objt_check(smp->sess->origin) : NULL); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); struct buffer *temp; char del = ','; int32_t pos; if (!htx) return 0; if (args->type == ARGT_STR) del = *args[0].data.str.area; temp = get_trash_chunk(); for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type = htx_get_blk_type(blk); struct ist n; if (type == HTX_BLK_EOH) break; if (type != HTX_BLK_HDR) continue; n = htx_get_blk_name(htx, blk); if (temp->data) temp->area[temp->data++] = del; chunk_istcat(temp, n); } smp->data.type = SMP_T_STR; smp->data.u.str = *temp; smp->flags = SMP_F_VOL_HDR; return 1; } /* Fetch an HTTP header. A pointer to the beginning of the value is returned. * Accepts an optional argument of type string containing the header field name, * and an optional argument of type signed or unsigned integer to request an * explicit occurrence of the header. Note that in the event of a missing name, * headers are considered from the first one. */ static int smp_fetch_hdr(const struct arg *args, struct sample *smp, const char *kw, void *private) { /* possible keywords: req.hdr / hdr, res.hdr / shdr */ struct channel *chn = ((kw[0] == 'h' || kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp)); struct check *check = ((kw[0] == 's' || kw[2] == 's') ? objt_check(smp->sess->origin) : NULL); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); struct http_hdr_ctx *ctx = smp->ctx.a[0]; struct ist name; int occ = 0; if (!ctx) { /* first call */ ctx = &static_http_hdr_ctx; ctx->blk = NULL; smp->ctx.a[0] = ctx; } if (args[0].type != ARGT_STR) return 0; name = ist2(args[0].data.str.area, args[0].data.str.data); if (args[1].type == ARGT_SINT) occ = args[1].data.sint; if (!htx) return 0; if (ctx && !(smp->flags & SMP_F_NOT_LAST)) /* search for header from the beginning */ ctx->blk = NULL; if (!occ && !(smp->opt & SMP_OPT_ITERATE)) /* no explicit occurrence and single fetch => last header by default */ occ = -1; if (!occ) /* prepare to report multiple occurrences for ACL fetches */ smp->flags |= SMP_F_NOT_LAST; smp->data.type = SMP_T_STR; smp->flags |= SMP_F_VOL_HDR | SMP_F_CONST; if (http_get_htx_hdr(htx, name, occ, ctx, &smp->data.u.str.area, &smp->data.u.str.data)) return 1; smp->flags &= ~SMP_F_NOT_LAST; return 0; } /* Same than smp_fetch_hdr() but only relies on the sample direction to choose * the right channel. So instead of duplicating the code, we just change the * keyword and then fallback on smp_fetch_hdr(). */ static int smp_fetch_chn_hdr(const struct arg *args, struct sample *smp, const char *kw, void *private) { kw = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ ? "req.hdr" : "res.hdr"); return smp_fetch_hdr(args, smp, kw, private); } /* 6. Check on HTTP header count. The number of occurrences is returned. * Accepts exactly 1 argument of type string. */ static int smp_fetch_hdr_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private) { /* possible keywords: req.hdr_cnt / hdr_cnt, res.hdr_cnt / shdr_cnt */ struct channel *chn = ((kw[0] == 'h' || kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp)); struct check *check = ((kw[0] == 's' || kw[2] == 's') ? objt_check(smp->sess->origin) : NULL); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); struct http_hdr_ctx ctx; struct ist name; int cnt; if (!htx) return 0; if (args->type == ARGT_STR) { name = ist2(args->data.str.area, args->data.str.data); } else { name = IST_NULL; } ctx.blk = NULL; cnt = 0; while (http_find_header(htx, name, &ctx, 0)) cnt++; smp->data.type = SMP_T_SINT; smp->data.u.sint = cnt; smp->flags = SMP_F_VOL_HDR; return 1; } /* Fetch an HTTP header's integer value. The integer value is returned. It * takes a mandatory argument of type string and an optional one of type int * to designate a specific occurrence. It returns an unsigned integer, which * may or may not be appropriate for everything. */ static int smp_fetch_hdr_val(const struct arg *args, struct sample *smp, const char *kw, void *private) { int ret = smp_fetch_hdr(args, smp, kw, private); if (ret > 0) { smp->data.type = SMP_T_SINT; smp->data.u.sint = strl2ic(smp->data.u.str.area, smp->data.u.str.data); } return ret; } /* Fetch an HTTP header's IP value. takes a mandatory argument of type string * and an optional one of type int to designate a specific occurrence. * It returns an IPv4 or IPv6 address. Addresses surrounded by invalid chars * are rejected. However IPv4 addresses may be followed with a colon and a * valid port number. */ static int smp_fetch_hdr_ip(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct buffer *temp = get_trash_chunk(); int ret, len; int port; while ((ret = smp_fetch_hdr(args, smp, kw, private)) > 0) { if (smp->data.u.str.data < temp->size - 1) { memcpy(temp->area, smp->data.u.str.area, smp->data.u.str.data); temp->area[smp->data.u.str.data] = '\0'; len = url2ipv4((char *) temp->area, &smp->data.u.ipv4); if (len > 0 && len == smp->data.u.str.data) { /* plain IPv4 address */ smp->data.type = SMP_T_IPV4; break; } else if (len > 0 && temp->area[len] == ':' && strl2irc(temp->area + len + 1, smp->data.u.str.data - len - 1, &port) == 0 && port >= 0 && port <= 65535) { /* IPv4 address suffixed with ':' followed by a valid port number */ smp->data.type = SMP_T_IPV4; break; } else if (temp->area[0] == '[' && temp->area[smp->data.u.str.data-1] == ']') { /* IPv6 address enclosed in square brackets */ temp->area[smp->data.u.str.data-1] = '\0'; if (inet_pton(AF_INET6, temp->area+1, &smp->data.u.ipv6)) { smp->data.type = SMP_T_IPV6; break; } } else if (inet_pton(AF_INET6, temp->area, &smp->data.u.ipv6)) { /* plain IPv6 address */ smp->data.type = SMP_T_IPV6; break; } } /* if the header doesn't match an IP address, fetch next one */ if (!(smp->flags & SMP_F_NOT_LAST)) return 0; } return ret; } /* 8. Check on URI PATH. A pointer to the PATH is stored. The path starts at the * first '/' after the possible hostname. It ends before the possible '?' except * for 'pathq' keyword. */ static int smp_fetch_path(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct htx_sl *sl; struct ist path; struct http_uri_parser parser; if (!htx) return 0; sl = http_get_stline(htx); parser = http_uri_parser_init(htx_sl_req_uri(sl)); if (kw[4] == 'q' && (kw[0] == 'p' || kw[0] == 'b')) // pathq or baseq path = http_parse_path(&parser); else path = iststop(http_parse_path(&parser), '?'); if (!isttest(path)) return 0; /* OK, we got the '/' ! */ smp->data.type = SMP_T_STR; smp->data.u.str.area = path.ptr; smp->data.u.str.data = path.len; smp->flags = SMP_F_VOL_1ST | SMP_F_CONST; return 1; } /* This produces a concatenation of the first occurrence of the Host header * followed by the path component if it begins with a slash ('/'). This means * that '*' will not be added, resulting in exactly the first Host entry. * If no Host header is found, then the path is returned as-is. The returned * value is stored in the trash so it does not need to be marked constant. * The returned sample is of type string. */ static int smp_fetch_base(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct htx_sl *sl; struct buffer *temp; struct http_hdr_ctx ctx; struct ist path; struct http_uri_parser parser; if (!htx) return 0; ctx.blk = NULL; if (!http_find_header(htx, ist("Host"), &ctx, 0) || !ctx.value.len) return smp_fetch_path(args, smp, kw, private); /* OK we have the header value in ctx.value */ temp = get_trash_chunk(); chunk_istcat(temp, ctx.value); /* now retrieve the path */ sl = http_get_stline(htx); parser = http_uri_parser_init(htx_sl_req_uri(sl)); path = http_parse_path(&parser); if (isttest(path)) { size_t len; if (kw[4] == 'q' && kw[0] == 'b') { // baseq len = path.len; } else { for (len = 0; len < path.len && *(path.ptr + len) != '?'; len++) ; } if (len && *(path.ptr) == '/') chunk_memcat(temp, path.ptr, len); } smp->data.type = SMP_T_STR; smp->data.u.str = *temp; smp->flags = SMP_F_VOL_1ST; return 1; } /* This produces a 32-bit hash of the concatenation of the first occurrence of * the Host header followed by the path component if it begins with a slash ('/'). * This means that '*' will not be added, resulting in exactly the first Host * entry. If no Host header is found, then the path is used. The resulting value * is hashed using the path hash followed by a full avalanche hash and provides a * 32-bit integer value. This fetch is useful for tracking per-path activity on * high-traffic sites without having to store whole paths. */ static int smp_fetch_base32(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct htx_sl *sl; struct http_hdr_ctx ctx; struct ist path; unsigned int hash = 0; struct http_uri_parser parser; if (!htx) return 0; ctx.blk = NULL; if (http_find_header(htx, ist("Host"), &ctx, 0)) { /* OK we have the header value in ctx.value */ while (ctx.value.len--) hash = *(ctx.value.ptr++) + (hash << 6) + (hash << 16) - hash; } /* now retrieve the path */ sl = http_get_stline(htx); parser = http_uri_parser_init(htx_sl_req_uri(sl)); path = http_parse_path(&parser); if (isttest(path)) { size_t len; for (len = 0; len < path.len && *(path.ptr + len) != '?'; len++) ; if (len && *(path.ptr) == '/') { while (len--) hash = *(path.ptr++) + (hash << 6) + (hash << 16) - hash; } } hash = full_hash(hash); smp->data.type = SMP_T_SINT; smp->data.u.sint = hash; smp->flags = SMP_F_VOL_1ST; return 1; } /* This concatenates the source address with the 32-bit hash of the Host and * path as returned by smp_fetch_base32(). The idea is to have per-source and * per-path counters. The result is a binary block from 8 to 20 bytes depending * on the source address length. The path hash is stored before the address so * that in environments where IPv6 is insignificant, truncating the output to * 8 bytes would still work. */ static int smp_fetch_base32_src(const struct arg *args, struct sample *smp, const char *kw, void *private) { const struct sockaddr_storage *src = (smp->strm ? sc_src(smp->strm->scf) : NULL); struct buffer *temp; if (!src) return 0; if (!smp_fetch_base32(args, smp, kw, private)) return 0; temp = get_trash_chunk(); *(unsigned int *) temp->area = htonl(smp->data.u.sint); temp->data += sizeof(unsigned int); switch (src->ss_family) { case AF_INET: memcpy(temp->area + temp->data, &((struct sockaddr_in *)src)->sin_addr, 4); temp->data += 4; break; case AF_INET6: memcpy(temp->area + temp->data, &((struct sockaddr_in6 *)src)->sin6_addr, 16); temp->data += 16; break; default: return 0; } smp->data.u.str = *temp; smp->data.type = SMP_T_BIN; return 1; } /* Extracts the query string, which comes after the question mark '?'. If no * question mark is found, nothing is returned. Otherwise it returns a sample * of type string carrying the whole query string. */ static int smp_fetch_query(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct htx_sl *sl; char *ptr, *end; if (!htx) return 0; sl = http_get_stline(htx); ptr = HTX_SL_REQ_UPTR(sl); end = HTX_SL_REQ_UPTR(sl) + HTX_SL_REQ_ULEN(sl); /* look up the '?' */ do { if (ptr == end) return 0; } while (*ptr++ != '?'); smp->data.type = SMP_T_STR; smp->data.u.str.area = ptr; smp->data.u.str.data = end - ptr; smp->flags = SMP_F_VOL_1ST | SMP_F_CONST; return 1; } static int smp_fetch_proto_http(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 0); if (!htx) return 0; smp->data.type = SMP_T_BOOL; smp->data.u.sint = 1; return 1; } /* return a valid test if the current request is the first one on the connection */ static int smp_fetch_http_first_req(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!smp->strm) return 0; smp->data.type = SMP_T_BOOL; smp->data.u.sint = !(smp->strm->txn->flags & TX_NOT_FIRST); return 1; } /* Fetch the authentication method if there is an Authorization header. It * relies on get_http_auth() */ static int smp_fetch_http_auth_type(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct http_txn *txn; if (!htx) return 0; txn = smp->strm->txn; if (!get_http_auth(smp, htx)) return 0; switch (txn->auth.method) { case HTTP_AUTH_BASIC: smp->data.u.str.area = "Basic"; smp->data.u.str.data = 5; break; case HTTP_AUTH_DIGEST: /* Unexpected because not supported */ smp->data.u.str.area = "Digest"; smp->data.u.str.data = 6; break; case HTTP_AUTH_BEARER: smp->data.u.str.area = "Bearer"; smp->data.u.str.data = 6; break; default: return 0; } smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; return 1; } /* Fetch the user supplied if there is an Authorization header. It relies on * get_http_auth() */ static int smp_fetch_http_auth_user(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct http_txn *txn; if (!htx) return 0; txn = smp->strm->txn; if (!get_http_auth(smp, htx) || txn->auth.method != HTTP_AUTH_BASIC) return 0; smp->data.type = SMP_T_STR; smp->data.u.str.area = txn->auth.user; smp->data.u.str.data = strlen(txn->auth.user); smp->flags = SMP_F_CONST; return 1; } /* Fetch the password supplied if there is an Authorization header. It relies on * get_http_auth() */ static int smp_fetch_http_auth_pass(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct http_txn *txn; if (!htx) return 0; txn = smp->strm->txn; if (!get_http_auth(smp, htx) || txn->auth.method != HTTP_AUTH_BASIC) return 0; smp->data.type = SMP_T_STR; smp->data.u.str.area = txn->auth.pass; smp->data.u.str.data = strlen(txn->auth.pass); smp->flags = SMP_F_CONST; return 1; } static int smp_fetch_http_auth_bearer(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct http_txn *txn; struct buffer bearer_val = {}; if (!htx) return 0; if (args->type == ARGT_STR) { struct http_hdr_ctx ctx; struct ist hdr_name = ist2(args->data.str.area, args->data.str.data); ctx.blk = NULL; if (http_find_header(htx, hdr_name, &ctx, 0)) { struct ist type = istsplit(&ctx.value, ' '); /* There must be "at least" one space character between * the scheme and the following value so ctx.value might * still have leading spaces here (see RFC7235). */ ctx.value = istskip(ctx.value, ' '); if (isteqi(type, ist("Bearer")) && istlen(ctx.value)) chunk_initlen(&bearer_val, istptr(ctx.value), 0, istlen(ctx.value)); } } else { txn = smp->strm->txn; if (!get_http_auth(smp, htx) || txn->auth.method != HTTP_AUTH_BEARER) return 0; bearer_val = txn->auth.method_data; } smp->data.type = SMP_T_STR; smp->data.u.str = bearer_val; smp->flags = SMP_F_CONST; return 1; } /* Accepts exactly 1 argument of type userlist */ static int smp_fetch_http_auth(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); if (args->type != ARGT_USR) return 0; if (!htx) return 0; if (!get_http_auth(smp, htx) || smp->strm->txn->auth.method != HTTP_AUTH_BASIC) return 0; smp->data.type = SMP_T_BOOL; smp->data.u.sint = check_user(args->data.usr, smp->strm->txn->auth.user, smp->strm->txn->auth.pass); return 1; } /* Accepts exactly 1 argument of type userlist */ static int smp_fetch_http_auth_grp(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); if (args->type != ARGT_USR) return 0; if (!htx) return 0; if (!get_http_auth(smp, htx) || smp->strm->txn->auth.method != HTTP_AUTH_BASIC) return 0; /* if the user does not belong to the userlist or has a wrong password, * report that it unconditionally does not match. Otherwise we return * a string containing the username. */ if (!check_user(args->data.usr, smp->strm->txn->auth.user, smp->strm->txn->auth.pass)) return 0; /* pat_match_auth() will need the user list */ smp->ctx.a[0] = args->data.usr; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; smp->data.u.str.area = smp->strm->txn->auth.user; smp->data.u.str.data = strlen(smp->strm->txn->auth.user); return 1; } /* Fetch a captured HTTP request header. The index is the position of * the "capture" option in the configuration file */ static int smp_fetch_capture_req_hdr(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct proxy *fe; int idx; if (args->type != ARGT_SINT) return 0; if (!smp->strm) return 0; fe = strm_fe(smp->strm); idx = args->data.sint; if (idx > (fe->nb_req_cap - 1) || smp->strm->req_cap == NULL || smp->strm->req_cap[idx] == NULL) return 0; smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; smp->data.u.str.area = smp->strm->req_cap[idx]; smp->data.u.str.data = strlen(smp->strm->req_cap[idx]); return 1; } /* Fetch a captured HTTP response header. The index is the position of * the "capture" option in the configuration file */ static int smp_fetch_capture_res_hdr(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct proxy *fe; int idx; if (args->type != ARGT_SINT) return 0; if (!smp->strm) return 0; fe = strm_fe(smp->strm); idx = args->data.sint; if (idx > (fe->nb_rsp_cap - 1) || smp->strm->res_cap == NULL || smp->strm->res_cap[idx] == NULL) return 0; smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; smp->data.u.str.area = smp->strm->res_cap[idx]; smp->data.u.str.data = strlen(smp->strm->res_cap[idx]); return 1; } /* Extracts the METHOD in the HTTP request, the txn->uri should be filled before the call */ static int smp_fetch_capture_req_method(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct buffer *temp; struct http_txn *txn; char *ptr; if (!smp->strm) return 0; txn = smp->strm->txn; if (!txn || !txn->uri) return 0; ptr = txn->uri; while (*ptr != ' ' && *ptr != '\0') /* find first space */ ptr++; temp = get_trash_chunk(); temp->area = txn->uri; temp->data = ptr - txn->uri; smp->data.u.str = *temp; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; return 1; } /* Extracts the path in the HTTP request, the txn->uri should be filled before the call */ static int smp_fetch_capture_req_uri(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; struct ist path; const char *ptr; struct http_uri_parser parser; if (!smp->strm) return 0; txn = smp->strm->txn; if (!txn || !txn->uri) return 0; ptr = txn->uri; while (*ptr != ' ' && *ptr != '\0') /* find first space */ ptr++; if (!*ptr) return 0; /* skip the first space and find space after URI */ path = ist2(++ptr, 0); while (*ptr != ' ' && *ptr != '\0') ptr++; path.len = ptr - path.ptr; parser = http_uri_parser_init(path); path = http_parse_path(&parser); if (!isttest(path)) return 0; smp->data.u.str.area = path.ptr; smp->data.u.str.data = path.len; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; return 1; } /* Retrieves the HTTP version from the request (either 1.0 or 1.1) and emits it * as a string (either "HTTP/1.0" or "HTTP/1.1"). */ static int smp_fetch_capture_req_ver(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; if (!smp->strm) return 0; txn = smp->strm->txn; if (!txn || txn->req.msg_state < HTTP_MSG_BODY) return 0; if (txn->req.flags & HTTP_MSGF_VER_11) smp->data.u.str.area = "HTTP/1.1"; else smp->data.u.str.area = "HTTP/1.0"; smp->data.u.str.data = 8; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; return 1; } /* Retrieves the HTTP version from the response (either 1.0 or 1.1) and emits it * as a string (either "HTTP/1.0" or "HTTP/1.1"). */ static int smp_fetch_capture_res_ver(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; if (!smp->strm) return 0; txn = smp->strm->txn; if (!txn || txn->rsp.msg_state < HTTP_MSG_BODY) return 0; if (txn->rsp.flags & HTTP_MSGF_VER_11) smp->data.u.str.area = "HTTP/1.1"; else smp->data.u.str.area = "HTTP/1.0"; smp->data.u.str.data = 8; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; return 1; } /* Iterate over all cookies present in a message. The context is stored in * smp->ctx.a[0] for the in-header position, smp->ctx.a[1] for the * end-of-header-value, and smp->ctx.a[2] for the hdr_ctx. Depending on * the direction, multiple cookies may be parsed on the same line or not. * If provided, the searched cookie name is in args, in args->data.str. If * the input options indicate that no iterating is desired, then only last * value is fetched if any. If no cookie name is provided, the first cookie * value found is fetched. The returned sample is of type CSTR. Can be used * to parse cookies in other files. */ static int smp_fetch_cookie(const struct arg *args, struct sample *smp, const char *kw, void *private) { /* possible keywords: req.cookie / cookie / cook, res.cookie / scook / set-cookie */ struct channel *chn = ((kw[0] == 'c' || kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp)); struct check *check = ((kw[0] == 's' || kw[2] == 's') ? objt_check(smp->sess->origin) : NULL); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); struct http_hdr_ctx *ctx = smp->ctx.a[2]; struct ist hdr; char *cook = NULL; size_t cook_l = 0; int found = 0; if (args->type == ARGT_STR) { cook = args->data.str.area; cook_l = args->data.str.data; } if (!ctx) { /* first call */ ctx = &static_http_hdr_ctx; ctx->blk = NULL; smp->ctx.a[2] = ctx; } if (!htx) return 0; hdr = (!(check || (chn && chn->flags & CF_ISRESP)) ? ist("Cookie") : ist("Set-Cookie")); /* OK so basically here, either we want only one value or we want to * iterate over all of them and we fetch the next one. In this last case * SMP_OPT_ITERATE option is set. */ if (!(smp->flags & SMP_F_NOT_LAST)) { /* search for the header from the beginning, we must first initialize * the search parameters. */ smp->ctx.a[0] = NULL; ctx->blk = NULL; } smp->flags |= SMP_F_VOL_HDR; while (1) { /* Note: smp->ctx.a[0] == NULL every time we need to fetch a new header */ if (!smp->ctx.a[0]) { if (!http_find_header(htx, hdr, ctx, 0)) goto out; if (ctx->value.len < cook_l + 1) continue; smp->ctx.a[0] = ctx->value.ptr; smp->ctx.a[1] = smp->ctx.a[0] + ctx->value.len; } smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; smp->ctx.a[0] = http_extract_cookie_value(smp->ctx.a[0], smp->ctx.a[1], cook, cook_l, (smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ, &smp->data.u.str.area, &smp->data.u.str.data); if (smp->ctx.a[0]) { found = 1; if (smp->opt & SMP_OPT_ITERATE) { /* iterate on cookie value */ smp->flags |= SMP_F_NOT_LAST; return 1; } if (args->data.str.data == 0) { /* No cookie name, first occurrence returned */ break; } } /* if we're looking for last occurrence, let's loop */ } /* all cookie headers and values were scanned. If we're looking for the * last occurrence, we may return it now. */ out: smp->flags &= ~SMP_F_NOT_LAST; return found; } /* Same than smp_fetch_cookie() but only relies on the sample direction to * choose the right channel. So instead of duplicating the code, we just change * the keyword and then fallback on smp_fetch_cookie(). */ static int smp_fetch_chn_cookie(const struct arg *args, struct sample *smp, const char *kw, void *private) { kw = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ ? "req.cook" : "res.cook"); return smp_fetch_cookie(args, smp, kw, private); } /* Iterate over all cookies present in a request to count how many occurrences * match the name in args and args->data.str.len. If is non-null, then * multiple cookies may be parsed on the same line. The returned sample is of * type UINT. Accepts exactly 1 argument of type string. */ static int smp_fetch_cookie_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private) { /* possible keywords: req.cook_cnt / cook_cnt, res.cook_cnt / scook_cnt */ struct channel *chn = ((kw[0] == 'c' || kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp)); struct check *check = ((kw[0] == 's' || kw[2] == 's') ? objt_check(smp->sess->origin) : NULL); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); struct http_hdr_ctx ctx; struct ist hdr; char *val_beg, *val_end; char *cook = NULL; size_t cook_l = 0; int cnt; if (args->type == ARGT_STR){ cook = args->data.str.area; cook_l = args->data.str.data; } if (!htx) return 0; hdr = (!(check || (chn && chn->flags & CF_ISRESP)) ? ist("Cookie") : ist("Set-Cookie")); val_end = val_beg = NULL; ctx.blk = NULL; cnt = 0; while (1) { /* Note: val_beg == NULL every time we need to fetch a new header */ if (!val_beg) { if (!http_find_header(htx, hdr, &ctx, 0)) break; if (ctx.value.len < cook_l + 1) continue; val_beg = ctx.value.ptr; val_end = val_beg + ctx.value.len; } smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; while ((val_beg = http_extract_cookie_value(val_beg, val_end, cook, cook_l, (smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ, &smp->data.u.str.area, &smp->data.u.str.data))) { cnt++; } } smp->data.type = SMP_T_SINT; smp->data.u.sint = cnt; smp->flags |= SMP_F_VOL_HDR; return 1; } /* Fetch an cookie's integer value. The integer value is returned. It * takes a mandatory argument of type string. It relies on smp_fetch_cookie(). */ static int smp_fetch_cookie_val(const struct arg *args, struct sample *smp, const char *kw, void *private) { int ret = smp_fetch_cookie(args, smp, kw, private); if (ret > 0) { smp->data.type = SMP_T_SINT; smp->data.u.sint = strl2ic(smp->data.u.str.area, smp->data.u.str.data); } return ret; } /* Iterate over all cookies present in a message, * and return the list of cookie names separated by * the input argument character. * If no input argument is provided, * the default delimiter is ','. * The returned sample is of type CSTR. */ static int smp_fetch_cookie_names(const struct arg *args, struct sample *smp, const char *kw, void *private) { /* possible keywords: req.cook_names, res.cook_names */ struct channel *chn = ((kw[2] == 'q') ? SMP_REQ_CHN(smp) : SMP_RES_CHN(smp)); struct check *check = ((kw[2] == 's') ? objt_check(smp->sess->origin) : NULL); struct htx *htx = smp_prefetch_htx(smp, chn, check, 1); struct http_hdr_ctx ctx; struct ist hdr; struct buffer *temp; char del = ','; char *ptr, *attr_beg, *attr_end; size_t len = 0; int is_req = !(check || (chn && chn->flags & CF_ISRESP)); if (!htx) return 0; if (args->type == ARGT_STR) del = *args[0].data.str.area; hdr = (is_req ? ist("Cookie") : ist("Set-Cookie")); temp = get_trash_chunk(); smp->flags |= SMP_F_VOL_HDR; attr_end = attr_beg = NULL; ctx.blk = NULL; /* Scan through all headers and extract all cookie names from * 1. Cookie header(s) for request channel OR * 2. Set-Cookie header(s) for response channel */ while (1) { /* Note: attr_beg == NULL every time we need to fetch a new header */ if (!attr_beg) { /* For Set-Cookie, we need to fetch the entire header line (set flag to 1) */ if (!http_find_header(htx, hdr, &ctx, !is_req)) break; attr_beg = ctx.value.ptr; attr_end = attr_beg + ctx.value.len; } while (1) { attr_beg = http_extract_next_cookie_name(attr_beg, attr_end, is_req, &ptr, &len); if (!attr_beg) break; /* prepend delimiter if this is not the first cookie name found */ if (temp->data) temp->area[temp->data++] = del; /* At this point ptr should point to the start of the cookie name and len would be the length of the cookie name */ if (!chunk_memcat(temp, ptr, len)) return 0; } } smp->data.type = SMP_T_STR; smp->data.u.str = *temp; return 1; } /************************************************************************/ /* The code below is dedicated to sample fetches */ /************************************************************************/ /* This scans a URL-encoded query string. It takes an optionally wrapping * string whose first contiguous chunk has its beginning in ctx->a[0] and end * in ctx->a[1], and the optional second part in (ctx->a[2]..ctx->a[3]). The * pointers are updated for next iteration before leaving. */ static int smp_fetch_param(char delim, const char *name, int name_len, const struct arg *args, struct sample *smp, const char *kw, void *private, char insensitive) { const char *vstart, *vend; struct buffer *temp; const char **chunks = (const char **)smp->ctx.a; if (!http_find_next_url_param(chunks, name, name_len, &vstart, &vend, delim, insensitive)) return 0; /* Create sample. If the value is contiguous, return the pointer as CONST, * if the value is wrapped, copy-it in a buffer. */ smp->data.type = SMP_T_STR; if (chunks[2] && vstart >= chunks[0] && vstart <= chunks[1] && vend >= chunks[2] && vend <= chunks[3]) { /* Wrapped case. */ temp = get_trash_chunk(); memcpy(temp->area, vstart, chunks[1] - vstart); memcpy(temp->area + ( chunks[1] - vstart ), chunks[2], vend - chunks[2]); smp->data.u.str.area = temp->area; smp->data.u.str.data = ( chunks[1] - vstart ) + ( vend - chunks[2] ); } else { /* Contiguous case. */ smp->data.u.str.area = (char *)vstart; smp->data.u.str.data = vend - vstart; smp->flags = SMP_F_VOL_1ST | SMP_F_CONST; } /* Update context, check wrapping. */ chunks[0] = vend; if (chunks[2] && vend >= chunks[2] && vend <= chunks[3]) { chunks[1] = chunks[3]; chunks[2] = NULL; } if (chunks[0] < chunks[1]) smp->flags |= SMP_F_NOT_LAST; return 1; } /* This function iterates over each parameter of the query string. It uses * ctx->a[0] and ctx->a[1] to store the beginning and end of the current * parameter. Since it uses smp_fetch_param(), ctx->a[2..3] are both NULL. * An optional parameter name is passed in args[0], otherwise any parameter is * considered. It supports an optional delimiter argument for the beginning of * the string in args[1], which defaults to "?". */ static int smp_fetch_url_param(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); char delim = '?'; const char *name; int name_len; char insensitive = 0; if ((args[0].type && args[0].type != ARGT_STR) || (args[1].type && args[1].type != ARGT_STR) || (args[2].type && args[2].type != ARGT_STR)) return 0; name = ""; name_len = 0; if (args->type == ARGT_STR) { name = args->data.str.area; name_len = args->data.str.data; } if (args[1].type && *args[1].data.str.area) delim = *args[1].data.str.area; if (args[2].type && *args[2].data.str.area == 'i') insensitive = 1; if (!smp->ctx.a[0]) { // first call, find the query string struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct htx_sl *sl; if (!htx) return 0; sl = http_get_stline(htx); smp->ctx.a[0] = http_find_param_list(HTX_SL_REQ_UPTR(sl), HTX_SL_REQ_ULEN(sl), delim); if (!smp->ctx.a[0]) return 0; smp->ctx.a[1] = HTX_SL_REQ_UPTR(sl) + HTX_SL_REQ_ULEN(sl); /* Assume that the context is filled with NULL pointer * before the first call. * smp->ctx.a[2] = NULL; * smp->ctx.a[3] = NULL; */ } return smp_fetch_param(delim, name, name_len, args, smp, kw, private, insensitive); } /* This function iterates over each parameter of the body. This requires * that the body has been waited for using http-buffer-request. It uses * ctx->a[0] and ctx->a[1] to store the beginning and end of the first * contiguous part of the body, and optionally ctx->a[2..3] to reference the * optional second part if the body wraps at the end of the buffer. An optional * parameter name is passed in args[0], otherwise any parameter is considered. */ static int smp_fetch_body_param(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); const char *name; int name_len; char insensitive = 0; if ((args[0].type && args[0].type != ARGT_STR) || (args[1].type && args[1].type != ARGT_STR)) return 0; name = ""; name_len = 0; if (args[0].type == ARGT_STR) { name = args[0].data.str.area; name_len = args[0].data.str.data; } if (args[1].type && *args[1].data.str.area == 'i') insensitive = 1; if (!smp->ctx.a[0]) { // first call, find the query string struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct buffer *temp; int32_t pos; if (!htx) return 0; temp = get_trash_chunk(); for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type = htx_get_blk_type(blk); if (type == HTX_BLK_TLR || type == HTX_BLK_EOT) break; if (type == HTX_BLK_DATA) { if (!h1_format_htx_data(htx_get_blk_value(htx, blk), temp, 0)) return 0; } } smp->ctx.a[0] = temp->area; smp->ctx.a[1] = temp->area + temp->data; /* Assume that the context is filled with NULL pointer * before the first call. * smp->ctx.a[2] = NULL; * smp->ctx.a[3] = NULL; */ } return smp_fetch_param('&', name, name_len, args, smp, kw, private, insensitive); } /* Return the signed integer value for the specified url parameter (see url_param * above). */ static int smp_fetch_url_param_val(const struct arg *args, struct sample *smp, const char *kw, void *private) { int ret = smp_fetch_url_param(args, smp, kw, private); if (ret > 0) { smp->data.type = SMP_T_SINT; smp->data.u.sint = strl2ic(smp->data.u.str.area, smp->data.u.str.data); } return ret; } /* This produces a 32-bit hash of the concatenation of the first occurrence of * the Host header followed by the path component if it begins with a slash ('/'). * This means that '*' will not be added, resulting in exactly the first Host * entry. If no Host header is found, then the path is used. The resulting value * is hashed using the url hash followed by a full avalanche hash and provides a * 32-bit integer value. This fetch is useful for tracking per-URL activity on * high-traffic sites without having to store whole paths. * this differs from the base32 functions in that it includes the url parameters * as well as the path */ static int smp_fetch_url32(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct channel *chn = SMP_REQ_CHN(smp); struct htx *htx = smp_prefetch_htx(smp, chn, NULL, 1); struct http_hdr_ctx ctx; struct htx_sl *sl; struct ist path; unsigned int hash = 0; struct http_uri_parser parser; if (!htx) return 0; ctx.blk = NULL; if (http_find_header(htx, ist("Host"), &ctx, 1)) { /* OK we have the header value in ctx.value */ while (ctx.value.len--) hash = *(ctx.value.ptr++) + (hash << 6) + (hash << 16) - hash; } /* now retrieve the path */ sl = http_get_stline(htx); parser = http_uri_parser_init(htx_sl_req_uri(sl)); path = http_parse_path(&parser); if (path.len && *(path.ptr) == '/') { while (path.len--) hash = *(path.ptr++) + (hash << 6) + (hash << 16) - hash; } hash = full_hash(hash); smp->data.type = SMP_T_SINT; smp->data.u.sint = hash; smp->flags = SMP_F_VOL_1ST; return 1; } /* This concatenates the source address with the 32-bit hash of the Host and * URL as returned by smp_fetch_base32(). The idea is to have per-source and * per-url counters. The result is a binary block from 8 to 20 bytes depending * on the source address length. The URL hash is stored before the address so * that in environments where IPv6 is insignificant, truncating the output to * 8 bytes would still work. */ static int smp_fetch_url32_src(const struct arg *args, struct sample *smp, const char *kw, void *private) { const struct sockaddr_storage *src = (smp->strm ? sc_src(smp->strm->scf) : NULL); struct buffer *temp; if (!src) return 0; if (!smp_fetch_url32(args, smp, kw, private)) return 0; temp = get_trash_chunk(); *(unsigned int *) temp->area = htonl(smp->data.u.sint); temp->data += sizeof(unsigned int); switch (src->ss_family) { case AF_INET: memcpy(temp->area + temp->data, &((struct sockaddr_in *)src)->sin_addr, 4); temp->data += 4; break; case AF_INET6: memcpy(temp->area + temp->data, &((struct sockaddr_in6 *)src)->sin6_addr, 16); temp->data += 16; break; default: return 0; } smp->data.u.str = *temp; smp->data.type = SMP_T_BIN; return 1; } /************************************************************************/ /* Other utility functions */ /************************************************************************/ /* This function is used to validate the arguments passed to any "hdr" fetch * keyword. These keywords support an optional positive or negative occurrence * number. We must ensure that the number is greater than -MAX_HDR_HISTORY. It * is assumed that the types are already the correct ones. Returns 0 on error, * non-zero if OK. If is not NULL, it will be filled with a pointer to an * error message in case of error, that the caller is responsible for freeing. * The initial location must either be freeable or NULL. * Note: this function's pointer is checked from Lua. */ int val_hdr(struct arg *arg, char **err_msg) { if (arg && arg[1].type == ARGT_SINT && arg[1].data.sint < -MAX_HDR_HISTORY) { memprintf(err_msg, "header occurrence must be >= %d", -MAX_HDR_HISTORY); return 0; } return 1; } /************************************************************************/ /* All supported sample fetch keywords must be declared here. */ /************************************************************************/ /* Note: must not be declared as its list will be overwritten */ static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, { { "base", smp_fetch_base, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, { "base32", smp_fetch_base32, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "base32+src", smp_fetch_base32_src, 0, NULL, SMP_T_BIN, SMP_USE_HRQHV }, { "baseq", smp_fetch_base, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, /* capture are allocated and are permanent in the stream */ { "capture.req.hdr", smp_fetch_capture_req_hdr, ARG1(1,SINT), NULL, SMP_T_STR, SMP_USE_HRQHP }, /* retrieve these captures from the HTTP logs */ { "capture.req.method", smp_fetch_capture_req_method, 0, NULL, SMP_T_STR, SMP_USE_HRQHP }, { "capture.req.uri", smp_fetch_capture_req_uri, 0, NULL, SMP_T_STR, SMP_USE_HRQHP }, { "capture.req.ver", smp_fetch_capture_req_ver, 0, NULL, SMP_T_STR, SMP_USE_HRQHP }, { "capture.res.hdr", smp_fetch_capture_res_hdr, ARG1(1,SINT), NULL, SMP_T_STR, SMP_USE_HRSHP }, { "capture.res.ver", smp_fetch_capture_res_ver, 0, NULL, SMP_T_STR, SMP_USE_HRQHP }, /* cookie is valid in both directions (eg: for "stick ...") but cook* * are only here to match the ACL's name, are request-only and are used * for ACL compatibility only. */ { "cook", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRQHV }, { "cookie", smp_fetch_chn_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRQHV|SMP_USE_HRSHV }, { "cook_cnt", smp_fetch_cookie_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "cook_val", smp_fetch_cookie_val, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, /* hdr is valid in both directions (eg: for "stick ...") but hdr_* are * only here to match the ACL's name, are request-only and are used for * ACL compatibility only. */ { "hdr", smp_fetch_chn_hdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRQHV|SMP_USE_HRSHV }, { "hdr_cnt", smp_fetch_hdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "hdr_ip", smp_fetch_hdr_ip, ARG2(0,STR,SINT), val_hdr, SMP_T_ADDR, SMP_USE_HRQHV }, { "hdr_val", smp_fetch_hdr_val, ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRQHV }, { "http_auth_type", smp_fetch_http_auth_type, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, { "http_auth_user", smp_fetch_http_auth_user, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, { "http_auth_pass", smp_fetch_http_auth_pass, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, { "http_auth_bearer", smp_fetch_http_auth_bearer, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRQHV }, { "http_auth", smp_fetch_http_auth, ARG1(1,USR), NULL, SMP_T_BOOL, SMP_USE_HRQHV }, { "http_auth_group", smp_fetch_http_auth_grp, ARG1(1,USR), NULL, SMP_T_STR, SMP_USE_HRQHV }, { "http_first_req", smp_fetch_http_first_req, 0, NULL, SMP_T_BOOL, SMP_USE_HRQHP }, { "method", smp_fetch_meth, 0, NULL, SMP_T_METH, SMP_USE_HRQHP }, { "path", smp_fetch_path, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, { "pathq", smp_fetch_path, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, { "query", smp_fetch_query, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, /* HTTP protocol on the request path */ { "req.proto_http", smp_fetch_proto_http, 0, NULL, SMP_T_BOOL, SMP_USE_HRQHP }, { "req_proto_http", smp_fetch_proto_http, 0, NULL, SMP_T_BOOL, SMP_USE_HRQHP }, /* HTTP version on the request path */ { "req.ver", smp_fetch_rqver, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, { "req_ver", smp_fetch_rqver, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, { "req.body", smp_fetch_body, 0, NULL, SMP_T_BIN, SMP_USE_HRQHV }, { "req.body_len", smp_fetch_body_len, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "req.body_size", smp_fetch_body_size, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "req.body_param", smp_fetch_body_param, ARG2(0,STR,STR), NULL, SMP_T_BIN, SMP_USE_HRQHV }, { "req.hdrs", smp_fetch_hdrs, 0, NULL, SMP_T_BIN, SMP_USE_HRQHV }, { "req.hdrs_bin", smp_fetch_hdrs_bin, 0, NULL, SMP_T_BIN, SMP_USE_HRQHV }, /* HTTP version on the response path */ { "res.ver", smp_fetch_stver, 0, NULL, SMP_T_STR, SMP_USE_HRSHV }, { "resp_ver", smp_fetch_stver, 0, NULL, SMP_T_STR, SMP_USE_HRSHV }, { "res.body", smp_fetch_body, 0, NULL, SMP_T_BIN, SMP_USE_HRSHV }, { "res.body_len", smp_fetch_body_len, 0, NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "res.body_size", smp_fetch_body_size, 0, NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "res.hdrs", smp_fetch_hdrs, 0, NULL, SMP_T_BIN, SMP_USE_HRSHV }, { "res.hdrs_bin", smp_fetch_hdrs_bin, 0, NULL, SMP_T_BIN, SMP_USE_HRSHV }, /* explicit req.{cook,hdr} are used to force the fetch direction to be request-only */ { "req.cook", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRQHV }, { "req.cook_cnt", smp_fetch_cookie_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "req.cook_val", smp_fetch_cookie_val, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "req.cook_names", smp_fetch_cookie_names, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRQHV }, { "req.fhdr", smp_fetch_fhdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRQHV }, { "req.fhdr_cnt", smp_fetch_fhdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "req.hdr", smp_fetch_hdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRQHV }, { "req.hdr_cnt", smp_fetch_hdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "req.hdr_ip", smp_fetch_hdr_ip, ARG2(0,STR,SINT), val_hdr, SMP_T_ADDR, SMP_USE_HRQHV }, { "req.hdr_names", smp_fetch_hdr_names, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRQHV }, { "req.hdr_val", smp_fetch_hdr_val, ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRQHV }, /* explicit req.{cook,hdr} are used to force the fetch direction to be response-only */ { "res.cook", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRSHV }, { "res.cook_cnt", smp_fetch_cookie_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "res.cook_val", smp_fetch_cookie_val, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "res.cook_names", smp_fetch_cookie_names, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRSHV }, { "res.fhdr", smp_fetch_fhdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRSHV }, { "res.fhdr_cnt", smp_fetch_fhdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "res.hdr", smp_fetch_hdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRSHV }, { "res.hdr_cnt", smp_fetch_hdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "res.hdr_ip", smp_fetch_hdr_ip, ARG2(0,STR,SINT), val_hdr, SMP_T_ADDR, SMP_USE_HRSHV }, { "res.hdr_names", smp_fetch_hdr_names, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRSHV }, { "res.hdr_val", smp_fetch_hdr_val, ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRSHV }, { "server_status", smp_fetch_srv_status, 0, NULL, SMP_T_SINT, SMP_USE_HRSHP }, /* scook is valid only on the response and is used for ACL compatibility */ { "scook", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRSHV }, { "scook_cnt", smp_fetch_cookie_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "scook_val", smp_fetch_cookie_val, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV }, /* shdr is valid only on the response and is used for ACL compatibility */ { "shdr", smp_fetch_hdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRSHV }, { "shdr_cnt", smp_fetch_hdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "shdr_ip", smp_fetch_hdr_ip, ARG2(0,STR,SINT), val_hdr, SMP_T_ADDR, SMP_USE_HRSHV }, { "shdr_val", smp_fetch_hdr_val, ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRSHV }, { "status", smp_fetch_stcode, 0, NULL, SMP_T_SINT, SMP_USE_HRSHP }, { "txn.status", smp_fetch_srv_status, 0, NULL, SMP_T_SINT, SMP_USE_HRSHP }, { "unique-id", smp_fetch_uniqueid, 0, NULL, SMP_T_STR, SMP_SRC_L4SRV }, { "url", smp_fetch_url, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, { "url32", smp_fetch_url32, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "url32+src", smp_fetch_url32_src, 0, NULL, SMP_T_BIN, SMP_USE_HRQHV }, { "url_ip", smp_fetch_url_ip, 0, NULL, SMP_T_IPV4, SMP_USE_HRQHV }, { "url_port", smp_fetch_url_port, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "url_param", smp_fetch_url_param, ARG3(0,STR,STR,STR), NULL, SMP_T_STR, SMP_USE_HRQHV }, { "urlp" , smp_fetch_url_param, ARG3(0,STR,STR,STR), NULL, SMP_T_STR, SMP_USE_HRQHV }, { "urlp_val", smp_fetch_url_param_val, ARG3(0,STR,STR,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, { /* END */ }, }}; INITCALL1(STG_REGISTER, sample_register_fetches, &sample_fetch_keywords); /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */